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Abstract
This master’s thesis focuses on optimizing foil shapes, which play a crucial role in determining
their aerodynamic or hydrodynamic performance. The objective is to evaluate different techniques
and methods in terms of efficiency and accuracy, to this end, a computer program has been
developed. Key topics include geometry parameterization methods, Computational Fluid
Dynamics (CFD) programs like XFoil and Star-CCM+, and optimization and sampling strategies
using Dakota. The main contributions of this work are to provide new insights and methods for
future research in aerodynamic or hydrodynamic design. Foil optimization is widely studied in
various industries, including wind energy, naval, and aerospace. The optimization objective is
to optimize a boat keel profile, aiming to reduce drag and achieve a certain lift coefficient.

The research found that the PARSEC optimum obtained through the SOGA optimiza-
tion method performs best for the specified study case. The optimum foils exhibit similar
characteristics, with thin leading and trailing edges and a maximum thickness between 0.3 and
0.5 of the chord length. The PARSEC parameterization method offers advantages over NACA
formulations, providing greater control over the geometry which turns out in better profiles
from the hydrodynamic performance point of view.

The overall performance of the optimization process demonstrates the efficiency of using a
low-fidelity flow solver (XFoil) for optimization and verifying the results with a high-fidelity CFD
solver (Star-CCM+). This methodology is a powerful approach for optimizing the aerodynamic
or hydrodynamic performance of designs. Future research could explore the use of AI models
to improve the accuracy of low-fidelity solvers and train models using the optimization results
obtained in this study.

Keywords: aerodynamics, optimization, foil shape parameterization, computational
fluid dynamics, CFD, optimization algorithms, low-fidelity solver, XFoil, high-fidelity solver,
Star-CCM+, evolutionary strategies, genetic algorithm, Newton method, method of feasible
directions.
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Resumen
Esta tesis de máster se centra en la optimización de perfiles en 2D, lo que es crucial a la hora
de determinar su rendimiento aerodinámico o hidrodinámico. El objetivo es optimizar los
perfiles utilizando varios algoritmos y evaluando diferentes técnicas y métodos en términos de
eficiencia y precisión, para lo cual se ha desarrollado una aplicación espećıfica. Los temas clave
tratados en este trabajo incluyen los métodos de parametrización de la geometŕıa, programas
de dinámica de fluidos computacional (CFD) como XFoil y Star-CCM+, y estrategias de
optimización y muestreo utilizados mediante Dakota. Las principales aportaciones de este
trabajo son proporcionar nuevas perspectivas y métodos para futuras investigaciones en diseño
aerodinámico o hidrodinámico. La optimización de perfiles se estudia ampliamente en diversas
industrias, como la enerǵıa eólica, la naval y la aeroespacial. Para estudiar los resultado se ha
centrado el proyecto en la optimización de una quilla de velero, con el objetivo de reducir su
resistencia manteniendo un determinado coeficiente de fuerza lateral.

El estudio descubrió que el óptimo utilizando la parametrización de la geometŕıa PARSEC
obtenido mediante el método de optimización SOGA es el que mejor se comporta para el caso
de estudio especificado. Los perfiles óptimos presentan caracteŕısticas similares, con bordes
de ataque y salida delgados y un espesor máximo entre 0,3 y 0,5 de la longitud de cuerda. El
método de parametrización PARSEC ofrece ventajas sobre las formulaciones NACA, ya que
proporciona un mayor control sobre la geometŕıa, lo que resulta en mejores perfiles desde el
punto de vista hidrodinámico en este caso.

El rendimiento global del proceso de optimización demuestra la eficacia de utilizar un
solver de baja fidelidad (XFoil) para la optimización y verificar los resultados con un solver
CFD de alta fidelidad (Star-CCM+). Esta metodoloǵıa es un potente enfoque para optimizar
el rendimiento aerodinámico o hidrodinámico de los diseños. Futuras investigaciones podŕıan
explorar el uso de modelos de IA para mejorar la precisión de los programas de baja fidelidad y
entrenar modelos utilizando los resultados de optimización obtenidos en este estudio.

Keywords: aerodinámica, optimización, parametrización de perfiles, dinámica de flu-
idos computacional, CFD, DFC, algoritmos de optimización, XFoil, Star-CCM+, estrategias
evolutivas, algoritmo genético, método de Newton, método de direcciones factibles.
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1. Introduction
Foil optimization is a crucial aspect of engineering as the shape of a foil plays a vital role in de-
termining its aerodynamic/hydrodynamic performance. The advancements in data management
and computing offer the potential for significant improvements in aerodynamic/hydrodynamic
efficiency optimization. This master’s thesis aims to investigate the use of several methodologies
for 2D shape optimization of foils.

The main objective of this thesis is to applicate different techniques to build a tool to
optimize foil shapes. Different techniques and methods for foil optimization have been evaluated
in terms of efficiency and accuracy. The research addresses to demonstrate the application of
these optimizations to optimize the profiles for specific design constraints and goals, such as
reducing drag while achieving a certain lift.

The thesis focuses on several key topics, including geometry parameterization methods,
the usage of different Computational Fluid Dynamics (CFD) solvers, XFoil and Star-CCM+,
and optimization and sampling strategies using Dakota. The main contributions of this thesis
will be to provide new insights and methods for future research in the field of aerodynamic or
hydrodynamic design.

1.1. Motivation
The purpose of completing this project is the application of several algorithms in foil optimization.
For this reason, multiple research about airfoil optimization have been reviewed and it has been
reflected how this work could change the current design procedures.

Foil shape optimization is a common study field [10] in different applications such as the
wind energy, naval and aerospace industries. Even free tools have been developed that allow the
user to perform a local foil shape optimization1.

We can distinguish three or four sections in a typical foil optimization depending on the
solver that is going to be used: shape parameterization/control; mesh creation/deformation,
depending on the CFD solver; flow solution; and optimisation.

Shape parameterization in an optimization problem means how the geometry will be
managed by the optimization algorithm. In a global optimization, we will need to cover a wide
range of foils whereas, in a local optimization changing a little some of the parameters, a good
result could be achieved. Previous research concludes that to cover a large database of foils,
between 20 to 25 design variables are needed to cover the 90% and between 13 and 17 to cover
80 % [19]. The best parameterization method is efficient in terms of fewer variables changing
significantly the airfoil shape [2].

When selecting the solver we must bear in mind the operating conditions we would like
to simulate. Some conditions could not be addressed with potential flow solvers, like XFoil.
Nevertheless, coupling a high-fidelity CFD solver will result in a more computationally expensive
tool [10]. The optimization first approach with simplified flow solvers and the following validation
of these low-fidelity results with a high-fidelity commercial, RANS or viscous CFD is currently
being used in the industry [5]. The usage of CFD is mainly used at the final stages of the design
process, once the problem and geometry are well defined.

1http://webfoil.engin.umich.edu/
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Last but not least, the choice of an optimization method depends mainly on the knowledge
of the objective function and the optimization landscape [17]. We must take into account that
to solve the optimization problem, we will need to call the model several times, which can be
computationally demanding.

To achieve the objective of this worl, the following milestones must be achieved:

• Geometry generation. Different types of geometry parameterization methods must be
used to generate the foils.

• Flow solver. A fast solver (XFoil) must be coupled to the geometry generator to evaluate
the different profiles.

• Optimization algorithm. Different methods must govern the geometry parameters and
analyse the results to obtain an optimum foil under a given set of constraints.

• Verify and control results. High fidelity flow solver (Star-CCM+) is to be used to control
the quality of the optimization results.

Every step of the process will be evaluated: from geometry parameterization to optimiza-
tion methods performance, with a focus on identifying the most efficient and effective approach.
By the end of this thesis, we expect to have developed a simple tool capable of automating the
optimization process and have compared its performance to achieve the best results.

Future research that could be done is to implement other parameterization options, use
other optimization algorithms or build an AI-driven flow solver trained with the results obtained
in the optimization or design space studies performed in the development of this research.

1.2. Optimization objective
The objective of the final optimization will be to optimize a boat keel profile, reducing drag and
aiming to obtain a lift coefficient bigger than 0.4. Optimizing a boat keel means optimizing a
symmetrical foil. This helps us to achieve better optimization results faster as there are fewer
design variables, avoiding the curse of dimensionality2. In addition, it is easier to learn how
the optimization methods work. Nevertheless, in the results, it is detailed how the algorithm
performed with a non-symmetrical foil.

Once the objective of the optimization has been chosen, we have defined our flow
conditions. This is a turbulent and incompressible flow (Re = 1e+06).

The keel functionality is to provide the boat with enough lateral force to compensate for
the torque of the wind force generated by the sails. For this reason, the angle of attack is also a
design variable since having symmetrical profiles, it is needed to generate that torque. This
problem is detailed in figure 1.

2The number of samples required to estimate any function with a given degree of accuracy increases
exponentially as the number of input variables of the function increases, according to Bellman’s [3] theory of the
curse of dimensionality[7].
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Figure 1: Keel operation [22].

Nevertheless, an initial design of experiments included non-symmetrical foil optimization.
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2. Geometry parameterization
Previous research has shown the influence of geometry parameterization in the optimization
process [24]. Multiple methods of foil generation have been developed up to now.

NACA formulation is probably one of the most studied parameterization methods but
is not the only one. Other parameterization techniques vary from geometry representation
techniques like B-Splines to foil-specific methodologies such as PARSEC. We can distinguish
between constructive and deformative methods. Constructive methods build the foil surface by
attending only to the geometrical features. Deformative methods obtain the foils by modifying
an existing foil [19].

To develop this thesis, NACA and PARSEC formulations have been used, for this reason,
they are detailed below.

2.1. NACA formulation
From 1929 to 1947, the NACA airfoils were created at the Langley Field Laboratory under the
supervision of Eastman Jacobs. These foils were primarily constructed using basic geometric
outlines to describe their section shape. However, the 6 and 6A series were produced through
theoretical analysis and lack straightforward shape definitions The process of creating NACA
foils involves the combination of a thickness envelope and a camber or mean line. This section
is mainly based on the work presented by Mason [18]. The equations that detail this process
are as follows:

xu = x− yt(x) sin θ
yu = yc(x) + yt(x) cos θ
xl = x+ yt(x) sin θ

yl = yc(x) − yt(x) cos θ

θ = tan−1
(
dyC

dx

)
(1)

where yt(x) is the thickness function, yc(x) is the camber function and θ is the camber
line slope.

2.1.1. The NACA 4-Digit foil

The NACA 4 digit is ruled by the following structure:

NACA MPXX

where: XX is the maximum thickness in per cent of the chord, M is the maximum value of the
mean line in hundredths of the chord and P is the chord-wise position of the maximum camber
in the tenths of the chord

The NACA 4 thickness distribution is given by:

yt

c
=
(
t

c

) [
a0(x/c)

1
2 − a1(x/c) − a2(x/c)2 + a3(x/c)3 − a4(x/c)4

]
(2)
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where:
a0 = 1.4845 a2 = 1.7580 a4 = 0.5075
a1 = 0.6300 a3 = 1.4215

As pointed out by Mason [18], using these equations the trailing edge is defined as having
a finite thickness in it, which means the foil is not completely closed.

In the NACA 4-digit foils, the maximum thickness is always located at x/c = 0.30 and
the leading edge radius is

(
rLE

c

)
= 1.1019

(
t

c

)2
(3)

The angle of the trailing edge is:

δT E = 2 tan−1
{

1.16925
(
t

c

)}
(4)

And the NACA 4-digit foil camber line is defined by:

yc

c
= M

P 2 [2P (x/c) − (x/c)2]
dyc

dx
= 2M

P 2 (P − (x/c))

 x

c
< P (5)

and:

yc

c
= M

(1−P )2 [1 − 2P + 2P (x/c) − (x/c)2]
dyc

dx
= 2M

(1−P )2 (P − (x/c))

 x

c
≥ P (6)

The foil is finally generated from the camber line slope which is found from theta in
equation (1) and using equation (5) and equation (6), and the surface of the geometry (upper
and lower) results from the combination of the thickness distribution equation (2) and camber
line using equations of equation (1).

2.1.2. The NACA 5-Digit foil

According to Mason [18], the foil family discussed is an extension of the 4-digit series and
includes additional camber lines. The source goes on to explain that the numbering system for
these foils is defined as follows:

NACA LPQXX
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where XX is the maximum thickness t/c in per cent of the chord, L defines the amount
of camber as the design lift coefficient is 3/2 L, in tenths, P marks the location of maximum
camber, xmaxcamber = P/2 given P in tenths of chord; and finally, Q characterizes the camber
line being equal to 0 for a standard 5 digit foil camber and equal to 1 for a “reflexed” camber
line.

The NACA 5-digit foils use the thickness distribution of the NACA 4-digit. Whereas
their standard camber line is defined by:

yc

c
= K1

6 [(x/c)3 − 3m(x/c)2 +m2(3 −m)(x/c)]
dyc

dx
= K1

6 [3(x/c)2 − 6m(x/c) +m2(3 −m)]

 0 ≤ x

c
≤ m (7)

and:

yc

c
= K1

6 m
3[1 − (x/c)]

dyc

dx
= −K1

6 m
3

 m <
x

c
≤ 1 (8)

m delineates the maximum camber position as follows:

xmaxcamber = m
(

1 −
√
m

3

)
(9)

The parameter m results from a given xmaxcamber. Additionally, the parameter K1 above
is defined to prevent a leading edge singularity for a prescribed Cli and m value.

K1 = 6Cli

Q
(10)

where

Q = 3m− 7m2 + 8m3 − 4m4√
m(1 −m)

− 3(1 − 2m)
2 [π2 − arcsin(1 − 2m)] (11)

It can be concluded that K1 is a linear function of Cli where the values for K1 were
tabulated originally for Cli = 0.3, and are multiplied by (Cli/.3) to obtain values for other Cli

values. The values of Q and K1 need to be determined to compute the camber line. Although
the computed values of K1 and Q might slightly differ from the tabulated values because they
were calculated in the 1930s by Jacobs and Pinkerton [16], it is advisable to use the tabulated
values to reproduce the official ordinates.

Finally, the geometry is designed once the camber line parameters have been chosen and
using the above equations.
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2.1.3. The NACA Modified 4-Digit foil

As per Mason [18], this profile is an extension of the 4-digit series, which permits a modification
of the location of maximum thickness and leading edge radius. The foil’s numbering system is
established by:

NACA MPXX-IT

where MPXX is the NACA 4-digit designation and the IT defines the modification to
the thickness distribution, being I the parameter which fixes the leading edge radius and T the
chordwise position of the maximum thickness in tenths of the chord.

Note that I equal to 6 produces the standard 4-digit foils leading edge radius and that
an I=9 produces a thick leading edge and an I=1 produces a thin leading edge.

The modified thickness distribution is:

yt

c
= 5(t/c)[a0

√
(x/c+ a1(x/c) + a2(x/c)2 + a3(x/c)3] 0 < x

c
≤ T (12)

and

yt

c
= 5(t/c)[0.002 + d1(1 − x

c
) + d2(1 − x

c
)2 + d3(1 − x

c
)3] T <

x

c
≤ 1 (13)

According to the given information, the coefficients are obtained by solving for the d’s,
which are determined based on the trailing edge slope and the condition of maximum thickness
at x/c = T . Once the coefficients are determined, the a’s are calculated by establishing a
relationship between a0, the specified leading edge radius, the maximum thickness at x/c = T ,
and the continuity of curvature at x/c = T . These constants are initially determined for
t/c = 0.2 and then scaled to other t/c values by multiplying them by 5(t/c). The value of d1
controls the trailing edge slope and was originally chosen to avoid reversals of curvature. In
addition to the tabulated values, Riegels has also provided an interpolation formula.

Lastly, the camber lines for this foil are the same as those for the standard 4-digit airfoils
mentioned earlier. Once the camber line is established, the upper and lower ordinates are
determined using standard equations.

2.1.4. The NACA 6 and 6A digit foils

The thickness distributions of the profile are numerically determined and therefore, only the
mean lines have analytical definitions. Furthermore, there may be alternative sources for the
tabulated coordinates, in addition to the values provided in the NACA reports.

The NACA 6-series and 6A-series foils use conformal transformations to relate the flow
over a foil to that of a near-circle and a circle. NACA 6-series generators are rare but some
efforts have been made to make this NACA designation reach the general public3. A four-step
algorithm using ψ and ϵ functions is used to calculate each of the five members of the 6-series
family and the three members of the 6A-series family, each with its own unique set of functions.

3https://www.pdas.com/naca456.html
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The functions ψ and ϵ were selected to fit a certain velocity distribution around the airfoil. A
scale factor is applied to the ψ and ϵ functions to produce airfoils of varying thickness to chord
ratios, with the specific ratio dependent on the chosen scale factor. The resulting thickness is
not known in advance [6].

Now, for a specified family and thickness, the thickness distribution may be determined
without iteration. From the thickness, the scale factor is computed from the polynomial function
shown above. Then, the scale factor is used to multiply the basic values of the ψ and ϵ functions
for this foil family [6].

The 6-series airfoils were designed with thin foil theory to achieve a constant loading
from the leading edge back to x/c = a and a linear decrease to zero at the trailing edge. The
loading at the leading edge must be either zero or infinite within the context of thin foil theory
analysis, and the violation of this theory is reflected by the presence of a weak singularity in the
mean line at the leading edge. To address this, the slope of the mean line is held constant in
front of x/c = 0.005, with the value at that point for the 6-series airfoils [1][18].

According to Abbott and Doenhoff [1], the NACA 6-series designation is usually:

NACA 6X(A),Y-LTT, a = C

where 6 is the 6-series appellative, and X is the chordwise position in tenths of the chord
of the minimum pressure coefficient. (A) denotes the 6A series. Then after the comma, Y is the
range of lift coefficient in tenths in which favourable pressure gradients exist on both surfaces
and can be sometimes a subscript or it can be between brackets. Following the hyphen, L is the
design lift coefficient in tenths and TT is the thickness in per cent of the chord. Finally, a = C,
C indicates the type of mean line used, where the default assumption is that the uniform-load
mean line (a = 1.0) was used when the mean line is unspecified.

To enable the foil to be constructed of almost straight line segments near the trailing
edge, the 6A series airfoils utilized an empirical adjustment of the a = 0.8 camber line.

The base camber line equations are:

When a = 1 (uniform loading along the entire chord):

y

c
= −Cli

4π

[(
1 − x

c

)
ln
(

1 − xc

c

)
+ x

c
ln
(
x

c

)]
(14)

and

dy

dx
= Cli

4π

 ln
1 − x

c

− ln
x
c

) (15)

where cIi is the “ideal” or design lift coefficient, which occurs at zero angle-of-attack.

For a < 1:
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y

c
= Cli

2π(1 + a)



1
1−a

[
1
2(a− x

c
)2 ln |a− x

c
| − 1

2(1 − x
c

2) ln(1 − x
c
)

+1
4(1 + x

c
)2 − 1

4(a− x
c
)2
]

−x
c

ln(x
c
) + g − hx

c


(16)

with

g = −1
(1−a)

[
a2
(

1
2 ln a− 1

4

)
+ 1

4

]

h = (1 − a)
1

2 ln(1 − a) − 1
4

+ g

(17)

and

dy

dx
= Cli

2π(1 + a)

{ 1
1 − a

[(
1 − x

c

)
ln
(

1 − x

c

)
−
(
a− x

c

)
ln
(
a− x

c

)]
− ln

(
x

c

)
− 1 − h

}
(18)

The 6A-series means a = 0.8. For 0 < x/c < 0.87437, the basic camber line is used with
a modified lift coefficient Climod = Cli/1.0209. For 0.87437 < x/c < 1 a linear equation is used:

yc/c

CIi

= 0.0302164 − 0.245209
(
x

c
− 0.87437

)
(19)

and

dy

dx
= −0.245209Cll (20)

2.2. PARSEC formulation
PARSEC is a widely used and effective approach for parameterizing foil shapes. It involves
utilizing eleven fundamental parameters to fully specify the geometry of the foil.

The various parameters as shown in figure 2 are leading edge radius (rle), upper crest
location(Xup, Zup), lower crest location (Xlo, Zlo), upper and lower curvature (ZXXup, ZXXlo),
trailing edge coordinate(Zte) and direction (αle), trailing edge wedge angle (βte and thickness
∆Zte) [30].

PARSEC allows strong control over the curvature and is similar to NACA 4-digit series
as it uses a polynomial of higher order (6th) [30].
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Figure 2: PARSEC parameters definition [30].

ZP ARSEC =
6∑

n=1
an(p) ·X

n−1
2 (21)

Equation (21) is used independently for the upper and lower surfaces. The coefficients
an are determined based on the given geometric parameters as follows [10]:

Cup × aup = bup, Clo × al = blo (22)

where matrices Clo and Cup are both coefficient matrices and blo and bup are designated
as below:

Cup =



1 1 1 1 1 1
√
p2 p

3/2
2 p

5/2
2 p

7/2
2 p

9/2
2 p

11/2
2

0.5 1.5 2.5 3.5 4.5 5.5
0.5p−1/2

2 1.5√
p2 2.5p3/2

2 3.5p5/2
2 4.5p7/2

2 5.5p9/2
2

−0.25p−3/2
2 0.75p−1/2

2
15
4 p

1/2
2

35
4 p

3/2
2

63
4 p

5/2
2

99
4 p

7/2
2

1 0 0 0 0 0


(23)

to obtain Clo we must change p2 with p5 in equation (23).

Bup =



p8 + p9
2

p6

tan
(
p10 − p11

2

)
0
p7

√
2p1


, Blo =



p8 − p9
2

p3

tan
(
p10 + p11

2

)
0
p4

−
√

2p1


(24)
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PARSEC
parameter

Geometry
parameter

Definition

p1 rle leading edge radius
p2 Xup upper crest position in horizontal coordinates
p3 Zup upper crest position in vertical coordinates
p4 ZXXup upper crest curvature
p5 Xlo lower crest position in horizontal coordinates
p6 Zlo lower crest position in vertical coordinates
p7 ZXXlo lower crest curvature
p8 Zte trailing edge offset in vertical sense
p9 ∆Zte trailing edge thickness
p10 αte trailing edge direction
p11 βte trailing edge wedge angle

Table 1: PARSEC parameters definition [10].

2.3. Geometry parameterization set-up
Once some foil constraints can be fixed regarding the optimization problem presented in 1.2,
from the formulations explained in the section 2 we can conclude that NACA 4 and 5 will
produce the same symmetrical profiles. The ones that give more control over the thickness and
foil shape are the NACA 4 modified series, NACA 6-series and PARSEC. These methodologies
allow the optimizer to handle better the thickness and shape of the geometry, allowing it to
cover a more interesting range of foils. Nevertheless, at the early stages of this work, cambered
foils were also studied.

The design parameters of each formulation can be gathered from sections 2.1.3, 2.1.4 and
table 1. In the NACA 4-digits modified, it will be mandatory to maintain the first two digits
as 0s, 00XX-IT; while in the NACA 6-series, the design lift coefficient digit must be set to 0,
6X(A),0TT. The “Y” shown in the section mentioned above, is not necessary as symmetrical foils
are going to be obtained, as well as the “a” parameter. Using PARSEC to obtain symmetrical
foils, on one hand, we must fix that the parameters that control each surface directly (variables
from 2 to 7) must be symmetrical: p2 = p5, p3 = −p4 and p4 = −p7. On the other hand, the
parameters that affect the camber line must be set to 0, these are p8 and p10.

Apart from these facts, the number of points and their distribution is important to
represent accurately the foil shape. This is a fact easy to deal with by plotting the foils obtained,
taking note of the definition of the most curved part of the surfaces, which is mainly the leading
edge.

Given the foregoing, the NACA series were used using the NACA456 Program from
PDAS4. Using this program, we can get nearly 100 points per surface. Meanwhile, a Python
program has been developed to use the PARSEC formulation. In this way, we can control

4https://www.pdas.com/naca456download.html
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the number of points and we can choose between a linear distribution or a half-cosine spacing
distribution, which increases the points at LE and TE where they are needed.

We must take into consideration this fact so later we will need a good definition of the
LE to obtain valid results in the flow solver chosen.

Figure 3: PARSEC foil with 50 points on each surface and linear spacing.

Figure 4: PARSEC foil with 100 points on each surface and cosine spacing.
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Moreover, PARSEC can produce invalid geometries because PARSEC coefficients are
obtained by solving the linear equations system expressed in equation 22.

Figure 5: PARSEC impossible geometry I.

Figure 6: PARSEC impossible geometry II.
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Consequentially, the combinations that result in wrong geometries must be avoided. This
is achieved by sampling the design space and imposing a penalisation method on the wrong
geometries, in so doing, the optimization algorithm will avoid these limits too.

Moreover, some combinations of PARSEC parameters could still produce undesired
geometries. Some geometries, despite the fact that can converge in XFoil, the results it gives
back can not be accurate.

Figure 7: PARSEC undesired geometry.

To avoid this issue, each PARSEC parameter upper and lower limits must be set sensibly.
To address this task, the variables were split into pairs and studied in contour plots in which a
white space meant a combination that was avoided by the program. The limits in the design
variables of PARSEC were fixed as stated in the following table as a consequence:

Parameter Lower bound Upper bound
rle 0.005 0.1
Xup 0.1 0.7
Zup 0.05 0.15
ZXXup 0 -1.5
Xlo 0.1 0.7
Zlo -0.05 -0.15
ZXXlo 0 1.5
Zte -0.1 0.1

∆Zte 0.001 0.3
αte (in rad) -1 0.5
βte (in rad) 0 2

Table 2: PARSEC parameters limits in the samplings and optimizations.
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3. Flow solvers
Flow solvers influence the foil optimization process significantly. Especially in the cost-efficiency
relation of the whole optimization process. An accurate prediction of foil performance can
significantly determine the efforts needed to improve the initial design downstream. At the
same time, an initial design has to be developed efficiently: in terms of time and cost.

In this work, two of the main available options have been evaluated: an integrated
boundary layer formulation and the potential flow panel method, XFoil [20]; and a commercial
CFD software, Star-CCM+.

3.1. XFoil

Figure 8: XFoil terminal.

XFoil is a versatile and interactive program that is specifically designed for the analysis
and design of subsonic isolated airfoils. It offers a range of menu-driven routines that perform
various functions such as viscous analysis, airfoil design, and Karman-Tsien compressibility
correction. One of the key features of XFoil is its ability to facilitate airfoil design and redesign
through the interactive specification of a surface speed distribution. This allows users to easily
modify geometric parameters such as maximum thickness, camber, leading-edge radius, trailing
edge thickness, camber line, loading change specification, flap deflection, and explicit contour
geometry. XFoil also offers additional functionalities such as blending airfoils, drag polar
calculation, writing and reading of airfoil geometry, saving polar files, and plotting geometry,
pressure distributions, and polar curves [11].

XFoil 1.0, developed by Mark Drela in 1986, aimed to combine the speed and accuracy of
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high-order panel methods with the newly-introduced fully-coupled viscous/inviscid interaction
method used in the ISES code by Drela and Giles.

The inviscid formulation of XFoil utilizes a linear-vorticity stream function panel method
with a finite trailing edge base thickness modelled using a source panel. It also incorporates a
Karman-Tsien compressibility correction, enabling accurate predictions in compressible flows up
to sonic conditions. However, the accuracy of XFoil diminishes rapidly in the transonic regime,
and it is unable to reliably predict shocked flows.

XFoil employs two types of inverse methods: Full-Inverse and Mixed-Inverse. Full-Inverse
utilizes Lighthill’s and van Ingen’s complex mapping method, which calculates the complete
airfoil geometry based on the entire surface speed distribution. On the other hand, Mixed-Inverse
is an inviscid panel formulation in which the panel node coordinates are treated as unknowns at
locations where the surface speed is prescribed. This allows for the alteration of only a portion
of the airfoil at a time.

The boundary layers and wake in XFoil are described using a two-equation lagged
dissipation integral boundary layer formulation, along with an envelope transition criterion
that is adopted from the transonic analysis/design ISES code. The viscous solution is strongly
coupled with the incompressible potential flow through the surface transpiration model. Drag
is determined from the momentum thickness of the wake far downstream. The total velocity
at each point on the airfoil surface and wake is obtained from the panel solution, with the
Karman-Tsien correction added. The execution times of XFoil are rapid, typically taking around
1 or 2 seconds on a nowadays computer.

In cases where the lift is specified, the wake trajectory is obtained from an inviscid
solution at the specified lift or angle of attack. However, XFoil does not perform a secondary
correction as a new source influence matrix would need to be calculated each time the wake
trajectory is changed. The impact of this approximation on overall accuracy is small and mainly
noticeable near or past stall conditions. In the attached cases, the effect of an incorrect wake
trajectory is usually imperceptible.

The lift and moment coefficients (CL, CM , and Cp) in XFoil are calculated through direct
surface pressure integration. The pressure coefficient (Cp) is determined using the Karman-Tsien
compressibility correction to account for compressibility effects. The drag coefficient (CD) is
obtained using the Squire-Young formula at the last point in the wake, but not at the trailing
edge. XFoil also provides information on the friction and pressure drag components (CDf , CDp)
of the total drag coefficient, allowing for a detailed analysis of the drag characteristics of the
airfoil.

Transition in an XFoil solution can be triggered by either free or forced transition. The en

method, used in XFoil, incorporates a user-specified parameter known as Ncrit, which represents
the logarithm of the amplification factor of the most-amplified frequency that triggers the
transition. The appropriate value for Ncrit depends on the ambient disturbance level, and it can
be adjusted by the user to achieve an accurate prediction of transition location on the airfoil
surface.

Panel density requirements are crucial for accurately capturing strong separation bubbles
in viscous solutions using XFoil. If a separation bubble appears to be poorly resolved, it is
important to re-panel the airfoil with a higher number of points and/or concentrated around
the bubble region. For moderate chord Reynolds numbers (ranging from 1 to 3 million), finer
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panelling is typically necessary. Insufficient resolution of the separation bubble can result in a
“ragged” or “scalloped” lift coefficient (CL) versus drag coefficient (CD) polar curve.

XFoil incorporates upwinding into the equations automatically only in regions of rapid
change, ensuring that the overall numerical scheme is stable and as accurate as possible. Some
small oscillations in the shape parameter H may occur near the stagnation point, but these are
cosmetic defects that do not significantly affect the downstream development of the boundary
layer [11].

3.2. CFD and Star-CCM+
The usage of simulation tools has proven essential to the creation of many commonplace
technology. In actuality, modern numerical simulation tools serve as technological enablers.
CFD is this kind of tool. The Navier-Stokes equation, which ingeniously represents an entire
range of flow phenomena, including turbulent or laminar single-phase incompressible flows,
compressible all-speed flows, and multiphase flows, is at the core of this instrument. The Finite
Volume Method has emerged as a standout among the numerical techniques applied to CFD.
The Finite Volume Method (FVM) is a numerical technique that transforms partial differential
equations into discrete algebraic equations over finite volumes [21].

In addition, some of the effects that are challenging to identify in experimental experiments
are determined and shown using CFD approaches based on RANS flow modelling. Every CFD
code might be broken down into three sections, each of which corresponds to a different stage of
the problem-analysis process.

1. The pre-processor builds the problem, imports a mesh, and implements the physical
problem into a mathematical model, dividing the computational domain into elements.
Next, the domain and analysis type (multiphase, VOF, turbulence) are defined, and
boundary conditions are set. Global accuracy depends on mesh quality, with finer meshing
for smooth flow changes and coarser for higher gradients.

2. The solver module is the core of a CFD code, which uses numerical solution algorithms to
solve algebraic systems of equations. These programs can run even in the background and
build backup and result files. Users can control the analysis using residuals or variables,
allowing for quick and easy monitoring of convergence. Launching and relaunching the
solver without affecting the solver allows for quick problem resolution and monitoring of
divergence.

3. The postprocessor module analyzes solution results, generating solution variables for grid
nodes or volumes, which are collected and elaborated for a physical representation.

It has to be taken into account that the majority of flows in both nature and technology
display turbulence, a type of instability. When the flow velocity, or more accurately, the Reynolds
number, hits a specific critical threshold, the regime changes. This makes it difficult to solve
the equations analytically and necessitates the formulation of numerical methods to solve for
certain (statistically stationary) states within the flow. All flow instability is averaged out and
considered to be a component of turbulence in the Reynolds-averaged Navier-Stokes (RANS)
approach to turbulence. Those are presented as follows:

∂ρ

∂t
+ ∂

∂xi

(ρui) = 0 (25)
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(ρu′
iu

′
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These Reynolds stresses ρu′
iu

′
j are to be modeled to close equation 26.

The selection of the numerical method and the solution process depends on the code’s
application domain and the modelling approach used. Even though there are many models
offered in any commercial program, this research has only employed two-equation turbulence
models: Realizable k − ϵ and k − ω SST.

On the one hand, the most popular is the k − ϵ model. Being stable and numerically
robust, it provides a fair balance between accuracy and resilience. In this model ϵ is the pace at
which the smallest eddies’ turbulent energy dissipates due to viscosity. The model is said to be
“realizable” as it fulfills specific mathematical restrictions on the Reynolds stresses that are in
line with the physics of turbulent flows.

On the other hand, in the k − ω model, ω = ϵ/k is the dissipation rate. The SST (Shear
Stress Transport) model implements an enhanced approximation of the principal shear stress in
adverse pressure gradients [15].

3.2.1. Star-CCM+

Simcenter Star-CCM+ Software is a Computational Aided Engineering (CAE) solution developed
by Siemens Digital Industries Software for solving multidisciplinary problems in both fluid and
solid continuum mechanics. It provides one of the world’s most comprehensive engineering
physics simulations inside a single integrated package. It offers all stages required for carrying
out engineering analyses, including import and creation of geometries, mesh generation, solution
of governing equations, analysis of results, automation of simulation workflows, and connection
to other CAE software for co-simulation analysis [29].

Numerous researchers [13][34] have studied its performance in comparison with other
commercial software with promising results.

3.3. Solver set-up
Hereunder it is described the configuration and models adopted to solve the flow in the described
study case in section 1.2.

3.3.1. XFoil configuration

Setting up XFoil requires only a few steps:

• Load the coordinate file of the geometry.

• Use the pane option to re-pane the profile.

• Increase the limit of iterations to 200.

• Set viscosity equal to Re = 1e+06.

• Force Boundary Layer transition at x = 0.01.
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• Run the AoA.

We will use the XFOIL repanelization option because it was studied that using the
distribution of points how it appears in the text file resulted in a Cp distribution erroneous. In
figure 9 looking at the emphasized sections, we can observe that the pressure distribution is not
smooth.

Figure 9: Cp distribution of a foil produced with the panelization as described in its coordinates
file.

3.3.2. Star-CCM+: models and mesh

In Star-CCM+, the models used were the ones recommended by the user guide for incompressible
external aerodynamics:

• Bi-dimensional.

• Time: steady

• Material: liquid, constant density, water (ρ = 997.561kg/m3, µ =8.8871e-4Pa− s).

• Flow: segregated flow.

• Viscous Regime: turbulent.

• Turbulence: Reynolds-Averaged Navier-Stokes, Realizable k − ϵ.

The other main aspect to set up properly is the mesh. First of all, the domain in which
the geometry is located is 150 chords long and 100 wide, being the foil at 50 chords of the inlet
(velocity) and 100 from the outlet (pressure). The geometry is imported as an open spline at
the TE and then closed. Polyhedral mesh with prim layer controls was used. Some insights of a
typical mesh for any of the geometries simulated will look like this:
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Figure 10: Mesh I, zoomed out.

Figure 11: Mesh II, zooming in.
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Figure 12: Mesh III: near profile.

Figure 13: Mesh IV: detail of LE.
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Figure 14: Mesh V: detail of TE.

3.3.3. NACA 0012 Validation

This configuration was tested following the 2D NACA 0012 Airfoil Validation Case5. The results
were compared with the force data from Ladson, Hill, & Johnson (NASA TM 100526, 1987)
and the pressure data with the data from Gregory & O’Reilly (NASA R&M 3726, Jan 1970).
The results were also compared with a simulation using k − ω turbulence.

AoA Source CD CL

0
k − ω 8.19e-03 -6.67e-07
k − ϵ 8.11e-03 2.84e-05

Experimental data 8.11e-03 -1.30e-03

10
k − ω 1.35e-02 1.05e+00
k − ϵ 1.33e-02 1.08e+00

Experimental data 1.16e-02 1.08e+00

Table 3: Comparison with simulation results using different turbulence models and experimental
data from Ladson.

5https://turbmodels.larc.nasa.gov/naca0012_val.html
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Figure 15: Pressure distribution comparison: simulation on Star-CCM+ with k − ϵ turbulence
vs. experimental data from Gregory at AoA 0.

Figure 16: Pressure distribution comparison: simulation on Star-CCM+ with k − ϵ turbulence
vs. experimental data from Gregory at AoA 10.

Regarding these results, it was concluded that the mesh was adequately defined and,
regarding the table 3, the most correct turbulence model was the k − ϵ because using it, the
results approached better the experimental data than using the k − ω model, although this
model has shown to be better for foils applications [15].
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4. Optimization Methods
In this project, two optimization methods have been used: gradient methods and genetic or
evolutionary algorithms. They have been implemented using Dakota6.

The Dakota project provides state-of-the-art research and robust software for optimiza-
tion and UQ (Uncertainty Quantification). Its advanced parametric analyses enable design
exploration, model calibration, risk analysis, and quantification of margins and uncertainty.
The toolkit provides a flexible interface between simulation codes and its iterative systems
analysis methods, such as optimization, uncertainty quantification, parameter estimation, and
sensitivity/variance analysis. These capabilities can be used on their own or as components
within advanced strategies [25].

It is also needed to mention that previous to the optimization process, when the response
function behaviour is unknown, sampling methods are recommended to set up properly the
optimization process. In this project, parametric studies and Latin Hypercube Sampling have
been used and compared to study the design space.

4.1. Sampling methods
As it has been said, to study the design space parametric studies or other sampling methods
such as LHS can be used.

Parametric study

There are several parametric study methods available. In parametric studies, one sort of
sensitivity analysis is performed by calculating response data sets at various places in the
parameter space to examine the impact of parametric modifications on simulation models.
In Dakota there are available: vector, list, list, and multidimensional methods that perform
parameter studies in n-dimensional parameter space. vector uses a line between two points, list
uses a list of points, list evaluates nearby points along the coordinate axes, and multidimensional
forms a regular lattice or hypergrid. For example, a multidimensional parametric study will
result in (p+ 1)n function evaluations being p the number of partitions and n the number of
dimensions assuming all dimensions will be divided in the same number of partitions [27].

Figure 17: Example multidimensional parameter study [27].
6https://dakota.sandia.gov/

34

https://dakota.sandia.gov/


2D profile multi-fidelity optimization and algorithm comparison
Javier Berrueco Fernández

Latin Hypercube Sampling

The LHS technique of stratified random sampling was initially created for effective uncertainty
analysis. LHS divides the parameter space into bins with equal probabilities in order to get a
more uniform distribution of sample points in the parameter space than would be feasible with
pure random sampling [32].

4.2. Optimization formulation
A general optimization problem can be defined as follows:

minimize: f (x)
x ∈ ℜn

subject to: gL ≤ g(x) ≤ gU

h(x) = ht

aL ≤ Aix ≤ aU

Aex = at

xL ≤ x ≤ xU (27)

Vectors and matrices are marked in bold, being x an n-dimensional vector of design
variables or design parameters. xL and xU are the lower and upper bounds of the design
parameters.

There is no need to mention that as stated in equation 27, the goal is to minimize f (x)
while satisfying the constraints. These constraints are defined with g and h with upper gU , lower
gL and target values ht correspondingly. We can distinguish here from non-linear inequality
constraints, g; and non-linear equality constraints, h. These limitations build linear systems,
Ai and Ae with their limits and target values respectively.

The optimization issue can be solved in a variety of ways, all of which iterate on x. The
response values, f(x), g(x), and h(x), are determined, frequently by conducting a simulation,
and then some technique is performed to produce a new x that will either lower the objective
function, reduce the degree of infeasibility, or both. Three criteria will be used to distinguish
these strategies in the discussion that follows to ease a broad presentation of them: type of
optimization issue, search objective, and search strategy.

The types of constraints and the linearity or non-linearity of the goal and constraint
functions can be used to identify the type of optimization issue. A hierarchy of complexity,
ranging from straightforward limit constraints to fully nonlinear constraints, is used to categorize
constraints. Nonlinear programming (NLP) issues are frequent in engineering applications,
whereas linear programming (LP) issues are frequent in scheduling, logistics, and resource
allocation applications.

We must distinguish between global and local optimization. Global optimization aims
to find the design point that gives the lowest feasible objective function value over the entire
parameter space, while local optimization aims to find the lowest design point relative to a
nearby region. Both are computationally expensive, so users must choose an optimization
algorithm with an appropriate search scope that best fits their problem goals and budget.
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The search method is the approach taken in the optimization algorithm to locate a new
design point that has a lower objective function or is more feasible than the current design
point. It can be classified as either gradient-based or non-gradient-based. In a gradient-based
algorithm, gradients of the response functions are computed to find the direction of improvement.
However, this approach can be computationally expensive, inaccurate, or even nonexistent, so
non-gradient-based search methods may be useful. Examples of non-gradient-based optimization
include pattern search methods and genetic algorithms [26].

4.3. Gradient methods
For effective navigation to a local minimum close to the starting point, gradient-based optimizers
are best suited. Of all local optimization techniques, they are the most effective and have the
highest convergence rates. They may, however, be less reliable if the issue displays non-smooth,
discontinuous, or multi-modal behaviour [26].

Figure 18: Gradient methods behaviour at the presence of local minimums [33].

In derivative methods, scales play an important factor. A bad scaling can prevent
reaching a solution. Scales can define weights within the design parameters: the optimization
algorithm sees some variables as more relevant than others because as they are badly scaled,
these relevant variables impact heavily in the optimization algorithm [14]. For these reasons, the
algorithm must use parameters relative to its corresponding design variable magnitude order,
otherwise, if absolute values are going to be used, variables must be correctly scaled.

For gradient-based optimizers, gradient accuracy is crucial since erroneous derivatives
frequently result in search failures or early method termination. Hessians and analytical
gradients are desirable yet frequently unavailable. A complete Newton approach will reach
quadratic convergence rates close to the solution if an application code can give analytic gradient
and Hessian information. Super-linear convergence rates can be determined if just gradient
information is given and the Hessian information is roughly inferred from a collection of gradient
data. However, the optimization technique will often employ a finite difference approach
to determine gradient values for engineering applications. To allow for local precision and
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convergence, the finite difference step size should be chosen as tiny as feasible; nevertheless, it
should not be chosen so small that the steps are “in the noise”. This calls for evaluating the
response functions’ local smoothness using, for instance, a parameter research approach. In
general, central differences will result in more trustworthy gradients than forward differences,
but at about twice the cost [26].

In this research, two gradient-based methods have been studied: a method of feasible
direction and a Newton method. Gradient methods rely on the same idea which is the use of the
gradient projection of the objective function to look for a descent direction on it. The typical
gradient method has the following steps [8]:

1. Select an initial point. This is a crucial step because selecting a point close to the optimum
can prevent the algorithm to find a descent direction whereas choosing a bad point can
make the optimization take longer.

2. Find a descent direction di. From a set of points obtained iterating, the algorithm search
for a descent direction. If no direction is found, the method stops.

3. Determine a step length such that f(xi + δdi) ≤ f(xi).

4. Update the point xi+1 = xi + δidi and go to step 2 until a termination criterion is reached.

The main differences between descent methods are how each algorithm computes the
descent direction. The direction-finding problem in a method of feasible direction can be defined
as follows [8]:

min{max
{
∇f(xi)Td; f(xi) + ∇f(xi)Td

}
} (28)

While for a Newton method [12]:

min
{

max
{

∇f(xi)Td+ 1
2d

T ∇2f(xi)d
}}

(29)

Newton’s methods and MFD can be applied to non-linear optimization problems while
through all optimization iterations, both techniques remain feasible. Nevertheless, in Newton’s
methods, finding a solution to a linear system of equations that was created by setting the
derivative of a second-order Taylor series expansion to zero is the main goal of the subproblems
connected to these techniques [26].

4.4. Genetic or Evolutionary Algorithms
The foundation of evolutionary algorithms (EA) and genetic algorithms (GA) is Darwin’s
hypothesis of the survival of the fittest. They begin with a population of design points in the
parameter space that is randomly chosen, where the values of the design parameters combine to
create a “genetic string” that is used to identify each design point. The algorithm then proceeds
through a series of generations, only allowing the best design points to live and reproduce
because they are deemed to be the most “fit” ones. It mimics evolution by using mathematical
representations of phenomena including mutation, breeding, and natural selection. A design
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point that minimizes the optimization problem’s objective function is ultimately found by the
optimizer [26]. The GA and the EA differ slightly in the way they deal with design parameters
and algorithm parameters: in classic GA there is no distinction between types of algorithm
parameters. In actuality, all of the factors are “outside”-set, or exogenous in terms of Evolution
Strategies (ES) [4][23].

The fittest individuals are evaluated taking into account the value of objective function
whilst satisfying the constraints. If a constraint is not respected the algorithm can penalise the
fitness of the individual.

As described in the Dakota reference manual, the steps of an evolutionary algorithm are
to randomly select an initial population, select parents based on relative fitness, apply crossover
and mutation to generate new individuals, perform function evaluations on the new individuals,
perform replacement to determine the new population, and continue until convergence criteria
are satisfied or iteration limits are exceeded.

Meanwhile, the steps of the genetic algorithm are the followings: initializing a population,
evaluating it and looping until converging: performing crossover, mutation, assessing fitness,
replacing members, and testing for convergence.

Figure 19: Description of an EA [28].

Figure 20: Steps and operators of a GA [9].
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4.5. Optimization set-up
To implement the gradient methods, it has been used conmin_mfd and opt_newton. These
methods have been implemented only with PARSEC as they are not able to manage discrete
variables which NACA uses (see optimization usage guidelines in the Dakota documentation7).
Scaling was also tried and numerical gradients and Hessians were computed for some cases.

soga and coliny_ea were chosen to execute the genetic and evolutionary algorithm. It
has to be highlighted the wide range of possible configurations these methods have. In this
work, it has been studied the influence of some of their settings in the results.

Many of the possible configurations in Dakota for each method were studied as part of
the initial design of experiments and will be analysed later on.

7https://dakota.sandia.gov/sites/default/files/docs/6.17.0-release/user-html/usingdakota/
studytypes/optimization.html
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5. Initial design of experiments
Before facing the objective of the optimization declared in section 1.2, several approaches were
taken. These experiments focused on understanding the geometry parameterization and the
Dakota configuration for each method. At this stage, the flow conditions were M = 0.3 and Re
= 1e+06.

5.1. Initial sampling results
First of all, the design space of the PARSEC parameterization method was studied.

PARSEC limits

To search for the PARSEC variable’s feasibility limits, the variables were split into pairs. Divided
into pairs a parametric study and LHS sampling were performed for each pair, fixing the rest of
the variables. To visualize the response of some functions to these pairs of variables, contour
plots were chosen. They are useful to visualize the value of the objective function depending
on the pair of variables chosen. Moreover, comparing the two studies (parametric and LHS)
with these variables pairs allow us to rate which performs better in our model. The functions
evaluated were Cd, Cl and Cm. These studies were performed for the full set of PARSEC
parameters. As a result, the PARSEC variables limits were defined as stated in 2.

Improving data visualization

Nevertheless, analysing the variables in pairs is not time-efficient. With better data visualization
options, we can get valuable results. With these methods, we can see how the combination of
multiple variables influences the response functions. In addition, the sampling methods can be
compared better. On the one hand, we have seen in figure 17 the structured distribution of the
parametric study. On the other hand, in figure 45 we have the randomized LHS for the full
PARSEC parameters. For these visualization options, it was used streamlit8 and plotly9.

In both figures 45 and 46, each point (or line) represents a different combination of
geometry and AoA. Its colour is in this case its Cd value. In figure 45, the last three rows
(and columns) are response functions: Cd, Cl and maxth, whereas in the figure 46 they are
represented in the right three columns. The maximum thickness is a response function as at
first the thickness of the foil using PARSEC is unknown, but it could be approximated by the
difference between the parameters Zup and Zlo. Note that the Z parameters are called y for the
rest of this work. In the left columns, we find the number of evaluations out of 600 samples,
which is the ID of each foil and AoA. Both data views are interactive. Zooming in any region of
figure 45 or selecting ranges in the figure 46 bars it can be seen how different combinations of
variables influence the response functions.

The sampling provided above is a 600-sample LHS, which took 20 minutes approximately.
When the geometries are irregular, sometimes XFoil can stay on error open, even after having
reached a solution. For this reason, an XFoil time limit of 9 seconds was imposed. A full PARSEC
parametric study has not been performed because it will require at least 4096 evaluations, as
described in the paragraph 4.1. The LHS method intends to describe a whole design space

8https://streamlit.io/
9https://plotly.com/python/

40

https://streamlit.io/
https://plotly.com/python/


2D profile multi-fidelity optimization and algorithm comparison
Javier Berrueco Fernández

with a user-defined number of samples. For these reasons, LHS is preferred for this work as the
number of variables starts to be significant.

5.2. Gradient methods initial results
In this project, two gradient-based methods have been used, CONMIN MFD and OPT++
Newton Method.

5.2.1. CONMIN

Firstly, it was tried to achieve an optimum foil from an approximation of a NACA 0012 built
with PARSEC [31], aiming for a minimum drag only using an alternative CONMIN method
conmin_frcg. Then conmin_mfd allows to set up non-linear constraints, which consists in
looking for a lift coefficient of at least 0.4 and a minimum thickness of 10% of the chord. In
both cases, the algorithm could not find a feasible direction.

Continuing with conmin_mfd, the first approach to solve the issue was changing the
initial point. NACA 0012 is not a thick profile nor has a huge base drag, in addition, the initial
point influences heavily gradient optimization. A thicker profile, which can be found in figure 21,
was tested then but the result would be the same. Despite the fact Dakota output was showing
that the finite difference gradient was being calculated with relative steps for each parameter,
the scaling option was toggled. It raised the same issue: the algorithm still could not find a
feasible direction. In light of the unpromising results, it was tried to increase the step size for
the finite difference gradient, which seemed to be the origin of the issue as the gradient was
being measured between adjacent points. This option produced the same problem.

Figure 21: Initial geometry for the gradient-based optimizations with PARSEC.

To avoid the curse of dimensionality, the design variables were reduced from 12 to 9,
controlling some aspects of the profile but being able to produce cambered foils. The omitted
parameters were: yte, thte and betate. Moreover, the geometry generator programme was revised

41



2D profile multi-fidelity optimization and algorithm comparison
Javier Berrueco Fernández

to introduce stronger constraints inside it. This was implemented for the purpose of penalising
heavier thick foils. As a consequence, the profiles are to be between 30 and 10 per cent of the
chord. These intents had no improvement. The algorithm evaluated the objective function and
constraints 31 times and calculated gradients 6 times. It wrote down 31 points for which it
performed 67 function evaluations taking 262.78s. The termination criterion for the algorithm
was again that it was not able to produce a feasible design. The reported results were geometries
with exactly the same parameters.

Finally, the optimization proposed for this work was approached, searching for symmetric
profiles with fixed thicknesses at the TE. This approach was successful and the results are
presented below.

5.2.2. OPT++ Newton Method

At first, the implementation of the Newton method using the OPT++ package in Dakota was
not successful neither. It was approached after reducing the number of variables and it was also
tried with multiple step sizes. The algorithm was able to write down 36 points but it needed
1656 function evaluations which took 1973.14s. Moreover analysing the results, the last profiles
did not satisfy the constraints. Nevertheless, it was able to report different profiles even though
once again these geometries were not optimum at all.

After setting the study case of this project, the Newton method returned already a good
result. The optimizations using the Newton method were at first executed by optpp_fd_newton
in which the calculation of the Hessian is performed by the algorithm. For this reason, Dakota
could not use the advantage of the asynchronous evaluation concurrency. This optimization
performed 4462 function evaluations (2590 new, 1872 duplicate) and took 5571.94s

The final optimization using the Newton method was performed using optpp_newton to
exploit the evaluation concurrency function of Dakota. Its results will be presented later in this
work.

5.2.3. Gradient-based method set-up in the optimization

Some conclusions were deducted from the results of both methods:

• The design space is not smooth enough to allow the gradient to work correctly without
reducing the number of variables.

• Scaling the variables does not improve the results because the algorithm manages already
relative values for each variable range.

• Setting the thickness of the TE as a variable in the symmetric case holds the algorithm to
reach a feasible direction complying with the constraints.

• The optimization result is heavily dependent on the starting point.

• The step size for gradients was released and managed by Dakota and the programme.

The NACA formulation was not used in the gradient-based optimization because the
variables were defined as integers or strings in the case of the NACA 6-series which are not
supported by the chosen algorithms.
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5.3. GA and EA initial results
As has already been mentioned, two ES have been used: SOGA and COLINY EA.

5.3.1. SOGA

After the intent of implementing gradient-based optimizers with PARSEC, a SOGA was executed.
At first, it was tried with the complete set of PARSEC parameters. Proceeding as in the case of
the earliest descent methods implementation, minimum drag was only pursued. This method
was able to iterate in a wider range of profiles than a gradient method and was not sensitive to
the initial point. It produced a total of 752 combinations of geometries and angles of attack and
its execution time was 1123.1s. Although we might think it performed well, Dakota’s election as
the best result does not look like a typical foil profile, it can be seen in figure 7. This geometry
at an angle of attack of 0.72 is supposed to have a drag coefficient of 0.003 according to the
XFoil solution.

This “foil” was extremely thin and irregular. This geometry could not be managed well in
XFoil despite it returning a solution. To improve the results, the same steps that were followed
in the gradient-based optimizations were implemented: the thickness of the foil was bounded
between 30 and 10 per cent of the chord and the number of variables was reduced to 9 and
finally to 7. Even though the first results using soga were not perfect, they were useful to
observe how the algorithm works. With the data visualization improvements, it could be seen
that the algorithm reached convergence in the response function CD.

To avoid the curse of dimensionality once again, the number of variables was set to
9. This way, cambered foils were being looked for but with some design restrictions, these
parameters were fixed to a sensible value. Moreover, the CL non-linear constraint of more than
0.4 was imposed. Dakota produced a total of 450 evaluations in 671.42s.

In figure 47 it can be observed how:

• CD reached convergence again.

• CL in the last generations/evaluations tend to be near the given constraint.

• maxth in the last generations foils tend to be lower than the initial values.

Using the parallel coordinates view, selecting the lowest drag configurations and the
highest lift coefficients, we can see which combinations have led the algorithm to these results
and when were they evaluated:

Some patterns can be observed:

• rle value is the highest or the lowest in its range.

• yup coordinate around 0.1.

• d2y/dx2
up around -0.5.

• ylo near the maximum in its range.

• d2y/dx2
lo near 1.

• alphate between 0.2 and 0.4 or -0.2 and -0.4.

• AoA higher than 1, most of them at 2 degrees.
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• maxth of the best geometries is lower than 20% of the chord.

Nevertheless, the geometries still not be clean, they were irregular or thick.

Figure 22: PARSEC geometry that almost complies with the lift constraint and has minimum
drag.

At that point, the optimization was producing better results, thus the algorithm’s
parameters were changed to approach the configuration which would provide more results
satisfying the lift constraint. The parameters that were changed to modify the behaviour of the
algorithm were:

• fitness_type determines how individuals are compared.

• num_generations affects the termination criteria of the algorithm, delaying its stopping
as it is increased.

• percent_change affects the termination criteria of the algorithm, delaying its stopping as
it is decreased.

• constrain_penalty in the merit function of each profile, not satisfying the constraint is
multiplied by the input value.

• convergence_type defines how the fitness of the population can be computed, an average
of the generation or the best-fitted of the individuals.

• population_size defines the number of each population within the merit function is
evaluated.

• replacement_type instruct how the algorithm replaces the individuals between each
generation.

• crossover controls how the crossover between individuals occurs and its probability.

• mutation equal to crossover, controls the mutation events.
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• convergence_tolerance set the tolerance that indicates convergence.

It was noted that increasing the population size, the function evaluations increased
but the results improved: more foils met the minimum lift while keeping the drag low. The
convergence tolerance and num_generations have a direct relationship as well with the results
and the number of function evaluations. The smaller the tolerance, the longer the optimization
but the better the results, The number of generations set the minimum number of consecutive
generations that have to change less than the percent change to stop. Crossover and mutation
could help the algorithm to reach a wider range of profiles faster.

As is this algorithm able to manage non-continuous variables, the angle of attack was
simplified to a predefined set of real numbers: 0, 0.1, 0.2 and so on. With these changes, we
expect to avoid the algorithm populating several profiles with approximately the same AoA.

5.3.2. COLINY EA

Using coliny_ea is similar to using soga because it has almost the same settings options.
Although, it must be highlighted that using coliny_ea the algorithm did not reach any stopping
criteria apart from the maximum function evaluations. This fact indicates that coliny ”learns”
slower than soga. The main differences between both evolutionary strategies can be found in
some of their default settings and the fact that COLINY EA performs crossover and mutation
only on a selection of the best individuals of each population.
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6. Results
In this chapter, the results of this project will be presented. The optimizations will try to solve
the problem stated at 1.2. The best results are presented down below.

All the optimizations have been evaluated with XFoil. Typically, a foil evaluation and
communication results to Dakota takes less than 2 seconds using 4 cores out of 6 on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz, 2601 Mhz, 6 cores, 12 threads.

6.1. Gradient methods optimization
Hereafter, the optimizations with PARSEC geometries and gradient methods are presented.
These optimizations were local having as the initial point the geometry already mentioned in
figure 21.

6.1.1. CONMIN Method of feasible directions

The local optimization using the method of feasible direction that performed better for our
objective, had the thickness of the TE fixed. It ran 76 evaluations in 352.33s. The tolerance to
convergence and to the lift constraint was 1e-03. Numerical forward difference gradients were
computed by Dakota.

Figure 23: CL vs. evaluation, color by CD, size by AoA of the CONMIN MFD optimization
with PARSEC.

The optimization tends to have the AoA high keeping the geometry relatively thin,
reaching a local optimum.
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Figure 24: Optimum geometry of the CONMIN MFD optimization with PARSEC.

This profile at 3.6368 degrees of AoA, has a drag coefficient of 0.0126 and a lift coefficient
of 0.4006.

6.1.2. OPT++ Newton method

The optimization using the Newton method was executed by optpp_newton and Hessians were
calculated by Dakota. This way the optimization performed 714 new function evaluations in
1623.02s.

Figure 25: CL vs. evaluation, color by CD, size by AoA of the OPT++ Newton optimization
with PARSEC.
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Figure 26: Optimum geometry of the OPT++ Newton optimization with PARSEC.

This profile at 3.6111 degrees of AoA, has a drag coefficient of 0.01243 and a lift coefficient
of 0.4283.

6.2. Evolutionary algorithms
NACA 4-modified and NACA 6 was used in the optimizations with the EAs algorithms, in
addition to PARSEC parameterization. These optimizations report more results comparing the
gradient-based optimizations. For this reason, selecting the optimum is not that simple. The
optimum geometries and AoA combination below, are selected manually and subjectively after
analysing the data.

6.2.1. NACA 4-m

The optimization with the NACA 4-m formulation was performed using soga. It took 1799.26s
and evaluate 896 cases. With the amount of data reported, it is interesting to analyse the results
using the data visualization options mentioned at 5.1.

Some patterns can be seen within the foils at the Pareto front:

• The thickness is the lowest possible: 10% or 11%.

• The LE index is between 2 and 4 being the most common within the best foils 3.

• The most repeated position of the maximum thickness is 4.

• The TE is thin, under the 1% of the chord.

• The AoA is between 3 and 4 degrees.
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Figure 27: CL vs. evaluation, colour by CD, size by AoA of the SOGA optimization with NACA
4-m.

Figure 28: Optimum of NACA 4-m optimization.

This geometry 0010-44 at 3.7 degrees of AoA was the evaluation number 855 and it has
a drag coefficient of 0.01142 and a lift coefficient of 0.4159.

6.2.2. NACA 6

The best optimization using the NACA 6-digits formulation was performed by the coliny_ea
algorithm. This algorithm evaluated the functions 1504 times and it took 3020.19s.

It can be observed how the algorithm could not identify some visible relationships between
some variables and the functions. It did not find a relationship between the thickness of the TE
and the CD along the evaluations nor the relationship with the 6 or 6A series, although this is
not clear even after analysing the results. Even though, it can be highlighted that:

• The thickness is the lowest possible: 10% or 11%.

• The 6 series is dispersed between the possible values, as it can be seen in figure 30.

• The TE is thin, under the 1% of the chord.

• The AoA is between 3 and 4 degrees.
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Figure 29: CL vs. evaluation, colour by CD, size by AoA of the COLINY EA optimization with
NACA 6.

Figure 30: CL vs. NACA 6 series, colour by CD, size by AoA of the optimization.

Figure 31: Optimum of NACA 6 optimization.

This geometry at AoA 3.5 degrees was the evaluation number 1283 and it has a drag
coefficient of 0.01097 and a lift coefficient of 0.4031.
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6.2.3. PARSEC

The optimization with PARSEC was executed by soga algorithm. It evaluated the function
1707 times and took 3225.06s.

Some relationships between variables and the objective function and constraint can be
observed in figure 51.

• Low rLE are related with low CD.

• Thin geometries has a low CD, yup is low as a result.

• The position of the control point of the upper and lower surface has a parabolic relation
with the CD with the minimum at the middle point of the chord

• The TE must be thin for a low drag coefficient.

• The AoA has to be between 3 and 4 degrees to comply with the lift constraint.

Figure 32: CL vs. evaluation, colour by CD, size by AoA of the SOGA optimization with
PARSEC.

Figure 33: Optimum of PARSEC optimization.

This geometry at AoA 3.5 degrees was the evaluation number 1686 and it has a drag
coefficient of 0.01078 and a lift coefficient of 0.4036.
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6.2.4. Comparison of optimums from the different methods of optimization and
geometry parameterization

In table 4 the best optimization results for each methodology have been summarised:

Geometry
parameterization

Optimization
method CD CL Evaluations CPU

time (s)

PARSEC

Gradients
conmin_mfd 0,01257 0.4006 76 352.33
optpp_newton 0.01243 0.4283 714 1623.02
EA
soga 0.01078 0.4036 1707 3225.06

NACA 4m soga 0.01142 0.4159 896 1799.26
NACA 6 coliny_ea 0.01097 0.4031 1504 3020.19

Table 4: Comparison between all the optimums from the different optimizations.

6.3. Comparison with Star-CCM+ results
In order to estimate the validity or accuracy of the results, from the ES optimizations for each
parametrization method, some of the best combinations have been run in Star-CCM+ using the
set-up described in section 3.3.2. The process from preparing the folder for each simulation to
running and tabulating the results takes between 100 and 200 seconds. The solver elapsed time
per iteration is less than 0.1s and the total solver elapsed time is usually less than 1 minute
depending on the number of iterations. The rest of the time is wasted in the server opening
and closing processes in Star-CCM+. The simulation is run in parallel using 15 cores on an
AMD EPYC 7V12 64-Core Processor, 2445 Mhz, 16 Core(s) and 32 Logical Processor(s), so the
solver CPU times are the values of the elapsed time multiplied by the number of processors
used in the simulation. Taking into account that the number of geometries that are going to
be simulated is approximately a hundred, the whole process usually takes between 12000 and
16000 seconds (3-4 hours).

Because of the nature of the optimization results, the best geometries plus the AoA tend
to be the same or very close. For this reason, is difficult to stand out correlations between the
variables and the results from Star-CCM+ because the whole design is not being simulated.

The difference between both solvers is expressed in % following:

∆CX =
CXhf

− CXlf

CXhf
+CXlf

2

 · 100 (30)

where CX can be CL or CD and the sub indexes hf and lf means high fidelity (Star-
CCM+) and low fidelity (XFoil) respectively.
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The simulation stops when asymptotic convergence at the force coefficients is reached and
all the residuals are less than 1e-03 or the number of iterations is equal to 1500. The simulations
have usually a y+ lower than 0.1 on most of the surface. The pressure distribution of XFoil
has been compared for random individuals with their pressure distribution of Star showing an
almost perfect match. These comparisons and results can be found in the section 9.2.

6.3.1. PARSEC

With the best optimization using PARSEC (which was the one executed by the soga algorithm),
126 combinations were evaluated in Star-CCM+. The differences between the XFoil drag
coefficient and lift coefficient between the Star-CCM+ ones were evaluated:

Figure 34: Difference between the Star-CCM+ coefficients and the XFoil coefficients in percentage
in PARSEC geometries.

The difference between the high-fidelity results and low-fidelity results is computed as
indicated in equation 30. It can be observed that XFoil calculated a drag coefficient lower than
the one calculated by Star whereas to the lift coefficient, the opposite happened. On the one
hand, the mean of the deviation for the drag coefficient was 6.0073% and the standard deviation
was 0.4033%. On the other hand, the mean of the lift coefficient was -1.7028% and the standard
deviation 0.2882%.

These differences are evident if the low-fidelity results are plotted with their respective
high-fidelity ones:

53



2D profile multi-fidelity optimization and algorithm comparison
Javier Berrueco Fernández

Figure 35: CL vs. CD of XFoil results and their respective Star-CCM+ results of PARSEC
geometries.

6.3.2. NACA 4m

83 combinations of NACA 4m geometries were evaluated in Star-CCM+.

Figure 36: Difference between the Star-CCM+ coefficients and the XFoil coefficients in percentage
in NACA 4m geometries.

It can be observed that XFoil calculated a drag coefficient lower than the one calculated
by Star whereas to the lift coefficient, the opposite happened again. On the one hand, the mean
of the deviation for the drag coefficient was 5.1179% and the standard deviation was 0.4886%.
On the other hand, the mean of the lift coefficient was -1.4131% and the standard deviation
0.5265%.

These differences are evident if the low-fidelity results are plotted with their respective
high-fidelity ones:
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Figure 37: CL vs. CD of XFoil results and their respective Star-CCM+ results of NACA 4m
geometries.

6.3.3. NACA 6

107 combinations of NACA 6 geometries were evaluated in Star-CCM+.

Figure 38: Difference between the Star-CCM+ coefficients and the XFoil coefficients in percentage
in NACA 6 geometries.

It can be observed that XFoil calculated a drag coefficient lower than the one calculated
by Star whereas the lift coefficient delta is negative in most of the cases. On the one hand,
the mean of the deviation for the drag coefficient was 4.9011% and the standard deviation was
0.4903%. On the other hand, the mean of the lift coefficient was -1.3315% and the standard
deviation 0.7173%.

These differences are evident if the low-fidelity results are plotted with their respective
high-fidelity ones:
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Figure 39: CL vs. CD of XFoil results and their respective Star-CCM+ results of NACA 6
geometries.

6.3.4. Summary of comparison between Star-CCM+ and XFoil

The statistics for each method are presented below.

Geometry
parameterization ∆CD (%) ∆CL (%)

PARSEC
µ = 6.0073 µ = −1.7028
σ = 0.4033 σ = 0.2882

NACA 4m
µ = 5.1179 µ = −1.4131
σ = 0.4886 σ = 0.5265

NACA 6
µ = 4.9011 µ = −1.3315
σ = 0.4903 σ = 0.7173

Table 5: Comparison between differences between high-fidelity results and low-fidelity for each
geometry parameterization method.

In addition, the previous optimums can be re-evaluated taking into account the Star-
CCM+ results.

Geometry
parameterization

Optimization
method CD CL

PARSEC soga 0.01151 0.3972
NACA 4m soga 0.01205 0.4109
NACA 6 coliny_ea 0.01158 0.3968

Table 6: Comparison between all the optimums from the different optimizations, Star-CCM+
results.
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Regarding the table 6 and the figures 35, 37 and 39, new optimums for the NACA 6
optimization and PARSEC optimization have emerged.

Figure 40: New PARSEC optimum taking into account Star-CCM+ results.

Figure 41: New NACA 6 optimum taking into account Star-CCM+ results.

Geometry
parameterization

Optimization
method CD CL

PARSEC soga 0.01153 0.4074
NACA 4m soga 0.01205 0.4109
NACA 6 coliny_ea 0.01208 0.4094

Table 7: Optimums from the different optimizations taking into account Star-CCM+ results.
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7. Conclusions
In this project, a review of profile geometry parameterization methods, optimization algorithms
and flow solvers has been performed. This review aimed to test different techniques to optimize
foil shapes under different conditions and constraints. For this reason, an optimization tool
was developed to meet this mission. The result of this project is a comparison in efficiency
and accuracy between the different options of the three topics, parameterization methods,
optimization algorithms and flow solvers, and the optimization tool which can be adapted to
future research.

In the geometry parameterization, PARSEC, eleven parameters formulation of profile
parameterization, and NACA were used in the tool and the results of using these in the
optimization process were compared. At the same time, different optimization algorithms
were tested. Finally, a percentage of the results of the best optimization was simulated in a
commercial CFD solver, which was Star-CCM+. e

Many conclusions can be drawn from this research, depending on which part is focused
on. The main focus is on which process (geometry parameterization plus optimization method)
performed better.

Table 7 shows the performance of the optimum foils of the algorithm and parameterization
method presented, calculated with a high fidelity CFD program. Regarding this comparison,
it can be concluded that the best foil for the study case described at the top of this work
in chapter 1.2, seems to be the PARSEC optimum of the SOGA optimization. Even before
comparing the XFoil results with the Star-CCM+ results, it seemed to be the best. After
running Star-CCM+, a new optimum needs to be selected as some of the previous ones were
not meeting the requirements. Subsequently, comparing the newest optimums relying on the
Star-CCM+ results, the PARSEC still to be the best.

However, it can be observed how the 3 profiles look alike: thin LE, thin TE and the
maximum thickness between 0.3 and 0.5 of the chord.

Regarding the geometry parameterization and taking into account the best results, not
only seems PARSEC to be the best for the objective of this work, it has visible advantages to
the NACA formulations. It provides more control over the geometry which allows the user to
set more constraints, like shape constraints because of structural reasons, and still could modify
the rest of the surface of the geometry. Future research could compare these results with an
optimization using other parameterization methods for example B-Splines.

Respecting the optimization algorithms, for the study case, the global methods have
dominated. On the one hand, the gradient-based method had nothing to do in light of the
unawareness of the objective function and constraints in the design space, selecting an initial
point attaches the results to a specific region of the design space. They were included in this
work in order to learn and measure their operation. As expected, the Newton method is much
more expansive than the MFD and the result was only a 1% better than the MFD optimum.
Both optimums were different in contrast to both ES optimizations performed in which the
optimums were similar.

On the other hand, the chosen ES and the selected configuration make both algorithms
operate analogously. Besides the fact that coliny_ea did not reach the convergence criteria
in this work, they provide almost the same results but soga is preferred in 2 out of 3 cases.
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An example of optimization data can be visualized in figure 42 below and more detailed in
figures 49, 50, 51. Future research on this topic could focus on the optimization algorithms
configuration in order to look for a better approach.

Figure 42: CL vs. evaluation, colour by CD, size by AoA of the SOGA optimization with NACA
4-m.

Measuring the whole process performance, and optimization in a low-fidelity or fast-flow
solver like XFoil and then verifying the best results with a RANS-based CFD, can save up to
the 98% of time that an optimization with the RANS-based CFD could take depending on how
many results are running in the RANS CFD. 1500 evaluations optimization longs ∼ 3000 s with
XFoil, a simulation in Star-CCM+ is ∼ 120 s. In this study case, the lack of accuracy of the
results (concerning the high-fidelity results) has been only a 6% maximum. This difference, even
though it is not negligible, is enough to trust the optimization process. In addition, in figure 56,
we can see that the pressure distributions of both solvers are overlapping which supports the
first optimization results. Hereafter a typical difference between the low-fidelity and high-fidelity
results is presented.

Figure 43: CL vs. CD of XFoil results and their respective Star-CCM+ results of NACA 4m
geometries.

The evaluation of the optimum with the high-fidelity CFD, force to re-evaluate if the
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previous optimum foil still to be the optimum. After the re-evaluation, the final optimums are
presented below:

Geometry
parameterization

Optimization
method CD CL

PARSEC soga 0.01153 0.4074
NACA 4m soga 0.01205 0.4109
NACA 6 coliny_ea 0.01208 0.4094

Table 8: Final optimums from the different optimizations taking into account the multi-fidelity
results.

Between this individuals, as it has already been mentioned, PARSEC and soga result
was the best:

Figure 44: Final PARSEC optimum taking into account the multi-fidelity results.

In conclusion, the process implemented in this optimization is a powerful approach to
optimising the aerodynamic or hydrodynamic performance of a design when the design space it
is not intensively studied. As it was mentioned in the introduction of this work, it is a practice
that is becoming more common within the industry. The full potential of this multi-fidelity and
global optimization using Evolutionary Algorithms, can be delivered in research and development
tasks.

7.1. Future works
Nevertheless, to improve this methodology others could emerge, for example using AI models.
AI or Machine Learing (ML) models can overcome the accuracy of panel methods or velocity
prediction programs with a minimum cost compared with the RANS. Along with the method
developed in this project, huge databases come up as a result. This databases of the firstly
unknown design spaces, can be combined to train these models.

In fact, at Bailardi Engineering S.L., the developed tool in this project is being used by
interns in future research to train multi-fidelity ML models to improve optimization.
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9.2. Typical Star-CCM+ simulation results

Figure 52: Residuals of a typical Star-CCM+ simulation of this work.

Figure 53: Drag coefficient of a Star-CCM+ simulation of this work.
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Figure 54: Lift coefficient of a Star-CCM+ simulation of this work.

Figure 55: Y+ of a Star-CCM+ simulation of this work.

Figure 56: Pressure coefficient distribution comparison between XFoil and Star-CCM+ of a
Star-CCM+ simulation of this work.
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Figure 57: Pressure scalar scene of a Star-CCM+ simulation of this work.

Figure 58: Velocity scalar scene of a Star-CCM+ simulation of this work.
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