

TRABAJO DE FIN DE GRADO

Grado en Odontología

MICROBIOTA AS BIOMARKERS FOR EARLY CHILDHOOD CARIES RISK ASSESSMENT

Madrid, curso 2020/2021

Número identificativo

239

Abstract

Introduction: Microbiota is a vast ecosystem made up bacteria, fungi, viruses, etc., that colonizes the human body. More than 700 species of microbiota are found in the oral cavity and among them, *Streptococcus mutans* is the most common bacteria present in the oral cavity and is considered the main cause of the onset of early childhood caries (ECC). ECC refers to any dental caries, missing due to caries or filled teeth in children 6 years of age or younger. Today, saliva biomarkers have become a powerful tool to detect and prevent early caries diseases (especially in children), thanks to the use of salivary flow rate, buffering capacity, microorganisms and proteins (Cathelicidin LL-37, Histatin 1, and inflammatory cytokines) as biomarkers.

Objectives: The aim of this thesis is to describe and review the relationship between the microbiota and dental caries, and to evaluate the potential biomarkers for early childhood caries detection.

Materials and Methods: A total of 54 articles were reviewed by using the electronic database of the Pubmed, library database of selective publication at Universidad Europea de Madrid and Google Scholar.

Conclusions: *Streptococcus mutans* and salivary proteins, including Cathelicidin LL-37, Histatin 1, and inflammatory cytokines can be used as biomarkers to detect early dental caries while salivary flow rate and buffer capacity can't be used as biomarkers due to the controversy of results found in the articles studied

Key words: microbiota, oral microbiota, biomarkers, saliva, caries, early childhood caries

Resumen

Introducción: La microbiota es un vasto ecosistema de microrganismos, formado por bacterias, hongos, virus, etc., que coloniza diferentes partes del cuerpo humano. Se estima que hay más de 700 especies de bacterias que albergan la cavidad bucal, y, entre ellos, *Streptococcus mutans* es considerado la causa principal de la aparición temprana de caries en niños (CAT). CAT se refiere a cualquier tipo de carie dental, perdida de dientes debido a caries o a empastes en niños hasta los 6 años. Hoy en día, los biomarcadores de saliva se han convertido en una poderosa herramienta para detectar y prevenir las enfermedades de caries tempranas (especialmente en niños). Entre los biomarcadores más utilizados encontramos la tasa de flujo salival, la capacidad amortiguadora de la saliva, la presencia de determinados microrganismos y varias proteínas como la Catelicidina LL-37, la Histatina 1 y las citocinas inflamatorias.

Objetivos: El objetivo de esta tesis es describir y revisar la relación entre la microbiota y las caries dentales, y evaluar los potenciales biomarcadores para detectar la aparición temprana de caries en niños.

Materiales y Métodos: Un total de 54 artículos fueron revisados utilizando la base de datos electrónica Pubmed, varias bases de datos de la biblioteca Crai de la Universidad Europea de Madrid y Google Schoar.

Conclusiones: La conclusión principal de esta tesis es que *Streptococcus mutans* y las proteínas salivales, como la Catelicidina LL-37, la Histatina 1 y las citocinas inflamatorias, pueden ser utilizados como biomarcadores para detectar caries tempranas., La tasa de flujo salival y la capacidad amortiguadora de la saliva no pueden ser utilizados como biomarcadores debido a los resultados controvertidos encontrados en los artículos analizados.

Palabras clave: microbiota, microbiota oral, biomarcadores, saliva, caries, caries de aparición temprana.

Abbreviation in alphabetic order

ADA	American Dental Association
AMPs	Antimicrobial peptides
ASM	American Society of Microbiology
CCS	Caries classification system
DDE	Developmental defects of enamel
ECC	Early childhood caries
EHP	Enamel hypoplasia
F/B ratio	Firmicute/Bacteroidetes ratio
GCF	Gingival cervical fluid
HAS-ECC	Hypoplasia-associated severe early childhood caries
IBD	Inflammatory bowel disease
ICDAS	International Caries Detection and Assessment System
MiC	Microbial indicator of dental caries
NSAID	Non-Steroidal anti-inflammatory drug
SCFAs	Short chain fatty acids
S-ECC	Severe Early childhood caries
S. mutans	Streptococcus mutans

<u>Index</u>

Introduction	1
1 Human Microbiota	1
1.1 Oral Microbiota	4
1.2 Development of biofilm	5
1.3 Classification of bacteria found in oral cavity	6
1.4 Dental disease and microbiota	7
2 Biomarkers	10
2.1 Saliva biomarkers	11
3 Definition of caries	15
3.1 Classification of Dental Caries	17
3.2 Early childhood caries	19
3.2.1 Hypoplasia-associated severe early childhood caries	21
3.2.2 Risk factors and preventions	22
Objectives	25
Materials and methods	26
Results and Discussion	27
1 Early childhood Caries and salivary flow rate and buffer capacity	27
2 Early childhood caries and dental microorganisms	28
3 Salivary proteins as biomarkers in Early Childhood Caries	31
Conclusions	36
Responsibility	38
References	39
Annexes	43

Introduction

1. Human Microbiota

Microbiota refers to a community of microorganisms, including bacteria, fungi, viruses, protists, etc., that colonizes the human body (1) at four major colonization sites: gut, oral cavity, vagina and skin (2) (Figure 1) (3)

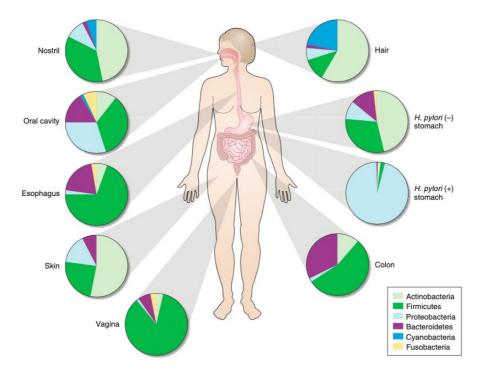


Figure 1: Distribution of the normal human microbiota (Aagaard et al. (3))

Microbiota is composed of more than a ten trillion of diverse symbionts including 50 bacterial phyla and about 100-1000 bacterial species (2). It is established right after birth and during life increases its number and diversity and it is influences by the diet, drugs, emotional stress, environment, age, etc. (4)(5). More than 1000 prokaryotic species can be identified in the human intestinal tract, of which 7 major phyla are the most represented: *Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria, Proteobacteria, Verrucomicorbia* and *Cyanobacteria.* Among them, *Firmicutes* and *Bacteroidetes* are dominant, accounting for more or less 90% of the whole population (2) and will change due to aging. The *Firmicutes* and *Bacteroidetes* (F/B) ratio increases in the elder population (6). The alteration of the F/B ratio can also be related to the other diseases, such as obesity and inflammatory bowel disease (Figure 2) (7).

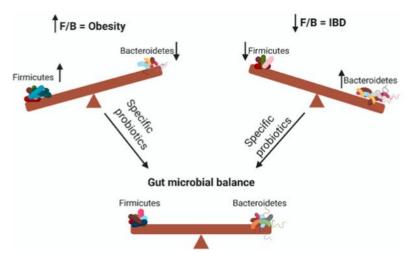


Fig 2: Change in Firmicute/Bacteroidetes ratio (Stojanov et al. (7))

Gut microbiota helps the human body in the metabolism of daily diet, such as carbohydrates, protein, lipids, fiber fermentation and absorption of nutrition such as vitamins. Second, it establishes the mucosal firewall with intestinal epithelium, cooperating with the immunological components, thereby preventing tissue inflammation and disease (8). Gut microbiota produces short chain fatty acids (SCFAs): butyrate, acetate, and propionate (9), which provide the energy to the intestinal tissues and enhance the integrity of the epithelial barrier providing the protection for the gut health (4).

Dysbiosis is a process characterized by a microbial imbalance in the host. In gut, high diversity refers to the healthy intestinal microflora and reduced bacterial diversity and change of *Firmicute/Bacteroidetes* ratio can be related to dysbiosis. Many factors can cause gut dysbiosis, including genetic factors, medications, age, radiation or chemotherapy, alteration of immune system and malnutrition (10). Recently, more studies have suggested that the dysbiosis is highly related to the inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease. Both ulcerative colitis and Crohn's disease are the risk factors of colitis-associated colorectal cancer (10)(11). Other diseases such as diabetes type II, allergies and obesity can also associated with dysbiosis (12) (Figure 3).

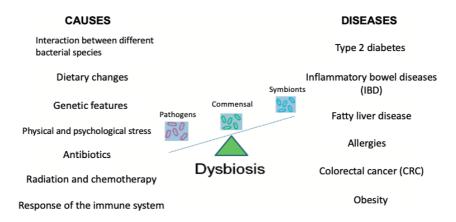


Figure 3: Dysbiosis and its relative factors and diseases. (Tomasello et al. (12))

Medications such as non-steroidal anti-inflammatory drugs (NSAIDs) and antibiotics lead to dysbiosis (9). In fact long-term use of NSAIDs can lead to gastric ulcers and increase both *Bacteroidetes* and *Enterobacteriaceae* bacteria, leading to high risk of diarrhea and intestinal inflammation (10). In addition, long-term use of antibiotics will also affect the reduction of *Firmicute* and increase of *Bacteroidetes*. However, certain antibiotics can also be used as inhibitors to increase the microbial diversity and to improve the symptom of Inflammatory bowel disease (IBD) (10).

1.1 Oral Microbiota

According to the American Society of Microbiology (ASM), there are more than 700 species of microbiota found in the oral cavity, distributing in 11 areas, including the teeth (or denture), tongue dorsum, buccal mucosa, both hard and

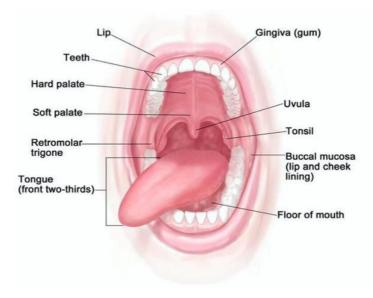


Figure 4: Anatomy of the oral cavity (Ahsan et al. (28))

soft palate, keratinized gingiva, supragingival plaque, subgingival plaque, saliva, lips and throat (Figure 4) having their own positive or negative effect on oral cavity and overall health (13).

Most of them maintain commensal relationship with the host, protecting the oral cavity and preventing the development of the disease, but when there is an unbalanced relationship between microbial community and the host, a variety of oral infections may be produced, including caries, periapical diseases, pulp diseases, among them. Any alteration of the structure or function of oral microbiota in the oral cavity is an important consideration leading to various infectious diseases, thus serving as a biomarker for early diagnosis or prognosis and development of diseases (14).

1.2 Development of biofilm

Dental biofilm is an aggregation of the microorganism that could increase the resistance of bacteria to antibiotics or disinfectants (15). The first phase of biofilm formation is characterized by the accumulation of acquired pellicle that mainly formed by saliva, thereby forming a "conditioning film" on the tooth surface (16). Once the coherence is established between the bacteria and acquired pellicle, the primary colonizers *Streptococci* and *Actinomyces* play an

important role on creating the first layer of supragingival plaque, attracting more gram positive and gram-negative bacteria to adhere on the first layer biofilm (16). Maturation occurs in the third stage of development, interacting with more bacteria in the oral cavity and gathering together with the biofilm that has formed before. The most important species at this phase is *Fusobacterium*, which helps accumulate the following bacteria, especially Gram-negative bacteria, on the initial biofilm (17). Once the supragingival plaque is completely formed, bacteria start to produce an acidic environment generating demineralization on the tooth structure or even result in gingival inflammation. Furthermore, when the supragingival plaque is not well cleaned, it can merge under the gums forming subgingival plaque, leading to periodontitis (18).

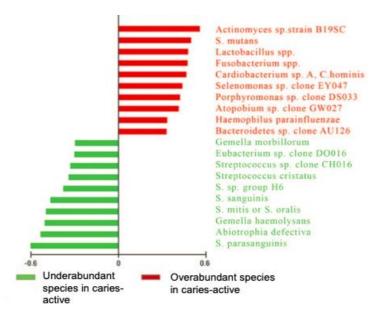
1.3 Classification of bacteria found in oral cavity

The common bacteria that are found in healthy oral cavities can be basically classified in two groups depending on their composition and reaction to the gram stain test (19).

Bacteria in saliva mainly come from the surface of dental biofilm or the tongue. More than 90 bacterial groups can be identified, among which *Streptococcus* is the most predominant gram-positive bacteria in saliva (20)(21). *Streptococcus mutans* is an acid-producing bacteria that produces an acidic pH environment, and continue to survive in a lower pH (below 4.5) environment. (22). At the same time, due to the multi-layer film on the tongue surface, it can create a highly diverse and stable environment to harbor various bacteria, including gram-negative bacteria, such as *Veillonella* and *Prevotella* (18)(20).

On the surface of the hard tissues, dental biofilms/plaque are form by the oral microbiota, which can be divided into two types: supragingival and subgingival plaque. Supragingival plaque is associated with more gram-positive bacteria, including *Streptococcus*, *Actinomyces* and *Lactobacilli*, while in the subgingival plaque have been found more gram-negative bacteria such as *Fusobacterium*, *Treponema* and *Neisseria* (18)(20)(21).

Studies have found that different bacterial species in the oral cavity may interfere with the others. For example, *Streptococcus gordonii* can kill many bacteria in the mouth due to the production of hydrogen peroxide, and it can also inhibit the growth of *A. Naeslundii*.


1.4 Dental disease and microbiota

The environment of oral cavity is very unstable, might change due to various factors, including diet, habits like smoking, alcohol, temperature, pH, redox

potential or saliva flow. Dental caries is a continuous pathological process that proceeds in the destruction of hard dental structure with cariogenic microorganisms, mainly with *Streptococcus mutans*, correlated as an initial process of caries evolution (23).

Streptococcus mutans usually identified as a dominant bacterium for dental caries. It is an acid-producing bacteria that can cause acidic environments and lead to demineralization of the tooth structure. Both S. mutans and Lactobacillus are key pathogen in dental caries (20). Veillonella, Actinomycetes, Granules, Ciliates, Thiomonas, Bifidobacterium, Prevotella and other bacteria are also closely related to dental caries (23). Other articles used the model of "microbial indicators of dental caries" (MiC) to study the structure and function of the dental caries microbiota located in different parts of children's oral cavity, and study which microbiota can be used as an indicator of early dental caries risk prediction (24). By comparing the results of the MiC of the caries-active group and the caries-free group, it was indicating that the microbiota related to caries is mainly caused by S. mutans, Actinomycin and Lactobacillus, especially S. mutans (25) (Figure 5).

8

Figure 5: Bacteria species in caries-active and caries-free subject. (Corby *et al.* (25)) Gingivitis is the reversible periodontal inflammatory disease caused by the accumulation of bacterial plaque in the gingival sulcus. Once the ecological niche in gingival sulcus is broken, it causes the destruction of connective tissue surrounding by the tooth, creating an anaerobic environment and thus resulting in the irreversible periodontitis. The three main bacteria *Prophyromomas gingivalis (P. gingivalis), Treponema denticola (T. denticola) and Tannerella forsythia (T. forsythia)* are defined as "*red complex*" that are closely associated with periodontitis, although they are present in healthy individuals (20). Study revealed that the number of red complex microorganisms are reduced with the disappearance of inflammation after the periodontal treatment, hence the red complex can also be a biomarker for detecting the periodontal disease (20)(26).

2. Biomarkers

According to the definition of the WHO, a biomarker is "a substance or a process that can be measured in the body and can be used to predict the incidence or outcome of disease." (27). Nowadays, we are not only concerned about the outcome of disease, but also on the impact of treatment, intervention or environmental exposure. The basic biomarkers include pulse, blood pressure, or even complex chemical methods that can be tested repeatedly, such as blood tests or tissue tests (27). Biomarkers can be classified into five categories depending on the stages of diseases:

1. Antecedent biomarkers, according to the risk factor and its relationship with disease.

2. Screening biomarkers, based on the screening of clinical aspects.

3. Diagnostic biomarkers, by recognizing the disease through the symptoms.

4. Staging biomarkers, depending on the severity of the disease.

5. Prognostic biomarkers, predicting the prognosis and its related treatments and complications (28).

2.1 Saliva biomarkers

Saliva is a complex body fluid that plays an essential role in processing and digesting the food in oral cavity and initial digestive system. Due to its easy collection and duplication of samples, saliva is commonly used for oral biomarker. As mentioned before, saliva not only works as the lubrication, but also regulates the pH between 6.6-7.1 due to its buffer capacity and prevents bacterial infection based on its compositions (29).

Low saliva flow rate is a risk factor for dental caries. The use of the medications, alteration of salivary glands or age can affect the saliva flow rate. Studies have shown that unstimulated saliva flow rates below 0.3ml/min or stimulated saliva flow rates below 0.7ml/min can be considered as high risk of dental caries (29, 30). Saliva pH and buffering capacity is also highly correlated with dental caries. There is evidence that the salivary buffering capacity can protect tooth structure from caries. In the case of low buffering capacity, it cannot compensate for the acidic environment of dental biofilm, thereby reducing the remineralization process of early enamel lesions (30).

Saliva is composed of 99.5% of water with 0.3% proteins and 0.2% of inorganic substances (29). The most common inorganic substances include

sodium, potassium, calcium, etc. Meanwhile the organic components compose mucins, amylases, lysozymes, lactoferrin, cystatins, etc. Some of them can be used for the indicators of caries or other diseases, including periodontal disease, oral cancer or carcinomas (31).

The benefit of saliva as a biomarker is that it is fast, non-invasive, and can be collected repeatedly. Moreover, it is easy to obtain and does not require professional training (29). For these reasons, saliva diagnostic technique is now commonly used to detect or to discover human pathological diseases.

Gingival cervical fluid (GCF) can be used as a biomarker. Due to its location and origin, it is particularly used to detect periodontal disease (32). GCF is an inflammatory exudate that can be found in inflamed periodontal tissues, and it contains molecules from the blood, cells and tissues of the periodontium. Among them, eight potential markers have been identified, including alkaline phosphatase, β -glucuronidase, cathepsin B, collagenase 2 (matrix metalloproteinase, MMP-8), gelatinase (MMP-9), dipeptidyl peptidase (DPP) II and III and elastase (32). The sample can be easily collected by inserting a paper strip in the gingival pocket, and also can be collected repeatedly as saliva. There are several antimicrobial components in the saliva that can be potential indicators for caries biomarkers, especially for early childhood caries (ECC), including antimicrobial peptides (AMP), major salivary glycoproteins and minor salivary glycoproteins. (Table 1)

Antimicrobial peptides (AMPs), also called cationic peptides, are the most important role in immunity. They participate in the first line of defense and help resist caries, acting on bacteria, fungi and viruses (29). It contains four components: *Cathelicidin LL3, Defensin, Histatins and Statherin*. Among them, *LL37, Histatin 1 and Statherin* were found to be highly associated with dental caries and can be used as biomarkers.

Among Salivary glycoproteins, mucins and immunoglobulin participate in the formation of acquired enamel pellicle and establishes the first layer of dental biofilm (30), represent the first line of defense in the oral cavity (29)

Salivary proteins		Function	Association with ECC
Antimicrobial peptides			
Cathelicidin LL37		Antimicrobial activity	High relation with ECC.
	Histatin 1	Reduce bacterial	High relation with ECC
Histatin	Histatin 3	colonization.	Weak evidence
	Histatin 5	Maintain teeth integrity.	Weak evidence
Defensin	Alpha-defensin	Antimicrobial, antivirus and antifungal activity.	Positive correlation with ELISA. More evidence needed.
	Beta-defensin		Weak evidence
Statherin		Reducebacterialcolonization.Maintain teeth integrity.	High relation with ECC
Major glycoprotein			
	MUC5	Promote the aggregation	Weak evidence
Mucin	MUC7	with microorganism to facilitate removal.	High relation with ECC
Proline-rich proteins	Acidic PRP	Maintain the supersaturation of calcium ions in saliva	High relation with ECC
Immunoglobulins	IgA	Immune response	High relation with ECC
	IgM & IgG	ininiune response	More evidence needed.
Minor glycoprotein			
Agglutinin		Aggregate with microorganism for easily removal.	Weak evidence
Lactoferrin		Antimicrobial activity	More evidence needed.
Lysozyme		Antibacterial enzyme	More evidence needed.
Cystatins		Antimicrobial activity, Help remineralize.	More evidence needed.

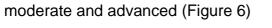
Table 1: Chemical compositions in saliva (Abdullah et al (29))

3. Definition of caries

Dental caries is one of the most prevalent chronic diseases in the world. It results from an ecological imbalance between tooth structures and oral biofilms (33). It begins with the colonization of biofilms on the tooth surfaces. Most of the biofilms are occupied mainly by streptococci, which has been shown to be closely related to dental caries. Streptococcus mutans produce a weak acid environment, causing the pH dropping below the critical level (pH 5.5), and leading to mineral loss and destruction of hard tissue which is known as demineralization (33). The demineralization process can be reserved in the early stage of caries formation with enough exposure of fluoride. Fluoride acts as a catalyst of calcium and phosphate ions, helping to bond with tooth structures and to remineralize. Study showed that the use of fluoridated water can reduce the caries rate population, also the application of fluoride gel or fluoride varnish every three months are recommended for high-risk individuals (34).

Dental caries is also a multifactorial disease, involving many risk factors, including bacteria, personal behavior and environmental factors. Individual behavior factors can be defined as changeable or unchangeable according to their characteristics. Excessive sugar intake or frequent snacking is the main risk for the early childhood caries. It can be improved by reducing the frequency of intake, substituting low-sugar foods (such as yogurt or fruit or replacing xylitol), or through appropriate oral hygiene instructions (brushing technique and flossing) (34).

Unchangeable factors include medication-induced hyposalivation, aging and individuals with special needs (34). In elder populations, the risk of dental caries and periodontal diseases is greater due to the limited movement, change of immune function and impaired wound healing and repair, although there is insufficient evidence to show that there is a correlation between the immune system and dental caries (35). In the elderly, the root caries lesions are easy to develop due to gingival recession, where the cementum is much softer than enamel. Once the caries is formed, it is easier to penetrate and reach to the pulp, causing toothache and even necrosis (33). Medication-induced hyposalivation in patients suffering from oral cancer, receiving radiotherapy or cytostatic drugs may develop sialo-adenitis can cause irreversible secretion damage, which is considered high-risk groups, and may develop new caries within 1 year (34). The moisturizing mouthwash or gels are recommended to relieve discomfort, the use of xylitol or other sugarless chewing gum is also


recommended to stimulate saliva secretion (36).

Today, many studies have shown that the risk of dental caries is not only due to eating habits or poor oral hygiene, but also genetic factors and socioeconomic problems (37). Poverty may lead to a lack of education and reduce the demand for dental care or reduce access to healthcare services, unable to afford oral hygiene products such as fluoride toothpaste, mouthwash, or dental floss (37). Although research showed that the prevalence of dental caries in developed countries is decreasing, many children and adults still suffer from caries (33).

Regardless of how these factors affect the possibility of lesion formation, the accumulation of plaque and prolonged low pH are still the main reasons for demineralization, which ultimately leads to dental caries. Effective cleaning can minimize the incidence of caries, hence the education and maintenance of good oral hygiene are essential for everyone.

3.1 Classification of Dental Caries

Based on the clinical manifestations of caries lesion, the American Dental Association (ADA) has created a caries classification system (CCS) to make corresponding treatment decisions (38). In CCS, it defines four sites where caries lesions can be found: pit and fissure, interproximal, cervical and smooth surface and root, with four types of clinical appearances: sound, initial,

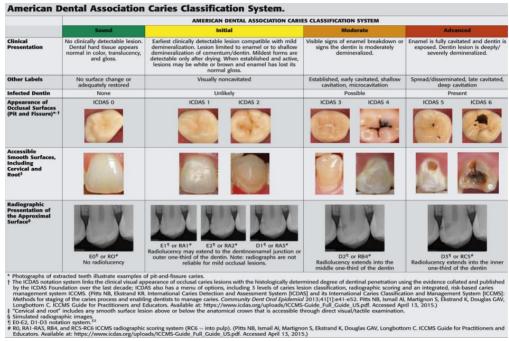


Figure 6: Classification of dental caries (Young et al. (38))

Score	Clinical stage	Radiograph
0	Sound	No radiolucency
1	First visual change in enamel	Radiolucency in outer $\frac{1}{2}$ of the enamel
2	Distinct visual change in enamel	Radiolucency in inner $\frac{1}{2}$ of the enamel
3	Localize enamel breakdown	Radiolucency limited to the outer ½ of dentin
4	Underlying dentin shadow	Radiolucency reaching the middle ½ of dentin
5	Distinct cavity with visible dentin	Radiolucency reaching the inner ½ of dentin, clinically cavitated
6	Extensive cavity with visible dentin	Radiolucency into the pulp, clinically cavitated

Table 2: Classification of ICDA ((Gomez et al. (39))

Compared with another similar system called "International Caries Detection and Assessment System" (ICDAS), the classification is also based on clinical stage and severity, but it is more precise, containing 6 categories according to the histological extent of the lesion in the tooth (Table 2) (38) (39)

Also, according to the state of the caries, ADA has divided lesions into two types: active lesion and inactive lesion. In active lesion, we can find plaque accumulation with yellowish color and rough surface; meanwhile in inactive lesion, the color is much darker, but the surface is smooth, and won't cause any gingival inflammation when the lesion is located near to the gingiva (38).

The dmf index is another method used to measure the experience of caries. It is determined by the total number of teeth through clinical examination: d for tooth decay, m for missing (due to decay), and f for filled in individuals (40)

3.2 Early childhood caries

Early childhood caries (ECC) refers to the presence of any caries, missing (due to caries) or filled tooth surface in the primary teeth of 6 year old children or younger (41). The definition of severe early childhood caries (S-ECC) indicates that any signs of smooth surfaces caries can be found in children under 3 years of age. Or in children with a decay, missing and filled index

surface scores (dmfs) of the primary maxillary anterior teeth ≥ 4 at age of 3, \ge 5 at age of 4, or ≥ 6 at age of 5 (29).

Epidemiologic data showed that the prevalence of ECC is high worldwide, whether in the developed or developing countries (29)(42). High prevalence of ECC has an important impact on either their health, or their cost of the treatment. Once the children suffer from ECC, several treatments are required, including restorative treatment, extraction if the tooth cannot be restored, and space maintainers (42). The most common clinical symptoms include pain, color changes, and loss of tooth structure (Figure 7). In radiograph, we might find out the abscess under. These may lead to the following complications, including difficulty eating, which can result in weight loss and even bone mass loss (41).

Figure 7: Structural loss in ECC (Evans et al. (55))

The appearance of ECC is similar to other types of dental caries, starting from white spots on the surface, where near the gingiva, accumulating most of the dental biofilm of *S. mutans*. But the main difference is that due to the thin immature layer of enamel, ECC spreads widely and rampantly. ECC usually

affects the teeth by following the eruption sequence of the primary maxillary incisor, maxillary first molar, canine teeth, and last second molar (41)

3.2.1 Hypoplasia-associated severe early childhood caries

Hypoplasia-associated severe early childhood caries (HAS-ECC) is considered as a new classification of Severe early childhood caries (S-ECC). Enamel Hypoplasia (EHP) is one of the developmental defects of enamel (DDE), which is defined as a defect of the formation of mineralized tissue during tooth development. This defect usually affects the primary incisors, canine and first molar, corresponding to the developmental stage and degree (43). The main etiology of DDE is heredity, but premature birth, medications and infections may also be related. DDE can affect both hypoplasia and hypomineralization, which can be found in the clinical manifestations of insufficient enamel in the pits, grooves or large areas of the tooth, leading to the rough surfaces that tend to accumulate biofilm. The latter will lead to a decrease in mineral content, resulting in a decrease in resistance to acidic environments, and easily lead to dental caries (41).

EHP is difficult to detect because dental caries and damaged enamel surfaces often appear at the same time, but the important difference is that the

21

primary teeth with EHP have been damaged before eruption, which leads to lesions caused by EHP earlier than caries (43). Teeth with EHP are vulnerable, and due to its structure, it's easily colonized by dental biofilm and promotes the enamel defects or early caries, which leads to what we call Hypoplasiaassociated ECC (HAS-ESS). But not all EHP teeth are going to result in HAS-ESS, the cariogenic diet plays an essential factor in this process (Figure 8).

Figure 8: Process of HAS-ECC (Caufield et al. 2012 (43))

The cause of ECC is always related to carbohydrate fermentation in dental biofilm (mainly *S. mutans*). Therefore, though the accumulation of tooth biofilm is necessary, without cariogenic diet, EHP will not develop into HAS-ESS (43).

3.2.2 Risk factors and preventions

Sugar has always been the main risk factor for ECC, excessive sugar intake or frequent snacking are highly related to early childhood caries (41). The use of pacifiers containing sweetened fluids at night can also increase the risk because saliva flow is reduced during sleep. Similarly, although breastfeeding can help babies get more immunoglobulin (especially IgA), studies showed that breastfeeding for longer than 12 months may increase the risk of ECC (41)(42). The developmental defects are also a factor of ECC (41)(42). Children suffering from EHP can increase the number of dental biofilms accumulating on the teeth surfaces. When combined with a high number of sugar consumption and without a proper hygiene technique, it can be highly associated with ECC.

The acquisition of *Streptococcus mutans* in young children is usually transmitted vertically through parents (especially mothers), but it may also be transmitted from caregivers, siblings, and other children (41). The "window of infectivity" is defined as the earliest time of initial colonization with *S. mutans* in children's oral cavities. In 1993, the data had shown that the period of window of infectivity was between the age of 19 months to 31 months during the tooth eruption in 1993. The latest research showed that the early acquisition can be advanced to the age of 16 months, and the earlier tooth eruption is the key factor (44). Other study showed that children with history or their caregivers or siblings who have severe caries may also increase the risk of ECC (33).

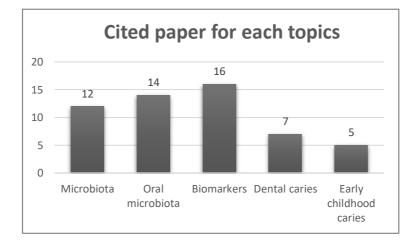
ECC prevention techniques and education are needed for parents and children before the initiation of the disease. Knowledge of risk factors and prevention must provide, including sugar restrictions for children under 2 year of age, avoiding night use of sugary pacifiers or bottles and avoid breastfeeding longer than 12 months (41)(42). Using at least 1000 ppm fluoridated toothpaste with an appropriate "smear size" toothpaste for children under 3 years old, and "pea-size" for children 3-6 years old to reinforce oral hygiene (Figure 9)(42).

Children with a higher risk of dental caries, fluoride varnishes and dental sealants can also be performed in dental clinics. Once the lesions appear, restorative treatments are needed to avoid further infection. Resin cement composites, glass (modified) ionomer cement can be carried out as the conservative treatment, in which the release of fluoride can inhibit secondary caries. A full-cover metal crown can be used if children with high caries risk (42).

"Smear size" for children under age 3 "Pea size" for children 3-6. **Figure 9:** The size of dentifrices according to age. (Tinanoff *et al.* (42))

Objective

The aim of this thesis is to describe and review the relationship between the microbiota and dental caries, and to evaluate the potential biomarkers for early childhood caries detection.


For this purpose, the following objectives were proposed:

- Primary is to understand the knowledge of microbiota, biomarkers and dental caries, especially early childhood caries.
- To study the characteristics and functions of saliva in oral cavity, including the salivary flow rate, buffer capacity, microorganisms present in the saliva and the salivary proteins.
- Secondary objective is to evaluate the relationship between the saliva and dental caries as the potential biomarkers of early childhood caries assessment.

Materials and Methods

The majority of sources came from electronic databases such as PubMed, library database of selective publication at Universidad Europea de Madrid and Google Scholar. Keywords used include: "microbiota", "oral microbiota", "biomarkers", "saliva", "caries" and "early childhood caries". These keywords were combined with further "and" and "or" for more relevant articles. Advanced search has been restricted from 2005 to 2020 presented in language English, except for an article in 1983 to demonstrate the figure of the result.

A total of 68 articles were initially found and reviewed. However, 14 articles were excluded due to either duplication or low relevance to the topic. The reasons for excluding these articles include a mismatch between the research participants and the topic that the participants were over 6 years of age, which is unfavorable in this thesis, or the information is directly unrelated to the topic.

RESULTS AND DISCUSSION

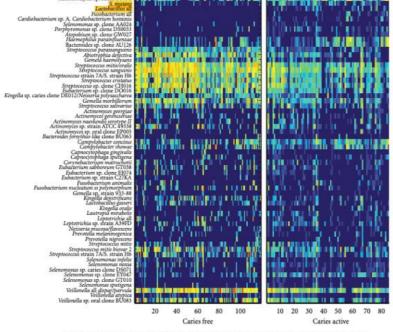
Saliva is widely used as a biofluid for the identification of biomarkers of dental caries because is a not invasive methods well accepted by patients and due to the easy collection of the sample. According to its properties, in saliva we can find physical biomarkers (saliva flow rate, buffer capacity) and biological biomarkers, including microorganisms in saliva and salivary proteins (45).

1. <u>Early childhood Caries and salivary flow rate and buffer capacity</u>

To study the relation between salivary flow rate, buffer capacity and early childhood caries, several studies have been done. Kuriakose *et al.* in 2013 conducted a study with 42 children of age range of 3-5 years, comparing the relation between in patients with ECC saliva flow rate (FR) and buffer capacity (BC). Figure 10 shows that both salivary buffer capacity and flow rate are significantly lower in ECC-affected children than children with caries resistance (P value=0.001) (46). Therefore, in this study, they found the relation between salivary flow rate and buffer capacity are highly related to the dental caries.

Co	mp	bariso	on o	f mean flow	rate		Compa	aris	son o	of m	ean buffer	capac	ity
Groups	N	Mean	SD	Mean difference	t value	P value	Groups	N	Mean	SD	Mean difference	t value	P value
Rampant caries	21	0.81	0.45	0.56	3.48	0.001	Rampant caries	21	0.43	0.16	0.75	9.89	0.001
Caries resistant	21	1.37	0.57				Caries resistant	21	1.18	0.30			

Figure 10: Comparison of ECC with FR and BC (Kuriakose et al. (46))


However, in another study, Abbas *et al.* conducted a case-sectional and case-control study with 77 children (age from 3-6 years) and divided into three groups: caries-free, children with early childhood caries and children with severe early childhood caries. Table 3 shows that the correlation of salivary pH, buffer capacity, salivary flow rate and ECC are not significantly related because the P value is > 0.05 among three groups, demonstrating that even though saliva is an important factor in maintaining oral health, no conclusive results were observed in this study (47).

Group	рН	p-value	Buffer	p-value	Salivary	p-value
			capacity		Flow Rate	
Healthy	6.98 ± 0.67	0.719	5.07 ± 1.10	0.904	1.28 ± 0.75	0.323
ECC	7.03 ± 0.75		5.27 ± 1.34		1.45 ± 1.03	
ECC-S	6.90 ± 0.86		5.11 ± 1.08		1.20 ± 0.90	

Table 3: Comparison of Salivary pH, buffer capacity and Salivary flow rate in children without ECC, with ECC and with S-ECC. (Abbas *et al.* (47))

2. Early childhood caries and dental microorganisms

To study the distribution of microorganisms in the oral cavity, and to learn which type of microorganisms have a strong impact in the development of early childhood caries. Hart *et al.* conducted analysis study in which they compared the types of microorganisms in children with or without dental caries. Figure 11 shows that caries-free group patients had more species in their oral cavity compared with the caries affected group. The results also found indicated that in the caries-affected group, S. mutans and Lactobacillus were more abundant

than caries-free group (48).

Brighter colors indicate higher abundance level of the bacteria measured

Figure 11: Bacterial species in caries-free children and caries-affected children. (Hart *et al*, 2011. (48))

Another study had found out that the presence of *Streptococcus. mutans* in preschool children without dental caries will increase the incidence of dental caries (29). In addition, in a longitudinal study with 39 children, showing that the first colonization of *S. mutans* was found before the age of 2, and by the age of 4, the score of decayed and filling surface (dfs) (the modification of the dmf score that only counts the decay and filling) was higher than the group of the first colonization of *S. mutans* occurred between 2 and 4 years of age. (P value <0.05) (Figure 12) (49). Therefore, the initial colonization of *Streptococcus*

mutans is an important factor, leading to *S. mutans* can be considered as a biomarker.

		d	fs (mean \pm SD)	
	Initial establishment of S. mutans (No. of children)	2	3	4 yr
1.00	1. Before the age of 2 (5).	0.4 ± 0.9	5.4 ± 4.2	10.6 ± 5.3
	2. Between 2 and 4 yr (8).	0	1.0 ± 2.1	3.4±1.8
	3. S. mutans not detected (26)	0	0.1 ± 0.4	0.3 ± 1.1

Initial establishment of S. mutans in relation to number of decayed and filled surfaces (dfs) in children at age 2, 3 and 4

P < 0.005 between groups 1 and 2 at the age of 4.

P < 0.0003 between groups 1 and 3 at the age of 4.

Figure 12: Colonization of S. mutans in children between 2-4 years old. (Alaluusua et al. (49))

Zhu *et al.* conducted a study in 2018 to investigate the most recurrent microorganisms in early childhood caries. To demonstrate their hypothesis, 28 children were recruited, 15 of which were diagnosed with ECC and 13 were not diagnosed with ECC. After 12 months of follow-up, all patients were divided into 3 groups: ECC recurrence group (ER), non-ECC recurrence group (NER) and no ECC group (EF). Their research showed that in the ER and NER groups, 4 bacteria showed the most significant differences, including *Capnocytophaga, Fusobacterium, Leptotrichia increased in ECC* and *Prevotella decreased in ECC*, indicating that these four species can potentially be used as a biomarker for recurrence ECC (Figure. 13) (50).

However, in figure 13 the ER group shows abundances of *Corynebacterium*, *Alloprevotella, Kingella, Porphyromonas, Actinomyces* and *Neisseria*. Among

them, the number of *Kingella* and *Neisseria* increased the most, meaning that both are highly associated with the recurrence caries.

Contrastingly, compared with the ER group, the NER group had the lowest level of *Veillonella, Lautropia, Rothia, Haemophilus,* and *Streptococcus*, where *Rothia* and *Haemophilus* have the largest difference in abundance. As a result, species of *Kingella, Neisseria, Rothia* and *Haemophilus* can be considered as biomarkers of recurrent ECC.

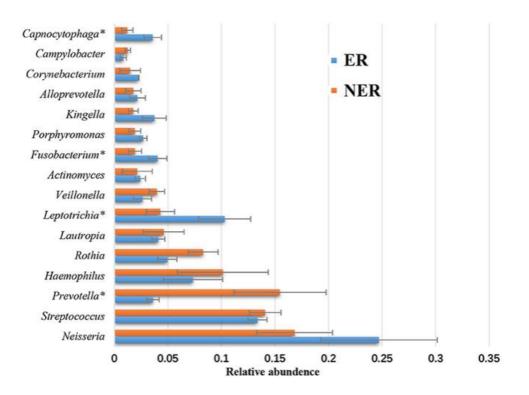


Figure 13: Comparison of bacteria in groups ER and NER. (Zhu et al. (50))

3. Salivary proteins as biomarkers in Early Childhood Caries

Two studies conducted by Abdullah *et al.* and Sruthi *et al.*, revealed that salivary proteins can be used as biomarkers in ECC. The authors found that

Cathelicidin LL-37, Histatin 1, Statherin, Mucin 7, Proline-rich proteins and immunoglobulins can help reduce the colonization of the *S. mutans* and protect the teeth from dental caries, thereby can be used as a biomarker for dental caries. However, they also pointed out that although other proteins (such as Lactoferrin and Lysozyme, etc.) had antibacterial activity by reducing or killing bacteria, studies showed that the relationship with dental caries were not strong, therefore they can't be used as biomarkers and more studies are still needed, and (28,34).

Moslemi *et al.* studied the relationship between lactoferrin and lysozyme and ECC in 42 children (between 36 and 71 months of age). Among them, 21 children had no dental caries and 21 had ECC. In these 21 children affected by the ECC, 15 received restorative treatment. Figure 14 shows that children affected by ECC had higher level of lysozyme than children without ECC, but there is no significant difference in the level of lactoferrin that were found in the two groups (Figure 15) (51), showing that lysozyme could be used as the potential biomarker for ECC when comparing between caries-free and caries-affected group.

Study groups	Number of chil- dren	Lysozyme concen- tration	P value
ECC	21	2180 ± 653.52	
CF	21	9573.81 ± 1148.3	0.04

Level of I	ysozy	me in	ECC	and	CF	groups
------------	-------	-------	-----	-----	----	--------

ECC, early childhood caries; CF, caries free.

Figure 14: Level of lysozyme in ECC and children without ECC (Moslemi et al. (51))

Level of lactoferrin in ECC and CF groups

Study groups	Number of children	Lactoferrin concen- tration	P value
ECC	21	37.9 ± 16.43	
CF	21	50.93 ± 24.44	0.06

ECC, early childhood caries; CF, caries free.

Figure 15. Level of lactoferrin in ECC and children without ECC (Moslemi et al. (51))

However, as showed in figures 16 and 17, the levels of lactoferrin and

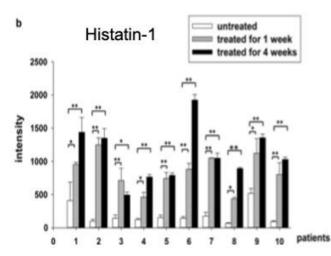
lysozyme do not decrease after treatment, with the P value > 0.05, indicating

that the relationship of lactoferrin and lysozyme were not associated before and

after treatment.

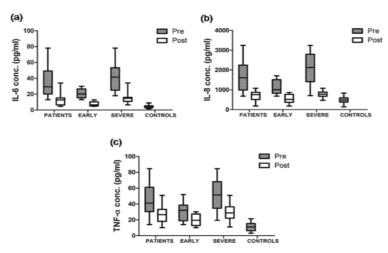
Level of lys before and	-	•	ıps,		actoferrin d after tre	in ECC gro atment	oups,
Study group	Number of children	Lysozyme concentration	P value	Study Group	Number of children	Lactoferrin concentreation	P value
Treated ECC	15	2108 ± 59.1		Treated ECC	15	42 ± 11.62	
ECC before treat-			0.86	ECC before			0.2
ment	21	2180 ± 653.52		treatment	21	37.9 ± 16.43	

Figure 16 and 17: Levels of lysozyme and lactoferrin before treatment and after. (Moslemi *et al.* (51))


Sun et al. conducted a study with a total of 30 stimulated saliva samples on

10 S-ECC children aged 3-5 years old, and divided them into 3 groups (before

treatment, 1 week after treatment and 4 weeks after restorative treatment).


They revealed that the level of Histatin-1 is higher in children after the treatment

(P value <0.005), indicating the strong correlation between Histatin-1 and the absence of dental caries (52) (Figure. 18).

Figure 18: Histogram of Histatin-1 from 3 groups, before treatment, 1 week and 4 weeks after the treatment. (Sun *et al.* (52))

Study conducted by Sharma *et al.* in 2017 of 25 children with ECC to detect the level of inflammatory cytokines (IL6, IL8 and TNF- α) in three groups: before treatment, after treatment, and control. Figure 19 shows that all cytokine levels are higher in children with ECC, and levels decreased in post-treatment, indicating a positive correlation with ECC. (P value<0.005) (53).

Figure 19: Level of IL6, IL8 and TNF- α in different group samples. (Sharma *et al.* (53))

Letieri *et al.* conducted another study to assess the level of Immunoglobulin A (IgA) in children affected by ECC before and after restorative treatment, with a total of 46 children of age between 24 to 71 months and divided them into two groups: caries-free and ECC-affected. Figure 20 shows that compared with the caries-free group, the levels of IgA, *Streptococcus mutans* and *Lactobacillus* are higher in the ECC-affected group (P value <0.05). (54)

However, the levels of IgA and *S. mutans* do not show a significant reduction in the ECC-affected group in the 3-month follow-up period, indicating that there is no correlation between IgA and *S. mutans* before and after the treatment. (54)

Group	s-IgA (µg/mL)	s-IgAp-value	Streptococcus mutans (CFU/mL)	Streptococcus mutansp-value	Lactobacillus spp. (CFU/mL)	Lactobacillus spp. p-value
ECC	46.89(± 41.94)	0.58a	3.0 × 105(± 4.1 × 105)	< 0.001a	1.1 × 104(± 2.7 × 104)	< 0.001a
7 day follow-up	40.87(± 30.68)	0.17b	9.1 × 104(± 1.9 × 104)	0.04b	7.9 × 102(± 1.3 × 103)	< 0.001b
1 month follow-up	33.70(± 20.25)	0.20c	2.4 × 105(± 6.4 × 105)	0.04c	8.6 × 102(± 2.6 × 103)	< 0.001c
2 month follow-up	31.46(± 18.90)	0.18d	2.0 × 105(± 5.6 × 105)	0.04d	5.6 × 102(± 1.9 × 103)	< 0.001d
3 month follow-up	32.94(± 32.16)	0.93e	6.1 × 104(± 9.5 × 104)	0.49e	2.8 × 102(± 5.6 × 102)	0.04e
Caries-free	25.40(± 15.44)	0.03f	2.9 × 105(± 5.4 × 105)	0.15f	1.1 × 101(± 5.0 × 101)	< 0.001f

Note: "Comparison between ECC and the 7 day follow-up; "Comparison between ECC and the 1 month follow-up; "Comparison between ECC and the 2 month follow-up; "Comparison between ECC and the 3 month follow-up; "Comparison between caries-free and the 3 month follow-up; "Comparison between ECC and caries-fr

Figure 20: Levels of IgA, *Streptococcus mutans* and *Lactobacillus* of caries-free and ECC-affected children before and after the treatment. (Letieri *et al.* (54))

Conclusions

- Saliva is a biofluid that can be used as a biomarker to detect caries due to the factors of easy collection, non-invasive and well accepted by patients.
- Early childhood caries (ECC) refers to the sign of caries, missing due to decay and filled surface in children at the age of 6 years old or younger.
 High sugar intake is the main cause of the ECC, other causes include acquisitions of the oral microbiota, developmental defects and breastfeeding longer than 12 months.
- There are more than 700 oral microbiotas in the oral cavity, maintaining commensal relationship with the host. When a state of imbalance has presented, various infections might occur.
- Nowadays, biomarkers are used as a preventive method to study and evaluate the possible causes of the infection, and to early detect and prevent of the development of the diseases.
- Streptococcus mutans is the most common microbiota in the oral cavity, and also is the most important bacteria that affects dental caries, followed by *Lactobacillus* and *Actinomycetes*. *S. mutans* can be used as a biomarker of

ECC, but it is not very effective for children who have undergone restorative treatment.

- Salivary proteins such as Cathelicidin LL-37, Histatin 1, Statherin, Mucin 7, Proline-rich proteins, immunoglobulins and inflammatory cytokines have been shown to have an impact on the detection of the ECC; However, there is no positive correlation between lysozyme, lactoferrin and ECC, therefore they cannot be considered as biomarkers.
- There is still controversy between articles discussing the relationship between the salivary flow rate, buffer capacity and ECC, therefore, they cannot become potential biomarkers.

Responsibility

The present work reviewed the Microbiota as possible biomarkers to detect early caries disease. The use of microbiota as biomarker is a new powerful tool to detect and prevent the onset of caries especially during childhood. This work also highlights the responsibility of the practitioners, to inform and educate parents and children in order to prevent the onset of caries that can degenerate and produce more severe pathologies. Dental programs are essential in social events and schools in order to provide information and educate about a proper oral hygiene techniques and oral examinations.

References

- Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering [Internet]. 2017;3(1):71–82. Available from: http://dx.doi.org/10.1016/J.ENG.2017.01.008
- Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci [Internet]. 2019;76(3):473–93. Available from: https://doi.org/10.1007/s00018-018-2943-4
- Aagaard K, Luna RA, Versalovic J. The Human Microbiome of Local Body Sites and Their Unique Biology [Internet]. Eighth Edi. Vol. 1, Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier Inc.; 2014. 11–18 p. Available from: http://dx.doi.org/10.1016/B978-1-4557-4801-3.00002-3
- Cresci GAM, Izzo K. Gut microbiome. Adult Short Bowel Syndr Nutr Medical, Surg Manag. 2018;45–54.
- Scholtens PAMJ, Oozeer R, Martin R, Amor K Ben, Knol J. The early settlers: Intestinal microbiology in early life. Annu Rev Food Sci Technol. 2012;3(1):425–47.
- Vaiserman A, Romanenko M, Piven L, Moseiko V, Lushchak O, Kryzhanovska N, et al.
 Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol. 2020;20(1):1–8.
- Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1–16.
- Ursell LK, Metcalf JL, Parfrey LW, Knight R, Wang B, Yao M, et al. Role of the microbiota in immunity and inflammation. Cell [Internet]. 2014;157(1):121–41. Available from: http://dx.doi.org/10.1016/j.cell.2014.03.011
- Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:36–44.
- Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–77.
- 11. Degruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–50.
- Tomasello G, Mazzola M, Leone A, Sinagra E, Zummo G, Farina F, et al. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap. 2016;160(4):461–6.
- Jia G, Zhi A, Lai PFH, Wang G, Xia Y, Xiong Z, et al. The oral microbiota A mechanistic role for systemic diseases. Br Dent J. 2018;224(6):447–55.
- Lu M, Xuan S, Wang Z. Oral microbiota: A new view of body health. Food Sci Hum Wellness [Internet]. 2019;8(1):8–15. Available from: https://doi.org/10.1016/j.fshw.2018.12.001
- Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.

- 16. Zijnge V, Van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T, Gmür R, et al. Oral biofilm architecture on natural teeth. PLoS One. 2010;5(2):1–9.
- 17. Larsen T, Fiehn NE. Dental biofilm infections an update. Apmis. 2017;125(4):376–84.
- Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett [Internet]. 2014;162(2):22–38. Available from: http://dx.doi.org/10.1016/j.imlet.2014.08.017
- Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol [Internet]. 2015;40:97–104. Available from: http://dx.doi.org/10.1016/j.semcdb.2015.02.006
- Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation for oral health. Biomed Pharmacother [Internet]. 2018;99(September 2017):883–93. Available from: https://doi.org/10.1016/j.biopha.2018.01.146
- 21. Priya Nimish Deo RD. Oral microbiome: Unveiling the fundamentals. 2019;23(1).
- Wilson M. The oral cavity and its indigenous microbiota. Microbial Inhabitants of Humans. 2010.
 318–374 p.
- 23. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, et al. The oral metagenome in health and disease. ISME J. 2012;6(1):46–56.
- Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, et al. Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. Cell Host Microbe [Internet]. 2015;18(3):296– 306. Available from: http://dx.doi.org/10.1016/j.chom.2015.08.005
- Corby PM, Lyons-Weiler J, Bretz WA, Hart TC, Aas JA, Boumenna T, et al. Microbial risk indicators of early childhood caries. J Clin Microbiol. 2005;43(11):5753–9.
- Le Bars P, Matamoros S, Montassier E, Le Vacon F, Potel G, Soueidan A, et al. The oral cavity microbiota: Between health, oral disease, and cancers of the aerodigestive tract. Can J Microbiol. 2017;63(6):475–92.
- 27. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463-6.
- Ahsan H. Biomolecules and biomarkers in oral cavity: bioassays and immunopathology. J Immunoass Immunochem [Internet]. 2019;40(1):52–69. Available from: https://doi.org/10.1080/15321819.2018.1550423
- Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci [Internet]. 2017;9(11):e1. Available from: http://dx.doi.org/10.1038/ijos.2017.35
- Jones R. Salivary Biomarkers for Caries Risk Assessment. Bone [Internet]. 2014;23(1):1–7.
 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
- Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, Tu M, Garcia-Godoy F, Wong DTW.
 Saliva diagnostics Current views and directions. Exp Biol Med. 2017;242(5):459–72.

- 32. Zia A, Khan S, Bey A, Gupta ND, Mukhtar-Un-Nisar S. Oral biomarkers in the diagnosis and progression of periodontal diseases. Biol Med. 2011;3(2 SPECIALISSUE):45–52.
- 33. Inén Egozcue M, Bordoni N. Dental caries 1. Bol Med Hosp Infant Mex. 2007;369:51–9.
- Kutsch VK. Dental caries: An updated medical model of risk assessment. J Prosthet Dent [Internet]. 2014;111(4):280–5. Available from: http://dx.doi.org/10.1016/j.prosdent.2013.07.014
- 35. Tonetti MS, Bottenberg P, Conrads G, Eickholz P, Heasman P, Huysmans MC, et al. Dental caries and periodontal diseases in the ageing population: call to action to protect and enhance oral health and well-being as an essential component of healthy ageing Consensus report of group 4 of the joint EFP/ORCA workshop on the boundaries be. J Clin Periodontol. 2017;44:S135–44.
- Meurman JH, Grönroos L. Oral and dental health care of oral cancer patients: hyposalivation, caries and infections. Oral Oncol [Internet]. 2010;46(6):464–7. Available from: http://dx.doi.org/10.1016/j.oraloncology.2010.02.025
- Corrêa-Faria P, Paixão-Gonçalves S, Paiva SM, Pordeus IA. Incidence of dental caries in primary dentition and risk factors: a longitudinal study. Braz Oral Res. 2016;30(1):1–8.
- Young DA, Nový BB, Zeller GG, Hale R, Hart TC, Truelove EL, et al. The american dental association caries classification system for clinical practice: A report of the american dental association council on scientific affairs. J Am Dent Assoc. 2015;146(2):79–86.
- Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health [Internet].
 2015;15(1):S3. Available from: http://www.biomedcentral.com/1472-6831/15/S1/S3
- Shulman JAYD, Cappelli DP. Chapter 1 E pidemiology of Dental Caries CARIES
 EPIDEMIOLOGY THE SCIENCE OF CARIES POPULATION-BASED MEASURES OF. 2010;
- 41. Seow WK. Early Childhood Caries. Pediatr Clin North Am [Internet]. 2018;65(5):941–54. Available from: https://doi.org/10.1016/j.pcl.2018.05.004
- 42. Tinanoff N, Baez RJ, Diaz Guillory C, Donly KJ, Feldens CA, McGrath C, et al. Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: Global perspective. Int J Paediatr Dent. 2019;29(3):238–48.
- Caufield PW, Li Y, Bromage TG. Hypoplasia-associated severe early childhood caries-a proposed definition. J Dent Res. 2012;91(6):544–50.
- Lynch DJ, Villhauer AL, Warren JJ, Marshall TA, Dawson D V, Blanchette DR, et al. Genotypic characterization of initial acquisition of Streptococcus mutans in American Indian children. J Oral Microbiol. 2015;7(1):1–11.
- Associate Professor YR, Puranik Professor MP, Sruthi CK, Puranik MP. Diagnostic potential of saliva as a biomarker in early childhood caries: A review. ~ 341 ~ Int J Appl Dent Sci [Internet].
 2019;5(2):341–7. Available from: www.oraljournal.com

- 46. S Kuriakose, C Sundaresan, V Mathai, E Khosla FG. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant caries and caries-resistant children. 2013;
- Abbas MJ, Al-Hadithi HK, Mahmood MA, Hussein HM. Comparison of some salivary characteristics in iraqi children with early childhood caries (Ecc) and children without early childhood caries. Clin Cosmet Investig Dent. 2020;12:541–50.
- 48. Hart TC, Corby PM, Hauskrecht M, Hee Ryu O, Pelikan R, Valko M, et al. Identification of microbial and proteomic biomarkers in early childhood cCaries. Int J Dent. 2011;2011.
- 49. ALALUUSUA S, RENKONEN O -V. Streptococcus mutans establishment and dental caries experience in children from 2 to 4 years old. Eur J Oral Sci. 1983;91(6):453–7.
- Zhu C, Yuan C, Ao S, Shi X, Chen F, Sun X, et al. The Predictive Potentiality of Salivary Microbiome for the Recurrence of Early Childhood Caries. Front Cell Infect Microbiol. 2018;8(December):423.
- Moslemi M, Sattari M, Kooshki F, Fotuhi F, Modarresi N, Khalili Sadrabad Z, et al. Relationship of Salivary Lactoferrin and Lysozyme Concentrations with Early Childhood Caries. J Dent Res Dent Clin Dent Prospects. 2015;9(2):109–14.
- 52. Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, et al. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med. 2016;14(1):1–11.
- Sharma V, Gupta N, Srivastava N, Rana V, Chandna P, Yadav S, et al. Diagnostic potential of inflammatory biomarkers in early childhood caries - A case control study. Clin Chim Acta [Internet]. 2017;471(May):158–63. Available from: http://dx.doi.org/10.1016/j.cca.2017.05.037
- Dos Santos Letieri A, Freitas-Fernandes LB, Valente APC, Da Silva Fidalgo TK, De Souza IPR. Longitudinal evaluation of salivary IgA-S in children with early childhood caries before and after restorative treatment. J Clin Pediatr Dent. 2019;43(4):239–43.
- 55. Evans RW, Feldens CA, Phantunvanit P. A protocol for early childhood caries diagnosis and risk assessment. Community Dent Oral Epidemiol. 2018;46(5):518–25.

Annexes

 Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering [Internet]. 2017;3(1):71–82. Available from: http://dx.doi.org/10.1016/J.ENG.2017.01.008

	Logistenog:	3 (2017) 71-82
300 Main	Contents lists avail	lable at ScienceDirect Engineering
	Engir	neering
ELSEVIER J	ournal homepage: www	w.elsevier.com/locate/eng
Research		
Microecology–Review		
The Human Microbiota	in Health and Dis	sease
Baohong Wang, Mingfei Yao, I	LongXian LV, ZongXin I	Ling, Lanjuan Li*
National Collaborative Innovation Center for Die Infectious Diseases, The First Affiliated Hospital, Sci		Diseases, State K ey Labor atory for Diagnosis and Treatment of Mangshou 31 0003, China
ARTICLE INFO	ABSTRACT	
Received 20 December 2016 Reviewd 9 January 2017 Accepted 12 January 2017 Available coline 20 Pebruary 2017 Microbicene Baabh Infoctoius diseane	man health and disease. He in order to provide an over ment and progression of m nal cancers, metabolic disea diseases. We also review in DNA sequencing, metabon.	affect intestinal microbial imbalance, which has a close relationship with he re, we focus on the interactions between the human microbiota and the ho view of the microbial role in basic biological processes and in the develop ajor human diseases such as infectious diseases, liver diseases, gastrointest asse, respiratory diseases, mental or psychological diseases, and autoimmun portant advances in tochniques associated with microbial research, such a omics, and problomics combined with computation-based bioinformatic
Liver diseases Castrointre tioal malignancy Metabolic disorder Microbiota technology Problotics	sive. Therefore, we propose effect mechanisms, which health and disease, and pro © 2017 THE AUTHORS. Put	man microbiota has become much more sophisticated and more comprehene e that research should focus on the host-microbe interaction and on cause could pave the way to an understanding of the role of gut microbiota i wide new therapeutic targets and treatment approaches in disical practice. Obished by Elsevier LTO on behalf of the Chinase Academy of Engineering an Press Limited Company. This is an open access article under the CC BY-NC-N license (http://creativecommons.org/licenses/by-nc-nd/4.0/

http://adatastary/ite/itely_EMC_2012.00.000 2029-1023/by 2020/THE AUTHORS. Published by Else Ver LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creat/wccommons.org/license/by-sc-od/4.07). Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci [Internet].
 2019;76(3):473–93. Available from: https://doi.org/10.1007/s00018-018-2943-4

Cellular and Molecular Life Sciences (2019) 76:473-493 https://doi.org/10.1007/s00018-018-2943-4	Cellular and Molecular Life Sciences
REVIEW	CrossMark
An insight into gut microbiota and its	functionalities
Atanu Adak ¹ - Mojibur R. Khan ¹	

Received: 22 February 2018 / Revised: 4 October 2018 / Accepted: 9 October 2018 / Published online: 13 October 2018 © Springer Nature Switzerland AG 2018

Abstract

Gut microbiota has evolved along with their hosts and is an integral part of the human body. Microbiota acquired at birth develops in parallel as the host develops and maintains its temporal stability and diversity through adulthood until death. Recent developments in genome sequencing technologies, bioinformatics and culturomics have enabled researchers to explore the microbiota and in particular their functions at more detailed level than before. The accumulated evidences suggest that though a part of the microbiota is conserved, the dynamic members vary along the gastrointestinal tract, from infants to elderly, primitive tribes to modern societies and in different health conditions. Though the gut microbiota is dynamic, it performs some basic functions in the immunological, metabolic, structural and neurological landscapes of the human body. Gut microbiota also exerts significant influence on both physical and mental health of an individual. An in-depth understanding of the functioning of gut microbiota has led to some very exciting developments in therapeutics, such as prebiotics, probiotics, drugs and faecal transplantation leading to improve the alth.

Keywords Gut microbiota · Functions · Health · Therapeutics

Introduction

The life forms on this earth can be clustered into three broad domains: namely Archaea, Bacteria and Eukaryota [1]. All life has evolved from a simple unicellular common ancestor over billion years of evolution giving rise to a complexity of cells within an organism. The human is a superorganism that functions in harmony with trillions of symbiotic bacteria and eukaryotic cells. The host and its symbionts together are called a "holobiont," and their collective genome is known as "hologenome". Variation in the hologenome either by changes in the host genome or the microbiome may occur with reasonable fidelity maintaining plasticity of the holobiont [2]. In 2001, the human genome project was completed after which it was correctly argued that the "crowning achievement" in biology would be incomplete until the synergistic activities between human and microbes are understood [3-5]. Subsequently, several scientific efforts were initiated to understand the relationships between human and

Mojibur R. Khan mojibur.khan@gmail.com

Molecular Biology and Microbial Biolechnology Laboratory, Life Science Division, Institute of A dvanced Study in Science and Technology (LASST), Guwahali, India

human-associated microbial communities. Discoveries of the Human Microbiome Project (HMP) and the Metagenome of Human Intestinal Tract (MetaHIT) opened new horizons in microbiome research for an enhanced understanding of host-microbe interactions at four major colonisation of the human body; viz. oral, gut, vagina and skin. Of these four sites, the human gut microbiota has drawn the attention of microbiologists for its clinical significance. Several gut microbiome projects including the Australian Gut Project, the American Gut project, the British gut project, the Canadian Microbiome Initiative, the Human MetaGenome Consortium Japan, the My New Gut project of the European Union and the International Human Microbiome Consortia, etc. were undertaken for a better understanding of the complex gut ecosystem and its role in health and diseases. The human gut (200-300 m² of mucosa) is the "secret garden" of ten trillion diverse symbionts (50 bacterial phyla and about 100-1000 bacterial species), collectively known as the 'microbiota'. Microbiota are ten times more abundant than our somatic and germ line cells of the body. The collective genes of microbiota are known as the 'microbiome' which is 150 times larger than the human genome [6, 7]. In an individual, 150-170 bacterial species predominate and get benefits from the warm nutrient rich environment of the gut and perform protective, metabolic and structural function

Springer

Aagaard K, Luna RA, Versalovic J. The Human Microbiome of Local Body Sites and Their Unique 3. Biology [Internet]. Eighth Edi. Vol. 1, Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier Inc.; 2014. 11–18 p. Available from: http://dx.doi.org/10.1016/B978-1-4557-4801-3.00002-3

The Human Microbiome of Local Body Sites and Their Unique Biology

Kjersti Aagaard, Ruth Ann Luna, and James Versalovic

DEFINING THE HUMAN MICROBIOME. The human microbiola can be defined as all microorganisms (~90 or so trillion bacieria, Archaea, microeukaryoles, and viruses) residing in the human body; the human microbiome consists of the genes and gene products (RNA, proteins, metabolites) produced by resident microbial communities. The advent of high-throughput DNA/INA sequencing technologies and computational methodologies has enabled scientists to systematically catalog the global set of microorganisms—cultured and uncultured—in a heretofore unparalleled manner. Different body habitats contain microbial communities and microbiomes that diffe by microbial composition and function (metabolic modules and path ways). As a result, each body habitat is composed of characteristic bacierial species and other microbial taxa that are adapted to each body site. Differences in microbial composition yield differences in metabolic capacity and aggregate function of the human microbiome. Traditional notions have been challenged, such as the ideas first put

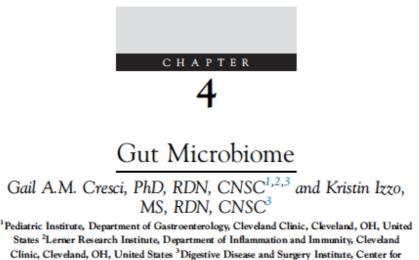
forth in Koch's postulates, whereby microbes were viewed as pathogens and as sole etiologic agents of infectious diseases. Such a "foe" view neglects our earliest sightings of oral and fecal microbes with Anton neglects our earliest sightings of oral and feeal microbes with Anton van Leeuwenhoek's microscopes, where it was observed that animal-cules (microorganisms) reside in a symbiotic and likely mutually ben-eficial relationship with the host. We now appreciate that the microbial genome exceeds the human genome by at loss 250-fold, and the cel-lular count of resident microbiola exceeds the human cell count by greater than 10-fold.¹ Our concepts regarding the relative abundance and ubliquity of diverse human pathogens are growing more pro-foundly with advances in the science of the human microbiome. Abundance refers to the relative quantity of microbes within each individual or body sile, whereas ubiquity refers to the presence of the same microbes in different individuals.

The Human Microbiome Project (HMP) documented the striking absence of canonical pathogens in healthy adults at 18 body sites. Notable exceptions were the well-known pathogens Staphylococcus aureus and Escherichia coll. As an example, E. coll DNA was delected in 15% of individuals at 0.5% abundance and was detectable at any level in 61% of healthy adults. Canonical pathogens as defined by the National Institute of Allergy and Infectious Diseases¹ are generall absent from the human microbiome in healthy individuals, but oppor tunistic pathogens are widely distributed in healthy adults. A total of 59 opportunistic pathogens in the PathoSystems Resource Integration Center (PATRIC) database were detected in 242 healthy adults, and these species were shared in colonized individuals across multiple body stles. This finding contrasts with the relative habital specificity of com-mensal species that lack evidence of pathogenicity. In summary, although canonical pathogens are rare in healthy individuals, oppormmary, antoign cantogens are relatively common in healthy individuals and explain why immanosuppression often results in opportunistic infec-tions. Canonical pathogens, by contrast, must be transmitted to healthy individuals from often humans, antimals, or the environment. Oppor-tunistic pathogens may arise from within the indigenous microbiome, in addition to possible transmission from outside sources.

HUMAN MICROBIOME AS A COMPLEX ECOSYSTEM COMPOSED OF MULTIPLE BODY SITE HABITATS AND NICHES The HMP (funded by the U.S. National Institutes of Health) and Metagenomics of the Human Intestinal Tract (MetaHIT; funded by the European Commission) in Witching activity and the Burt interphilatema

European Commission) initiatives established the first microbial gene

catalogs of the human adult microbiola, with the HMP effort spa 15 body sile riches in men and 18 in women.14 Each primary bothabitat in the healthy human microbiome contains a distinctive micro btal community, when evaluated by bacterial composition.^{22,3} With the establishment of these first reliable estimates of the structure, function, and diversity of the human "healthy" microbiome, it is readily apparent that there is body site (niche) specificity (Table 2-1, Fig. 2-1). The HMP reported that although no bacterial taxa were universally present among all body habitats and individuals, the relative distribution of several metabolic modules and pathways was surprisingly similar, with several measons modules and pairways was surprisingly similar, with a greater degree of similarity observed within ethnic and racial groups.² These carriage patterns were functionally relevant, and genomic varia-tion in microbial strains (gains, losses, and polymorphisms) under-scored the extent of interindividual variation in the human microbiome. Taxonomic profiling associating both clades and metabolism with host covariates (namely, adult age, sex, body mass index [BM1], blood pres sure, race, and ethnicity) demonstrated that most microbial variation is not well-explained by examined clinical covariates other than race ethnicity


As a result, our rapidly evolving view of the human ecosystem aug ments the traditional view of a single pathogen being responsive for disease onset. Even if a single microbe is the eliologic agent of infec-tion, the pathogenesis and pathophysiology of infection can be viewed within the context of the microbiome and human blology. We now appreciate that our human microbiome is a complex ecosystem, with distinct biologic niches. The resultant perspective for human health and disease shifts the focus to the global balance of our microbiola rather than the appearance of a specific infectious agent. As a result, a clear understanding of the role of microbial community structure in the host can facilitate a deeper understanding of infectious diseases and susceptibility to infections (see Table 2-1). We are realizing the translational fruits of a broadened understanding of the human microbiome as metagenomic medicine makes strides in restoring health in highly morbid conditions (e.g., recurrent Clostridium difficile colitis).⁶

The period of establishment of the human microbiome in newborn infants is highly debated. Several theories have been proposed, such as acquisition from exposure to the maternal vaginal microbiome, intestinal microbiome, breast milk microbiome, and skin-to-skin contact? however, these findings are not exclusive. In murine models, the newborn gut is relatively sierlie before birth and soon after delivery is exposed to both the maternal and environmental microbiota.⁸ Symbiotic and commensal microbiola in the human host may prevent colo nization by harmful bacteria and provide immune resistance as demonstrated by germ-free mouse experiments. The mode of delivery has been associated with differences in composition of the newborn microbiome.¹¹¹ As the infant passes through the birth canal, the materan avaginal microbiome is likely in contact with the infant's skin, mouth, and respiratory iract, and this exposure may affect the compo-sition of the offspring's skin, oral, intestinal, and nasal microbiomes. In one of the offspring's skin, oral, intestinal, and one of delivery and the impact on the human microbiome, investigators examined neonatal

impact on the main intercenter, investigates camende income microbial community structure in instances of cesarean delivery in comparison with vaginal birth from a small cohort of Venezuelan women employing 165-based metagenomics.¹⁰ They observed that the vaginally delivered infants harbored Laciobactifus, Prevoletla, or Sreathia spp. (commonly found in the vagina), whereas cesareandelivered infants acquired a microbiome that was dominated by Slaphylococcus, Corynebaclerium, and Propionibaclerium spp. (resemblin the skin microbiola of their mothers and others in the local environ oline ment)." Interestingly, although infants delivered by cesarean were

11

 Cresci GAM, Izzo K. Gut microbiome. Adult Short Bowel Syndr Nutr Medical, Surg Manag. 2018;45–54.

Human Nutrition, Cleveland Clinic, Cleveland, OH, United States

INTRODUCTION

The gut microbiome, as defined by molecular biologist Joshua Lederberg, is the totality of microorganisms, bacteria, viruses, protozoa, and fungi, and their collective genetic material present in the gastrointestinal tract (GIT). The gut microbiota is comprised of all the bacteria, commensal, and pathogenic, residing in the GIT. In the past decade the gut microbiota has been explored for potential gut microbe—host interactions including effects on metabolism, immune, and neuroendocrine responses. The gut microbiota plays an important role in nutrient and mineral absorption, synthesis of enzymes, vitamins and amino acids, and production of short-chain fatty acids (SCFAs). The fermentation byproducts acetate, propionate, and butyrate are important for gut health and provide energy for epithelial cells, enhance epithelial barrier integrity, and provide immunomodulation and protection against pathogens. Current investigations are exploring resident bacterial gene function and the potential corresponding role in human health and metabolism. Additionally, study of whether nonpathogenic bacterial strains can stimulate recovery of the immune responses to pathogenic causing diseases is ongoing (Cresci and Bawden, 2015).

The human gut microbiota is divided into many groups called phyla. The gut microbiota is comprised primarily of four main phyla which include *Firmicutes*, *Bacteriodetes*, *Actinobacteria*, and *Proteobacteria* (Belizario and Napolitano, 2015). While bacteria colonizes the human body, including oral cavity, placenta, vagina, skin, and GIT, the majority of bacteria reside within the GIT, with the majority of predominantly anaerobic bacteria housed in the colon (Fig. 4.1). To gain perspective of the magnitude of bacterial presence

Aduk Shart Bouel Syndrome DOI: https://doi.org/10.1016/B978-0-12-814330-8.00004-4

45

© 2019 Elsevier Inc. All rights merved

 Scholtens PAMJ, Oozeer R, Martin R, Amor K Ben, Knol J. The early settlers: Intestinal microbiology in early life. Annu Rev Food Sci Technol. 2012;3(1):425–47.

ANNUAL Further Click here for quick links to Annual Reviews content online, including: - Other articles in this volume - Top cited articles - Top downloaded articles - Our comprehensive search

The Early Settlers: Intestinal Microbiology in Early Life

Petra A.M.J. Scholtens,¹ Raish Oozeer,¹ Rocio Martin,¹ Kaouther Ben Amor,² and Jan Knol^{1,*}

¹Danone Research, Centre for Specialised Nutrition, 6700 CA, Wageningen, Netherlands; email: perra.scholtens@danone.com, raish.oxzeer@danone.com, rocio.martin@danone.com, ini.knol@danone.com

²Danone Research, Cenere for Specialised Nuerieion, Singapore 138667; email: kaoueher.benamor@danone.com

Annu. Rev. Food Sci. Technol. 2012. 3:425–47 First published online as a Review in Advance on

January 3, 2012 The Annual Review of Food Science and Technology is online as food annual review s.org

This areicle's doi:

10.1146/annurev-food-022811-101120 Copyright © 2012 by Annual Reviews. All rights reserved

1941-1413/12/0410-0425\$20.00

*Corresponding author

Keywords

infants, microbiota, human physiology, nutrition, immune system, metabolism

Abstract

The human intestinal microbiota forms an integral part of normal human physiology, and disturbances of the normal gut microbiology have been implicated in many health and disease issues. Because newborns are essentially settile, their microbiota must establish and develop from the very first days of life. The first colonizers play an important role in the development of the ecosystem and may impact the long-term composition and activity of the microbiota. These first settlers obviously develop and proliferate dependent on host characteristics and diet, but other factors can also significantly contribute to this vital biological process. Considering the importance of the microbiota for the human immune, metabolic, and neurological systems, it is important to understand the dynamics and driving determinants of this development. This review gives a global overview of our current understanding of the different factors impacting the intestinal microbiology in early life.

429

Vaiserman A, Romanenko M, Piven L, Moseiko V, Lushchak O, Kryzhanovska N, et al. 6. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol. 2020;20(1):1-8.

Vaiserman et al. BMC Microbiology (2020) 20:221 https://doi.org/10.1186/s12866-020-01903-7

RESEARCH ARTICLE

Open Access

BMC Microbiology

Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population

Alexander Vaiseman^{1*}D, Mariana Romanenko¹, Liubov Piven¹, Madislav Moseiko², Oleh Lushchak³, Nadiia Kryzhanovska⁴, Vitaly Guryanov⁵ and Alexander Koliada³

Abstract

Background: Gut microbiota plays an important role in physiological and pathological processes of the host organism, including aging. Microbiota composition was shown to vary significantly throughout the life course. Agerelated changes in the composition of microbiota were reported in several human studies. In present study, agerelated dynamics of phylogenetic profile of gut microbiota was investigated in 1550 healthy participants from Ukrainian population.

Results: Significant changes in the microbiota composition determined by qRT-PCR at the level of major microbial phyla across age groups have been observed. The relative abundance of Actinobacteria and Firmicutes phyla increased, while that of Bacteroidetes decreased from childhood to elderly age. Accordingly, the Firmicutes/ Bacteroidetes (F/B) ratio was shown to significantly increase until elder age. In both sexes, odds to have F/B>1 tended to increase with age, reaching maximum values in elder age groups [OR = 2.7 (95% Cl. 1.2-6.0) and OR = 3.7 (95% Cl, 1.4-9.6) for female and male 60-69-year age groups, respectively, compared to same-sex reference (0-9year) age groups]

Condusions: In conclusion, data from our study indicate that composition of the human intestinal microbiota at the level of major microbial phyla significantly differs across age groups. In both sexes, the F/B ratio tends to increase with age from 0-9-year to 60-69-year age groups. Further studies are needed for a better understanding of mechanisms underlying age-related dynamics of human microbiota composition.

Keywords: Gut microbiota composition, Firmicutes/Bacteroidetes ratio, Aging, Age-related changes

Background

Accumulating evidence indicates that intestinal microbiota (microbial community inhabiting the gut) is cru-

*Contexpondence: witherman@genontilevuua Institute of Generatiology, Vyshgorodskaye st. 67, Kylv 04114, Ulosine Full lat of author information is available at the end of the article

by providing enzymes which are not encoded by the human genome but play important roles in the breakdown of polysaccharides and polyphenols and also in synthesis cially involved in the host organism's vital functions [1]. of vitamins [3]. Disturbances in gastrointestinal physi-The crucial role of the gut microbiota and its metabo- ology mediated by the loss of microbial diversity or lites in regulating multiple physiological functions of the changes in relative abundance of the gut microbial comhost is firmly established [2]. In particular, the intestinal munities are commonly referred to as dysbiosis [4]. Such microbiota essentially contributes to human metabolism disturbances caused by disease or aging may impair normal nutrient intake and microbiota functions, while changes in microbiota composition may, in turn, significantly contribute to the age-as sociated functional decline

> O The Author(s) 2020 Open Access This attide is licensed under a Creative Commons Attribution 40 International License O The Author(\$, 200 Open Access: This article is licensed under a Creative Common Attribution 44 Distantiation & License, which pensitives, shring adjusticion, distribution and exposition in any empositive carditor frame, all long asyoungly appropriate carditor the object and the source, provide a link to the Creative Common Licence, any any and the source provide a link to the Creative Common Licence, any any and the source provide a link to the Creative Common Licence, and your interded under the source of the source and your interded to the activity of the Creative Commons Licence any our interded to the activity of the tables of the source of your interded to the activity Common Licence, any our interded to the activity Common Source (and your interded to the activity Commons of the cost of the common Source Common Public Common Network (and the activity Common Source Common Source Common Public Common Network) (a) applies to the common Source Common Source Common Source Common Source Common Source Common Network (and the activity Common Source Common Sourc

 Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1–16.

Reniero

The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease

Spase Stojanov 1,2, Ales Berlec 1,20 and Borut Štrukelj 1,2,*

- ¹ Faculty of Pharmacy, University of Ljubljana, Sl-1000 Ljubljana, Slovenia; spase.stojanov@ijs.si (S.S.); ales.berlec@ijs.si (A.B.)
- ² Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Correspondence: borut strukelj@ffa.uni-lj.si

Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020

MDPI

Abstract The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus *Lacobacilus*. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.

Keywords: probiotics; Firmicutes; Bacteroidetes; dysbiosis; obesity; inflammation

1. Introduction

In the human body, trillions of microorganisms live in symbiosis with the host and are mainly located in the gastrointestinal tract, skin, saliva, oral mucosa, conjunctiva, and vagina [1]. Microorganisms that inhabit the gastrointestinal tract (i.e., gut microbiota) number approximately 1×10^{14} [2] and play an essential role in intestinal homeostasis, development, and protection against pathogens. Furthermore, their presence in the gut is associated with immunomodulatory and metabolic reactions [3]. Gut microbiota consists of bacteria, yeasts, and viruses. Bacteria in the gut are represented by more than 1000 species that belong to six dominant phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia. Bacteria from the phyla Firmicutes and Bacteroidetes are the most common, representing 90% of the gut microbiota [4]. The gut microbiota of a healthy individual differs in different parts of the gastrointestinal tract and changes with time due to aging (including infant development) and environmental factors such as dietary habits, lifestyle, and antibiotic consumption. Large differences in microbiota composition exist among individuals, with the differences attributed to age, ethnicity, lifestyle, and diet [4,5]. Different microbiota are classified into three distinct enterotypes [6]. Such variations are considered physiological and consistent with healthy microbiota. Nevertheless, changes in microbiota composition are often related to diseases, also termed dysbioses. However, the causality between altered microbiota and various diseases is often unclear

Micror ganisms 2020, 8, 1715; doi:10.3390/microorganisms8111715

www.mdpi.com/journal/microorganisms

Ursell LK, Metcalf JL, Parfrey LW, Knight R, Wang B, Yao M, et al. Role of the microbiota in 8. immunity and inflammation. Cell [Internet]. 2014;157(1):121-41. Available from http://dx.doi.org/10.1016/j.cell.2014.03.011

Role of the Microbiota in Immunity and Inflammation

* control constances and timothy W. Hand ^{1,2} Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Batheada, MD 20892, USA

gy Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of ²Mucosal Immunolo Health Batheads, MD 20892, UBA

Correspondence: ybeliaid@niaid.nih.gov http://dx.doi.org/10.1016/j.ceil.2014.03.011

The microbiot a plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nemato des, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected.

"The states of health or disease are the expressions of the success or failure experienced by the organism in its efforts to respond adaptively to environmental challenges."-Rene Dubos, 1965

Introduction

Multicellular organisms exist as meta-organisms comprised of both the macroscopic host and its symbiotic commensal microbiota. With an estimated composition of 100 trillion cells, human symbionts outnumber host cells by at least a factor of 10 and express at least 10-fold more unique genes than their host's genome (Ley et al., 2005a). These complex communities of microbes that include bacteria, fungi, viruses, and other microbial and eukaryotic species provide a tremendous enzymatic capability and play a fundamental role in controlling many aspects of host physiology. Over the past few years, the field of immunology has been revolutionized by the growing understanding of the fundamental role of the microbiota in the induction, education, and function of the mammalian immune system.

The immune system is composed of a complex network of innate and adaptive components endowed with an extraordinary capacity to adapt and respond to highly diverse challenges Collectively, this cellular network acts as a formidable regulator of host homeostasis that operates to sustain and restore tissue function in the context of microbial and environmental encounters. The development of defined arms of the immune system-and, more particularly, those associated with adaptive immunity-has coincided with the acquisition of a complex microbiota, supporting the concept that a large fraction of this machinery has evolved as a means to maintain a symbiotic rela-

tionships with these highly diverse microbial communities. In turn, the microbiota promote and calibrate multiple aspects of the immune system.

When operating optimally, the immune system-microbiota alliance interweaves the imate and adaptive arms of immunity in a dialog that selects, calibrates, and terminates response in the most appropriate manner. However, both the acquisition of a complex immune system and its reliance on the microbiotal came at a price. Pathologies that increasingly affect humans, such as allergies, autoimmune, and inflammatory disorders, all arise from a failure to control misdirected immune responses against self, microbiota-derived, or environmental antigens. Further, alteration of the composition and function of the microblota as a result of antibiotic use, diet evolution, and recent elimination of constitutive partners such as heiminth worms has transformed our microbial alles into potential liabilities. Although members of the microbiota are often referred to as commensals, symbiosis between the microbiota and its mammalian host encompasses various forms of relationship, including mutualistic, parasitic, or commensal. However, how defined members of the microbiota interact with their host can be highly contextual, with the same microbe developing as mutualist or parasite according to the nutritional, coinfection, or genetic landscape of its host. Over the past decade, exploration of optimal and dysregulated partnerships betw en the microbiota and its mammalian host has taken center stage in the field of immunology and has led to the rediscovery of a more holistic view of hast physiology. Indeed, the notion that microbial partners can promote human health is not a recent concept and was originally proposed by the seminal work of Döderiein (1892) and his understanding of the role of lact obadili

Cell 157, March 27, 2014 02014 Elsevier Inc. 121

9. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018:361:36-44.

SCIENCE AND POLITICS OF NUTRITION

Role of the gut microbiota in nutrition and health

Ana M Valdes and colleagues discuss strategies for modulating the gut microbiota through diet and probiotics

tcrobtome refers to the collective genomes of the microorganisms in a particular vironment, and microbiota is the community of microorganisms themselves (box 1). Approximately 100 trillion micro-organisms (most of them bacteria, but also viruses, fungi, and protozoa) exist in the human eastrointestinal tract ²-the microbiome is now best thought of as a virtual organ of the body. The human genome consists of about 23 000 genes, whereas the microbiome encodes over three million genes producing thousands of metabolites, which replace many of the functions of the host, 13 consequently influencing the host's fitness, phenotype, and health.³

Studying the gut microbiota

Twin studies have shown that, although there is a heritable component to gut microbiota, environmental factors related to diet, drugs, and anthropometric measures are larger determinants of microbiota composition.

Gut microbes are key to many aspects of human health including immune," metabolic' and neurobehavioural traits (fig 1)."* Different levels of evidence support the role of gut microbiota in human health, from animal models" 10 and human studies."

Animal models can help identify gut microbes and mechanisms, though the degree to which findings translate to humans is unknown. In humans, observational studies can show cross sectional associations between microbes

KEY MESSAGES

36

- · Gut microbiota influences many areas of human health from innate immunity to appetite and energy metabo-Nem
- Targeting the gut microbiome, with probiotics or dietary fibre, benefits human health and could potentially reduce obesity
- Drugs, food ingredients, antibiotics, and pesticides could all have adverse effects on the gut microbiota
- Microbiota should be considered a key aspect in nutrition; the medical community should adapt their education and public health messages
- Fibre consumption is associated with beneficial effects in several contexts

- Box 1: Glossary
- · Microbiome-the collective genomes of the micro-organisms in a particular environment
- Microbiota—the community of micro-organisms themselves
- Microbiola diversity-a measure of how many different species and, dependent on the diversity indices, how evenly distributed they are in the community. Lower diversity is considered a marker of dysbiosis (microbial imbalance) in the gut and has been found in autoimmune diseases and obesity and cardiometabolic conditions, as well as in elderly people
- · Operational taxonomic unit-a definition used to classify groups of closely related organisms. DNA sequences can be clustered according to their similarity to one another, and operational taxonomic units are defined based on the similarity threshold (usually 97% similarity) set by the researcher
- · Colonocytes-epithelial cells of the colon
- . Germ-free animals-animals that have no micro-organisms living in or on them · Short chain fatty acids-fatty acids with two to six carbon atoms that are produced by bacterial fermentation of dietary fibres

and health traits but are limited by the inability to measure causal relations. The is commonly quantified using DNA strongest level of evidence is obtained based methods, such as next generation from interventional clinical studies-in particular, randomised controlled trials.

The composition of gut microbiota sequencing of 16S ribosomal RNA genes or whole genome shotgun sequencing, BMJ: first published

8

10.1136/bmjk2179 on

ಹ

June

2018

Downlo aded from http://www.bmj.com/

on 8 December 2020 by guest

. Protected by copyright

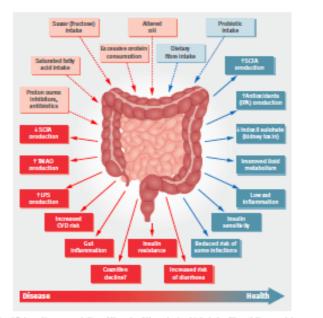
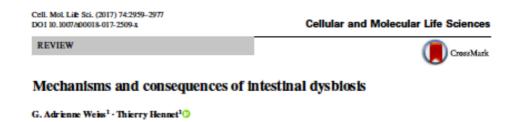



Fig 1 | Schematic representation of the role of the gut microbiota in health and disease giving some examples of inputs and outputs. CVD-cardiovascular disease; IPA-indo lepropionic acid; LPS-lipopolysaccharide; SCRA-short chain fatty acids; TMAO-trimethylamine N-oxide

BMJ 361-Supp11 the boot

 Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–77.

Received: 21 December 2016 / Revised: 8 March 2017 / Accepted: 15 March 2017 / Published online: 28 March 2017 © Springer International Publishing 2017

Abstract The composition of the gut microbiota is in constant flow under the influence of factors such as the diet, ingested drugs, the intestinal mucosa, the immune system, and the microbiota itself. Natural variations in the gut microbiota can deteriorate to a state of dysbiosis when stress conditions rapidly decrease microbial diversity and promote the expansion of specific bacterial taxa. The mechanisms underlying intestinal dysbiosis often remain unclear given that combinations of natural variations and stress factors mediate cascades of destabilizing events. Oxidative stress, bacteriophages induction and the secretion of bacterial toxins can trigger rapid shifts among intestinal microbial groups thereby yielding dysbiosis. A multitude of diseases including inflammatory bowel diseases but also metabolic disorders such as obesity and diabetes type II are associated with intestinal dysbiosis. The characterization of the changes leading to intestinal dysbiosis and the identification of the microbial taxa contributing to pathological effects are essential prerequisites to better understand the impact of the microbiota on health and disease.

Keywords Bacteria · Cytokine · Mucin · Oxidative stress · Bacteriophage · Bacteriocins · Necrotizing enterocolitis · Cancer

Thierry Hennet thierry.hennet@uzh.ch

¹ Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Introduction

The gut microbiota can be viewed as an actual body organ contributing to the well-being of the host organism. The trillions of microbes colonizing the gastrointestinal tract influence local and systemic processes such as nutrient transformation [1], vitamin supply [2], maturation of mucosal immunity [3, 4], gut-to-brain communication [5], and even tumor progression [6]. Like other organs, the proper function of the gut microbiota relies on a stable cellular composition, which in the case of the human microbiota consists mainly of bacteria from the phyla Bacteroidetes, Firmicutes, Actinobacteria, and to a lesser extent Proteobacteria [7]. Large shifts in the ratio between these phyla or the expansion of new bacterial groups lead to a disease-promoting imbalance, which is often referred to as dysbiosis. A reduction of microbial diversity and outgrowth of Proteobacteria are cardinal features of dysbiosis [8, 9]. A growing number of diseases is associated with intestinal dysbiosis, which in some cases contributes to disease development or severity. Dysbiosis is a hallmark of inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease [10], but also metabolic disorders [11]. utoimmune diseases [12], and neurological disorders [13]. Dysbiosis can trigger disease in the first weeks of life as observed in necrotizing enterocolitis [14], during adulthood through the promotion of colorectal cancer [15], or in elderly people as exemplified by Clostridium difficile-associated diarrhea [16].

Unlike infectious microbes, the pathogenicity of specific intestinal bacteria cannot be established through the application of Koch's postulates given that a major fraction of the microbiota cannot be isolated as pure culture. Therefore, the pathogenic implication of specific microbes in a disease largely relies first on the

Springer

11. Degruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–50.

FUTURE DIRECTIONS AND METHODS FOR IBD RESEARCH

Current Understanding of Dysbiosis in Disease in Human and Animal Models

Arianna K. DeGruttola, BS,* Daren Low, PhD,* Atsushi Mizoguchi, MD, PhD,* and Emiko Mizoguchi, MD, PhD*^{+,+}

Abstract: Inflammatory bowel disease (IBD) is an intestinal inflammatory condition that affects more than 2 million people in the United States. Although the etiology and pathogenesis of IBD are still largely unknown, dysregulated host/enteric microbial interactions are requisite for the development of IBD. So far, many measurchers have tied to identify a precise relationship between IBD and an imbalance of the intestinal microbiots, termed "dysbiosis." Despite extensive efforts, it is still largely unknown about the interplay among microbiot, their hosts, and their environments, and whether dysbiosis is a causal factor or an diffet of IBD. Recently, deep-requescing analyses of the microbiota in patients with IBD patients have been instrumental in characterizing the strong association between dysbiosis and IBD development, although it is still unable to identify apecific-associated species level changes in mot cases. Basad on many recent reports, dysbiosis of the commensal microbiota is implicated in the pathogenesis of several diseases, including IBD, obesity, and allergie disorders, in both harman and animal modds. In this review article, the autions have focused on explaining the multiple types of dysbiosis, as well as dysbiosis-related diseases.

(Inflamm Bowel Dis 2016;22:1137-1150)

Key Words: dyabiosis, inflammatory bowd disease, colorectal cancer, focal microbiota, IBD-susceptibility genes

The adult human gut contains about 10¹⁴ bacterial cells with more than 1000 different bacterial species. There are several major divisions of bacteria found in the normal intestinal microflora, with the most dominant groups being Bacteroidetes and Firmicutes. The gut houses both bacteria that are protective and some bacteria that could be potentially hamful to the host (Fig. 1). In normal conditions of healthy individuals, here is crosstalk and cross-regulation between the host and the microbiota that reside in the gut, which creates a homeostatic balance of bacteria so that the gastrointestinal tract remains healthy and fee from overgrowth of potentially pathogenic bacteria. The microbiota has a commensal relationship with the host; the bacteria thrive in the rich environment of the gut while the host benefits from multiple functions provided by the bacteria.

Reached for publication December 21, 2015; Accepted January 13, 2016. From the "Gastrointestinal Unit, Department of Medicine, Massachusetts Genenal Hospital and Harward Medical School, Rosten, Massachusetts, "Department of Immunology, Kustme University School of Medicine, Kustme, Patricke, Japan; and "Gastrointestinal Unit, Canter for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Rosten, Massachusetta.

Supported by the National Institute of Health (201-D030070, D031247, AH11077, and grants from the Broad Medical Foundation and American Gastransimilogical Association Foundation to E. Minoguchi.

The authors have no conflict of interact to disclose.

Reprints: Tenko Mizoguzhi, MD, PhD, Department of Madiches, Gastrointethal Unit, Massachusetts General Hospital, GRJ 825D, 55 Fruit Street, Boston, MA 02114 (e-mail: emizoguzhiği mgh.hazvard.ehu).

Copyright © 2016 Cmhn's & Colifs Foundation of America, Inc. DOI 10.1097/MIR.@0000000000750

Published online 12 April 2016

Inflamm Bowel Dit + Volume 22, Number 5, May 2016

The homeostatic balance of the intestinal microflora is extremely beneficial to the host, however, if there is a change in the microbial composition that causes a drastic inbal between the beneficial and potentially pathogenic bacteria, the gut becomes vulnerable to pathogenic insult with gut microbial alterations. This imbalance in the microbial equilibrium is termed "dysbiosis," which has been further defined as a disturbance to gut microbiota homeostasis due to an imbalance in the flora itself, changes in their functional composition and metabolic activities, or changes in their local distribution.12 In general, dysbiosis can be categorized into 3 different types: (1) loss of beneficial organisms, (2) excessive growth of potentially harmful organisms, and (3) loss of overall microbial diversity. It has been found that these 3 types are not mutually exclusive and can occur at the same time which is most often the case. Dysbiosis has been implicated in a wide range of diseases including inflammatory bowel disease (IBD), obesity, allergic disorders, type 1 diabetes mellitus, autism, obesity, and colorectal cancer (CRC) in both human and animal models. This review will mainly focus on the implication found between dysbiosis and IBD such as Crohn's disease (CD) and ulcerative colitis in addition to the selected dysbiosis-associated discoses

DYSBIOSIS-ASSOCIATED DISEASES

Inflammatory Bowel Disease

For many years, researchers have been trying to discover a mono-associated cause of IBD. As a result, there are 3 major pathogens that have been found to be associated the most with

resubligametorg | 1137

Copyright © 2016 Crohn's & Colitis Foundation of America, Inc. Unauthorized reproduction of this article is prohibited.

 Tomasello G, Mazzola M, Leone A, Sinagra E, Zummo G, Farina F, et al. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap. 2016;160(4):461–6.

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016 Dec; 160(4):461-466.

Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases

Giovanni Tomasello^{1,5,co}, Margherita Mazzola⁴, Angelo Leone¹, Emanuele Sinagra^{4,o}, Giovanni Zummo⁴, Felicia Farina⁴, Provvidenza Damiani⁺, Francesco Cappello^{4,o}, Alice Gerges Geagea^{4,o}, Abdo Jurjus⁴, Tarek Bou Assi⁴, Massimiliano Messina⁴, Francesco Carini^{4,c}

Background. Microbiota refers to the population of microorganisms (bacteria, viruses and fungi) that inhabit the entire gastrointestinal tract, more particularly the colon whose role is to maintain the integrity of the intestinal mucosa and control the proliferation of pathogenic bacteria. Alteration in the composition of the gut microbiota is called dysbiosis. Dysbiosis redisposes to inflammatory bowel diseases such as ulcerative colitis, Crohn disease and indeterminate colitis. **Methods**. The purpose of this literature review is to elucidate the influence of diet on the composition of the gastrointestinal microbiota in the healthy gut and the role of diet in the development of dysbiosis.

Conclusion. The "Western diet", in particular a low - fiber high fat/high carbohydrate diet is one factor that can lead to severe dysbiosis. In contrast, "mediterranean" and vegetarian diets that includes abundant fruits, vegetables, olive oil and oily fish are known for their anti-inflammatory effects and could prevent dysbiosis and subsequent inflammatory bowel disease.

Key words: inflammatory bowel diseases, colorectal cancer, intestinal dysbiosis, gut microbiota, healthy diet

Received: May 12, 2016; Accepted with revision: September 27, 2016; Available online: October 26, 2016 http://dx.doi.org/10.5507/bp.2016.052

Department of Experimental Biomedicine and Clinical Neuroscience. Section of Human Anatomy. (BIONEC). University of Palermo. Italy "School of Medicine and Surgery – Hypothia Course. University of Palermo. Italy "AOUP "P. Giaccone". School of Medicine and Surgery. University of Palermo. Italy "Fondazione Istituto S. Raffaele - G. Giglio. Gastroenterology and Endoscoary Unit. Cefalu. Italy "Euro-Mediterranean institute of Science and Technology (IEMEST). Palermo. Italy "Department of Anatomy. Cell Biology and Physiological Sciences. Faculty of Medicine. American University of Beirut (AUB). Beirut. Lebanon "Department of Laboratory Medicine. Psychiatric Hoastial of the Cross. Jal Eddib. Lebanon "Department of Radiologic Science. School of Medicine and Surgery. University of Palermo. Italy "Department of Experimental Biomedicine and Clinical Neuroscience. Section of Histology, (BIONEC). University of Palermo. Italy Corresponding author: Marghenta Mazzola. e-mail: marghentamazzola@hotmal.It.

INTRODUCTION

Many areas of current research focus on the the influence and effects of dietary habits on human health, especially in Western countries, where he largest proportions of so-called "junk food" consumers reside. The "western diet", mainly refined carbohydrates, simple sugars and saturated fats, is linked to various metabolic disorders.

The purpose of this review is to illustrate how dietary habits can influence the composition of the intestinal microbiota leading to dysbiosis and inflammatory bowel disease (IBD). After a brief overview of the gut anatomy and the role of the microbiota in healthy gut, this review depicts how the microbiota composition varies based on diet and how this in turn may lead to the onset of systemic metabolic disorders and/or IBD.

GUT MORPHOLOGY

The habitat of the gut microbiota is represented by the intestine. The latter consists of two major portions: the

small intestine, divided into duodenum, jejunum and ileum responsible for digestion and nutrient absorption and the large intestine, divided into œcum, colon and rectum is responsible for water absorption and formation of feces The intestinal wall is composed of four superimposed layers: from the outermost layer, we find the serosa, the muscularis propria, the submucosa and finally the mucosa. The small intestine has villi created mainly in enterocytes which show on their surface, protrusions called microvilli. These protrusions increase the absorption surface and thus facilitate the digestive process and the absorption of nutrients. The large intestine epithelium comprises colonocytes similar to the enterocytes. However, their main function is to absorb water. Colonocytes are arranged to form along goblet cells, simple tubular glands which secrete neutral mucus to lubricate the intestinal contents. The highest concentration of bacteria is found in the large intestine. For a more detailed description, please refer to specialized books12.

54

13. Jia G, Zhi A, Lai PFH, Wang G, Xia Y, Xiong Z, et al. The oral microbiota - A mechanistic role for systemic diseases. Br Dent J. 2018;224(6):447-55.

The oral microbiota – a mechanistic role for systemic diseases

G. Jia, 1 A. Zhi, 2 P. F. H. Lai, 1 G. Wang, 1 Y. Xia, 1 Z. Xiong, 1 H. Zhang, 1 N. Che3 and L. Ai*1

Key points Provides an overview on basic composition and distribution of oral microficite

Elucidates the underlying mechanisms of endogenous and exogenous factors on oral microbiote and oral health.

Summarises the improvement of clinical diagnosis and treatment bat on microbial community informatic

GENERAL

Human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in the oral cavity. Oral microbiota generally exists in the form of a biofilm and plays a crucial role in maintaining oral homeostasis, protecting the oral cavity and preventing disease development. Human oral microbiota has recently become a new focus research for promoting the progress of disease diagnosis, assisting disease treatment, and developing personalised medicines. In this review, the scientific evidence supporting the association that endogenous and exogenous factors (diet, smoking, drinking, socioeconomic status, antibiotics use and pregnancy) modulate oral microbiota. It provides insights into the mechanistic role in which oral microbiota may influence systemic diseases, and summarises the challenges of clinical diagnosis and treatment based on the microbial community information. It provides information for noninvasive diagnosis and helps develop a new paradigm of personalised medicine. All these benefit human health in the post-metagenomics era.

Introduction

nutrition for microorganism colonisation. The susceptibility.3 human oral microbiome has been extensively The disturbance of the oral microbiota- microbiome and variable microbiome. The studied as part of the Human Microbiome ecology balance in the host usually causes a core microbiome is similar for all individuals Project. The oral microbiome has an essential series of oral infectious diseases including and comprised of the predominant species at role in maintaining a normal oral ecologi- denial caries, apical periodontitis, periodontal different sites of the healthy body. The variable cal balance and in the development of oral diseases, pericoronitis, and craniofacial bone microbiome is different between individuals in diseases. There is abundant evidence support- osleomyelitis. Oral microbiota is also associ- response to unique lifestyles and phenotypic ing the theory that endogenous and exogenous ated with several systemic diseases, namely car- and genotypic determinants. factors are closely related to oral microbiota diovascular disease, pneumonia, heart disease,

Sharqhai Engineening Nessarch Canter of Itood Microbiology, School of Wedeal Instrument and Itood Engineering, University of Sharqlas for Science and Technology, Sharqhai 200023, Proght's Nepublic of Chine, 'Chemical Technology and Itochoology, *Theogetica* (Fooded, People's Nepublic of Chine, 'Operations' of Diology, Sharqhai Veoded, Nepublic of Chine, 'Operations' of Diology, Sharqhai Veoded, People's Nepublic of Chine, 'Operations' of Diology, Sharqhai Veoded, People's Nepublic of Chine, 'Operations' of Diology, Sharqhai Veoded, People's 'Correspondence to: Landworg Ai Dinal': alamborg@hotmail.com

Refereed Paper. Accepted 14 November 2017 DOI: 10.1038/4j.bdj.2018.217

of the oral disease paradigm.3 Lifestyles and oral microbiota on systemic diseases, and sum-The oral cavity is a connection channel and consuming spicy food, and antibiotic and treatment. between outside environments and the res- treatments can persistently alter commensal piratory tract and digestive tract. It provides microbial communities. The resultant Basic composition and distribution of an appropriate temperature, humidity, and microbial disturbances may increase pathogen oral microbiota

> microbiota has been considered as a potential decided by the delivery mode.7 In addition, between oral microbiota and systemic diseases important source of infants' and young childisease prevention and treatments.

nisms for how endogenous and exogenous lifestyles, environments and so on.* factors modulate oral microbiota, provides insights into their roles in the influence of microbial species as well as commensal

diets including smoking, alcohol drinking marises the challenges for clinical diagnosis

The oral microbiome can be classified into core

For newborns, within five minutes of birth. and systemic diseases.13 Studies on dietary rheumatoid arthritis, pancreatic cancer, colo- bacterial communities in the oral cavity and behaviours demonstrate a fundamental aspect rectal cancer, oesophageal cancer, stroke, and other body habitats are very similar to each adverse pregnancy outcomes. Accordingly, oral other.4 Types of microorganisms are closely biomarker for human diseases. Relationships the mother's oral microbiota is the most are essential and need to be elucidated, in order dren's oral microbiota by successful vertical to provide a reasonable diagnosis basis for transmission.78 As ageing continues, babies and children form a wide variety of oral This article mainly discusses the mecha- microorganisms in response to different diets,

The oral cavity contains over 700

BRITISH DENTAL JOURNAL | VOLUME 224 NO. 6 | MARCH 23 2018

Official journal of the British Dental Association.

14. Lu M, Xuan S, Wang Z. Oral microbiota: A new view of body health. Food Sci Hum Wellness [Internet]. 2019;8(1):8-15. Available from: https://doi.org/10.1016/j.fshw.2018.12.001

to systemic diseases [8], including rheumatoid arthritis (RA) [9], adverse pregnancy outcomes [10], and cardiovascular disease [11]. Notably, a large number of oral microorganisms enter the down stream digestive tract from the oral cavity through saliva, and they present a particularly close relationship with digestive diseases į12). Oral microbiota can be used as targets to treat oral and sys-

temic diseases. This article will discuss the relationship between oral microbiota and gut microbiota.

In the future, oral microbiota may become a new target for the treatment of certain diseases.

Corresponding author

Corresponding autor. E-mail address: zwang@tsinghua.edu.cn (Z. Wang). Peer review under responsifulity of Beijing Academy of Food Sciences

10.1016/ J.S.hw.2018.12.00/

https://doi.org/10.1019/journa.016.12001
2213.4630/0 2019 "Society information". Production and hosting by Elsevier RV. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC 88"AC ND locrate (http://creativecommons.org/licenses/by-nc-nil/4.07).

great impact on gut microbiota [16] but exert minimal effect on the composition of oral bacteria. Healthy people from different countries have similar compositions of oral microbiota. In the human mouth, 85 species of fungi can be found. Among these fungi, the most important one is Condido [17]. Condido is neutral when the oral microbiota is normal; however, when the oral microbiota balance is broken, Candida will seek the opportunity to attack oral tissue. Candida forms a biofilm with Streptococcus to play a pathogenic role [18]. Viruses, mainly phages, are also part of the oral microbiota [19]. The type of phage in the mouth is constant during all stages of life [20]. Other non-original viruses may also appear in the mouth when certain diseases exist in the human body. The most common is the mumps virus [21] and HIV [22]. Oral bacteria are the main components of the oral microbiota. Common oral bacteria include Streptococcus mutans, Porphyromonas gingi-valts, Staphylococcus, and Lactobactilus [23]. S. mutans is the main component of the oral microbiota, and it is one of the main components of dental plaque [24]. It is also the main pathogen of caries, which is a bacterial infectious disease that occurs in hard tissues of the teeth and has the highest incidence among oral diseases [25]. P. gingivalis is a non-glycolytic Gram-negative anaerobic bacterium that is a periodontal pathogen. Untreated P. gingivalis Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.

10000000	Contents lists available at ScienceDirect
E. Siles	ternational Journal of Antimicrobial Agents
ELSEVIER Jo	urnal homepage: http://www.elsevier.com/locate/ijantimicag
Review	
Antibiotic resistanc	e of bacterial biofilms
Niels Høiby ^{a,b,*} , Thomas	Bjarnsholt ^{a, b} , Michael Givskov ^b , Søren Molin ^c , Oana Ciofu ^b
Department of Clinical Microbiology 9301	Juliane Marienvej 22, Rigshospitalet, 2100 Copenhagen, Denmark
Department of Clinical Microbiology 9301 Department of Bacteriology, Institute of In	ar rational Health, Immunology and Microbiology, University of Copenhagen, Denmark
Department of Clinical Microbiology 9301 Department of Bacteriology, Institute of In	ar rational Health, Immunology and Microbiology, University of Copenhagen, Denmark
Department of Cinical Microbiology 2001 Department of Sactoriology, Institute of In BioGentrum, Danish Technical University,	ar rational Health, Immunology and Microbiology, University of Copenhagen, Denmark
Department of Clinical Microbiology 3201 Department of Bacteriology, Institute of In BioCentrum, Danish Technical University, A R T I C L E I N F O Article history: Received 13 December 2009	in national Modifs, Internanciagy and Microbiology, University of Copenhagen, Denmark A B S T R A C T Abiofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased
Department of Clinical Microbiology 3201 Department of Sactoriology, Institute of R BioGentrum, Danish Technical University, A R T I C L E I N F O Writcle history: Received 13 December 2009 Accepted 15 December 2009	in national Medife, Immunology and Microbiology, Dativersity of Copenhagen, Denmark A B S T R A C T A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increases tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other components of the body's defence system. The persistence of, for example, staphylococcal infections related
Department of Clinical Microbiology 3201 Department of Sactoriology, Institute of R BioCentrum, Denish Technical University, A R T I C L E I N F O Veticle history: Secreted 13 December 2009 Accepted 15 December 2009 Gowerds: BioFilm	in national Media, Immunology and Microbiology, University of Copenhagen, Denmark A B S T R A C T Abiofilm is a structured consortium of Dacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased to learnce to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other compo
Department of Clinical Microbiology 2201 Department of Bacteriology, Institute of to BioCentrum, Danish Technical University, A R T I C L E I N F O Witch history: Incerived 13 December 2009 Accepted 15 December 2009 Soywords: BacHim Selfishing consistance	A B S T R A C T Abiofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increases tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other compo- nents of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Readomous eraptions lung infections related to foreign bodies is due to biofilm formation. Likewise, chronic Readomous eraptions lung infections in cystic fibrosis patients is caused by biofilm-growing mucoid strains. Characteristically, gradients o nutrients and coggen exist from the top to the bottom of biofilms and these gradients are associated
Department of Clinical Microbiology 3201 Department of Sactoriology, Institute of R BioCentrum, Denish Technical University, A R T I C L E I N F O Witch history: Second 13 December 2009 Eccepted 13 December 2009 Gyword: Bioffin Witbiotic resistance SetBiotic tolerance S-Lactarnase	in national Medifi, Internanology and Microbiology, University of Copenhagen, Denmark A B S T R A C T Abiofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting o polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increases tolerance to antibiotics and disinfectant chemicals as well as resisting phagoytosis and other compo- nents of the body's defence system. The persistence of, for example, staphylococcal infections relates to foreign bodies is due to biofilm formation. Likewise, chronic <i>Pseudomonas aerughtosa</i> lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains. Characteristically, gradients o nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associates with decreased bacterial metabolic activity and increased doubling times of the bacterial cells: it is these
Department of Clenical Microbiology 2201 Department of Sactoriology (nutilitie of to BioCentrum, Denish Technical University, A R T I C L E I N F O Vitide heitary: Incerived 13 December 2000 Accepted 15 December 2000 Accepted 15 December 2009 September 2009 Sep	A B S T R A C T A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting o polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increase tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other compo nents of the body's defence system. The persistence of, for example, slaphylococcal infections relate to foreign bodies is due to biofilm formation. Likewise, chronic including anglines and phage infections relate to foreign bodies is due to biofilm formation. Likewise, chronic including infections relate to foreign bodies is due to biofilm formation. Likewise, chronic is and segrations and infections relate with decreased bacterial metabolic activity and increased doubling times of the bacterial cells: it is thes more or less domant cells that are responsible for some of the toterance to antibiotics. Biofilm growth is
Department of Clinical Microbiology 2201 Department of Bacteriology, Institute of to BioCentrum, Danish Technical University, A R T I C L E I N F O Viticle history: Incerived 13 December 2009 Incerpted 15 December 2009 Second 15 December 2009 Gyword: Biofilm Witholic remistance Witholic colorance Statistics of the second Statistics of the secon	in national Medifi, Internanology and Microbiology, Detworstly of Copenhagen, Denmark A B S T R A C T Abiofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increases tolerance to antibiotics and disinfectant chemicals as well as resisting phagoytosis and other components of the body's definer system. The persistence or, for example, staphylococcal infections relates to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aerughosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains. Characteristically, gradients o nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associates with decreased bacterial metabolic activity and increased doubling times of the bacterial cells: it is these more or less domant cells that are responsible for some of the tolerance to antibiotics. Biofilm growth it associated with an increased level of mutations as well as well as rule query englated efflux purps and Conventional resistance mechanisms such as chromosomal β-lactance, upregulated efflux purps and conventional resistance mechanisms such as chromosomal β-lactance.
Department of Clinical Microbiology 3201 Department of Sactoriology, Institute of Re- BioCentrum, Denish Technical University, A R T I C L E I N F O Veticle history: Sectived 13 December 2009 Accepted 15 December 2009 Accepted 15 December 2009 Softword: Stoffen Mitholic resistance Netholic constance S-Latarnase S-Latarnase S-Latarnase Mitation: Accepted Science S-Latarnase Mitation: Accepted Science S-Latarnase Mitation: Accepted Science S-Latarnase Mitation: Accepted Science Science Science Science Science Science Scien	A B S T R A C T Abiofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting o polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increase bioframe to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other compo nents of the body's defence system. The persistence of, for example, staphylococcal infections relates to foreign bodies is due to biofilm formation. Likewise, chronic iPseudomous arougtosa lung infection in crystic fibrosis patients is caused by biofilm-growing mucoid starins. Characteristically, gradients o nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associates with decreased bacterial metabolic activity and increased doubling times of the bacterial cells: it is these more or less domant cells that are responsible for some of the toirance to antibiotics. Biofilm growth i associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms Conventional resistance mechanisms such as cormosomal β-lactanase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute to the survival of biofilm.
Department of Clinical Microbiology 9301	ir national Medife, Internanology and Microbiology, Dativersity of Copenhagen, Denmark A B S T R A C T A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increases to lerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other components of the body's defence system. The persistence of, for example, staphylococcal infections relates to foreign bodies is due to biofilm formation. Likewise, chronic /Reudomonze anginess lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid stains. Characteristically, gradients or in cystic fibrosis patients is caused by some fibrosis patients of the body's defence system.

Biofilm-growing bacteria cause chronic infections [1] characterised by persistent inflammation and tissue damage [2]. Chronic infections, including foreign-body infections, are infections that (i) persist despite antibiotic therapy and the innate and adaptive immune and inflammatory responses of the host and (ii) in contrast to colonisation, are characterised by an immune response and persisting pathology (Table 1).

2. Occurrence and architecture of bacterial biofilms

Foreign-body infections are characterised by biofilm growth of bacteria on the outer and/or inner surface of the foreign body (Table 2). Biofilm growth also occurs on natural surfaces such as teeth [3], heart valves (endocarditis) [4], in the lungs of cystic fibrosis (CF) patients causing chronic bronchopneumonia [2], in the middle ear in patients with persistent otitis media [5], in chronic rhinosinusitis [6], in chronic osteomyelitis and prosthetic joint infections [7–9], in intravenous (1x.) catheters and stents [10]

* Corresponding author. Tel.: +45 3545 7788; fax: +45 3545 6412. E-mail address: holby@holbymiels.dk(N. Helby).

0924-8578/5 - see front matter © 2010 Elsevier 8.V. and the International Society of Chemotherapy. All rights reserved. doi:10.1016/j.jjantimicag.2009.12.011

and in chronic wounds [11,12] (Fig. 1). The microbes in bionims are kept together by a self-produced biopolymer matrix. The matrix contains polysaccharides, proteins and DNA originating from the microbes, and the bacterial consortium can consist of one or more species living in a sociomicrobiological way [1,2,14,15]. The matrix is important since it provides structural stability and protection to the biofilm. Development of bacterial biofilms over time has been intensively studied in vitro by confocal scanning laser microscopy employing green fluorescent protein (GFP)-lagged bacteria. This technique has been combined with advanced in silico image analysis to produce three-dimensional images of the biofilm [16–18]. As an example, *Pseudomonas aeruginosa* produces a mature in vitro biofilm in 5–7 days (Fig. 2).

Development of an in vitro biofilm is initiated by planktonic (freely moving) bacteria that reversibly attach to a surface, which may be covered by a layer of, for example, proteins (a pellide) [3,20]. At this stage, the bacteria are still susceptible to antibiotics and this is in accordance with the success of perioperative antibiotic prophylaxis, e.g. for alloplastic surgery. The next step is irreversible binding to the surface within the next few hours and multiplication of the bacteria, which form microcolonies on the surface and begin to produce a polymer matrix around the microcolonies [20]. The biofilm grows in thickness (up to 50 µm) and under in vitro conditions mushroom-like or tower-like structures are often observed 16. Zijnge V, Van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T, Gmür R, et al. Oral biofilm architecture on natural teeth. PLoS One. 2010;5(2):1–9.

EVALUATE Sectors really available and the sector of the contrast of the contra

Citation: Zinge V, van Leeuwen MBM, Degener JE, Abban F, Thumheer T, et al. (2010) Oral Boffm Anthiecture on Natural Teeth. PLoS ONE 5(2): e9321. doi:10.1371/journal.pone0009321

Editor: Stein Bereswil, Charité-Universitätsmedizin Berlin, Germany

Received January 7, 2010; Accepted January 26, 2010; Published February 24, 2010

Copyright: © 2010 Zinge et al. This is an open-access article distributed under the terms of the Creative Commons. Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Panding: This work was supported by the Junior Scientific Master data program of the University Medical Center of the University of Groningers. RG and TT were supported by the University of 201th. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests e * E-mail: h_imharmer@med.umcg.nl.

Introduction

Oral microbial biofilms are three-dimensional structured bacterial communities [1] attached to a solid surface like the enamed of the teeth, the surface of the root or dental implants [2] and are embedded in an exo-polysaccharide matrix [3]. Oral biofilms are exemplary and served as a model system for bacterial adhesion [4,5] and antibiotic resistance [6].

The appreciation of the complex nature of oral biofilms was highlighted decades ago by the work of Lisgurten and co-workers who described the architecture of biofilms by light and electron microscopy on epoxy nein crowns and extracted teeth [7,8]. Supragingivally, on the enamed, they observed the formation of columnar micro-colonies with their long axis perpendicular to the errown surface. Gram-possitive coexis dominated these columns and occasionally, some isolated branching filaments appeared on top of the columns. After three weeks, the biofilm was preclominantly filamentous without any sign of coexis left. Filaments seemed to have colonized and subsequently replaced the preclominantly control population. A loss layer of so-called corncobs covered the three-week-old biofilm. Corncols were thought to be bacterial aggregates with a central filamentous cell surrounded by coexi attached to k. After two months, the general features of the biofilm resembled those found at the three weeks flower point. Most notice ably was the ginginal area, where a fuzzy kyer of spinchetes

() PLoS ONE | www.plosone.org

covered the biofilm. This fuzzy layer contained bacterial aggregates resembling test-table branks. There were rough and fine types of these brankes. In a study examining biofilm searchare at varying degrees of periodontal health, the gingibitis and periodontists associated biofilms resembled largely the two months old plaque on epoxy resin crowns. Filamentous bacteria were predominant in the biofilm. Between the adhered biofilm and the soft tissue of the pocket, a layer without a well-defined extracellular matrix was observed. This layer consisted of spinchetes, flagellated bacteria and test-tube branks [8]. The major hindrance of these electron microscopy studies was the inability to identify the species in the biofilm, cornorbs or test-tube brankes.

Using fluorescent is ain hybridization (FISH), it was shown for the first time is rise that initial biofilm formation was the result of co aggregation and allocian between Subpluorma spp. and Adiampee app. [9]. In a later study with the same technique, it was shown is rise, that after seven days the proportion of areptococci decreased and the proportion of *Faubacteium melatum* increased [10]. Subgingival biofilms formed on expanded polytetrafluoroethytene carriers that had been inserted into the depth of periodontal pockets have been studied with FISH with only two probes, one with specificity for a large group of oral treponemes and the other recognizing all oral bacteria [11]. The bacterial diversity in the oral cavity is estimated to be more than 000 different species and phylotypes, belonging to nine phyla; Dyferibactors, Spiracharto, Facolactist, Activolactist, Firminitz, Re-

February 2010 | Volume 5 | Issue 2 | e9321

1

17. Larsen T, Fiehn NE. Dental biofilm infections – an update. Apmis. 2017;125(4):376–84.

REVIEW ARTICLE

Dental biofilm infections - an update

TOVE LARSEN1 and NILS-ERIK FIEHN2

¹Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen; ²Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Larsen T, Fiehn N-E. Dental biofilm infections - an update. APMIS 2017; 125: 376-384.

Teeth are colonized by oral bacteria from salva containing more than 700 different bacterial species. If removed regularly, the dental biofilm mainly comprises oral streptococci and is regarded as resident microflom. But if left undisturbed, a complex biofilm containing up to 100 bacterial species at a site will build up and may eventually cause development of disease. Depending on local ecological factors, the composition of the dental biofilm mainly gram-positive carbohydrate-fermenting bacteria causing demineralization of teeth, dental carles, which may further lead to inflammation and nerrosis in the pdp and periapical periodonal in superval inflammation and breakdown of supporting periodonati fibers and bullimately tooth loss, i.e., gingivitis, chronic or aggressive periodonatiis, and around dental implants, peri-implantiis. Furthermore, bacteria from the dental biofilm inflections are achieved by negular personal and professional removal of the dental biofilm.

Key words: Dental biofilm; oral biofilm; dental caries; gingivitis; periodontal disease; oral disease.

Tore Lansen, Department of Odontology, University of Copenhagen, Nørre Allé 20, DK - 2200 Copenhagen N, Denmark. e-mail: tla@sund.ku.dk

More than 700 different bacterial species have been detected in the oral cavity of humans (1). Saliva contains 10^4 to 10^9 bacteria per milliliter, and some of these adhere to the teeth and initiate formation of a dental biofilm, previously called dental plaque. Generally, the dental biofilm is similar to biofilms elsewhere in the body, where bacteria colonize tissue surfaces or artificial implants and are embedded in a self-produced extracellular matrix of exopolymers (polysaccharides and proteins) and DNA

(2-4). There are, however, also differences from biofilms at other sites of the body (5).

Dental plaque and its relation to oral health and diseases have been studied for decades. A search in PubMed with the Mesh words "dental plaque" and "dental biofilm" yields 22.968 and 3.097 hits, respectively, and the earliest papers date back to 1946 and 1981. With the search words "lung biofilm",

Received 30 September 2016. Accepted 3 February 2017

"urogenital biofilm", "hemodialysis biofilms", and "catheter biofilms", the number of hits are 639, 271, 203, and 1.386, respectively (searched on April 21, 2016), and early articles date from 1984 to 1989. So, dental biofilm research has been a pioneer in the field of human biofilm research.

The dental biofilm causes diseases in the teeth and their supporting tissues, i.e., dental caries and periodontal diseases. Dental caries is characterized by a demineralization of the teeth without concurrent inflammation in surrounding tissues, while its sequels if left untreated, pulpits and apical periodontifs are inflections. Similarly, the periodontal diseases, such as gingivitis, periodontifs, and peri-implantits, induce an inflammatory response. Each of these biofilm-induced dental diseases will be described including the principles of biofilm control/elimination. Biofilm-induced inflections on the oral mucosa are not included in this article, whereas bacteria in dental biofilms causing infections at other locations of the body are mentioned.

376

18. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease Immunol [Internet]. 2014;162(2):22-38. and caries. Lett Available from http://dx.doi.org/10.1016/j.imlet.2014.08.017

- The oral microbiome and the immunobiology of periodontal disease
- and caries

1 Massimo Costalonga^{4,*}, Mark C, Herzberg^{b,c}

- * Division of Periodoniology, Department of Developmental and Sargical Sciences, United States * Department of Diagnostic and Biological Sciences, School of Devitary, University of Minnesola, Minnesola, Mi * Macaul and Vaccine Knewech Center, Minnesola: VA Medical Center, Minnesola, MN 35417, United States 02 ola, MN 55455, United Sta

ABSTRACT

ARTICLE INFO

- Article history: Available online xxx
-

10

- 13 14 15 Keywordz: Periodontitis
- Carles Microbiam
- Dath

The composition of the oral microbiome differs from one intraoral site to another, reflecting in part the host response and immune capacity at each site. By focusing on two major oral infections, periodontal disease and caries, new principles of disease emerge. Periodontal disease affects the soft tissues and bone that support the teeth. Caries is a unique infection of the dental hard tissues. The initiation of both diseases is marked by an increase in the complexity of the microbiome. In periodontitis, pathobionts and keystone pathogens such as Parphyromonas gingivals appear in greater proportion than in health. As a keystone pathogen, P. gingivolis impairs host immune responses and appears necessary but not sufficient to cause periodontitis. Historically, dental caries had been causally linked to Streptococcus muturs. Con-temporary microbiome studies now indicate that singular pathogens are not obvious in either caries or periodontitis. Both diseases appear to result from a perturbation among relatively minor constituents in local microbial communities resulting in dysbiosis. Emergent consortia of the minor members of the respective microbiomes act synergistically to stress the ability of the host to respond and protect. In peri-odontal disease, host protection first occurs at the level of innate gingival epithelial immunity. Secretory igA antibody and other salivary antimicrobial systems also act against periodontopathic and cariogenic consortia. When the gingival immune response is impaired, periodontal tissue pathology results when matrix metalloproteinases are released from neutrophils and T cells mediate alveolar bone loss. In caries, several species are acidogenic and aciduric and appear to work synergistically to promote demineraliza-tion of the enamel and dentin. Whereas technically possible, particularly for caries, vaccines are unlikely to be commercialized in the near future because of the low morbidity of caries and periodontitis. © 2014 Elsevier B.V. All rights reserved.

1. Introduction 18

- The digestive system begins with the oral cavity where food and microorganisms are introduced, mixed with salivary proteins
- and digestive enzymes, swallowed, and enter the lower gastroin-testinal (G) tract to be further digested. In the oral environment, several unique ecological niches can be mapped where microor-
- ganisms establish in consortial communities. Failing to establish 10 in oral communities, some environmental microorganisms simply
- transit to the lower GI tract. Despite continuous shedding of superficial epithelial layers, the
- oral mucosae are persistently colonized by microorganisms grow ing in unique ecological niches. One distinctive feature of the oral

Corresponding suther at: 515 Delaware ST SZ, Rm 7-368 MoosT, Minneapolis, MN 55455, United States. Tel: +1 612 G26 2466. E-mail address: costs00209umm.edu (M. Costalonga).

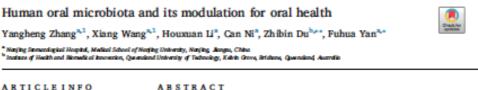
http://dx.doi.org/10.1016/j.imlet.2014.08.017 0165-2478/© 2014 Elsevier S.V. All rights reserved

cavity is the surface of the tooth or tooth enamel (Fig. 1). This non-shedding surface supports the growth and maturation of a complex microbial biofilm. The nutrient foundations of the microon of a biota surviving on mucosae or within the tooth biofilm are the proteins and glycoproteins of saliva, and the carbohydrates, pro-teins and lipids of dietary food. Since the teeth are anchored to the jaws, but grow out of the gums or gingivae, serum proteins that exude at the gingival sulcus (the junction of the tooth and the gingiva; Fig. 2) are an additional source of nutrients in specific eco-logical niches. In this review, we will discuss the composition of 40 the microbiota that has shed from oral surface niches into saliva, biofilm communities on the tooth enamel, and within gingival sulcus. The current literature reveals that contrary to what occurs 43 in the GI tract, initiation of oral infectious disea ses and disease status are associated with increased diversity and richness of the 45 microbiota. Oral health is associated with low diversity and rich-44 ness within the microbial community. This review also highlights the host response to the oral microbiomes in specific niches by 48

Please cite this article in press as: Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett (2014), http://dx.doi.org/10.1016/j.imlet.2014.08.017

19. Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles.

Semin Cell Dev Biol [Internet]. 2015;40:97–104. Available from: http://dx.doi.org/10.1016/j.semcdb.2015.02.006



20. Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation for oral health. Biomed Pharmacother [Internet]. 2018;99(September 2017):883-93. Available from: https://doi.org/10.1016/j.biopha.2018.01.146

dictor & Plantacotherapy 99 (2018) 883-893

法国际的	Contents lists available at ScienceDirect	
	Biomedicine & Pharmacotherapy	
ELSEVIER	journal homepage: www.elsevier.com/locate/biopha	Harristicker.

Review

Kepvords: Oral microbiol Composition Oral disease stanic di chilation

The oral microbioms is an important part of the human microbioms. The oral cavity contains several sigaffcastly different nickes with distinct microbial communities. A wide range of microorganisms inhabit the Intran oral cavity, inducing bacteria, fungi, viruse, arches and protoco. These microorganism intrast use human oral cavity, inducing bacteria, fungi, viruse, arches and protoco. These microorganisms form a complex ecological community that influences or al and systemic health. The most prevalent on all disease, detail caries and periodontal diseases, are microbiote-associated diseases. Moreover, increasing evidences have sup-ported that many systemic diseases are associated with disturbances in the oral scosystem, such as disbetes, cardiovascular diseases and tumon. The current control of dental plaque-related diseases is nonspecific and is centered on the removal of plaque by mechanical means. Due to this realization about the oral microbiome, several new methods haved on the modulation of the microbiome that aim at maintaining and mentablishing a healthy oral ecosystem have been developed.

1. Introduction

Human are supraorganisms composed of both their own cells and microbial cells. The number of microorganisms residing on or in the human body is tenfold over that of the body's own cells [1]. These commensal microorganisms contribute to host health by resisting pathogens, maintaining homeostasis and modulating the immune system [2] The National Institute of Health (NIH) of the United States (US) initiated the Human Microbiome Project (HMP) to characterize the human microbiome more completely and determine the association between changes of microbiome and health/disease [3]. The oral microbiome is one of the important parts of the human microbiome, and it refers specifically to the microorganisms waiding in the human oral cavity [4].

The oral cavity has been considered to possess the second most complex microbiota in human body, only behind the colon [5]. The oral microbiome is highly diverse, including bacteria, fungi, viruses, archaea and protozoa. Approximately 700 species are present in the oral cavity, and most of them are indigenous [6]. Among them, approximately 54% have been cultivated and named, 14% are cultivated but unnamed, and 32% are known only as uncultivated phylotypes (from the Human Oral Microbiome Database). An increasing numb er of studies have demonstrated that the oral microbiota plays a vital role in the pathogenesis and development of many oral and systemic diseases.

In this review, we describe the microbial diversity of the oral cavity. in the review, we define an an interview process of the set of the community shifts and oral or systemic diseases. Moreover, several prevention and treatment methods based on oral microbiota modulapreve tion are discussed.

2. Oral microbiome composition

21. Baderia

Bacteria account for the main portion of oral microorganisms, and the major knowledge of the composition of oral bacteria comes fro past culture-dependent methods. Culture-dependent techniques led to the identification of specific microarganisms thought to have a causa-tive role in caries and periodentitis [5]. However, these data substantially underestimated the composition of the oral microbiome. The development of culture-independent methods, particularly targeting 16S fibosomal RNA, has expanded our awareness of the great richness and diversity of the oral microbiome. A list of oral bacteria with a description of their characteristics and genomic information are available from the Haman Oral Microbiome Database website at www.homd.org. The ord bacterial community is dominated by the six major phyla, Hermicutes, Bacternidetes, Proteobacteria, Actinobacteria, Spirochaetes

 Corresponding author at 20 Zhongyang Road, Nanjing, Jangsu, 210008, China.
 Corresponding author at Institute of Health and Homedical Innovation, Queen Benefit addresse: shibin.do@qut.edu.ou (Z. Du), yanfh@nju.edu.ou (F. Yan). contion, Queenland University of Technology, Kelvin Grove Campus, Brisbane, QID 4059 Australia.

are authors contributed cousily to this work

https://doi.org/10.1016/j.blogh.a.2018.01.146 Received 20 September 2017; Received is nevteed form 4 January 2018; Accepted 29 January 2018 0753-3322/ © 2018 Elsevier Masson SAS. All rights nearved.

21. Priya Nimish Deo RD. Oral microbiome: Unveiling the fundamentals. 2019;23(1).

J Orai Maxiliofac Pathol, 2019 Jan-Apr; 23(1): 122–128. doi: 10.4103/jomfp.JOMFP_304_18_ PMCID: PMC6503789 PMID: <u>31110428</u>

Oral microbiome: Unveiling the fundamentals

Priva Nimish Deo and Revati Deshmukh

INTRODUCTION

The community of microbial residents in our body is called the microbiome. The term "microbiome" is coined by Joshua Lederberg, a Nobel Prize laureate, to describe the ecological community of symbiotic, commensal and pathogenic microorganisms. These microorganisms literally share our body space.[1] The number of microbes present in our bodies is almost the same or even more as compared to that of our cells. [2]

Oral microbiome, oral microbiota or oral microflora refers to the microorganisms found in the human oral cavity. [2] Oral microbiome was first identified by the Dutchman Antony van Leeuwenhoek who first identified oral microbiome using a microscope constructed by him. [4] He was called the father of microbiology and a pioneer who discovered both protists and bacteria. [5] In 1674, he observed his own dental plaque and reported "little living animalcules prettily moving."[6]

Genome is the genetic material of an organism. It is the complete set of DNA including all of its genes.

Oral microbiome is defined as the collective genome of microorganisms that reside in the oral cavity. After the gut, it is the second largest microbial community in the humans. As compared with other body sites, they exhibit an astounding diversity of predicted protein functions. Human microbiome consists of a core microbiome and a variable microbiome. The core microbiome is common to all the individuals, whereas variable microbiome is unique to individuals depending on the lifestyle and physiological differences. The oral cavity has two types of surfaces on which bacteria can colonize: the hard and the soft tissues of teeth and the oral mucosa, respectively.[2] The teeth, tongue, cheeks, gingival sulcus, tonsils, hard palate and soft palate provide a rich environment in which microorganisms can flourish.[8] The surfaces of the oral cavity are coated with a plethora of bacteria, the proverbial bacterial biofilm.[9]

An ideal environment is provided by the oral cavity and associated nasopharyngeal regions for the growth of microorganisms. The normal temperature of the oral cavity on an average is 37°C without significant changes, which provide bacteria a stable environment to survive. Saliva also has a stable pH of 6.5–7, the favorable pH for most species of bacteria. It keeps the bacteria hydrated and also serves as a medium for the transportation of nutrients to microorganisms.[10]

DEVELOPMENT OF THE ORAL MICROBIOME

The womb of the fetus is usually sterile.[11.12.13] However, recent studies have reported intrauterine environment colonization, specifically the anniotic fluid, by oral microorganisms, in up to 70% of the pregnant women.[14] The baby comes in contact with the microflora of the uterus and vagina of the mother during delivery, and later with the microorganisms of the atmosphere at birth. Usually, the oral cavity of the newborn is sterile in spite of the large possibility of contamination. The mouth is regularly inoculated with microorganisms from the first feeding onward, and the process of resident oral microflora acquisition begins. [12]

Fusobacterium nucleatum was the most common cultivable microorganism found. Any surface acquires the resident microflora by the successive transmission of microorganisms to the site of potential colonization. Although the main vehicle for transmission is saliva, passive transfer from the mother, from the microorganisms present in water, milk and the environment, also occurs.[11,12,13]

At or shortly after birth, colonization begins. Initial colonizers immediately after birth are called the pioneer species, for example, *Streptococcus salivarius*. The oral cavity is invaded mainly by aerobes by the 1st year and may include *Streptococcus, Lactobacillus, Actinomyces, Neisseria* and *Veillonella*. Once tooth eruption begins, these organisms can colonize on the nonshedding surfaces. More surfaces are established for colonization after eruption of all the teeth. Development of gingival crevices occurs for the colonization of

Wilson M. The oral cavity and its indigenous microbiota. Microbial Inhabitants of Humans. 2010.
 318–374 p.

8

The oral cavity and its indigenous microbiota

The oral cavity is not simply the entrance to the gastrointestinal tract (GII), but consists of a complex system of tissues and organs with a variety of functions which together are involved in selecting food that is suitable for intake and processing the food into a form that is suitable for passage into the rest of the GIT. Another major function of the oral cavity is speech production. With regard to its feeding function, the oral cavity contains several sensory systems which are involved in perceiving the taste, smell, touch, and temperature of the food. This sensory information is analysed in the central nervous system and used to determine the acceptability of the food. If it is regarded as acceptable, then saliva is secreted, chewing is initiated, and eventually swallowing takes place.

8.1 Anatomy and physiology of the oral cavity

The oral cavity is formed from the cheeks, the hard and soft palates, and the tongue (Figure 8.1). It contains accessory digestive structures, the teeth, and is connected to the pharynx by an opening known as the fauces. The total surface area of the oral cavity is approximately 200 cm². The surfaces of the teeth comprise 20% of this, with the remainder being attributable to the oral mucosa. The oral mucosa, like other mucosal surfaces, consists of two layers - an epithelium and an underlying layer of connective tissue, the lamina propria. The oral epithelium varies in structure, depending on its function, and three basic types are recognised: masticatory, lining, and specialised (Table 8.1). Thirty percent of the surface area of the oral cavity is comprised of keratinised mucosa, while 50% is non-keratinised mucosa. The epithelium of masticatory mucosa is keratinised and moderately thick, and covers those regions of the oral cavity that are subjected to abrasion and shear stress during chewing. In contrast, the epithelium of lining mucosa is not keratinised and is thicker - the epithelium of the cheek, for example, may be 500 μm thick. These features render the lining mucosa more flexible and able to withstand the stretching that occurs in the regions in which it is found. The tongue contains regions of keratinised and non-keratinised epithelia and is highly extensible.

The cheeks comprise the lateral walls of the oral cavity and, at the entrance to the oral cavity, they terminate in fleshy folds known as the lips (labia) which are covered on the outside by skin. The hard and soft palates comprise the roof of the mouth and these consist of bone and muscle, respectively. The hard palate separates the oral and nasal cavities, while the soft palate separates the oropharynx and nasopharynx.

318

Downloaded from https://www.cambridge.org/core. Stockholm University Library, on 11 Nov 2019 at 13:46:08, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09780511735080.009 Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, et al. The oral metagenome in health and disease. ISME J. 2012;6(1):46–56.

119

The ISME Journal (2012) 6, 46-56 o 2012 International Bodely for Microbial Ecology All fights reserved 1751-7362(12 www.natum.com/ismaj

ORIGINAL ARTICLE The oral metagenome in health and disease

Pedro Belda-Ferre¹, Luis David Alcaraz¹, Raúl Cabrera-Rubio¹, Héctor Romero², Aurea Simón-Soro¹, Miguel Pignatelli¹ and Alex Mira¹

³Department of Genomics and Health, Center for Advanced Research in Public Health, Valencia, Spain and ³Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias/C.U.R.E., Universidad de la República, Montevideo, Uruguay

The oral cavity of humans is inhabited by hundreds of bacterial species and some of them have a key role in the development of oral diseases, mainly dental caries and periodontitis. We describe for the first time the metagenome of the human oral cavity under health and diseased conditions, with a focus on surgagingival dental plaque and cavities. Direct pyrosequencing of eight samples with different oral-health status produced 1 Gbp of sequence without the biases imposed by PCR or cloning. These data show that cavities are not dominated by *Straptococcus mutans* (the species originally identified as the ethiological agent of dental caries) but are in fact a complex community formed by tens of bacterial species, in agreement with the view that caries is a polymicrobial disease. The analysis of the reads indicated that the oral cavity is functionally a different environment from the gut, with many functional categories eniched in one of the two environments and depleted in the other. Individuals who had never suffered from dental caries showed an overrepresentation of several functional categories, like genes for antimicrobial petides and quorum sensing. In addition, they did not have mutans streptococci but displayed high recruitment of other species. Several isolates belonging to these dominant bacteria in healthy individuals were cultured and shown to inhibit the growth of cariogenic bacteria, suggesting the use of these commensal bacterial strains as problexes to promote oral health and prevent dental caries. *The ISME Journal* (2012) 6, 46–56; doi:10.1038/ismej.2011.85; published online 30 June 2011

Subject Category: microbe-microbe and microbe-host interactions

Keywords: metagenomics; human microbiome; dental carles; Streptococcus mutans; pyrosequencing; probiotics

Introduction

The oral cavity of humans is inhabited by hundreds of bacterial species, most of which are commensal and required to keep equilibrium in the mouth eccesystem. However, some of them have a key role in the development of oral disease, mainly dental caries and periodontal disease (Marsh, 2010). Oral diseases initiate with the growth of the dental plaque, a biofilm formed by the accumulation of bacteria in a timely manner together with the human salivary glycoproteins and polysaccharides secreted by the microbes (Marsh, 2006). The subgingival plaque, located within the neutral or alkaline subgingival sulcus, is typically inhabited by anaerobic Gram negatives and is responsible for the development of gingivitis and periodontitis. The supragingival dental plaque is formed on the teeth surfaces by acidogenic and acidophilic bacteria, which are responsible for dental caries. This is

considered the most extended infectious disease in the world, affecting over 80% of the human population (Petersen, 2004). A poor or al health has also been related to the stomach ulcers, gastric cancer or cardiovascular disease, among others (Watabe et al., 1998; Wu et al., 2000). It is therefore surprising that no efficient strategies to combat or al diseases have been developed, despite their dramatic impact on human health. Some of the main reasons that oral pathogens have not been eradicated are related to the difficulty of studying the microbial communities inhabiting the oral cavity: First, the complexity of the ecosystem (several hundreds of species have been reported with multiple interaction levels) makes the potential pathogenical species difficult to target (Socransky et al., 1998); second, not a single ethiological agent can be identified as in classical, Koch's postulates diseases. This has been clearly shown in periodontal disease, where at least three bacterial species that belong to very different taxonomic groups (the so-called 'red complex' of taxonomic groups (the so-called periodontal pathogens) are known to be involved in the illness (Darveau, 2010); and third, a large proportion of oral bacteria cannot be cultured (Paster et al., 2001), and therefore traditional microbiological approaches give an incomplete picture of the natural communities inhabiting the

Correspondence: A Mira, Department of Genomics and Health, Center for Advanced Research in Public Health (CSISP), Avda. Cetalufa 21, Valencia 40020, Spain.

Castinina 21, viamits a 4020, open. E-mail: mira_slawgva.ee Ressived 17 Merch 2011; revised 10 May 2011; accepted 12 May 2011; published online 30 June 2011

24. Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, et al. Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. Cell Host Microbe [Internet]. 2015;18(3):296–306. Available from: http://dx.doi.org/10.1016/j.chom.2015.08.005

Article

Cell Host & Microbe

Microbiota-based prediction of ECC onset

Confident

Health

Prediction of Early Childhood Caries via Spatial-**Temporal Variations of Oral Microbiota**

Diagnosis

Carles

Diseased

Health

Graphical Abstract

1.0 p

0.5

0.0

ECC: Early Childhood Carles

Authors

Fei Teng, Fang Yang, Shi Huang, ..., Rob Knight, Junqi Ling, Jian Xu

Correspondence

xujian@gibebt.ac.cn (J.X.), lingjq@mail.sysu.edu.on (J.L)

In Brief

Teng et al. tracked plaque and saliva microbiota of 50 4-year-old children for 2 years. By distinguishing between agingand disease-associated taxa and exploiting the distinct microbiota dynamics between disease onset and progression, a predictive model, Microbial Indicators of Caries, is proposed as a method to predict future caries onset.

Highlights

probability of caries crobial Indicator of ECC)

Microbial

Microbiota-based

 Oral microbiota in 50 four-year-old children were tracked for 2 vears

Relative

Health

Time

- Age-dependent microbiota development is perturbed by early childhood caries (ECC) onset
- Shifts in microbiota precede manifestation of clinical symptoms of ECC
- Microbial Indicators of Caries, when de-trended for age, can predict ECC onset

Teng et al., 2015, Cell Host & Microbe 18, 296-306 September 9, 2015 62015 Elsevier Inc. http://dx.doi.org/10.1016/j.chom.2015.08.005

CelPress

Corby PM, Lyons-Weiler J, Bretz WA, Hart TC, Aas JA, Boumenna T, et al. Microbial risk indicators of early childhood caries. J Clin Microbiol. 2005;43(11):5753–9.

JOURNAL OF CLINICAL MICROHIOLOGY, NOV. 2005, p. 5753–5759 0095–1137/05/508.00+0 doi:10.1128/JCM.43.11.5753–5759.0005 Copyright & 2005, American Society for Microbiology. All Rights Reserved Vol. 43, No. 11

Downloaded from http://jcm.asm

/gio/

on March

2

2015

ŝ

ST ANDREWS

UNN

Microbial Risk Indicators of Early Childhood Caries

P. M. Corby,^{1,2,5*} J. Lyons-Weiler,³ W. A. Bretz,¹ T. C. Hart,⁴ J. A. Aas,⁶ T. Boumenna,⁵ J. Goss,⁵ A. L. Corby,⁷ H. M. Junior,⁸ R. J. Weyant,¹ and B. J. Paster⁵

University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania'; Harvard University, School of Dental Medicine, Boston, Massachusetts²; University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania'; National Institute of Dental and Craniofacial Research, NIH, Division of Intramural Cloical Research, Bethesda, Maryland'; Forsyth Institute, Boston, Massachusettr'; University of Oslo, Institute of Oral Biology, Oslo, Norway⁶; Twins Institute for Genetics Research, Montes Claros, Brazil'; and UNIMONTES, Montes Claros, Brazil⁶

Received 5 July 2005/Returned for modification 15 August 2005/Accepted 29 August 2005

The aim of this study was to use molecular identification methods, such as 16S RNA gene sequence and reverse-capture checkerboard hybridization, for identification of the bacteria associated with dental caries and with dental health in a subset of 204 twins aged L5 to 7 years old. A total of 448 plaque samples (118 collected from caries-free subjects and 330 from caries-active subjects) were used for analysis. We compared the bacteria found in biofilms of children exhibiting severe dental caries, with different degrees of lesion severity, with those found in biofilms of caries-free children. A panel of 82 bacterial species was selected, and a PCR-based reverse-capture checkerboard method was used for detection. A simple univariate test was used to determine the overabundance and underabundance of bacterial species in the diseased and in the healthy groups. Features identified with this univariate test were used to construct a probabilistic disease prediction model. Furthermore, a method for the analysis of global patterns of gene expression was performed to permit simultaneous analysis of the abundance of significant species by allowing cross-bacterial comparisons of abundance profiles between caries-active and caries-free subjects. Our results suggested that global patterns of microbial abundance in this population are very distinctive. The top bacterial species found to be over-abundant in the caries-active group were *Actinomyces* sp. strain B19SC, *Streptococcus mutans*, and *Lactobacillus* spp., which exhibited an inverse relationship to beneficial bacterial species.

The mechanisms of dental caries manifestation are complex and are triggered at various levels, i.e., genetic, behavioral, environmental, and microbial. Understanding the role of specific bacterial species and subspecies is important for creating a complete model of caries etiology. Dental plaque is a microbial biofilm community consisting of hundreds of distinct or-ganisms that are ubiquitous in the oral cavity and that colonize the tooth surfaces. Cariogenic microorganisms initially colonize the dental biofilm early in life and can subsequently emerge, under favorable environmental conditions, to cause disease (12). Conversely, studies have shown that if pits and fissures in occlusal surfaces are initially colonized by a noncariogenic bacterial flora, these microorganisms may confer protection to the host by physically occupying the niche and blocking the colonization of cariogenic organisms, such as Streptococcus mutans, thereby preventing the onset and development of dental decay (4, 5).

In previous studies, conventional culturing methods have been used to show that well-known species, such as *Streptococcus mutans* and *Lactobacillus* spp., are associated with dental caries (13). These species have been reported as potential contributors to caries onset and development. More recently, advanced molecular methods of bacterial identification, such as PCR techniques and 16S rRNA gene sequencing analysis, have become available and have revealed that the bacterial involvement in the development of dental caries is more complex than previously believed (2).

The aim of this study was to use molecular identification methods, such as 16S rRNA gene sequence and reverse-capture checkerboard hybridization, for identification of the bacteria associated with dental caries and health in infants and children. We compared the bacteria found in biofilms of cariesactive children with different degrees of lesion severity with those found in biofilms of caries-free children. In addition, we compared biofilms of healthy surfaces of caries-active subjects with biofilms of healthy surfaces of caries-free subjects. A simple univariate test was used to determine the overabundance and underabundance of bacterial species in the diseased and in the healthy groups. Features identified with this univariate test were used to construct a probabilistic disease prediction model. With proper machine learning-based evaluation, we found that this model was successful in utilizing biofilm bacterial risk indicators to predict disease and health. Our modeling approach splits a data set into two groups of samples, a training and a test set. Because we evaluated the model by performing learning (classifier construction) in the training set and evaluated in the test set, the performance of the prediction model could be statistically validated and, thus, could be generalized.

MATERIALS AND METHODS

Subject population and sample. The study population consisted of a twin cohort from low socioeconomic urban familias who resided in the city of Montas Clates, State of Minas Genais, Brazil. City water supplies have fluctide levels of

^{*} Corresponding author. Mailing address: University of Pittsburgh, School of Dental Medicine, Division of Pediatric and Developmental Dental Sciences, 3501 Terrace St., Room 386, Pittsburgh, PA 15261. Phone: (412) 648-8445. Fax: (412) 383-8662. E-mail: pcorty@pitt.edu.

26. Le Bars P, Matamoros S, Montassier E, Le Vacon F, Potel G, Soueidan A, et al. The oral cavity microbiota: Between health, oral disease, and cancers of the aerodigestive tract. Can J Microbiol. 2017;63(6):475-92.

The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract

Pierre Le Bars, Sébastien Matamoros, Emmanuel Montassier, Françoise Le Vacon, Gilles Potel, Assem Soueidan, Fabienne Jordana, and Marie-France de La Cochetière

> Abstract: Many studies show that the human microbiome plays a critical role in the chronic pathologies of obesity, inflammatory bowel diseases, and diabetes. More recently, the interaction between cancer and the microbiome has been highlighted. Most studies have focused on the gut microbiota because it represents the most extensive bacterial community, and the body of evidence correlating it with gut syndromes is increasing. However, in the strict sense, the gastrointestinal (GI) tract begins in the oral cavity, and special attention should be paid to the specific flora of this cavity. This study reviewed the current knowledge about the various microbial ecosystems of the upper part of the GI tract and discussed their potential link to carcinogenesis. The overall composition of the microbial communities, as well as the presence or abs ence of "key species", in relation to carcinogenesis is addressed. Alterations in the oral microbiota can potentially be used to predict the risk of cancer. Molecular advances and the further monitoring of the microbiota will increase our understanding of the role of the microbiota in carcinogenesis and open new perspectives for future therapeutic and prophylactic modalities.

Key words: upper aerodigestive, microbiome, oral cavity, carcinogenesis.

Résumé : Plusieurs études montrent que le microbiome humain joue un rôle essentiel dans les pathologies chroniques que sont l'obésité, les maladies inflammatoires de l'intestin et le diabète. Plus récemment, l'interaction entre le cancer et le microbiome a été soulignée. La plupart des études se sont concentrées sur le microbiote intestinal car il représente la communauté bactérienne la plus étendue, et l'ensemble des preuves le corrélant avec les syndromes de l'intestin est en croissance. Cependant, au sens strict, le tractus gastro-intestinal (GI) commence dans la cavité orale et une attention spéciale devrait être portée à la flore spécifique de cette cavité. Cette étude fait la synthèse des connaissances actuelles relatives à divers écosystèmes microbiens de la partie supérieure du tractus GI et discute de leur lien potentiel à la carcinogenèse. La composition globale des communautés microbiennes, de même que la présence ou l'absence « d'espèces clés » relativement à la carcinogenèse sont soulevées. Des modifi-cations du microbiote oral peuvent potentiellement être utilisées pour prédire les risques de cancer. Les percées moléculaires et la surveillance accrue du microbiote accroitront notre compréhension du rôle du microbi te dans la carcinogenèse et ouvriront de nouvelles perspectives en vue de modalités thérapeutiques et prophylactiques futures. [Traduit par la Rédaction]

Mots-dés : voie aérodigestives supérieures, microbiome, cavité orale, carcinogenèse.

Introduction

Every year there are 12.7 million new cancer cases worldwide, and an estimated 16.1% are linked to infections. Approximately 15%-20% of human tumors are initiated by inflammation-driven processes (Francescone et al. 2014).

The gastrointestinal (GI) tract can be considered not only a pipeline system from the oral cavity to the anus but also an entry point for nutrients and a point of contact between the immune system and the environment. Various microenvironments are scattered along this tract. each having a specific ecosystem with its own microbiome.

Received 27 September 2016. Revision received 26 December 2016. Accepted 24 January 2017.

P. Le Bars, A. Soueidan, and F. Jordana. URk d'odontologie, UIC Odontologie, CHU hôtel-Diesa, Université de Nantes, 1, place Alexis

Ricordeau, B.P. 84215, 44042 Nantes CEDEX 1, France. S. Matamoros. Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Lowain Drug Research institute, Université catholique de Lowain, 1, place de l'Université, 1948 Brussels, Belgium, Re. Montassier, G. Potel, and M.-F. de La Cochetière- E. 3826 Thérapeutiques cliniques et expérimentales des infections, Faculté de médecine, CHU hôtel-Dieu, Université de Nantes, 1, eue G. Veil, 44000 Nantes, France.

F. Le Vacon. Biofortis Innovation Services - Méricux NutriSciences, 3, route de la Chatterie, 44800 Saint-Herblain, France. Corresponding author: Assem Souridan (email: assem souridanguniv-names.fr).

*Co-last authors

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Can. J. Microbiol. 62: 475-492 (2017) dx.doi.org/10.1129/cjm-2016-0603

Published at www.mrcresearchpress.com/cjm on 3 March 2017.

What are biomarkers? Kyle Strimbu and Jorge A. Tavel

Division of Clinical Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Betheads, Maryland, USA

Purpose of review This article provides working definitions and a conceptual framework to understand the

Consepondence to Jorge A. Tawi, MD, Division of Christi Reasearch, National Institute of Alergy and Infectious Discoses, 67008 Roodsdage Drive, Room #1127, MSC 7609, Betheade, MD 20692, USA Tel:+1 301.402.0564; email: Jasei Bjiniad Alexov

Current Opinion in HIV and AIDS 2010, 5:463-466 roles of biomarkers in clinical research. Recent findings

The definitions of the terms discussed in this article – medical signs, symptoms, biomarkers, surrogate endpoints, clinical endpoints, validation – are still under discussion, as are their relationships to each other, but broad consensus has developed in the past decade and a half about the necessity of distinguishing between, in particular, surrogate and clinical endpoints.

Summary

This article outlines the major definitions of the key terms in this field and considers select cases in which misunderstandings about the terms led to flawed research conclusions.

Keywords

biomarkers, clinical endpoints, surrogate endpoints

Cur Opin HVAIDS 5:463-466 0 2010 Waters Kluwer Health | Lippincott Williams & Wilkins 1746-630X

Introduction

The use of biomarkers in basic and clinical research as well as in clinical practice has become so commonplace that their presence as primary endpoints in clinical trials is now accepted almost without question. In the case of specific biomarkers that have been well characterized and repeatedly shown to correctly predict relevant clinical outcomes across a variety of treatments and populations, this use is entirely justified and appropriate. In many cases, however, the 'validity' of biomarkers is assumed when, in fact, it should continue to be evaluated and reevaluated. This article will consider the current conceptual status of biomarkers as clinical and diagnostic tools and as surrogate endpoints in clinical research with the goal of providing context for interpreting studies that rely heavily on such biological measures.

What is a biomarker?

The term 'biomarker', a portmanteau of 'biological marker', refers to a broad subcategory of medical signs, that is, objective indications of medical state observed from outside the patient, which can be measured accurately and reproducibly. Medical signs stand in contrast to medical symptoms, which are limited to those indications of health or illness perceived by patients themselves. There are several more precise definitions of biomarkers in the literature, and they fortunately overlap considerably. In 1998, the National Institutes of Health Biomarkers Definitions Working Group defined a biomarker as 'a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention' [1**]. A joint venture on chemical safety, the International Programme on Chemical Safety, led by the World Health Organization (WHO) and in coordination with the United Nations and the International Labour Organization, has defined a biomarker as 'any substance, structure, or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease' [2]. An even broader definition takes into account not just incidence and outcome of disease, but also the effects of treatments, interventions, and even unintended environmental exposure, such as to chemicals or nutrients. In their report on the validity of biomarkers in environmental risk assessment, the WHO has stated that a true definition of biomarkers includes 'almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical, or biological. The measured response may be functional and physiological, biochemical at the cellular level, or a molecular interaction' [3]. Examples of biomarkers include everything from pulse and blood pressure through basic chemistries to more complex laboratory tests of blood and other tissues. Medical signs have a long history of use in clinical practice - as old as medical practice itself - and biomarkers are merely the most objective, quantifiable medical signs modern laboratory science allows us to measure reproducibly. The use of biomarkers, and in particular laboratory-measured

1746-630X © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

DOI:10.1097/COH.0b013e32833ed177

Copyright @ Lippincott Williams & Wilkins, Unauthorized reproduction of this article is prohibited.

 Ahsan H. Biomolecules and biomarkers in oral cavity: bioassays and immunopathology. J Immunoass Immunochem [Internet]. 2019;40(1):52–69. Available from: https://doi.org/10.1080/15321819.2018.1550423

> Tay or & Francis JOURNAL OF IMMUNOASSAY AND IMMUNOCHEMISTRY r & Francis Group https://doi.org/10.1080/15321819.2018.1550423 Oback for updates Biomolecules and biomarkers in oral cavity: bioassays and immunopathology Haseeb Ahsan Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India KEYWORDS ABSTRACT Oral cavity; proteins; saliva; The oral muco sa protects the host against invading antigens and pathogenic microorganisms and contains an elaborate immune system and remains in a relative state of health despite the heavy biomolecules; biomarkers antigen load. The oral barrier is exposed to unique and diversi communities of commensal microbial communities that are known to play immune stimulatory roles in oral inflammatory diseases. Saliva is secreted from the salivary glands and has mul ple functions, including mouth cleaning and protection, antibactenal effects and digestion. The major protective function of salivary secretions in the onal cavity is through immunological and non-immunological means as well as direct antimicrobial activity. A biomarker is an objectively measured and evaluated indicator of normal biologic processes, path og enic processes, or pharmacologic responses to therapeutic intervention. With the rapid advancement in salivaomics, saliva is well recognized as a pool of biological markers. Saliva biomarkers include the changes in the biomolecules, such as DNA, RNA and proteins, and the microbial biofilm. There are numerous defense and

Introduction

pathophysiology.

Biomarkers and Biomolecules

protective proteins present in the saliva that are involved in oral homeostasis, immunity, and tolerance. This review article attempts to categorize and analyze the various biomolecules and biomarkers in the oral cavity that may be important in

A "biomarker" or "biological marker" is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacologic responses to a therapeutic intervention.^[1] Biomarker is defined as "any substance, structure, or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease".^[2] The National Institutes of Health (NIH) has defined a biomarker as "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic

CONTACT Hareeb Alisan (C) dhahsan(C) dhahsan(C) Department of Biochemistry, Faculty of Dentistry, Jamia Millie Islamia (A Central University), Jamia Nagar, New Delhi 110025, India

Color versions of one or more of the figures in the article can be found online at www.tandforline.com/ljil © 2010 Taylor & Fonds

29. Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci [Internet]. 2017;9(11):e1. Available from: http://dx.doi.org/10.1038/ijos.2017.35

> International Journal of Oasi Science (2017), 1-8 ww.nature.com/ijca

REVIEW

OPEN

Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment

Abdullah S Hemadi*, Ruijie Huang*, Yuan Zhou and Jing Zou

Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Onal streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevolella spp. and Lactobacillus spp., and fungus, that is, Candida al bicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease.

International Journal of Oral Science Online publication 10 November 2017; e1; doi:10.1038/ijos.2017.35

Kewords: caries risk assessment: early childhood caries: salivary microorganisms: salivary proteins

INTRODUCTION

Dental caries are one of the most common chronic infectious diseases of preschool-aged children, characterized by the destruction of tooth sues by synergistic complex effects among acids generated from the fermentation of dietary carbohydrates by bacteria and susceptible host factors, such as teeth and saliva.1 Tooth decay of primary teeth in children 71 months of age or younger is referred to as early childhood carles (ECC) and affects 23% of preschoolers in the USA and over 60% of children in China.2-3 Any sign of smooth surface caries in children younger than 3 years of age is indicative of severe ECC (S-ECC).⁴ S-ECC is indicated by children from ages 3 through 5 years who have one or more cavitated missing teeth (due to caries), filled smooth surfaces in primary maxillary anterior teeth, or decayed, missing, or filled acore of >4 (age 3 years), >5 (age 4 years), or >6 (age 5 years) surfaces.⁴ Destruction of primary teeth has already occurred when ECC is present, which is not only harmful to a child's physical health but also has psychological and emotional effects5 Thus, the preventive intervention of and early diagnosis of ECC are of particular In addition to inevitable mixing with gingival crevicular fluid, saliva clinical importance. Recent studies have focused on the assessment of

the PubMed, EMBASE, Medline and OVID databases to search for related keywords to outline recent advances.

Many studies have correlated mutans streptococci with ECC.6-8 A systematic review by Parisotto at al.8 found that the count of salivary mutans strept ococci is a strong risk indicator for ECC. Vachirarojoisan at al.9 noticed that the mutans streptococci level in unstimulated saliva was a statistically significant indicator of ECC, with an odds ratio (OR)=4.5; 95% confidence interval (CI): 1.8-117. A correlation between lactobacilli and caries increment was also found in young children (3-4 years of age), with an OR = 16.2; 95% CI: 1.12-233.36,10 as well as a relative risk = 2.70; 95% CI: 2.23-2.99.11 In addition to mutans streptococci and lactobacill, Caudida spp. is frequently present in the oral cavity of children with EOC12-D

Saliva is a complex body fluid composed of organic and inorganic constituents that are essential for the health of the oral cavity. Saliva mainly originates from three pairs of major salivary glands, that is, parotid glands, submandibular and sublingual glands, and from numerous minor salivary glands situated in the oral submucosa.14 also contains desquamated cells of the oral epithelium, microorganrisk factors and oral defense mechanisms in preventing ECC. We used intra, bronchial expectoration remains and food debris¹⁵ Saliva

Accepted 1 August 2017

State Nev Laboratory of Onal Diseases & National Clinical Research Center for Onal Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuar nivesity, Chengdu, China These authors contributed equally to this work

Consepondence: Polissor J Zu, State Key Laboratory of Oni Diseases & National Clinical Research Center for Oni Diseases & Department of Pediatric Dentistry, West China Hospital of Strumintogy, No.1, And Section, Remin South Road, Chengdu 610041, China. E-mail: zoujing197048126.com

Jones R. Salivary Biomarkers for Caries Risk Assessment. Bone [Internet]. 2014;23(1):1–7.
 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf

	NIH Public Access
	Author Manuscript
	Second Second S
NIHP	Published in final edited form as: <i>J Calif Dent Assoc.</i> 2013 February ; 41(2): 107–118.
NIH-PA Author Manuscript	Salivary Biomarkers for Caries Risk Assessment
or Ma	Lihong Guo, DDS, PhD [research scientist] and University of California, Los Angeles, School of Dentistry
nusori	Wenyuan Shi, PhD [professor and chair] Oral Biology at the University of California, Los Angeles, School of Dentistry
P	Abstract
	Saliva contains various microbes and host biological components that could be used for caries risk assessment. This review focuses on the research topics that connect dental caries with saliva, including both the microbial and host components within saliva.
NIH-PA Author Manuscrip	Dental caries is recognized as a multi-factorial infectious disease caused by complex interactions among acid-producing bacteria, fermentable carbohydrates and many host factors including saliva. ¹ It remains a major health issue in the United States and worldwide with a prevalence of more than 40 percent in young children and about 90 percent in the adult population. ² Its prevalence rate in childhood is five times higher than the next most prevalent disease, asthma. ³ Despite the dramatic reduction in caries rates over the last decades, it still affects 60 to 90 percent of school-aged children and adults. ^{4,5} In many countries, severe caries still exists in all age groups. ^{6,7} which creates huge social and economic burdens. ⁸
ISCI	Importance of Caries Risk Assessment
~	Currently, dental caries is mainly treated by restorative approaches, which do not always generate optimal satisfactory results. Caries risk assessment allows for the estimation of the probability of caries incidence, i.e., number of new cavities or incipient lexions in a certain time period, as well as the probability of the changes in the size or activity of caries lexions. ⁹ An accurate caries risk assessment can identify patients at high caries risk for preventive therapies and improved treatment effectiveness. Therefore, more attention has been given to this topic lately. ¹⁰ In particular, the roles of saliva and its biological components have been extensively studied for their possible relevance to dental caries, which is the focus of this review.
A	Anti-caries Effects of Saliva
NIH-PA Author Manuscript	Whole saliva is a complex minture of oral fluids which is composed of salivary gland secretions, gingival crevicular fluid, expectorated bronchial and nasal secretions, serum and blood derivatives from oral wounds, bacteria and bacterial product, viruses, fluid, desquamated epithelial cells, other cellular components, as well as food debris. ^{11,12} Saliva plays many important roles in maintaining oral health, van Nieuw Amerongen et al. ¹³ summarized various protective functions of salivary proteins on teeth integrity, including cleaning teeth, protecting against abrasion and attrition, retarding demineralization as well as
	THE CORRESPONDING AUTHOR, Wenyuan Shi, PhD, can be reached at wenyuan@ucla.edu. Lihong Guo, Conflict of Interest Disclosure: None reported. Wenyuan Shi, Conflict of Interest Disclosure: Wenyuan Shi serves as a part-time chief science offseer of C3 Juan Inc., a California- based biotechnology company.

31. Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, Tu M, Garcia-Godoy F, Wong DTW. Saliva diagnostics - Current views and directions. Exp Biol Med. 2017:242(5):459-72.

Exp Biol Med (Maywood) OnlineFirst, published on November 29, 2016 as doi:10.1177/1535370216681550

Minireview

Saliva diagnostics – Current views and directions

Karolina Elzbieta Kaczor-Urbanowicz¹, Carmen Martin Carreras-Presas², Katri Aro¹, Michael Tu¹, Franklin Garcia-Godoy³ and David TW Wong¹

¹School of Dentistry, Center for Ona/Head & Neck Oncology Research, University of California at Los Argeles, Los Argeles, CA 90095, USA; ²Universidad Europea de Madrid, Adult's Dentistry Department, Faculty of Biomedical Sciences, Madrid 28670, Spair; ²College of Dentisity, University of Tennessee Health Science Center, Bioscience Research Center, Memphis, TN 38163, USA Corresponding author: Frankin Garcia-Godoy, Email: (barciagodoy@gmail.com

Impact statement

The purpo se of this mini-real ear is to make an up date about the present and future as a diagnostic bio-facience such as applications of saliva at fluid in many fields of a dentistry, medicine and pharmacotherapy Using saliva as a fluid for diagnostic pararmacotherapy. poses would be a huge beakthough for both patients and heathcare providers since saliva collection is easy, non-inve-site and inequentive. We will go though the current main diagnostic applications of salve, and provide a highlight on the why clevel and tools for career screening, detection and monitoring.

Abstract

In this review, we provide an update on the current and future applications of saliva for diaprostic purposes. There are many advantages of using salks as a biofuld. Its collection is fast, easy, inexpensive, and non-invasive. In addition, saliva, as a "mirror of the body," can reflect the physiological and pathological state of the body. Therefore, it serves as a diagnostic and monitoring tool in many fields of science such as medicine, dentistry, and pharmacotherapy. introduced in 2008, the term "Salivaomics" aimed to highlight the rapid development of knowledge about various "omics" constituent sof salive, including: protegme, transcriptome, micro-RNA, metabolome, and microbiome. In the last few years, researchers have developed new technologies and validated a wide range of salivary biomarkers that will soon make the use of saliva a clinical reality. However, a great need still exists for convenient and accurate point-of-care devices that can serve as a non-invasive diagnostic tool. In addition, there is an

urgent need to decipher the scientific rationale and mechanisms that convey systemic diseases to salka. Another promising technology called liquid biopsy enables detection of circulating tumor cells (CTCs) and fragments of tumor DNA in saliva, thus enabling non-invasive early detection of various cancers. The newly developed technology-electric field-induced release and measurement (EFIRM) provides nearperfect detection of actionable mutations in lung cancer patients. These recent advances widered the salivary diagnostic approach from the oral cavity to the whole physiological system, and thus point towards a promising future of salivary diagnostics for personalized individual medicine applications including clinical decisions and post-treatment outcome predictions.

Keywords: Saliva, diagnostics, trancriptomics, point-of-care, liquid biopsy, biomarkers

Experimental Biology and Medicine 2016; @ 1-14. DOI: 10.1177/153537021668155D

Introduction

Saliva (whole saliva [WS], oral fluids [OFs]) is an acidic (pH=6-7) biological fluid composed of secretions from the three major salivary glands (parotid, submandibular, sublingual) and from minor glands (i.e. labial, buccal, lingual, and palatal tissues), gingival crevicular fluid, cell debris, plaque, bacteria, nasal and bronchial secretions, lining cells, blood and ecogenous substances.12 It contains 99% water, 0.3% proteins and both 0.2% inorganic and organic substances.⁸ The most prevalent inorganic components include: sodium, potassium, calcium, magnesium, chloride, and carbonates, while the organic components viral, and fungal infections, thus maintaining the oral comprise anylases, peroxidase, lipase, mucins, lysozyme, cavity ecosystem remain in balance.^{8,9}

lactoferrins, kallikreins, cystatins, hormones, and growth factors.4 In a healthy individual, the daily salivary secretion is estimated to be between 0.5 and 15 L.

Saliva plays an important role in many biological functions such as perception of oral sensations (i.e. taste, temperature and touch), lubrication, chewing, swallowing, and digestion. In addition, it enhances remineralization of tooth enamel and prevents demineralization due to its buffering capacity.⁶²

Saliva also protects oral mucosa against biological, mechanical, and chemical factors, as well as against bacterial,

155N: 1535-3702

Experimental Biology and Medicine 2016; 0: 1-14

Copyright © 2016 by the Society for Experimental Biology and Medicine

32. Zia A, Khan S, Bey A, Gupta ND, Mukhtar-Un-Nisar S. Oral biomarkers in the diagnosis and progression of periodontal diseases. Biol Med. 2011;3(2 SPECIALISSUE):45–52.

Review Article

Biology and Medicine, 3 (2) Special Issue: 45-52, 2011

elSSN: 09748369, www.biolmedonline.com

Oral biomarkers in the diagnosis and progression of periodontal diseases

*Zia A¹, Khan S¹, Bey A¹, Gupta ND¹, Mukhtar-Un-Nisar S² ¹ Department of Periodontics and Community Dentistry, Dr. ZA Dental College and Hospital, AMU, Aligarh 202002, India. ² Department of Conservative Dentistry and Endodontics, Dr. ZA Dental College and Hospital, AMU, Aligarh 202002, India.

*Corresponding Author: afafzia@gmail.com

Abstract Periodontitis is a disease characterized by loss of connective tissue attachment and bone around the teeth in conjunction with the formation of periodontal pockets due to the aplcal migration of the junctional epithelium. Early diagnosis and treatment of progressive periodontal tiss important because of the irreversible nature of this disease The long-term aim is that treatment and prevention of periodontal disease will be founded on diagnostic tests based on aetiopathogenic factors rather than just dinical experience. Clinical measurements used in diagnosis of periodontal diseases are often of limited usertuness in that they are indications of previous periodontal disease rather than the present disease activity. Biochemical mediators in oral fluids like saliva and gingival cevicular fluid (GCF) are highly beneficial in the determination of current periodontal status. These substances known as biomarkers help in determination of inflammatory mediator levels, as they are good indicators of inflammatory activity. This review highlights recent advances in the use of salivary and gingival revicular fluid (GCF) biomarker-based disease diagnostics that focus on the identification of active periodontal disease.

Keywords: Periodontitis; gingival crevicular fluid; biomarkers.

Introduction

Abstract

Periodontal diseases are heterogeneous and include a variety of infections and inflammatory lesions. Notably, periodontitis is a prevalent disease of man that is characterized by loss of connective tissue attachment and bone around the teeth in conjunction with the formation of periodontal pockets due to apical migration of the junctional epithelium. The microbial nature of many periodontal diseases has been recognized long ago. More recently, it has been realized that the host related factors might be the keys to understanding of the disease processes in periodontitis. Periodontal disease progression is episodic in nature on a tooth site level; however, the risk of periodontal disease is principally patient based rather (Champagne et al 2003). than site rather based

Bacterial virulence factors either result in degradation of host tissues or cause the release of biologic mediators from host tissue cells that lead to host tissue destruction. Mediators produced as a part of host response that contribute to tissue destruction include proteinases, cytokines and prostaglandins. Also, a variety of enzymes produced by periodontal microorganism cause tissue destruction.

Locally, presence of bacteria adjacent to gingival crevice and the intimate contact of bacterial lipopolysaccharide with host cells trigger monocytes, polymorphonucleoleukocytes, macrophages and other cells to release inflammatory mediators

such as IL-1, TNF- α , and prostaglandin E₂. IL-1 and TNF- α have an important role in periodontal tissue destruction and PGE₂ appears to partly responsible for bone loss associated with periodontal diseases (Miyasaki 2004).

Early diagnosis and treatment of progressive periodontitis is important because of the irreversible nature of this disease (Kinane 2000). A goal of periodontal diagnostic procedures is to provide useful information to the clinician regarding the present periodontal disease type, location and severity. These findings serve as a basis for treatment planning and provide essential data during periodontal maintenance and disease monitoring phases of treatment.

Traditional dinical measurements (probing pocket depth, bleeding on probing, clinical attachment loss, plaque index, radiographs) used for periodontal diagnosis are often of limited usefulness in that they are indicators of previous periodontal disease rather than present disease activity. There is a need for development of new diagnostic tests that can detect the presence of active disease, predict

45

MAASCON-1 (Oct 23-24, 2010): "Frontiers in Life Sciences: Basic and Applied"

Seminar

Dental carles

Robert H Selwitz, A mid I famail, Nigel B Pitts

Denial carles, otherwise known as tooth decay, is one of the most prevalent chronic diseases of people worldwide, individuals are susceptible to this disease throughout their lifetime. Denial carles forms through a complex interaction over time between acid-producing bacteria and itermentable carbohydrate, and many host factors including seeth and saliva. The disease develops in both the crowns and roos of seeth, and it can arise in early childhood as an aggressive tooth decay that affects the primary useeh of infants and voldiers. Risk for carles includes physical, biological, environmental, behavioural, and lifestyle-related factors such as high numbers of carlogenic bacteria, inadequate salivary flow, insufficient fluoride exposure, poor oral hygiene, inappropriate methods of feeding infants, and povery. The approach to primary prevention should be based on common risk factors. Secondary prevention and treatment should focus on management of the carles process over time for individual patients, whit a minimally investive, thistor-preserving approach.

Dental caries is one of the most common proventable childhood diseases; people are susceptible to the disease throughout their lifetime.¹⁴ It is the primary cause of oral pain and tooth loss.¹⁴ It can be arrested and potentially reversed in its early stages, but is often not self-limiting and without proper care, caries can progress until the tooth is destroyed.⁴ Therefore, physicians and other health-care providers should be familiar with dental caries and its clauses. The aim of this Seminar is to enhance physicians' knowledge of the dental caries process and its management; to encourage physicians to incorporate relevant aspects of caries prevention and control into their daily practice, and to educate physicians about when to refer patients to a dentist.

Definition

Dental caries is the localised destruction of susceptible dental hard tissues by acidic by-products from bacterial fermentation of diseasy carbohydrates." The signs of the carious demineralisation are seen on the hard dental tissues, but the disease process is initiated within the bactorial biofilm (dental plaque) that covers a tooth surface. Moreover, the very early changes in the enamel are not descreted with traditional clinical and radiographic methods. Dental caries is a multifactorial disease that starts with microbiological shifts within the complex biofilm and is affected by salivary flow and composition, exposure to fluoride, consumption of distary sugars, and by preventive behaviours' (cleaning teeh). The disease is initially reversible and can be halted at any stage, even when some demine or enamel is destroyed (cavitation), provided that enough biofilm can be memo vd. Dental caries is a chronic disease that progresses slowly in most people. The disease can be seen in both the crown (coronal caries) and root (root caries) portions of primary and permanent teeth, and on smooth as well as pritted and fissered surfaces. It can affect enamel, the outer covering of the crown; comentum, the outermost layer of the root; and demine, the tissue beneath both enamel and camentam. **Caries** in primary tooth of preschool children is commonly referred to as early childhood caries.

www.thelanos.com Vol369 January 6, 2007

The terms dental caries or caries can be used to identify both the caries process and the carious lesion (cavitated or non-cavitated) that is formed as a result of that process^{2,5} In daily practice, dental practitioners, other health-care providers, and patients often refer to an established caries lesion as a cavity in the tooth. The cavity, or decayed surface, is the sequela of the disease process and is a sign of fairly advanced disease.⁸ Dental caries is a continuum of disease states of increasing severity and tooth destruction that ranges from sub-clinical sub-surface changes at the molecular level to lesions with dentinal involvement, either with an intact surface or obvious cavitation^{MALEN} (figure 1). Assessment of the presence or absence of dental caries is dependent on the diagnostic cutoff points selected; this decision grathy affects practitioners' treatment decisions. Carious lesions are the outcome of events that progress over time.⁷

Search strategy and inclusion criteria

Sources of information for this Seminarwere (1) systematic reviews of dental carins (cariology), including the Cochrane Library, Centre for Reviews and Dissemination, University of York (restoration longwity), and the NH Consensus Development Conference on Diagnosis and Management of Dental Carins Throughout Life; (2) formally constructed and peer reviewed consensus development papers and statements published in the Proceedings from the International Consensus Workop on Carins Chrical Train; (2) summaries of peer-reviewed reviews, such as proceedings of the 50thAnnivenary Congress of the European Organisation for Carins Research, Cariology in the 21st Century and a specialist review on carins diagnostic Interative; (4) MEDLINE database through PubMed to identify papers containing the term dental carins mand associated definitions, epidemiological considerations, aetiological agents, pathogenic factors, and risk factors; and (5) as additional sources, comprehensive textbooks on dental carins. College of Derectory, Department of Community Demotry and Educational Science, University of Florida, R., Lisk, (AH Seiver 100%), Demail Program, David County Headth Department, David County Headth Department, School of Demotry, University of Richtgen, Ann Arton, RI, LSA & Thread DeRig, DemotHeadth Services Demot Headth A Thread DeRig, DemotHeadth Services Demot Headth Commonders to Disborn (Halantz, Disborn (Halantz, Disborn, School, 2005), Disborn (Halantz, Demot Program, DGA, 2009), Gamegordence to Disborn (Halantz, Demot Program, DGA, 2009), Gamegordence to Disborn (Halantz, Demot Program, DGA, 2009), Risson (Gaussian, Balantz, Demot Program, DGA, 2009), Risson (Halantz, School Halantz, School Halantz, Demot Program, DGA, 2009), Risson (Halantz, School Halantz, School Halantz, Demot Program, DGA, 2009), Risson (Halantz, School Halantz, School Hal

53

Kutsch VK. Dental caries: An updated medical model of risk assessment. J Prosthet Dent 34. [Internet]. 2014;111(4):280-5. Available from: http://dx.doi.org/10.1016/j.prosdent.2013.07.014

DENTAL CARIES: AN UPDATED MEDICAL MODEL OF RISK ASSESSMENT V. Kim Kutsch, DMD Oral BioTech, Albany, Ore

Dental caries is a transmissible, complex biofilm disease that creates prolonged periods of low pH in the mouth, resulting in a net mineral loss from the teeth. Historically, the disease model for dental caries consisted of mutans streptococci and latabacilia species, and the dental profession focused on restoring the lesions/damage from the disease by using a surgical model. The current recommendation is to implement a risk-assessment-based medical model called CAMBRA (caries management by risk assessment) to diagnose and treat dental caries. Unfortunately, many of the suggestions of CAMBRA have been overly complicated and confusing for clinicians. The risk of caries, however, is usually related to just a few common factors, and these factors result in common patterns of disease. This article examines the biofilm model of dental caries identifies the common disease patterns, and discusses their targeted therapeutic strategies to make CAMBRA more easily adaptable for the privately practicing professional. (| Prosthet Dent 2014;111:280-285)

that the disease is more complex than diseases

identified some 40 bacterial species

film dysfunction of the texth marked by mutans was responsible for most bac- LYZL2 gene being associated with prolonged periods of low pH, which terial endocarditis and that by com- carious lesions only in the mandibular results in a net mineral loss.¹ Histori- parison, the presence of periodontal incisors.¹³ Additional genetic associacally, the disease model for dental pathogens was negligible. 5 muters is tions have been attributed to a mutacaries consisted of mutans strepto.coc- also able to invade endothelial cells tion in matrix metalloproteinase 13 ci and Ladobacilus species.² However, directly by means of its onm (collagen- (MMP13) and the HLA antigen allele more recent scientific evidence indicates binding protein) gene.⁷ Further studies HLA-DQ2.^{14,15} Regardless of how have also implicated caries-causing complex the biofilm disease model bethis model suggests and that it has bacteria in impaired cognitive func- comes, however, dental caries still traits in common with other biofilm tion, ulcerative colitis, and accelerated means prolonged periods of low pH, plaque growth after angioplasty.8-10 Biofilm research using DNA se- Dental caries also has apparent hend- texth. With the continued development uencing identification of bacteria has i**tary characteristics and genetic associ**of not-generation sequencing technol-lentified some 40 bacterial species **ations.**^{11,12} Early studies found that ogies, examining the biofilm and its to date as having a role in dental caries, individuals with the G20A poly-metabolic outcome differently will be and that list continues to grow. morphism for beta-defensin-1, a sali-In recent independent studies, Bifilo- vary bacteriolytic enzyme, had 5 times the novel idea of viewing the biofilm as bederium species, Sourdevia wiggsiae, the decayed, missing, and filled teeth a single organism, as first proposed by Slackia origue, and Propionibuderium acid- (DMFT) scores seen in those with Buchen.¹⁷ ificers have been implicated.³⁴ Next- other variations of this gene.¹¹ Heredi- distinct and separate organisms, but it generation sequencing technologies tary associations with the 7A52R38 behaves collectively as one superorpromise to add to these species as the taste-bud gene increase the risk for biofilm model of dental caries becomes dental caries.¹² A recent genome-widebetter understood. Dental caries also association study indicated multiple are present. Instead, the authors prohas potential systemic effects.⁶ Studies gene site associations with an increased posed a metagenomic study to identify from randomly collected coronary pla- risk for caries, the strongest of which which genes were present in the biofilm que specimens during surgery indicate was LYZL2 (lysoayme-like 2), which en in total. The genes that are active prothat when found in the mouth, the codes another bacteriolytic enzyme.13 duce the proteins resulting in metabolic most common oral bacteria found in The data from this study also indi- output from the biofilm. In the case of the coronary plaque is also Streptozocous cated 5 distinct patterns of decay dental caries, the concern is that acid

Dental caries is a transmissible bio- mutant.6 The authors concluded that 5 geographically in the mouth, with the resulting in a net mineral loss from the possible. Nyvad et al16 have explored Biofilm is a collection of ganism. As such, it is less important to identify which specific bacterial species

This study was presented to the American Academy of Restorative Dentistry, Chicago, II, February 2013.

Chief Executive Officer, Oral BioTech; Private practice, Albany, Ore.

THE JOURNAL OF PROSTHETIC DENTISTRY

Китесн

35. Tonetti MS, Bottenberg P, Conrads G, Eickholz P, Heasman P, Huysmans MC, et al. Dental caries and periodontal diseases in the ageing population: call to action to protect and enhance oral health and well-being as an essential component of healthy ageing - Consensus report of group 4 of the joint EFP/ORCA workshop on the boundaries be. J Clin Periodontol. 2017;44:S135-44.

J Clin Periodoniol 2017; 44 (Suppl. 18): \$135-\$144 doi: 10.1111/jcpe.1.2681

Journal of Clinical Periodontology

Dental caries and periodontal diseases in the ageing population: call to action to protect and enhance oral health and well-being as an essential component of healthy ageing -Consensus report of group 4 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases

Tonetti MS, Botsenberg P, Conrads G, Elckholz P, Heasman P, Huysmans M-C, López R, Madianos P, Múller F, Needleman I, Nyvad B, Preshaw PM, Pretty I, Renvert S, Schwendicke F, Trombelli L, van der Putten G-J, Vanobbergen J, West N, Young A, Paris S. Dental caries and periodontal diseases in the ageing population: call to action to protect and enhance ord health and well-being as an essential companent of healthy ageing – Consensus report of group 4 of the joint EFP/ORCA work shop on the boundaries between caries and periodontal diseases. J Clin Periodontol 2017; 44 (Suppl. 18): S135-S144. doi: 10.1111/jcpe.12681.

Abstract

Background: Over the last two decades, progress in prevention and treatment of caries and periodontal diseases has been translated to better oral health and improved tooth retention in the adult population. The ageing population and the

Conflict of Interest and Source of Funding Statement

Funds for this workshop were provided by the European Federation of Periodontology in part through an unrestricted educa-tional grant from Colgate-Palmolive. Workshop participants filed detailed disclosure of potential conflict of interest relevant to the workshop topics and these are kept on file. Declared potential dual commitments included having received research fund-ing, consultant fees and speakers fee from: Colgate-Palmolive, Procter & Gamble, Johnson & Johnson, Sunstar, Unilever, Philips, Detailed Linguistic Microsoft (Linguistic) Consultant (Linguistic) (Ling ing, consultant fees and speakers fee from: Colgate-Palmoliv Philips, Dentaid, Ivoclar-Vivadent, Heraeus-Kulzer, Straumann

© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

Maurizio S. Tonetti^{1,2}, Peter Bottenberg³, Georg Conrads⁴, Peter Eickholz⁵, Peter Heasman⁶, Marie-Charlotte Huysmans⁷, Rodrigo López^a, Phoebus Madianos^a, Frauke Müller¹⁰, lan Needleman¹¹, Bente Nyvad¹², Philip M. Preshaw⁶, lain Pretty¹², Stefan Renvert¹⁴, Falk Schwendicke¹⁵, Leonardo Trombelli¹⁶, Gert-Jan van der Putten⁷, Jacques Vanobbergen¹⁷, Nicola West¹⁸, Alix Young¹⁹ and Sebastian Paris¹⁵

¹Faculty of Dentistry, University of Hong Kong, Hong Kong, China; ²European Research Group on Periodontology, Genova, Italy: "Free University of Brussels, Brussels, Beiglum; "Division of Oral Microbiology and Immunology, Department of Conservative Dentisty, Periodonblogy and Preventive Dentistry, RWTH University Hospital Aache Aachen, Germany; "Department of Periodontology, Johann Wolfgang Goathe-University, Frankfurt, Germany, "Department of Resibrative Dentistry, University of Newcasife, Newcasife, UK; "Departmen Oral Function and Prosthatic Dentistry, nt of Radboud University Medical Center, Nijmegan, The Netherlands; *Section of Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark; "Department of Periodontology, National and Kapodistrian University d Athens, Athens, Greece; ¹⁰Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland; ¹¹International Centre for Evidence-Based Oral Health, Unit of Periodontology, UCL Eastman Dental Institute, London, UK; Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmaric; ¹³Division of Dentistry, University of Manchester, Manchester, UK; ⁴Department of Periodontology, Kristianstad rsity, Kristanstad, Swad Unive ¹⁸Department of Operative Dentistry, Charità - Universitätsmedizin Berlin, Berlin, Germany;

18 Research Center for the Study of

\$135

 Meurman JH, Grönroos L. Oral and dental health care of oral cancer patients: hyposalivation, caries and infections. Oral Oncol [Internet]. 2010;46(6):464–7. Available from: http://dx.doi.org/10.1016/j.oraloncology.2010.02.025

	Ocal Oncology 46 (2010) 464 -467	
	Contents lists available at ScienceDirect	X
	Oral Oncology	CRALON TROOP
ELSEVIER	journal homepage: www.elsevier.com/locate/oraloncology	714

Review

Oral and dental health care of oral cancer patients: hyposalivation, caries and infections

Jukka H. Meurman*, Lisa Grönroos

Institute of Dentitiry, University of Nebinki, Department of Oral and Maxillafacial Diseases, Helsinki University Central Hospital, Finland

SUM MARY

tant strains.

ARTICLE INFO

Artide history: Available online 21 March 2010

Rryword: Oral cancer Oral health management Dental care Xerostomia Oral cancer and its treatment can cause a variety of problems to patients, also as regards maintaining their daily oral hygiene. Surgery mutilates tissues which may hamper cleaning the teeth and mucosal surfaces. The patient may have complicated reconstructive structures that also need cortinuous attention. Redotherapy-induced hyposalivation further complicates the situation and decreases the quality of life. Consequently, dental caries, murosal diseases such as condicions and situatenists become problematic to treat. Hence every effort should be focused on prevention. In caries prevention intensified fluoride therapy together with dista y counseling is needed. Oral cancer patients also med to be frequently referred to dental hygienists for professional cleaning. Dinking enough daily and moisturizing mucosal surfaces with commercial dry-mouth products, vegetable oils, milk products and respective topical agents need to be individually recommended. In addition, patients with severe dry mouth cares may also

benefit from the prescription of pilocarpine tablets. In oral candidosis, the microbiological diagrams must be confirmed before administration of antifungal drugs in order to avoid the sciencion pressure to resis-

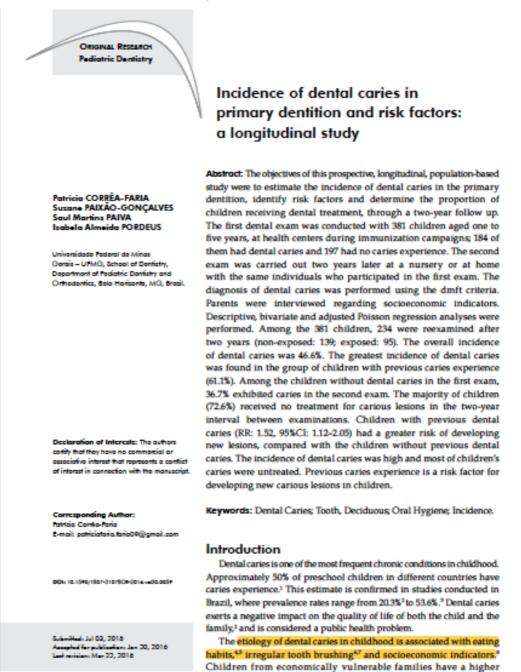
© 2010 Elsevier Ltd. All rights reserved.

Introduction

Onl cancer and particularly its treatment can cause problems for the daily maintenance of oral health. Surgical treatment mutilates tissue anatomy and radiothempy may cause mucositis, itssue constriction and ineversible damage to salivary glands with subsequent dry mouth. Cytostatic drugs affect both the local and systemic defensive factors leading easily to persistent or masked infections. Hyposalivation and xenostomia not only affect dental health but also burden the patient with oral drymess or mucosal pain, reduces taste and smell, increases the risk for dental and mucosal infections, and cause problems of speaking and mastication thus decreasing the quality of life.¹ Reconstructive surgery together with posthetic and dental rehabilitation causes further problems to the patient but also a frequent need to modity treatment plans by the professional oral health team. Consequently, guidelines and recommendations for treating oral health problems of oral cancer patients have been presented; especially for preventing infections and other dental diseases.²

The cornerstone in maintaining satisfactory oral and dental health is daily self-care of oral hygiene. In this, the cancer patients often need hands-on advice regularly controlled by the dentist or dental hygienist (Fig. 1). These patients also need frequent dental appointments based on their individual needs (Fig. 2). In particular the complicated reconstructive structures and devices the patient may have after surgery call for close attention by the oral health team.

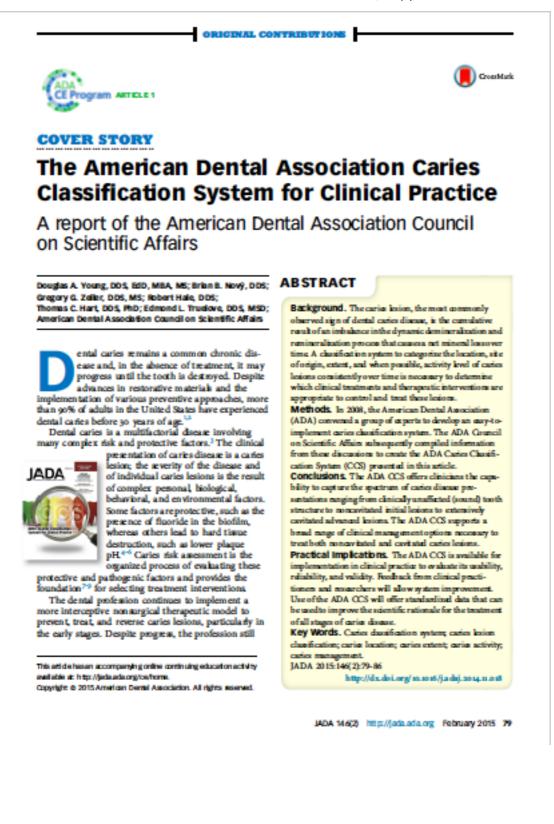
It is highly important to emphasize the necessity of dental clinical examination of patients before cancer treatment is started in order to properly target the individual oral health problems and to advise the patient about anticipated problems.³⁴ Of the many problems the patient with oral cancer faces, this review focuses on hyposalivation, dental caries and oral candidosis. We also give some recommendations for their management mainly based on our own hospital practice.


Sialo ad enitis and hyposalivation

Treatment of oral cancer often leads to impairment of salivary function. Irradiation and cytostatic drugs lead to sialeadenitis which in turn may lead to irreversible damage of secretion and subsequent hyposalivation. Poor general health renders cancer patients liable to bacterial sialadenitis.⁸ This condition calls for inowledge of possible etiology with special diagnostic methods such as computer tomography scan and magnetic resonance imaging. The management of bacterial sialadenitis often means hospitalization to the patient.

Corresponding author: Addews: PB 41, FI-0001 4University of Helpinki, Finland, Tel.: +026 9 191 27 272; box +026 9 191 27 517.
 E-med addres: Jukka Maurana@Helpinki.FI (JIL Meuman).

^{1368-8375/5 -} see front matter © 2010 Elsevier Ltd, All rights reserved, doi:10.1016/j.msioncology.2010.02.025


 Corrêa-Faria P, Paixão-Gonçalves S, Paiva SM, Pordeus IA. Incidence of dental caries in primary dentition and risk factors: a longitudinal study. Braz Oral Res. 2016;30(1):1–8.

Braz. Oral Res. 2016;30(1):e59

1

 Young DA, Nový BB, Zeller GG, Hale R, Hart TC, Truelove EL, et al. The american dental association caries classification system for clinical practice: A report of the american dental association council on scientific affairs. J Am Dent Assoc. 2015;146(2):79–86.

Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health [Internet].
 2015;15(1):S3. Available from: http://www.biomedcentral.com/1472-6831/15/S1/S3

Gomez BMC Oral Health 2015, 15(Suppl 1)53 http://www.biomedcentral.com/1472-6831/15/51/53

PROCEEDINGS

Open Access

Detection and diagnosis of the early caries lesion

J Gomez

From Prevention in practice - making it happen Cape Town, South Africa. 29 June 2014

Abstract

The purpose of this manuscript is to discuss the current available methods to detect early lesions amenable to prevention. The current evidenced-based caries understanding, based on biological concepts, involves new approaches in caries detection, assessment, and management that should include non-cavitated lesions. Even though the importance of management of non-cavitated (NQ lesions has been recognized since the early 1900s, dental caries has been traditionally detected at the cavitation stage, and its management has focused strongly on operative treatment. Methods of detection of early carious lesions have received significant research attention over the last 20 years. The most common method of caries detection is visual-tactile. Other non-invasive techniques for detection of early caries have been developed and investigated such as Quantitative Light-induced Fluorescence (QLF), DMGNOdent (DD), Fibre-optic Transilumination (FOTI) and Electrical Conductance (EC). Based on previous systematic reviews, the diagnosis of NCCLs might be more accurately achieved in combination of the visual method and the use of other methods such as electrical methods and QLF for monitoring purposes.

Introduction

Dental caries is the most prevalent chronic disease worldwide. When initial lesions are taken into account decisions [6]. into the clinical assessment, only few individuals are truly unaffected. In most industrialized countries 60-90% of school-aged children are affected and nearly 100% of the adult population is affected [1]. However, over the recent years, the patterns of disease presentation have changed. The progression of non-cavitated lesions seems to be slower [2], allowing preventive stra-tegies to be implemented when the lesions have the greatest opportunity to arrest. Traditional methods combined with more sensitive methods may improve the caries diagnosis and also help the clinician in monitoring non-operative treatments. Also, clinical trials involving thousands of subjects and for long periods of time are today unrealistic and the use of cavitated endpoints questionable [3].

Clinical caries measures involving "pre-cavitation" lesions have been in fact reported in caries clinical trials since 1965 [4] and have been described and used in clinical research and practice already for more than 50 years [5]. However, some approaches still used in dental

Dental Health Unit, School of Dentistry, University of Manchester, Manchester, UK practice and in clinical trials have focused on detecting lesions at a cavitation stage informing only restorative decisions [6].

Several conferences have also been held during the past years focused on caries detection and management. In the last Consensus on Diagnosis and Management of Dental Caries, the inability to accurately identify earley caries lesions and the need for a change in the system with respect to the non-surgical management of non-cavitated lesions was highlighted [7]. The Consensus Pand concluded the evidence-base for current methods of detection and activity assessment of non-cavitated lesions was not sufficiently strong to recommend their formal adoption [8]. An International Consensus Workshop on Caries Clinical Trials (ICW-OCT) [9] concluded among others

 Lesion detection implies an objective method of determining whether or not the disease is present, lesion assessment which aims to characterize once it has been detected and caries diagnosis which implies a human professional summation of all available data.

 Visual diagnosis is the standard of caries diagnosis; the use of additional methods should be explored further.

0.2013: Gomez This is an Open Access sticle distributed under the terms of the Deadler Commons Attribution Lionse (http:// creativecommon.org/increas/byH/B), which permits unrestribed use, distribution, and reproduction in any medium, provided the orginal work is properly dead. The Deather Commons Rails to main Dedication uselve (http://creativecommons.org/publicdomain/ zets/LD/) applies to the data made available in this asticle, unless otherwise stated. 40. Shulman JAYD, Cappelli DP. Chapter 1 E pidemiology of Dental Caries CARIES EPIDEMIOLOGY THE SCIENCE OF CARIES POPULATION-BASED MEASURES OF. 2010;

Chapter 1 Epidemiology of Dental Caries JAY D. SHULMAN AND DAVID P. CAPPELLI CARIES EPIDEMIOLOGY Decayed, Missing, Filled (DMF) Demineralization THE SCIENCE OF CARIES Dental caries Enamel caries TYPES OF CARIES Early childhood caries National Health and Nutrition Examination Survey POPULATION-BASED MEASURES OF (NHANES) Remineralization CARIES Coronal Caries Dental caries remains the most prevalent chronic child-

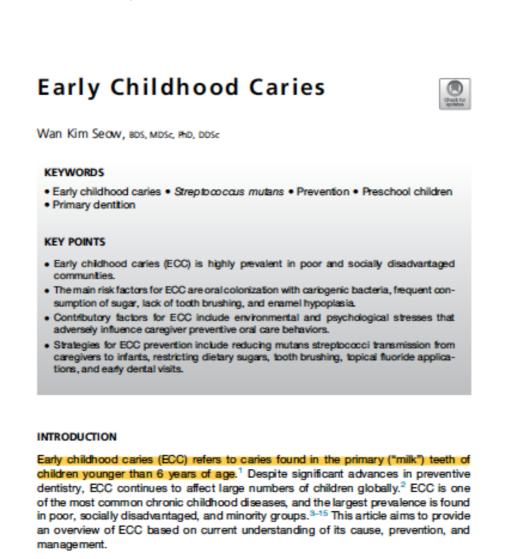
Early Childhood Caries Root Caries Definitions of Risk Geographic Variation Secular Trends Sociodemographic Factors Age Gender Race and Ethnicity Income Concentration of Caries Life Course Healthy People 2010

SUMMARY

LEARNING OBJECTIVES

- Upon completion of this chapter, the learner will be able to:
- Explain the biological process of caries development Describe etiological factors associated with caries
- Examine population-based measures of dental caries
- Discuss trends in caries prevalence Outline the Healthy People 2010 caries objectives

KEY TERMS


Caries balance Confidence limits hood disease and is five times more prevalent than asthma.¹ This chapter provides foundational knowledge about the prevalence and trends of dental caries in the population, and explores population-based measurement systems. Dental caries is described as a disease process and the causal profile of the disease is outlined. Surveillance methods and disease trends in the U.S. population for both children and adults are described by using data from several national surveys. The National Health and Nutrition Examination Survey (NHANES) series comprises NHANES I (1971 to 1974),2 NHANES III (1988 to 1994),3 and NHANES (1999 to present).4

CARIES EPIDEMIOLOGY

Dental caries is a diet-dependent, transmissible, microbiologically mediated disease.6 Similar to periodontal disease, it follows both an infectious and chronic disease model. The microorganisms that cause dental caries are transmitted vertically from mother to child soon after tooth eruption.⁷ Studies indicate that the greater the delay in transmission, the lesser the caries burden through life.7 Once caries is established, prevention focuses on the mitigation of risk factors that contribute to disease. Dental caries is caused by the interrelationship of multiple factors over time (Figure 1-1). These factors were described by Keyes in the 1960s using a Venn diagram (see Figure 4-1) of intersecting causal circles.⁸ Modifications of this model appear in the literature, but all have their basis in the period Venn Venn (7) the original Venn diagram. The cause of dental caries is related to a number of factors that are categorized into

. 2 .

41. Seow WK. Early Childhood Caries. Pediatr Clin North Am [Internet]. 2018;65(5):941–54. Available from: https://doi.org/10.1016/j.pcl.2018.05.004

WORLDWIDE PREVALENCE OF EARLY CHILDHOOD CARIES

Although representative data are sparse, general reports from several countries show that the prevalence of ECC in 2- to 3-year-old children is approximately 12% to 27%.⁴⁻⁸ In 4- to 6-year-old children, the prevalence generally ranges from 27% to 48%,⁸⁻¹¹ with more than 76% reported from the Middle East.¹² Indigenous communities in Australia, United States, and Canada have high ECC prevalence rates of 60% to more than 90%.¹³⁻¹⁵

School of Dentistry, The University of Queensland, 288 Herston Road, Herston, Queensland 4006, Australia E-mail address: k.seow@up.edu.au

Pediatr Clin N Am 65 (2018) 941–954 https://doi.org/10.1016/j.pcl.2018.05.004 0031-3955/18/© 2018 Elsevier Inc. All rights reserved.

pediatric.thedinics.com

42. Tinanoff N, Baez RJ, Diaz Guillory C, Donly KJ, Feldens CA, McGrath C, et al. Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: Global perspective. Int J Paediatr Dent. 2019;29(3):238–48.

Reactived: 13February 2019 Accepted: 20 Pebruary 2019 DOI: 10.1111/red.12484

REVIEW ARTICLE

WILEY INTERNATIONAL JOURNAL OF

Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: Global perspective

Norman Tinanoff¹ | Ramon J. Baez² | Carolina Diaz Guillory² | Kevin J. Donly³ | Carlos Alberto Feldens⁴ | Colman McGrath⁵ | Prathip Phantumvanit⁶ | Nigel B. Pitts⁷ | W. Kim Seow⁸ | Nikolai Sharkov⁹ | Yupin Songpaisan¹⁰ | Svante Twetman¹¹

²Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas

³Department of Developmental Dentistry, School of Dentistry, University of Texas Health Science: Center at San Antonio, San Antonio, Texas

⁵Dental Public Health, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China

Faculty of Dentistry, Thammasat University, Patamthani, Thailand

⁷Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Dental Innovation and Impact, Kings College London, London, UK

¹⁵School of Dentistry, University of Queensland, Herston, Queensland, Australia

Department of Paediatric Dental Medicine, Faculty of Dental Medicine, Medical University, Sofia, Bulgaria

- ¹⁰Department of Family and Community Onal Health, Institute of Dentisitry, Suranance University of Technology, Nakhon Ratchauima, Thailand
- ¹¹Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Correspondence

Norman Tinanoff, Department of Orthodontics and Pediatric Dentistry, University of Maryland, School of Dentistry, Baltimon, MD. Ermil: ntinanoff@umaryland.edu Background: This paper is a summary of the proceedings of the International Association of Paediatric Dentistry Bangkok Conference on early childhood caries (ECC) held in 3-4 November 2018.

Aim: The paper aims to convey a global perspective of ECC definitions, aetiology, risk factors, societal costs, management, educational curriculum, and policy.

Design: This global perspective on ECC is the compilation of the state of science, current concepts, and literature regarding ECC from worldwide experts on ECC.

Results: Early childhood caries is related to frequent sugar consumption in an environment of enamel adherent, acid-producing bacteria in a complex biofilm, as well as developmental defects of enamel. The seriousness, societal costs, and impact on quality of life of dental caries in pæ-school children are enormous. Worldwide data show that ECC continues to be highly prevalent, yet infrequently treated. Approaches to reduce the prevalence include interventions that start in the first year of a child's life, evidence-based and risk-based management, and reimbursement systems that foster preventive care.

Conclusions: This global perspective on ECC epidemiology, aetiology, risk assessment, global impact, and management is aimed to foster improved worldwide understanding and management of ECC.

238 0 2019 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Lid wikyoninei/bray.com/journal/ipd

In J Paedia: Desc. 2019;29:238-248.

¹Department of Orthodontics and Pediatric Dentistry, University of Maryland, School of Dentistry, Baltimore, Maryland

⁶Department of Pediatric Dentistry, Lutheran University of Brazil, School of Dentistry, Canoas, Brazil

 Caufield PW, Li Y, Bromage TG. Hypoplasia-associated severe early childhood caries-a proposed definition. J Dent Res. 2012;91(6):544–50.

CLINICAL REVIEW

P.W. Caufield^{1*}, Y. Li², and T.G. Bromage²

¹Cariology and Comprehensive; ³Basic Science and Craniofacial Biology, and ³Biomaterials and Biomimetice, New York University College of Dantisty, New York, NY 10010, USA; *corresponding author, page-caufield@ryu.orb

J Dent Res 91(6):544-550, 2012

ABSTRACT

We propose a new classification of severe early childhood caries (S-BCC): hypoplasia-associated severe early childhood caries (HAS-ECC). This form of caries affects mostly young children living at or below poveny, characterized by structurally damaged primary teeth that are particularly vul-nerable to dental caries. These predisposing developmental dental defects are mainly permutations of enamel hypoplasia (EHP). Anthropologists and denial researchers consider EHP an indicator for infant and maternal stresses including malnutrition, a variety of illnesses, and adverse birthing conditions. Differentiation of HAS-BCC from other forms of early childhood caries is warranted because of its distinct etiology, clinical presentation, and eventual management. Defining HAS-ECC has important clinical implications: Therapies that control or prevent other types of caries are likely to be less effective with HAS-ECC because the structural integrity of the teeth is compromised prior to their emergence into the oral cavity. By the time these children present to the dentist, the treatment options often become limited to surgical management under general aneshesia. To prevent HAS-ECC, dentists must partner with other health providers to develop interventions that begin with pregnant mothers, with the aim of eliminating or ameliorating the covariates accompanying poveny, including better pre- and post-natal care and

KEY WORDS: caries, woth development, odontogenesis, pediatric dentistry, Streptococcus matatis, access to care.

DOI: 10.1177/0022034512444929

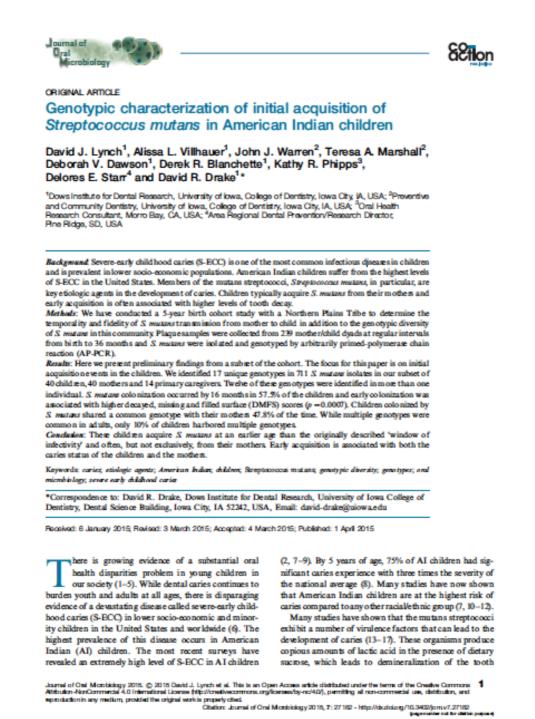
Received February 1, 2012; Last revision March 17, 2012; Accepted March 18, 2012

A supplemental appendix to this article is published electronically only at http://jdr.sagopub.com/supplemental.

@ International & American Associations for Dental Research

544

Hypoplasia-associated Severe Early Childhood Caries – A Proposed Definition


CARIES AFFECTS MAINLY THE POOR

s the numbers of children living at or below the poverty level increase in A she numbers of chauren resing as or overse any childhood caries rises, despite the US and globally, the incidence of early childhood caries rises, despite falling caries prevalence within the general child population (US Department of Health and Human Services, 2000; Oliveira et al., 2006; Proter et al., 2006; Vargas and Ronzio, 2006). This rising "epidemic" of caries correlates roughly with the rising number of children living in poveny and poor health. It has been asserted that 80% of caries can be found within 20% of the populationthis 20% being the nation's poorest. The most recent US Census reports one in five American children living at or below poverty, a propontion that continues to grow (http://www.census.gov/prod/2011pubs/acsbr10-05.pdf). Although being poor per se does not result in caries, a substandard diet consisting mainly of processed food high in sugar and low in protein is the necessary co-condition for most forms of caries, along with cenain risk factors enumer ared below. Communities that lack access to traditional food sources because of their unavailability and unaffordability, such as the Native American Indian population, are an example. Equally troublesome is that the inner-city and tural poor fill their caloric needs with these low-value foods, leading to another ever-increasing form of malnutrition, obesity. Although obesity is often mistaken as evidence of adequate nutrition, it is yet another form of malnutrition, and its prevalence is increasing, particularly among the nation's poor (http:// www.cdc.gov/obesity/childhood/data.html). Obesity is a risk factor for unfavorable birth outcomes and developmental enamel defects (Needleman et al., 1992) that can lead to increased susceptibility to caries. Maternal obesity is also associated with "nursing bottle caries" (Johnsen, 1982).

A yet-to-be-defined but growing cohort of children suffers from a severe and rampars form of denial caries, so destructive that often by age 3 yrs, moss primary teeth are so damaged that their resonation involves ourpatient hospitalization. In the US, these children are mainly members of a minority group, including recent immigrants, farm workers, Native American Indians, and Eskimos, who share the common auributes of being poor and/or detached from their tradisional lifestyle and diet. Worldwide, this same form of aggressive childhood caries can be found among minority and indigenous groups, where poverty intersects with inadequacies in perinatal health care and poor natrition. This form of caries has also been called "rampant caries", "narsing bottle caries", "baby bottle tooth decay", and, more recently, severe early childhood caries (S-ECC) (Davies, 1998; Drury et al., 1999; Ismail and Sohn, 1999; Vatiakas, 2008) and is concentrated mainly among the poorest of children (Oliveira et al., 2006).

We propose and define a subgroup of S-ECC having specific antecedent conditions common to children living in poveny: one or multiple perinatal

aled from pit supplication of MCDLLL UNITY/NTY UNITY on November 21, 2013 For personal use only. No other uses without permission 0.2012 International A American Associations for Denial Research 44. Lynch DJ, Villhauer AL, Warren JJ, Marshall TA, Dawson D V, Blanchette DR, et al. Genotypic characterization of initial acquisition of Streptococcus mutans in American Indian children. J Oral Microbiol. 2015;7(1):1-11.

45. Associate Professor YR, Puranik Professor MP, Sruthi CK, Puranik MP. Diagnostic potential of saliva as a biomarker in early childhood caries: A review. ~ 341 ~ Int J Appl Dent Sci [Internet]. 2019;5(2):341-7. Available from: www.oraljournal.com

International Journal of Applied Dental Sciences 2019; 5(2): 341-347

ISSN Print: 2394-7489 ISSN Print 2594-7497 ISSN Online: 2394-7497 IJADS 2019; 5(2): 341-347 C 2019 IJADS www.oralj Received: 12-02-2019 Accepted: 16-03-2019

Dr. Sruthi KS Post Graduate Department of Public Health Dentistry, Government Dental College and Research Institute, Bangalore, Karnataka, India

Dr. Yashoda R Associate Profe Department of Public Health Destinitry, Government Dental College and Research Institute, Bangalore, Karnataka, India

Dr. Manjunath P Puranik Professor and Head, Department of Public Health Dentistry, Government Dental College and Research Institute, on Kamataka India

Correspondence Dr. Sruthi KS Post Gradua Department of Public Health Dentistry, Government Dental College and Research Institute, Bangalore, Karnataka, India

Diagnostic potential of saliva as a biomarker in early childhood caries: A review

International Journal of Applied Dental Sciences

Dr. Sruthi KS, Dr. Yashoda R and Dr. Manjunath P Puranik

Early Childhood Caries (ECC) is a severe and early form of the carious disease that can compron Early Childhood Caries (ECC) is a severe and early form of the carious disease that can compromise child's oral and systemic health. Despite significant efforts to integrate children's oral health into primary care, identification of children at risk for ECC before the onset of cavitation remains challenging. As teeth are bathed in saliva constantly, the constituents and properties of this oral fluid play an essential role in the occurrence and progression of oral diseases including dental caries. Thus, it can be a promising tool in early identification and thereby preventing the further progression of caries in children. Hence, the aim of this review is to throw light on the current knowledge and utilisation of salivary biomarkers in terms of its predictive potential for ECC. A literature search was done using electronic databases PubMed, Google Scholar, and Cochrane Database for articles in English. Several keywords were used: Early childhood caries, salivary biomarkers, saliva, antibodies, inflammatory mediators, glucosyltmsferase and physical characteristics of saliva. Utilisation of the child. clin ians in improving the oral health status of the child.

Keywords: Biomarker, Diagnosis, Early childhood caries, Predictor, Saliva

Introduction

Early Childhood Caries (ECC) is a serious public health problem with a prevalence ranging from 1-12% in developed and as high as 70% in less developed countries ^[1]. According to from 1-12% in developed and as high as 70% in less developed countries ^[1]. According to American Academy of Pediatric Deutistry, ECC is "the presence of one or more decayed (non cavitated or cavitated lexions), mixing (due to caries), or filled tooth surfaces in any primary tooth in a child under the age of six". It is not just the problem of teeth, also associated with reduced growth and reduced weight gain due to insufficient food consumption to meet the metabolic and growth needs of children". The early detection can reduce pain and helps in the growth and the overall development of the child ^[2]. Current clinical practice has a growing impotent on early diagnosis, proper prognostication and screening for a disease in asymptomatic group ^[2]. Biomarkers are assuming a growing role in all aspects of medicine, starting from screening to follow up after treatment, it may be utilized as a diagnostic for the activ detection and recover treatment of this early childhood

as a diagnostic tool for the early detection and prompt treatment of this early childhood problem. Biomarker is "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention" [4].

investigations that culminated in the identification of salvary anguostics and made sparsed investigations that culminated in the identification of salvary anguostics and made sparsed ranging from cancer to infectious diseases like dental caries ^[2]. Hence this review was conducted with an objective of identifying various salivary biomarkers for ECC, its accuracy in detecting ECC and application in clinical practice.

Methodology

A literature search was done that cover the relevant objectives using electronic databases "PubMed," "Google Scholar," and "Cochrane Database," to identify the articles in English language from August 2017 to December 2018. Multiple search keywords were used: ECC,

~ 341 *

46. S Kuriakose, C Sundaresan, V Mathai, E Khosla FG. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant caries and caries-resistant children. 2013;

Journal of Indian Society of Pedodontics and Preventive Dentistry (Midal Journal of the Indian Society of Pedodontics and Preventive Dentistry Dentistry Dentistry Dentistry Dentistry Dentistry (Secondary 2014) Secondary 2014 Sec		
Indian Province of Productions and Proventive Dentify Dentify Series 2013 Volume : 31 Josee : 2 Page : 69–73 A comparative study of Salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant caries and caries-resistant children s Kurtakos ¹ , C sundawcar ² , V Matus ³ , E Notas ⁴ , FMA Gattos ⁶ , ¹ Oppartnet of Pedodotics and Preventive Dentisty, 31 B davas Denta College, Vartala, Kesia, Inda ² Oppartnet of Pedodotics and Preventive Dentisty, 31 B davas Denta College, Vartala, Kesia, Inda ³ Oppartnet of Pedodotics and Preventive Dentisty, 31 B davas Denta College, Vartala, Kesia, Inda ⁴ Oppartnet of Conservative Dentisty, 31 B davas Denta College, Vartala, Kesia, Inda ⁴ Oppartnet of Conservative Dentisty, 31 B davas Denta College, Vartala, Kesia, Inda ⁵ Departnet of Conservative Dentisty, Mar Baselos Denta College, Katamangaiam, Kerala, Inda ⁵ Departnet of Conservative Dentisty, Mar Baselos Denta College, Katamangaiam, Kerala, Inda ⁶ Departnet of Pedodotics and Preventive Dentisty, Mar Baselos Denta College, Katamangaiam, Kerala, Inda ⁶ Departnet of Pedodotics and Preventive Dentisty, ABQ-Mangaiya-8Qa, Era 160, Thotam, Manacaud, Thiandum, Kerala, Inda ⁶ Departnet of Pedodotics and Preventive Dentisty, 49Q-Mangaiya-8Qa, Era 160, Thotam, Manacaud, Thiandum 655 009 Inda Abstract Purpose : This study was conducted to Identify various factors in the development of rampant type of dental carles in Bouh Ker Children, other han high aucrose Intake and poor on hygiene. This was done by comparing the salivary buffering capacity(BC), rate/FR, Insting PH and salivary Immunoglobulin-Aci-(A) i keet is n Children who are carles resistant(CR) and who have rampand preventive development of RC in children. 1 Notakesan Children with rampant carles and Carles resistant Children with assess measure to each development of RC in children. 1 Notakesan Children with rampant carles and carles resistant children. J Indan Soc Pedod F		
A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant caries and caries-resistant children.	Indian Society of Pedodontics and Preventive	Official journal of the Indian Society of Pedodontios and Preventive
Immunoglobulin A in children with rampant caries and caries-resistant children s Kutakoes ¹ , C Bundaresan ² , V Mathal ³ , E Khosla ⁴ , FMA Gathou ⁵ , ¹ Department of Peododritics and Preventive Dentisty, Sife Mookambika Institute of Dental Sciences, Kutasekharam, Karyakumari, Keral inda ³ Department of Peododritics and Preventive Dentisty, Sife Mookambika Institute of Dental Sciences, Kutasekharam, Karyakumari, Keral ⁴ Department of Conservative Dentisty and Endodoritics, Siree Mookambika Institute of Dental Sciences, Kutasekharam, Karyakumari, Keral ⁴ Department of Conservative Dentisty and Endodoritics, NJ. College of Dental Sciences, Nutasekharam, Karyakumari, Keral ⁵ Department of Conservative Dentisty and Endodoritics, NJ. College of Dental Sciences, Nutasekharam, Karyakumari, Keral ⁶ Department of Conservative Dentistry and Endodoritics, NJ. College of Dental Sciences, Nutasekharam, Kerala, Inda ⁶ Companyones Addresse: ⁶ Sundaresan ⁷ Department of Pedodoritics and Preventive Dentistry, «SQ-Mangalya-SQ-», Era 150, Thotam, Manacaud, Thvandum, Kerala, Inda ⁶ Companyones Addresse: ⁶ Sundaresan ⁷ Department of Pedodoritics and Preventive Dentistry, and Endodoritics in the development of rampant type of dental carles in Bouth Ker ⁶ Kulsekharam, Other Than Ngh sucrose Inbake and goor oral hygiene. This was done by comparing the salivary buffering capacity/BC/. The Endoty Immunofolution/N-V-IpA) levels is the cluider who are carles resistant (CR) and who have rampant dental carles. Materiale and Methods Two study groups, a rampant carles proup/RC) with more than the carles carles resistant carle salivary buffering capacity/BC/. The salivary BC/ flow rate, resting PH of saliva was messure salivary Immunofolution in the for of the mouth for a period of 10 min and the FR was calculated. Resting PH of saliva was messure salivary Companyon and Carles is an United by Immunofutisformetic method after forming a precipitate of s-ipA with speci salivary formunoglobul in A in children with rampan	Year : 2013 Volume : 3	1 Issue : 2 Page : 69-73
 * Kuriakowa¹, C Bundanesan², V Mathal³, E Khosla⁴, FMA Gathor⁶, ¹ Department of Pedodontics and Preventive Dentistry, Sri Sankara Dental College, Vantaia, Kerala, Inda ² Department of Pedodontics and Preventive Dentistry, Siree Mookambika Institute of Dental Sciences, Kutasekharam, Karyakumari, Kerala inda ³ Department of Conservative Dentistry and Endodontics, Siree Mookambika Institute of Dental Sciences, Kutasekharam, Karyakumari, Kerala inda ⁴ Department of Pedodontics and Preventive Dentistry, Mar Baselios Dental Sciences, Neyantihikar, Trivandrum, Kerala, Inda ⁵ Department of Conservative Dentistry and Endodontics, N.I. College of Dental Sciences, Neyantihikar, Trivandrum, Kerala, Inda ⁶ Department of Conservative Dentistry and Endodontics, N.I. College of Dental Sciences, Neyantihikar, Trivandrum, Kerala, Inda ⁶ Department of Pedodontics and Preventive Dentistry, «SQ»Mangalys«SQ», Era 160, Thottam, Manacaud, Trivandrum, Kerala, Inda ⁶ Department of Pedodontics and Preventive Dentistry, «SQ»Mangalys«SQ», Era 160, Thottam, Manacaud, Trivandrum, Kerala, Inda ⁶ Department of Pedodontics and Preventive Dentistry, «SQ»Mangalys«SQ», Era 160, Thottam, Manacaud, Trivandrum, Kerala, Inda ⁶ Department of Pedodontics and Preventive Dentistry, «SQ»Mangalys«SQ», Era 160, Thottam, Manacaud, Trivandrum, Kerala, Inda ⁶ Department of Pedodontics and Preventive Dentistry, and Preventive Dentistry, SQ, Mangalys«SQ», Era 160, Thottam, Manacaud, Trivandrum, Kerala, Inda ⁶ Department of Pedodontics and Preventive Dentistry, and Preventive Dentistry, SQ, Mangalys«SQ», Era 160, Thottam, Manacaud, Trivandrum, Kerala, Inda ⁶ Department of Pedodontics and Methode Timo study orpuge, a rampant carles group(RC) with more than the active carles in a solary bocy of the solar back carles is a solary by Content and SQ, Preva		
Inda ⁴ Oppartment of Pedodontics and Preventive Dentistry, Mar Baselios Dental College, Kothamangalam, Kerala, Inda ⁵ Oppartment of Conservative Dentistry and Endodontics, N.I.Colege of Dental Bidences, Neyvantiniana, Trivandrum, Kerala, Inda Correspondence Address: C Sundaresan Department of Pedodontics and Preventive Dentistry, «SQAMangalya»,SQA, Era 160, Thottam, Manacaud, Trivandrum 655 009 Inda Abstract Purpose : This study was conducted to lidentify various factors in the development of nampant type of dental caries in South Kern (hildren, other than high sucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(IBO), rate(FRA), resting pH and salivary immunoglobulin-(A)-(A) levels in children who are caries resistant(CR) and who have rampant dental caries. Materials and Methode : Two study groups, a rampant carles group(RG) with more than fue accurate steinsis the early stages and a GR with no caries lesions were selected based on a specific orteria. Unstimulated whole mixed saliva was collected directly from the floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure using color code pH paper. Res 10 was ineasure by calculating the amount of thic add of pH2.5, required to lower the Initial pH4 early attabase. Result The salivary BC, FRS, pH and sing Naver in the RG group when compared the GR group. Consolution : This study showed that salivary BC, flow-rate, resting pH and levels of s-igA in saliva are risk factor the development of RC in children. How to othe this article: Kurtatose 8, Sundaresan C, Mathal V, Khosia E, Gaffor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children. J Indan Soc Pedod Prev Dent Josti Salivary PH asilvary and salivary immunoglobulin A in children with rampant caries and caries-resistant children. J Indan Soc Pedod Prev Dent Josti Salivary Immunoglobulin A in children with	¹ Department of Pediodontics ² Department of Pediodontics India	s and Preventive Dentistry, Sri Sankara Dental College, Varkala, Kerala, India s and Preventive Dentistry, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Keral
 ⁵ Department of Conservative Dentisity and Endodontics, N.I.College of Dental Sciences, Negyantinkam, Trivandrum, Kerala, India Correspondence Address: Consequent Conservative Dentisity, «BQ»Mangalya«BQ», Era 160, Thottam, Manacaud, Thivandrum 695 009 India Abstract Purpose : This study was conducted to identify various factors in the development of rampant type of dental caries in Bouth Kern fullera, other than high sucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), rate(FR), resting pH and salivary immunoglobulin-A(x-igA) levels in children who are caries resistant(CR) and who have rampan dental caries. Materials and Methods :Two study groups, a rampant caries group(RC) with more han five active caries lesions were selected based on a specific criteria. Unstimulated whole maker asilivary buffering capacity(BC), rate(FR), resting pH and salivary immunoglobulin-A(x-igA) levels in a specific criteria. Unstimulated whole maker asilivary ison coin code pH paper. BC was measured by calculating the amount of critic cal of pH2.5, required to lower the initial pH o saliva was measure and ison within the salivary BC, flow-rate, resting pH and levels of s-igA with specific anti-igA antiboles. Result: The salivary BC, flow-rate, resting pH and levels of s-igA in saliva are risk factor the development of RC in children. How to othe this arbole: Kurtakose B, Sundaresan C, Mathai V, Khosia E, Gaffoor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children. J Indian Soc Pediod Frev Dent 2013;31:59-73 Available from: https://www.jisppd.com/text.asp?2013/31/269/115697 Full Text Introduction Dential caries is a unique multifactorial, infectious disease involving internal defense factors such as saliva, tooh surface morphor and mineraliz	³ Department of Conservativ India	e Dentistry and Endodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari, Ke
C Sundaresan Department of Pedidontics and Preventive Dentistry, «BQsMangalya«BQs, Era 160, Thottam, Manacaud, Thrandrum 655 009 inda Abstract Purpose : This study was conducted to identify various factors in the development of rampant type of dental caries in South Ken children, other than high sucrose intake and poor onal hygiene. This was done by comparing the salivary buffering capacity(BC), rate(FR), resting pH and salivary immunogiobulin-A(s-igA) levels in children who are caries resistant(CR) and who have rampan dental caries. Materials and Methode: Two study groups, a rampant caries group(RC) with more than five active caries isolant the early stages and a CR with no caries lesions were selected based on a specific criteria. Unstituliated whole mixed saliva was collected directly from the froor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure using color coded pH paper. BC was measured by calculating the amount of ciric acid of pH2.5, required to kower the initial pH of anti-igA antibodies. Result: The salivary BC, FRs, pH and s-igA levels were significantly lower in the RC group when compared the CR group. Consolution : This saluy showed that salivary BC, flow-rate, resting pH and levels of s-igA in saliva are risk factor the development of RC in children. How to alte this artible: Kurtatose B, Sundaresan C, Mathal V, Khosia E, Gaffoor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children. J Indian Boc Pedid Prev Dent (period Prev) Evaluation in the children with rampant caries and caries-resistant children. J Indian Boc Pedid Prev Dent (period period picted 2012 Feb 17]31:59-73 Available from: https://www.jispd.com/text.asp?2013/31/269/115697 Evaluation Dental caries is a unique multifactorial, infectious disease involving internal defense factors such as saliva, both surface morphol and mineralization, general health, n	⁵ Department of Conservativ	e Dentistry and Endodontics, N.I.College of Dental Sciences, Neyyantinkara, Trivandrum, Kerala, India
Purpose : This study was conducted to identify various factors in the development of rampant type of dental carles in South Ker children, other than high sucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity/(60), rate(FR), resting pH and salivary immunoglobulin-A(s-IgA) levels in children who are carles resistant(CR) and who have rampant dential carles. Materials and Methode : Two study groups, a rampant carles group(RC) with more than five active carles lesions the early stages and a CR with no carles lesions were selected based on a specific cirteria. Unstimutated whole mixed saliva was collected directly from the floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of salivs was measure using color coded pH paper. BC was measured by calculating the amount of cirtic acid of pH2.5, required to lower the initial jib d saliva down to 3. s-IgA levels were also estimated by limmunoturbidometric method after forming a precipitate of s-IgA with speci anti-IgA antibodies. Result: The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared the CR group. Consolusion : This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor the development of RC in children. How to othe this artiole: Kurtakose 8, Sundaresan C, Mathal V, Khosia E, Gaffoor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children. J Indian Soc Pedod Prev Dent [serial online] 2013 [cited 2021 Feb 17] 31:69-73 Available from: https://www.jisppd.com/text.asp?2013/31/269/115697 Pull Text Introduction	C Sundaresan Department of Pedodontics a	
Purpose : This study was conducted to identify various factors in the development of rampant type of dental carles in Bouth Ken children, other than high sucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(iEQ), rate(FR), resting pH and salivary immunoglobulin-A(s-igA) levels in children who are carles resistant(CR) and who have rampant dential carles. Materials and Methods : Two study groups, a rampant carles group(RC) with more than five active carles lesions us the early stages and a CR with no carles lesions were selected based on a specific criteria. Unstimutated whole mixed saliva was collected directly from the floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of salivs was measure using color coded pH paper. BC was measured by calculating the amount of citric acid of pH2.5, required to lower the initial pH of saliva down to 3. s-igA levels were also estimated by limmunoturbidometric method after forming a precipitate of s-igA with speci- anti-igA antibodies. Result: The salivary BC, FRs, pH and s-igA levels were significantly lower in the RC group when compared the CR group. Consolution : This study showed that salivary BC, flow-rate, resting pH and levels of s-igA in saliva are risk factor the development of RC in children. How to othe this artificie: Kurtatiose 8, Sundaresan C, Mathal V, Khosia E, Gaffoor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children. J indian Soc Pedod Prev Dent 2013;31:69-73 Available from: https://www.jisppd.com/text.asp?2013/31/269/115697 Pull Text Introduction Dental caries is a unique multifactorial, infectious disease involving internal defense factors such as saliva, tooth surface morpho and mineralization, general health, nutritional and hormoonal status, and a number of external factors such as saliva, tooth surface morpho and mineralization, general health, nutritional and		
Kuriakose S, Sundaresan C, Mathal V, Khosia E, Gafbor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children.J Indian Soc Pedod Prev Dent 2013;31:59-73 How to othe this URL: Kuriakose S, Sundaresan C, Mathal V, Khosia E, Gafbor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary immunoglobulin A in children with rampant caries and caries-resistant children.J Indian Soc Pedod Prev Dent [serial online] 2013 [cted 2021 Feb 17];31:59-73 Available from: https://www.jisppd.com/text.asp?2013/31/2/69/115697 Full Text Introduction Dental caries is a unique multifactorial, infectious disease involving internal defense factors such as saliva, tooth surface morpho and mineralization, general health, nutritional and hormonal status, and a number of external factors such as diet, microbial fora colonizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental caries is an extreme form of dental caries where multiple caries lesions appear suddenly, almost all tech are affected and the disease process reaches the pup at very rapid pac	children, other than high si rate(FR), resting pH and si dental carles. Materials ar the early stages and a CR collected directly from the using color coded pH pape saliva down to 3. s-IgA lev	ucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-igA) levels in children who are carles resistant(CR) and who have rampan ind Methods :Two study groups, a rampant carles group(RC) with more than five active carles lesions with no carles lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa floor of the mouth for a period of 10 min and the FR was calculated. Resting PH of saliva was measure r. BC was measured by calculating the amount of citic acid of pH2.5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-igA with speci-
salivary Immunoglobulin A in children with rampant carles and carles-resistant children.J Indian Soc Pedod Prev Dent 2013;31:69-73 How to othe this URL: Kurtakose S, Sundaresan C, Mathal V, Khosia E, Gaffoor F. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant carles and carles-resistant children. J Indian Soc Pedod Prev Dent [serial online] 2013 [cited 2021 Feb 17] [31:69-73 Available from: https://www.jisppd.com/text.asp?2013/31/2/69/115697 Full Text Introduction Dental carles is a unique multifactorial, Infectious disease involving Internal defense factors such as saliva, tooth surface morpho and mineralization, general health, nutritional and hormonal status, and a number of external factors such as det, microbial fora coionizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental carles is an extreme form of dental carles where multiple carles is appear suddenly, almost all tech are affected and the disease process reaches the puip at very rapid pac Affected children are other in great distress due to multiple puip exposures, do not eat properly, and become mainourshed. Ther no evidence that the mechanism of the decay process is different in rampant carles (RC) when compared to ordinary carles or th	children, other than high si rate(FR), resting pH and si dental carles. Materials at the early stages and a CR collected directly from the using color coded pH pape saliva down to 3. srigA lev anti-IgA antibodies. Result the CR group. Consilusion the development of RC in	ucrose Intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan ind Mothods :Two study groups, a rampant caries group(RC) with more than five active caries lesions is with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva was floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure er. BC was measured by calculating the amount of ciric acid of pH2.5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a pecipitate of s-IgA with speci it. The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared in : This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor
Kuriakose 8, Sundaresan C, Mathal V, Khosia E, Gafloor F. A comparative study of sailvary buffering capacity, flow rate, resting pH, and sailvary immunoglobulin A in chlidren with rampant caries and caries-resistant chlidren. J Indian Soc Pedod Prev Dent [serial online] 2013 [cted 2021 Feb 17];31:69-73 Available from: https://www.jisppd.com/text.asp?2013/31/2/69/115697 Full Text Introduction Dental caries is a unique multifactorial, infectious disease involving internal defense factors such as sailva, tooth surface morpho and mineralization, general health, nutritional and hormonal status, and a number of external factors such as diet, microbial fora coinaizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental caries is an extreme form of dental caries where multiple caries isions appear suddently, almost all beth are affected and the disease process reaches the pulp at very rapid pac Affected children are often in great distress due to multiple pulp exposures, do not eat properly, and become mainourished. Ther no evidence that the mechanism of the decay process is different in rampant caries (RC) when compared to ordinary caries or the ordinary caries or the mechanism of the decay process is different in rampant caries (RC) when compared to ordinary caries or the ordinary caries or the mechanism of the decay process is different in rampant caries (RC) when compared to ordinary caries or the ordinary caries or the ordinary caries or the salva ordinary caries or the ordinary caries or the ordinary caries ordinary caries or the ordinary caries or the ordinary ca	children, other than high si rate(FR), resting pH and si dental carles. Materials at the early stages and a CR collected directly from the using color coded pH pape saliva down to 3. s-IgA lev anti-IgA antibodies. Result the CR group. Consiluation the development of RC in How to othe this article:	ucrose Intake and poor oral hypiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan nd Mothods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure rr. BC was measured by calculating the amount of ciric acid of pH2-5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with speci t. The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared in : This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor children.
Kuriakose 8, Sundaresan C, Mathal V, Khosia E, Gafbor F. A comparative study of sailvary buffering capacity, flow rate, resting pH, and sailvary immunoglobulin A in chlidren with rampant caries and caries-resistant chlidren. J Indian Soc Pedod Prev Dent [serial online] 2013 [cited 2021 Feb 17];31:69-73 Available from: https://www.jisppd.com/text.asp?2013/31/2/69/115697 Full Text Introduction Dental caries is a unique multifactorial, infectious disease involving internal defense factors such as sailva, tooth surface morpho and mineralization, general health, nutritional and hormonal status, and a number of external factors such as diet, microbial fora colonizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental caries is an extreme form of dental caries where multiple caries isions appear suddenly, aimost all beth are affected and the disease process reaches the pulp at very rapid pac Affected children are often in great distress due to multipic pulp exposures, do not eat properly, and become mainourished. Ther or evidence that the mechanism of the decay process is different in rampant caries (RC) when compared to ordinary caries or the ordinary caries or the mechanism of the decay process is different in rampant caries (RC) when compared to ordinary caries or the ordinary caries or the mechanism of the decay process is different in rampant caries (RC) when compared to ordinary caries or the ordinary caries or the set on the grease is different in rampant caries (RC) when compared to ordinary caries or the ordinary caries or the set on the grease or caries or the pulp and target or ordinary caries or the ordinary caries or the set on the great distances of the set on the pulp and target ordinary caries or the ordinary caries or the ordinary caries or the ordinary caries or the set on the great distances of the set on the pulp and target ordinary caries or the ordinary caries or the ordinary caries or the caries ordinary caries or the ordinary caries or the set ordinary ca	children, other than high si rate(FR), resting pH and si dental carles. Materials at the early stages and a CR collected directly from the using color coded pH pape saliva down to 3. s-IgA lew anti-IgA antibodies. Result the CR group. Conclusion the development of RC in How to othe this article: Kurlakose S, Sundaresan C	ucrose Intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan ind Mothods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva was floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure er. BC was measured by calculating the amount of ciric acid of pH2-5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with speci it. The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared in : This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor children.
Full Text Introduction Dental carles is a unique multifactorial, infectious disease involving internal defense factors such as saliva, tooth surface morpho and mineralization, general health, nutritional and hormonal status, and a number of external factors such as diet, microbial fora colonizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental carles is an extreme form of dental carles where multiple carles lesions appear suddenly, almost all beth are affected and the disease process reaches the pulp at very rapid pac Affected children are often in great distress due to multiple pulp exposures, do not eat properly, and become mainourished. Then o evidence that the mechanism of the decay process is different in rampant carles (RC) when compared to ordinary carles or th	children, other than high si rate(FR), resting pH and si dental carles. Materials at the early stages and a CR collected directly from the using color coded pH pape anti-igA antibodies. Result the CR group. Consilusion the development of RC in i How to othe this article: Kurlakose S, Sundaresan C salivary Immunoglobulin A I	ucrose Intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan ind Mothods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva was floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure er. BC was measured by calculating the amount of ciric acid of pH2-5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with speci it. The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared in : This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor children.
Introduction Dental carles is a unique multifactorial, infectious disease involving internal defense factors such as saliva, tooth surface morpho and mineralization, general health, nutritional and hormonal status, and a number of external factors such as diet, microbial fora colonizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental carles is an extreme form of dental carles where multiple carles lesions appear suddenly, almost all teeth are affected and the disease process reaches the pulp at very rapid pac Affected children are often in great distress due to multiple pulp exposures, do not eat properly, and become mainourished. Then no evidence that the mechanism of the decay process is different in rampant carles (RC) when compared to ordinary carles or th	children, other than high si rate(FR), resting pH and si dental carles. Materials at the early stages and a CR collected directly from the using color coded pH pape anti-igA antibodies. Result the CR group. Conolucion the development of RC in How to othe this article: Kurlakose S, Sundaresan C salivary immunoglobulin A I How to othe this URL: Kurlakose S, Sundaresan C salivary immunoglobulin A I [cited 2021 Feb 17];31:59-7	ucrose Intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan nd Methods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure r. BC was measured by calculating the amount of ciric acid of pH2.5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with speci t: The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared n: This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor children.
Dental carles is a unique multifactorial, infectious disease involving internal defense factors such as saliva, tooth surface morpho and mineralization, general health, nutritional and hormonal status, and a number of external factors such as diet, microbial flora colonizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental carles is an extreme form of dental carles where multiple carles lesions appear suddenly, almost all teeth are affected and the disease process reaches the pulp at very rapid pac Affected children are often in great distress due to multiple pulp exposures, do not eat properly, and become mainourished. There no evidence that the mechanism of the decay process is different in rampant carles (RC) when compared to ordinary carles or the	children, other than high si rate(FR), resting pH and si dental carles. Materials at dental carles. Materials at collected directly from the using color coded pH pape saliva down to 3. s-igA lev anti-igA antibodies. Result the CR group. Conolucion the development of RC in it How to othe this article: Kurlakose S, Sundaresan C salivary immunoglobulin A it How to othe this URL: Kurlakose S, Sundaresan C salivary immunoglobulin A it [cted 2021 Feb 17];31:69-7 Available from: https://www	ucrose Intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan nd Methods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure r. BC was measured by calculating the amount of ciric acid of pH2.5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with speci t: The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared n: This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor children.
and mineralization, general health, nutritional and hormonal status, and a number of external factors such as diet, microbial flora colonizing the teeth, oral hygiene, and fluoride availability. [1] Rampant dental carles is an extreme form of dental carles where multiple carles lesions appear suddenly, almost all teeth are affected and the disease process reaches the pulp at very rapid pac Affected children are often in great distress due to multiple pulp exposures, do not eat property, and become mainourished. There no evidence that the mechanism of the decay process is different in rampant carles (RC) when compared to ordinary carles or the normal states of the decay process is different in rampant carles (RC) when compared to ordinary carles or the states of the states of the decay process is different in rampant carles (RC) when compared to ordinary carles or the states of the states of the decay process is different in rampant carles (RC) when compared to ordinary carles or the states of the states of the decay process is different in rampant carles (RC) when compared to ordinary carles or the states of the states of the decay process is different in rampant carles (RC) when compared to ordinary carles or the states of the states of the decay process is different in rampant carles (RC) when compared to ordinary carles or the states of the states of the decay process is different in the states of the state	children, other than high si rate(FR), resting pH and si dental carles. Materials at dental carles. Materials at collected directly from the using color coded pH pape saliva down to 3. s-igA lev anti-igA antibodies. Result the CR group. Conolucion the development of RC in it How to othe this article: Kurlakose S, Sundaresan C salivary immunoglobulin A it How to othe this URL: Kurlakose S, Sundaresan C salivary immunoglobulin A it [cted 2021 Feb 17];31:69-7 Available from: https://www	ucrose Intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan nd Methods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure r. BC was measured by calculating the amount of ciric acid of pH2.5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with speci t: The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared n: This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor children.
	children, other than high si rate(FR), resting pH and si dental caries. Materials at collected directly from the using color coded pH pape saliva down to 3. s-igA lew anti-igA antibodies. Result the CR group. Conclusion the development of RC in the evelopment of RC in the Kuriakose S, Sundaresan C salivary immunoglobulin A i (cited 2021 Feb 17];31:59-7 Available from: https://www Full Text	ucrose Intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-IgA) levels in children who are caries resistant(CR) and who have rampan nd Methods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa floor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure r. BC was measured by calculating the amount of ciric acid of pH2.5, required to lower the initial pH of els were also estimated by immunoturbidometric method after forming a precipitate of s-IgA with speci t: The salivary BC, FRs, pH and s-IgA levels were significantly lower in the RC group when compared n: This study showed that salivary BC, flow-rate, resting pH and levels of s-IgA in saliva are risk factor children.
	children, other than high si rate(FR), resting pH and si dental caries. Materials at the early stages and a CR collected directly from the using color coded pH pape saliva down to 3. s-igA lew anti-igA antibodies. Result the CR group. Consolution the development of RC in it How to othe this article: Ruriakose S, Sundaresan C salivary immunoglobulin A it (Ruriakose S, Sundaresan C salivary immunoglobulin A it (ched 2021 Feb 17];31:69-7 Available from: https://www Full Text Introduction Dental caries is a unique n and mineralization, genera colonizing the teeth, oral h multiple caries iesions app Affected children are often no evidence that the mech	ucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-igA) levels in children who are caries resistant(CR) and who have rampan and Methods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa foor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure er. BC was measured by calculating the amount of citric acid of pH2.5, required to lower the initial PH elsis were also estimated by immunoturbidometric method after forming a precipitate of s-igA with speci the salivary BC, FRs, pH and s-igA levels were significantly lower in the RC group when compared in This study showed that salivary BC, flow-rate, resting pH and levels of s-igA in saliva are risk factor children.
	children, other than high si rate(FR), resting pH and si dental caries. Materials at the early stages and a CR collected directly from the using color coded pH pape saliva down to 3. s-IgA lew the CR group. Consiluation the development of RC in it How to othe this article: Ruriskose S, Sundaresan C salivary Immunoglobulin A I (Ruriskose S, Sundaresan C salivary Immunoglobulin A I (ched 2021 Feb 17];31:69-7 Available from: https://www Full Text Introduction Dental caries is a unique m and mineralization, genera colonizing the teeth, oral h multiple caries iesions app Affected children are often no evidence that the mech	ucrose intake and poor oral hygiene. This was done by comparing the salivary buffering capacity(BC), alivary immunoglobulin-A(s-igA) levels in children who are caries resistant(CR) and who have rampan and Methods :Two study groups, a rampant caries group(RC) with more than five active caries lesions with no caries lesions were selected based on a specific criteria. Unstimulated whole mixed saliva wa foor of the mouth for a period of 10 min and the FR was calculated. Resting pH of saliva was measure er. BC was measured by calculating the amount of citric acid of pH2.5, required to lower the initial PH elsis were also estimated by immunoturbidometric method after forming a precipitate of s-igA with speci the salivary BC, FRs, pH and s-igA levels were significantly lower in the RC group when compared in This study showed that salivary BC, flow-rate, resting pH and levels of s-igA in saliva are risk factor children.

47. Abbas MJ, Al-Hadithi HK, Mahmood MA, Hussein HM. Comparison of some salivary characteristics in iraqi children with early childhood caries (Ecc) and children without early childhood caries. Clin Cosmet Investig Dent. 2020;12:541-50.

Clinical, Cosmetic and Investigational Dentistry

Dovepress open access to scient if and medical research

8 Open Access Full Text Article

ORIGINAL RESEARCH

Comparison of Some Salivary Characteristics in Iraqi Children with Early Childhood Caries (ECC) and Children without Early Childhood Caries

This article was published in the following Dove Press Journals Clinical, Cosmetic and Investigational Dentistry

Maha Jamal Abbas¹ Haraa Khairi Al-Hadithi Maha Abdul-Kareem Mahmood Hashim Mueen Hussein@²

Department of Orthodontics dontics and Preventive Dentistry, Dentistry, Al-Rafidian University-Collece, Eachdad, Irac

Background: Early Childhood Caries (ECC) is a unique form of caries that develops in temporary dentition. It has a multifactorial infectious disease. Saliva is one of the most important factors, which has an important protective effect against tooth decay when its multiple characteristics and functions are normal. The study aimed to compare some salivary characteristics in children with ECC and children without ECC.

Materials and Methods: Case-control, cross-sectional observational study. The 77 preschoolers aged 37 to 72 months (12 with ECC, 26 with ECC-S, and 39 without ECC) Collece of Dentistry, Hustanzirizah Univerzity, Razhdad, Irac, "Decartment of determine pH and buffer capacity; a formula that involves volume, collection time, and examined and we collected the stimulated saliva. The pH microelectrode was used to specific saliva weight was used to test the salivary flow rate. The potentiometric and phosphate methods were used to determine fluoride through spectrophotometric, colorimetric absorption techniques.

Results: The results got to show that there are no statistically significant differences in pH, buffer capacity, salivary flow rate, and levels of fluoride and phosphate, in children with ECC, ECC-S, and without ECC. The risk factors, such as mother's education, bottle use, brushing frequency, and previous dental care of the child are more important at the time of developing ECC than some salivary variables.

Conclusion: The risk factors, such as mother's education, bottle use, brushing frequency, and previous dental care of the child are more important at the time of developing ECC than some salivary variables such as pH, buffer capacity, salivary flow rate, and levels of fluoride and phosphate

Keywords: early childhood caries, fluoride, saliva, phosphate, buffer capacity, tooth brushing

Introduction

Dental caries is the most common chronic diseases in many countries because they are a serious Public Health problem because of their high prevalence, impact on individuals and society, American Association of Dental Paediatrics adopted the term "Early Childhood Caries" (ECC) for specific caries modality of temporary dentition, which affects infants and children in preschool age and develops immediately after the first teeth erupted.1 Dental caries is a chronic pathology with an infectious component occurs both in enamel sub-surfaces and in deeper dental tissues such as dentin and dental pulp, induced by pH variations that lead to the imbalance between demineralization and remineralization in enamel.² Although

ce: Hashim Musen Hussein thre, Al-Rafidain Department of Dentistry, Al-Kafidain University-Collece, Palectine Street, P.O., Box 46026, Bachded, Irac Tel +964 780 710 1071

fi 🍠 in 🗖

Clinical, Cosmetic and Investigational Dentistry 2020;12 541-550 541 48. Hart TC, Corby PM, Hauskrecht M, Hee Ryu O, Pelikan R, Valko M, et al. Identification of microbial and proteomic biomarkers in early childhood cCaries. Int J Dent. 2011;2011.

Hindawi Publishing Corporation International Journal of Dentistry Volume 2011, Article ID 196721, 13 pages dot:10.1155/2011/196721

Research Article

Identification of Microbial and Proteomic Biomarkers in Early Childhood Caries

Thomas C. Hart,¹ Patricia M. Corby,² Milos Hauskrecht,³ Ok Hee Ryu,⁴ Richard Pelikan,³ Michal Valko,³ Maria B. Oliveira,⁵ Gerald T. Hoehn,⁶ and Walter A. Bretz²

¹ Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA
 ² Department of Cartology and Comprehensive Care and Department of Periodontics and Implants, College of Dentistry, New York University, 345 E. 24th Street, New York, NY 10010, USA

³Computer Science Department, Intelligent Systems Program, Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15232, USA

⁴Human and Craniofacial Genetics Section, National Institute of Denial and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA

⁵ Department of General Dentistry, UNIMONTES, Montes Claros, MG 39401, Brazil ⁶ Critical Care Medicine Department, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA

Correspondence should be addressed to Walter A. Bretz, wb36@nyu.edu

Received 20 May 2011; Accepted 15 July 2011

Academic Editor: Alexandre Rezende Vietra

Copyright © 2011 Thomas C. Hart et al. This is an open access article distributed under the Creative Commons Attribution se, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly ctted.

The purpose of this study was to provide a univariate and multivariate analysis of genomic microbial data and salivary mass-The purpose of this study was to provide a luminitia and individuate analysis of genomic microbial data and salvary mass-spectrometry proteomic profiles for dental caries outcomes. In order to determine potential useful biomarkers for dental caries, a multivariate dassification analysis was employed to build predictive models capable of classifying microbial and salivary sample profiles with generalization performance. We used high-throughput methodologies including multiplexed microbial arrays and SELDI-TOF-MS profiling to characterize the oral flora and salivary proteome in 204 children aged 1–8 years (n = 118 caries-free, n = 86 caries-active). The population received little dental care and was deemed at high risk for childhood caries. Findings of the study indicate that models incorporating both microbial and proteomic data are superior to models of only microbial or salivary data alone. Comparison of results for the combined and independent data suggests that the combination of proteomic and microbial sources is beneficial for the classification accuracy and that combined data lead to improved predictive models for cartes-active and cartes-free patients. The best predictive model had a 6% test error, >92% sensitivity, and >95% specificity. These findings suggest that further characterization of the oral microflora and the salivary proteome associated with health and caries may provide clinically useful biomarkers to better predict future caries experience.

1. Introduction

Dental caries, the most common disease of childhood, is a complex infectious disease with a multifactorial etiology. The caries process is characterized by interactions between a receptive host and microorganisms with the potential for colonization and pathogenesis. Microbial, genetic, immunological, behavioral, environmental, and socioeconomic factors contribute to risk and determine the occurrence and severity of clinical disease [1, 2]. Of the identified risk factors. the cariogenic oral microbial flora and saliva have received particular research attention.

Microbiological studies conducted in the past four decades have shown that Streptococcus mutans is the chief pathogen associated with childhood dental caries onset and that lactobacilli are associated with dental caries progression [3, 4]. Much of this knowledge has been made possible with the use of traditional culturing methods employing selective media for these pathogens. Recent advances employing microbial molecular techniques have allowed for better understanding of the complexity of the flora associated with oral infections, particularly dental caries. More than 750 oral microbial taxa inhabit the oral cavity [5]. Of those, approximately 50% have yet to be cultivated, and many

49. ALALUUSUA S, RENKONEN O -V. Streptococcus mutans establishment and dental caries experience in children from 2 to 4 years old. Eur J Oral Sci. 1983;91(6):453–7.

Streptococcus mutans establishment and dental caries experience in children from 2 to 4 years old

SATU ALALUUSUA¹ AND OLLI-VEIKKO RENKONEN²

³Department of Pedadautics and Orthodontics, Institute of Dentistry and ³Department of Bacteriology and Immunology, University of Helsinki, Finland

Alaluusua S, Renkonen O-V: Streptococcus mutans establishment and dental caries experience in children from 2 to 4 years old. Scand J Dent Res 1983; 91: 453-7.

Abstract – 39 children were studied longitudinally at the age of 2, 3, and 4 yr for the colonization of S. mutans in plaque and saliva and for caries experience. S. mutans was found in 38% of the children, and the predominant scrotype group was c/c/f. A total of 16 children got caries before the age of 4. Children who harbored S. mutans in their plaque at the age of 2, appeared to be the most caries-active individuals. Their caries index values (number of decayed, missed and filled surfaces, dmfs = 10.6 ± 5.3) at the age of 4 differed significantly from the values of children who harbored S. mutans later (dmfs = 3.4 ± 1.8 , P < 0.005) or remained free from S. mutans inflection (dmfs = 0.3 ± 1.1 , P < 0.0003). It was thus concluded that the early establishment of S. mutans in the plaque of primary incisors indicated early and estensive caries attack in young primary dentition.

Key words: dental caries; Streptococcus mutans.

Satu Alaluusua, Department of Pedodontics and Orthodontics, Institute of Dentistry, University of Helsinki, Mannerheimintie 172, SF-00280 Helsinki 28, Finland.

Accepted for publication 12 June 1983.

Studies of Streptococcus mutans strongly suggest its active involvement in the initiation and progression of dental caries; the organism does not become established in the mouths of infants during the first year (1-8). There is a gradual increase in the isolation frequency of S. mutans with age and as the number of teeth and retentive sites on the tooth surfaces increases (4).

Subjects highly infected with S. mutans develop more caries than those with a low level of this organism (7, 9, 10). On the basis of the level of S. mutans infection cariessusceptible patients have been identified and selected for prophylactic and antimicrobial treatment (11–13). Since the oral microflora of infants and young children differs considerably from that of the older children or adults (2, 14), the infection levels of S. mutans indicating high caries risk in older children or adults may not be applicable to younger children.

A longitudinal study was therefore undertaken to evaluate the initial establishment, the isolation frequency and the changes in the proportion of S. mutans in plaque of 50. Zhu C, Yuan C, Ao S, Shi X, Chen F, Sun X, et al. The Predictive Potentiality of Salivary Microbiome for the Recurrence of Early Childhood Caries. Front Cell Infect Microbiol. 2018;8(December):423.

🔭 frontiers in Cellular and Infection Microbiology

The Predictive Potentiality of Salivary Microbiome for the Recurrence of Early Childhood Caries

Ce Zhu^{1†}, Chao Yuan^{1†}, Shuang Ao^{1‡}, Xlangru Shl¹, Feng Chen², Xlangyu Sun^{1*} and Shuguo Zheng^{1*}

Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory ter Digital and Matarial Tachnology of Stornatology, Balling Kay Laboratory of Digital Stornatology, Balling, China, ² Cantral Laboratory, National Engineering Laboratory for Digital and Matarial Technology of Stornatology, Balling Kay Laboratory of Digital Stomatology, Paking University School and Hospital of Stomatology, Baijing, China

OPEN ACCESS Edited by:

Georgios N. Bellbasakis, Karolinska Institutot (KI), Swoden Reviewed by:

J. Christopher Fanno, University of Michigan, United States Zonadn Liha, Zhajlang University, China

> Correspondence: Shuguo Zhang zhangsg86@gmail.com Xlangyu Sun allon627@163.com

[†]These authors have contributed equally to this work and share first

authorship [‡]Prosont Address

Shuang Ao, Department of Parlodontics, Wuhan First Stometological Hospital, Wuhan, China

Specialty section: This article was submitted to Microbiome in Health and Disease, a section of the journal **Ronters in Calutar and Infection** Microbiology

Received: 04 Sectomber 2018 Accepted: 20 November 2018 Published: 14 December 2018 Citation

Zhu C, Yuan C, Ao S, Shi XR, Chen F,

Sun XY and Zheng SG (2018) The Predictive Potentiality of Salivary Microbiome for the Recumance of Early Childhood Carilas. Ront Cal. Infact. Microbiol. 8-423. dbi: 10.3389/tbimb.2018.00423

The aim of this study was to investigate the variation of the salivary microbiota in the recurrence of early childhood caries (ECC), and to explore and verify the potential microbial indicators of ECC recurrence. Saliva samples from kindergarten children were tracked every 6 months for 1 year. Finally, in total 28 children and 84 samples were placed on the analysis phase: 7 children with ECC recurrence made up the ECC-recurrence (ER) group, 6 children without ECC recurrence constituted the non-ECC-recurrence (NER) group, and 15 children who kept ECC-free were set as the ECC-free (EF) group. DNA amplicons of the V3-V4 hypervariable region of the bacterial 16S rDNA were generated and sequencing was performed using Illumina MiSeg PE250 platform. No statistically significant differences of the Shannon indices were found in both cross-sectional and longitudinal comparisons. Furthermore, both principal coordinates analysis (PCoA) and heatmap plots demonstrated that the salivary microbial community structure might have potentiality to predict ECC recurrence at an early phase. The relative abundance of Fusobacterium, Prevotella, Leptotrichia, and Capnocytophaga differed significantly between the ER and NER groups at baseline. The values of area under the curve (AUC) of the four genera and their combined synthesis in the prediction for ECC recurrence were 0.857, 0.833, 0.786, 0.833, and 0.952, respectively. The relative abundance of Fusobacterium, Prevotella, Leptotrichia, and Capnocytophaga and their combination showed satisfactory accuracy in the prediction for ECC recurrence, indicating that salivary microbiome had predictive potentiality for recurrence of this disease. These findings might facilitate more effective strategy to be taken in the management of the recurrence of ECC.

Keywords: early childhood carles, recurrence, salivary microbiome, sequencing analysis, predictive potentiality

INTRODUCTION

Early childhood caries (ECC) is referred as "the presence of one or more decayed (non-cavitated or cavitated lesions), missing (due to caries), or filled tooth surfaces" in any primary tooth in a child aged 71 months or younger (Drury et al., 1999; Selwitz et al., 2007). ECC is the most common chronic childhood disease (Bagramian et al., 2009) which affects 23% of preschool children in the

Frontiers in Calular and Infaction Microbiology | www.hontiersin.org

December 2018 | Volume 8 | Article 423

 Moslemi M, Sattari M, Kooshki F, Fotuhi F, Modarresi N, Khalili Sadrabad Z, et al. Relationship of Salivary Lactoferrin and Lysozyme Concentrations with Early Childhood Caries. J Dent Res Dent Clin Dent Prospects. 2015;9(2):109–14.

Original Article

Relationship of Salivary Lactoferrin and Lysozyme Concentrations with Early Childhood Caries

Masoumeh Moslemi¹ • Mandana Sattari^a • Fahimeh Kooshki^a • Faezeh Fotuhi⁴ • Neda Modarresi⁸ • Zahra Khailii Sadrahad^a • Mohammad Saeid Shadkar⁷

¹Professor, Department of Padiatric Dentistry, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran ²Professor, Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran ⁴Astistum Professor, Department of Padiatric Dentistry, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran ⁴Astistum Professor, Department of Padiatric Dentistry, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran ⁴Padiadontist, Private Practice, Tehran, Iran ⁴Padadontist, Private Practice, Tehran, Iran ⁴Padadontist Student, Department Padiatric Dentistry, Faculty of Dentistry, Tahriz University of Medical Sciences, Tahriz, Iran ⁴Padadontist Student, Department Padiatric Tentistry, Faculty of Dentistry, Tahriz University of Medical Sciences, Tahriz, Iran ⁴Padadontist Student, Department Padiatric Tentistry, Tehran, Iran ⁴Corresponding Author; I-mail: askabilis@gmail.com

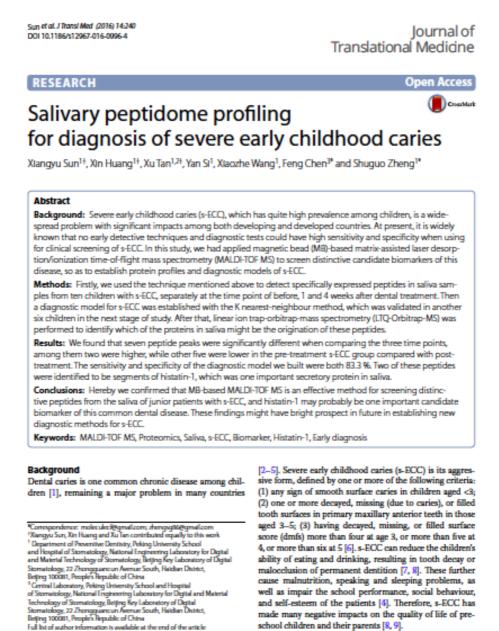
Received: 16 February 2014; Accepted: 14 March 2015 J Dent Res Dent Clin Dent Prospect 2015; 9(2):109-114 | doi: 10.15171/joddd.2015.022 This article is available from: http://dentistry.themed.ac.in/joddd

© 2015 The Authors; Tabriz University of Modical Sciences This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background and aims. Lysozyme and lactoferrin are salivary proteins which play an important role in innate defense mechanisms against bacteria. This study investigated the association of salivary hysozyme and lactoferrin concentrations with early childhood caries (ECC).

Materials and methods. This study was carried out on 42 healthy children (age range, 36 to 71 months), of whom 21 were caries free (CF) and 21 had ECC. Disposable needle-less syringes were used to collect unstimulated saliva from buccal and labial vestibules. Fifteen children who had ECC were treated completely and their saliva was collected in the same way for the second time, three months after treatment. Lysoryme and lactoferrin concentrations were measured and recorded by the ELISA method. The intergroup comparisons were carried out using chi-square, Student's *i*-test and Wilcoxon signed ranked test. A P-value less than 0.05 was considered as statistically significant.


Results. The mean concentration of hyporyme was significantly higher in CF group compared with that of ECC group (P = 0.04). Although the mean concentration of lactoferrin in ECC group was higher in comparison with ECC group, the difference was not statistically significant (P = 0.06). After dental treatment, the mean concentrations of hyporyme and lactoferrin did not change in comparison with their concentrations before treatment.

Conclusion. ECC may have a relationship with lower concentrations of unstimulated salivary lactoferrin and lysozyme and reduced amounts of these two salivary proteins may be a risk factor for dental caries in children.

Key words: Dental caries, lactoferrin, lysozyme, saliva.

JODDD, Vol. 9, No. 2 Spring 2015

52. Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, et al. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med. 2016;14(1):1-11.

n is available at the end of the article Full Int of author infe

© 2016 The Author(s). This article is chainfauled under the terms of the Creative Commons Attribution 4D International Learner (http://creativecommons.org/learner/bg/4D/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons Remue, and indicate if changes were made. The Creative Commons Yolds: Down in Declation water (http://creativecommons.org/ publicdomain/teros/1D/) applies to the data made available in this article, unless otherwise stated.

53. Sharma V, Gupta N, Srivastava N, Rana V, Chandna P, Yadav S, et al. Diagnostic potential of inflammatory biomarkers in early childhood caries - A case control study. Clin Chim Acta [Internet]. 2017;471(May):158-63. Available from: http://dx.doi.org/10.1016/j.cca.2017.05.037

	Clinics Chimics Acts	471 (2017) 158-163		
	Contents lists avail	able at ScienceDirect		
2 Ch	Clinica Ch	nimica Acta	ACTATE	
FISEVIER	journal homepage: www	w.else vier.com/locate/cca		
Diagnostic potential A case control study	of inflammatory bioma	arkers in early childhood caries -	CossMar	
		vek Rana", Preetika Chandna",		
• • • • •	ry, Subhari Denial College, Seami Virekanand S Medical Science, New Delhi, India	ubhart University, Mismut, Utter Pratesh, India		
A R T I C L E I N F O	ABSTRACT			
Kayword: Early childhood carles 11-6 11-8 TNP-0 Diagnostic marker Prognostic marker	dential carties has been limits remained unsexplored. Hence, with ECC to assess their pote Methods: 50 subjects were re- all subjects and collected ag:	Background: Barly Childhood Caries (ECC) is most common chronic infectious disease of childhood. Diagonis of dental caries has been limited to dinical, visual and adiographic methods but its inflammatory composes manined unexplored. Hence, this study a ims to evaluate salivery levels of inflammatory cytokines in childre with ECC to assess their pointuils as mon-invasive biomerises. Methods: 50 subjects were reactuited (25 ECC patients and 25 healthy children). Saliva see plea were taken fro all subjects and collected again from patients after subabilitative intervention. Levels of IL-6, IL-8 and TNF- were determined using ELSA. Cytokines level were statistically correlated with each other and with DMF sco		
	Results: Solivary levels of IL-6 after whabilitative interventi carles. These cytokines were o	138 TNF-a were significantly higher in patients which gots on. Levels of these cytokines were significantly associated wit merelating with each other slong with DMF score upon Spearm tivity and specificity of these cytokines for diagnosis in ECC •	th severity of dents an correlation. RO	
		tion of IL-6, IL-8 and TNF-a with optimum sensitivity and spe al non-invasive diagnostic/prognostic markers in HOC-	cificity might impl	
problem that affects infants and t presence of 1 or more decayed (s missing (due to can'es), or filled too child 71 months of age or younger. Severe EOC is expressed in lieu	of rampant cases in the presence of	The eticiogy of EOC is multificatorial, caused by ; microorganisms, carlogenic substrate diet (exposur carbohydante), and susceptible host (or tooth), whi When these 3 essential factors interact for a consideral an imbolance in the demineralization and seminer tooth surface and the adjacent plaque (biofilm) occur development of dental carles or EOC. Studies have suggested that the prevalence of EOC	re to fermentable ich forms a triad ble period of time al ization between rs, resulting in the 2 among preschoo	
3 years	h surface in children younger than	children is very evident with a percentage of 67.3%. a need for preventive and curative oral health progr [3,4]. Diagnosis of dental caries has always been limited and/or adiographic methods but its inflammator	rams for the sam I to clinical, visua	
 From ages three through five, one or more cavitated, missing (due to caries), or filled smooth surfaces in primary maxill ary anterior teeth 		mained an unexplored frontier, which is an authen		

or a decayed, missing, or filled score of greater than or equal to four (age 3), greater than or equal to five (age 4), or greater than or equal to six (age 5) surfaces [2].

• Corresponding author. E-m dl addres o vrinda 1310@ gnail.com (V. Sharma).

h mp://dx.doi.org/10.1016/j.cra.2017.05.037 Reseived 21 February 2017; Reseived in revised form 13 May 2017; Accepted 31 May 2017 Available cellular 0.1 June 2017 0009-0981/ © 2017 Elsevier B.V. All rights reserved.

diagnosis at molecular level. Destal caries or trauma can result in an inflammatory response in the dental pulp, characterized by the accu-mulation of inflammatory cells leading to the release of host

54. Dos Santos Letieri A, Freitas-Fernandes LB, Valente APC, Da Silva Fidalgo TK, De Souza IPR. Longitudinal evaluation of salivary IgA-S in children with early childhood caries before and after restorative treatment. J Clin Pediatr Dent. 2019;43(4):239-43.

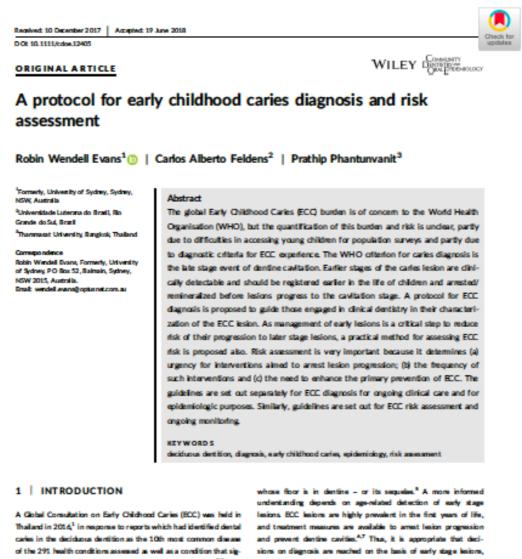
Longitudinal Evaluation of Salivary Iga-S in Children with Early Childhood Caries

Longitudinal Evaluation of Salivary Iga-S in Children with Early Childhood Caries Before and After Restorative Treatment

Aline dos Santos Letieri*/Liana Bastos Freitas-Fernandes **/Ana Paula Canedo Valente ***/ Tatiana Kelly da Silva Fidalgo ****/Ivete Pomarico Ribeiro de Souza*****

Background: Our aim was to compare salivary levels of secretory immunoglobulin A (s-IgA) in children with early childhood caries (ECCG) and those who are caries-free (CFG) and verify these levels in a follow-up period after restorative treatment. Materials and methods: We selected 46 systemically healthy children in the complete primary dentition period, who were allocated into two groups: CFG (n = 23) and ECCG ($dm^{2}s > 0$; n = 23). Unstimulated whole saliva was obtained at baseline from both groups and during the follow-up period (7 days, 1, 2 and 3 months) in the ECCG group. The s-IgA was measured using an ELISA assay, and total protein was assessed using the Bradford method. We also evaluated the flow rate (mL/min), Streptococcus mutans and Lactobacillus spp. counting using selective media plaques. The data were submitted to statistical analysis using the software SPSS 20.0 (SPSS Inc, IL, USA) with a confidence interval set at 95%. Results: Salivary 5-IgA levels were higher in baseline of ECCG than in CFG (p<0.05). No statistically significant differences were observed between s-IgA salivary levels at baseline and the evaluations after dental treatment in ECCG (p>0.05). However, we observed two different changes in s-IgA levels among participants: one group presented 5-IgA reduction, and the other group demonstrated its maintenance. It was shown that patients from the ECCG group who presented a reduction in s-IgA levels during follow-up also showed a decrease in Streptococcus mutans and Lactobacillus spp. count (p<0.05), in contrast to pa who did not present this reduction. The flow rate and total protein were similar between groups (p>0.05). Conclusions: The present data support the idea that children with early childhood caries present higher levels of s-IgA in saliva than caries-free children. The restorative dental treatment does not have a significant influence on salivary levels of this immunoglobulin during the follow-up period.

Keywords: Saliva; Dental Caries; Immunoglobulin A; Child, Preschool; Streptococcus mutans; Lactobacillus spp.


- ****Tatiana Caneto varene, "reatonai Center to vuccear magnetic reso
 ance, Medical Biochemistry, Universidade Federal do Rio de Janeiro
 ****Tatiana Kelly da Silva Fidalgo, Department of Preventive and Commu mity Dentistry, Universidade do Estado do Rio de Janeiro
 ****Tvete Pomarico Ribeiro de Souza, Department of Pediatric Dentistry
 Centro Nacional de Ressonância Mag
- and Orthodontics, School of Dentistry, Universidade Federal do Rio

 *Aline dos Santos Letieri, Department of Pediatric Dentistry and Ornnouon-tics, School of Dentistry, Universidade Federal do Rio de Janeiro.
 **Liana Bastos Freitas-Fernandes, Department of Pediatric Dentistry and Onthodontics, School of Dentistry, Universidade Federal do Rio de Boulevand Vinte e Oito de Setenibro, 157 Centro Nacional de Ressonância Magnética Nuclear Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Rio de Janeiro/RJ, Brazil 21941-902 Phone. +55 21 3104-2326/ E-mail: valente@cnrmn.biogmed.ufrj.br

The Journal of Clinical Pediatric Dentistry Volume 43, Number 4/2019

dol 10.17796/1053-4625-43.4.3 239

55. Evans RW, Feldens CA, Phantunvanit P. A protocol for early childhood caries diagnosis and risk assessment. Community Dent Oral Epidemiol. 2018;46(5):518–25.

of the 2V1 health conditions assessed as well as a condition that significantly affects quality of life of children and their families.^{2,3} ECC experience is defined as the presence of one or more decayed (noncavitated or cavitated leaions), missing (due to caries) or filed tooth surfaces in any primary tooth in a child aged 71 months or younger.⁴

At the consultation, it was noted that the understanding of ECC is hindened by a lack of epidemiologic data and by variation in the diagnostic oriteria used for ECC. The WHO standard for caries diagnosis is highly conservative in that the condition is confirmed following the detection of the late stage caries lesion – a cavity

whose floor is in dentine - or its sequeles." A more informed undentanding depends on age-related detection of early stage lesions. ECC lesions are highly prevalent in the first years of life, and treatment measures are available to arrest lesion progression and prevent dentine cavities.^{4,7} Thus, it is appropriate that decisions on diagnosis are reached on the basis of early stage lesions, so that they can be treated noninvasively and that the key risk factors which maintain the disease process can be controlled. Moreover, personalized care and public policies may benefit from ECC risk assessment, which indicates the likelihood an individual will develop new lesions in the near future. Risk assessment tools should be used to assist clinicians when they consider ECC treatment options and recall schedules.⁸ Additionally, they can be used to identify common risk factors with other conditions, to inform dental public health strategies and health education and to direct the allocation of resources.⁷

Community Dent Ord Epidemid. 2018;1-8.	
--	--

w leyoninelbrary.com/journal/cdse

© 2018 John Wiley & Sons A.S. 1 Published by John Wiley & Sons Ltd Figure 1. Aagaard K, Luna RA, Versalovic J. The Human Microbiome of Local Body Sites and Their Unique Biology [Internet]. Eighth Edi. Vol. 1, Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier Inc.; 2014. 11–18 p. Available from: http://dx.doi.org/10.1016/B978-1-4557-4801-3.00002-3

Figure 2. Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1–16.

Figure 3. Tomasello G, Mazzola M, Leone A, Sinagra E, Zummo G, Farina F, et al. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap. 2016;160(4):461–6.

Figure 4. Ahsan H. Biomolecules and biomarkers in oral cavity: bioassays and immunopathology. JImmunoassImmunochem[Internet].2019;40(1):52–69.Availablefrom:https://doi.org/10.1080/15321819.2018.1550423

Figure 5. Corby PM, Lyons-Weiler J, Bretz WA, Hart TC, Aas JA, Boumenna T, et al. Microbial risk indicators of early childhood caries. J Clin Microbiol. 2005;43(11):5753–9.

Figure 6. Young DA, Nový BB, Zeller GG, Hale R, Hart TC, Truelove EL, et al. The american dental association caries classification system for clinical practice: A report of the american dental association council on scientific affairs. J Am Dent Assoc. 2015;146(2):79–86.

Figure 7. Evans RW, Feldens CA, Phantunvanit P. A protocol for early childhood caries diagnosis and risk assessment. Community Dent Oral Epidemiol. 2018;46(5):518–25.

Figure 8. Caufield PW, Li Y, Bromage TG. Hypoplasia-associated severe early childhood caries-a proposed definition. J Dent Res. 2012;91(6):544–50.

Figure 9. Tinanoff N, Baez RJ, Diaz Guillory C, Donly KJ, Feldens CA, McGrath C, et al. Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: Global perspective. Int J Paediatr Dent. 2019;29(3):238–48.

Figure 10. S Kuriakose, C Sundaresan, V Mathai, E Khosla FG. A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant caries and caries-resistant children. 2013;

Figure 11. Hart TC, Corby PM, Hauskrecht M, Hee Ryu O, Pelikan R, Valko M, et al. Identification of microbial and proteomic biomarkers in early childhood cCaries. Int J Dent. 2011;2011.

Figure 12. ALALUUSUA S, RENKONEN O -V. Streptococcus mutans establishment and dental caries experience in children from 2 to 4 years old. Eur J Oral Sci. 1983;91(6):453–7.

Figure 13. Zhu C, Yuan C, Ao S, Shi X, Chen F, Sun X, et al. The Predictive Potentiality of Salivary Microbiome for the Recurrence of Early Childhood Caries. Front Cell Infect Microbiol. 2018;8(December):423.

Figure 14 to Figure 17: Moslemi M, Sattari M, Kooshki F, Fotuhi F, Modarresi N, Khalili Sadrabad Z, et al. Relationship of Salivary Lactoferrin and Lysozyme Concentrations with Early Childhood Caries. J Dent Res Dent Clin Dent Prospects. 2015;9(2):109–14. Figure 18. Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, et al. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med. 2016;14(1):1–11.

Figure 19. Sharma V, Gupta N, Srivastava N, Rana V, Chandna P, Yadav S, et al. Diagnostic potential of inflammatory biomarkers in early childhood caries - A case control study. Clin Chim Acta [Internet]. 2017;471(May):158–63. Available from: http://dx.doi.org/10.1016/j.cca.2017.05.037

Figure 20. Dos Santos Letieri A, Freitas-Fernandes LB, Valente APC, Da Silva Fidalgo TK, De Souza IPR. Longitudinal evaluation of salivary IgA-S in children with early childhood caries before and after restorative treatment. J Clin Pediatr Dent. 2019;43(4):239–43.

Table 1. Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci [Internet]. 2017;9(11):e1. Available from: http://dx.doi.org/10.1038/ijos.2017.35

Table 2. Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health [Internet]. 2015;15(1):S3. Available from: http://www.biomedcentral.com/1472-6831/15/S1/S3

Table 3. Abbas MJ, Al-Hadithi HK, Mahmood MA, Hussein HM. Comparison of some salivary characteristics in iraqi children with early childhood caries (Ecc) and children without early childhood caries. Clin Cosmet Investig Dent. 2020;12:541–50.