

"MUTACIONES GENÉTICAS Y OBESIDAD POLIGÉNICA: ABORDAJE NUTRICIONAL"

"GENETIC MUTATIONS AND POLYGENIC OBESITY: NUTRITIONAL APPROACH"

TRABAJO DE FIN DE GRADO NUTRICIÓN HUMANA Y DIETÉTICA

Autor: Marta López Fernández

Tutor: Dra. Clara Colina Coca

Curso: 2021/2022

AGRADECIMIENTOS

Quisiera dedicar unas líneas a todas aquellas personas que de una u otra forma han estado conmigo, para agradecerles su esfuerzo, apoyo y colaboración.

En primer lugar, quisiera agradecer a mi tutora, la Prof. Dra. Clara Colina Coca por su paciencia, comprensión, consejos y profesionalidad. Su tutorización ha hecho posible este trabajo. También, transmitir mi agradecimiento a la coordinadora del TFG, la Prof. Dra. Esmeralda Parra Peralbo. Sin sus enseñanzas tampoco habría sido posible.

A la Universidad Europea de Madrid por toda la formación que he recibido. A todo el personal: profesorado, administración y dirección, por apoyarme y ayudarme siempre que lo he necesitado.

Por otro lado, quisiera agradecer a la Dirección de la Farmacia Rosa Fernández Vegas por haberme permitido compaginar el mundo laboral con mi formación durante el Grado en Nutrición Humana y Dietética.

A mi gran amigo, el Dr. José Abad, por sus recomendaciones, orientación y comentarios que han enriquecido sustancialmente el presente trabajo, sin tu ayuda nada hubiera sido posible.

A mis padres, hermanos, pareja y amigos, por estar siempre a mi lado y por su apoyo incondicional durante la realización de este trabajo y toda la carrera universitaria, y en especial a mi hermana María y a mi madre. Sin vosotras no hubiera sido posible disponer del tiempo suficiente para el desarrollo de este TFG.

ÍNDICE

1.	Introducción8
2.	Objetivos12
	2.1 Pregunta PICO
	2.2 Objetivos
3.	Metodología14
	3.1 Diseño del estudio
	3.2 Muestra y tipo de documentos
	3.3 Definición de búsqueda bibliográfica15
	3.4Estrategia de búsqueda global20
4.	Resultados
5.	Discusión
	5.1 Nuevos biomarcadores predictivos de obesidad poligénica
	5.2Estrategias nutricionales
	5.3Limitaciones
6.	Conclusiones
	6.1 Conclusiones
	6.2 Futuras líneas de investigación
	6.3Reflexión personal29
7.	Anexos
	Anexo 1
	Anexo 2

ÍNDICE ABREVIATURAS

- ADCY3: Adenilato ciclasa 3
- ADN: Ácido desoxirribonucleico
- ADIPOQ: Adiponectina
- ADRB2: Receptor adrenérgico β-2
- ARN: Ácido ribonucleico
- BDNF: Factor neurotrófico derivado del cerebro
- CASPE: Programa de habilidades en lectura crítica en español
- CB2R: Receptor cannabinoide tipo 2
- COVID-19: Síndrome respiratorio agudo producido por el coronavirus SARS-COV-2
- CpG: Regiones de ADN promotoras de genes
- DEXA: Absorciometría de rayos X de energía dual
- DHA: Ácido graso poliinsaturado esencial docosahexanoico
- EPA: Ácido graso poliinsaturado esencial eicosapentanoico
- FTO: Gen asociado a la masa grasa y la obesidad
- G: Lípidos o grasas
- GPCR: Receptor acoplado a proteína G
- HC: Hidratos de carbono
- HDL: Lipoproteina de alta densidad
- Hipcref: Patrón dietético hipocalórico e hiperproteico
- HOMAIR: Ínidice de resistencia a la insulina
- IRX₃: Gen consistente en un factor de transcripción asociado a la obesidad
- IMC: Índice de masa corporal
- LDL: Lipoproteína de baja densidad
- · LEP: Leptina
- LEPR: Receptor de leptina
- LF: Patrón dietético hipograso
- MC4R: Receptor melanocortina 4
- MET: Equivalentes metabólicos
- MHP: Patrón dietético moderadamente alto en proteínas
- microARNs o miRNAs: pequeña molécula no codificante de ácido ribonucleico
- MTHFR: Metilenetetrahidrofolato reductasa
- NEGR1: Regulador del crecimiento neuronal
- NETRIN-1: Receptor de netrina
- P: Proteínas
- POMC: Propiomelanocortina
- pQTL: Locus de rangos cuantitativos de proteínas
- PRS: Puntajes de riesgo poligénico
- PUFA: Ácidos grasos poliinsaturados de cadena larga

- SNP: Polimorfismos de un solo nucleótido
- TCF7L2: Factor de transcripción 7
- TNF: Factor de necrosis tumoral
- TrkB: Receptor de tirosina-kinasa tipo B o tropomiosina-kinasa
- **℧-3**: Ácido graso poliinsaturado de cadena larga omega 3

RESUMEN

Introducción: La obesidad podría afectar hasta un billón de personas en el año 2025. Este

aumento de la prevalencia está influenciado tanto por factores ambientales que promueven la

alimentación insana y la ganancia de peso, como por factores genéticos, cuya heredabilidad

ronda entre el 40-70 %.

Objetivos: El objetivo principal es determinar si una intervención nutricional mejora la

prevención, el pronóstico y la calidad de vida de los pacientes diagnosticados o con propensión

hacia la obesidad poligénica.

Metodología: Revisión bibliográfica a partir de 20 estudios primarios. Se seleccionaron

estudios clínicos y randomizados de los últimos 10 años, en inglés y español, en las bases de

datos Pubmed y The Cochrane Library.

Resultados y discusión: Se observan múltiples genes implicados en la obesidad, presentando

mecanismos de acción muy variados que dificultan la determinación de una terapia nutricional

óptima. Los principales genes analizados fueron: FTO, IRX3, ADCY3, ADRB2, LEPR y MC4R.

Se prueban diferentes tipos de intervenciones dietéticas, comparándose los efectos logrados

entre los individuos obesos portadores y no portadores de los genes.

Conclusiones: Las intervenciones nutricionales en pacientes con obesidad poligénica suelen

producir una mejora de los parámetros bioquímicos y antropométricos. No se han encontrado

estrategias nutricionales concretas para su tratamiento, aunque la dieta hipocalórica e

hipograsa y la Hipcref se han mostrado exitosas. Se necesitan más estudios para establecer un

patrón dietético concreto. Nuevos biomarcadores predictivos de obesidad poligénica permiten

predecir su riesgo y la eficacia de las intervenciones nutricionales.

Palabras clave: mutación; genética; genes; terapia nutricional; obesidad poligénica; obesidad.

6

ABSTRACT

Introduction: The obesity rate could harm up to one billion people in 2025. The increase in

prevalence is influenced both by environmental factors that promote unhealthy eating and

weight gain, as well as by an important genetic component, whose heritability is around

40-70 %.

Objectives: The main objective of this literature review is to determine if a nutritional

intervention improves the prevention, prognosis, and quality of life of patients diagnosed with or

prone to polygenic obesity.

Methodology: Bibliographic review, based on 20 primary studies. Clinical studies and

randomized studies of the last 10 years in English and Spanish have been selected in Pubmed

and The Cochrane Library databases.

Results and discussion: Multiple genes involved in obesity have been observed, presenting

very varied mechanisms of action that make it difficult to determine an optimal nutritional

therapy. The main genes analyzed were: FTO, IRX3, ADCY3, ADRB2, LEPR and MC4R.

Different types of dietary interventions have been tested, comparing the effects achieved

between carrier and non-carrier obese individuals.

Conclusions: Nutritional interventions in patients with polygenic obesity generally produce an

improvement in both biochemical and anthropometric parameters. Non specific nutritional

strategies have been found for its treatment, although the low-fat hypocaloric diet and Hipcref

have been successful. More studies are needed to establish a recommended dietary profile.

New predictive biomarkers of polygenic obesity allow for predicting its risk, as well as the

efficacy of nutritional interventions.

Keywords: mutation; genetics; genes; diet therapy; polygenic obesity; obesity.

7

1. Introducción

La obesidad constituye en la actualidad una de las principales causas de muerte prematura y supone una importante amenaza para la salud pública, ya que se encuentra asociada al desarrollo de múltiples patologías tales como las enfermedades cardiovasculares, la diabetes tipo 2, la hipertensión, algunos tipos de cánceres, etc., e incluso puede constituir un factor agravante de otras enfermedades en sí mismas, tal y como ha ocurrido recientemente con los pacientes diagnosticados de COVID-19, cuyo pronóstico se ha podido ver empeorado por el simple hecho de presentar obesidad⁽¹⁾.

A lo largo de las casi últimas cinco décadas, la tasa de obesidad entre la población mundial se ha triplicado, llegando a afectar a 671 millones de personas, y de continuar esta tendencia, podría llegar a perjudicar hasta un billón de personas en el año 2025, lo cual supondría el 20 % de la población mundial. Este aumento de la prevalencia no sólo es debido a factores ambientales y cambios que se producen en el entorno del individuo y que promueven esa alimentación insana y la consecuente ganancia de peso, sino que también se encuentra influenciada por un importante componente genético, cuya heredabilidad ronda entre el 40 y el 70 %, siendo el responsable de la respuesta de los individuos a ese entorno obesogénico⁽¹⁾.

La obesidad es considerada una enfermedad crónica y progresiva, caracterizada por una acumulación excesiva de tejido adiposo que conduce hacia un mayor riesgo tanto de mortalidad como de padecer otras patologías asociadas⁽²⁾. Existen diferentes tipos de obesidad, ya que bajo esta definición se engloban diversas etiologías y, en consecuencia, patologías diferentes, tales como alteraciones genéticas, endocrinológicas o sindrómicas subyacentes⁽²⁾. De esta forma, se pueden considerar varios tipos de obesidad: obesidad poligénica, también denominada comúno exógena; obesidad monogénica, que a su vez puede clasificarse en tres grandes grupos: la asociada a genes del eje leptina-melanocortina, la relacionada con genes asociados al desarrollo del hipotálamo, y la obesidad monogénica asociada a síndromes polimalformativos; y obesidad secundaria⁽²⁾.

La obesidad poligénica, también denominada obesidad común, se define como una forma multifactorial de obesidad, resultante de la interacción entre el entorno obesogénico (aquel que promueve la ganancia de peso) y las variantes genéticas implicadas⁽¹⁾. Bien es sabido que los factores ambientales que promueven dicha obesidad no son los causantes principales de la misma, sino que tan sólo favorecen la expresión de los fenotipos de riesgo en aquellos individuos que sean susceptibles, siendo dicha propensión el desencadenante fundamental.

Además, también parece probado que la influencia del ambiente obesogénico varía a lo largo de las diferentes etapas de la vida de un individuo, ejerciendo su mayor influencia hasta el inicio de la adolescencia⁽³⁾.

Los genes se definen como las unidades básicas de la herencia, que se transmiten de padres a hijos, y que contienen la información necesaria para determinar una característica física concreta o una función biológica⁽⁴⁾. Se encuentran constituidos por secuencias de ADN, y se localizan en los cromosomas del núcleo celular⁽⁵⁾. Los cromosomas son estructuras constituidas por proteínas y ADN, se localizan en el núcleo de la célula y albergan la información genética de las mismas⁽⁶⁾. Algunos de los genes contienen información vinculada con la regulación del peso corporal y la acumulación de tejido adiposo, habiéndose identificado hasta 50 zonas concretas de los genes (loci genéticos) asociadas con ello, que explicarían las formas poligénicas de obesidad⁽³⁾.

Han sido muchos los genes estudiados para determinar su posible relación con el desarrollo de la obesidad. Sin embargo, a día de hoy, existe una importante evidencia científica que demostraría que las variantes en al menos diez genes⁽⁷⁾, la mayoría de ellos implicados en la vía de señalización de la leptina-melonocortina y de la TrkB-BDNF⁽¹⁾, serían los responsables del desarrollo de este tipo de obesidad junto con el ambiente obesogénico que rodea al individuo. De esta forma, se pone de manifiesto la función clave de las variantes genéticas en la estructura y funcionamiento tanto del cerebro como del sistema nervioso central a la hora de regular el peso corporal. Así mismo, se ha puesto de manifiesto que tanto la dieta como la obesidad son capaces de alterar la vía de la señalización de la dopamina. Dicha vía es la responsable del equilibrio energético, puesto que relaciona las señales metabólicas con las perceptivas, las cognitivas y las del apetito, induciendo así al individuo a alimentarse. Por ello, una alteración de esta vía de señalización puede conducir a una alimentación compulsiva y, por tanto, al desarrollo de obesidad y alteraciones neurocognitivas⁽⁸⁾.

A lo largo de la década de los 90, es decir, de manera relativamente reciente para la ciencia actual, comenzaron a realizarse numerosos estudios de genómica nutricional, con el fin de poder explicar tanto la relación existente entre la alimentación seguida por un individuo y sus genes, como la influencia de ésta en los distintos fenotipos de salud-obesidad. En este sentido, surgen tres nuevos conceptos: la nutrigenética, que consiste en analizar estadísticamente las diferentes respuestas que pueden tener los individuos a las dietas dependiendo de su genotipo, partiendo siempre de estudios epidemiológicos; la nutrigenómica, que se encarga de estudiar las bases moleculares que provocan los efectos nutrigenéticos en los individuos; y la nutrición de precisión, que trata de adaptar las dietas a las características propias de cada individuo, con el finde lograr el mejor patrón nutricional para la prevención o tratamiento de la patología que afecta al individuo⁽⁹⁾.

Por todo ello, el abordaje nutricional en los pacientes con obesidad poligénica podría resultar esencial para su tratamiento. Conocer la correcta adaptación a la dieta y a los recursos a su alcance, les ayudaría a reducir las enfermedades asociadas y lograr así una mejor calidad de vida.

Tal y como se ha comentado anteriormente, la nutrición de precisión, la nutrigenética y la nutrigenómica son ciencias de reciente estudio, por lo que en la actualidad existen numerosas brechas de conocimiento por las que se puede ver influido el contenido del presente trabajo. En una primera aproximación al tema a tratar, se ha visto que, en general, todos los estudios desarrollados hasta el momento presentan un nivel de reproducibilidad bajo y, por tanto, una evidencia insuficiente para poderlo aplicar a nivel práctico. Esto es así, dado que los estudios suelen presentar una gran heterogeneidad tanto a nivel epidemiológico como a nivel poblacional. Además, existe una falta de estandarización en cuanto a los criterios que deben tenerse en cuenta a la hora de desarrollar un estudio o ensayo clínico de genómica nutricional, pues existen numerosas variables tales como el nivel socioeconómico del individuo, los factores que condicionan el patrón dietético del mismo (número de comidas, técnicas culinarias empleadas, duración de cada comida, componentes no nutritivos que hayan podido ingerirse, etc...), y la existencia de diversos factores de riesgo (consumo de tabaco, drogas o alcohol, polimedicación, inactividad física, etc...), que pueden condicionar el estilo de vida del individuo, y con ello agudizar la presencia de obesidad, además de la influencia del componente genético. También debería estipularse el tamaño aproximado de muestra a analizar, de manera que los resultados pudiesen hacerse más extensibles a la población general y no sólo a la población obieto de estudio⁽⁹⁾.

Por otro lado, bien es sabido que la relación existente entre la genética y la obesidad es un hecho de reciente studio, por lo que es muy posible que no se conozcan todos los factores genéticos implicados en la obesidad, ni tampoco la interacción de los nutrientes con ellos. Además, existen numerosos condicionantes ambientales capaces no sólo de modular el planteamiento dietético del individuo, sino incluso la propia expresión de sus genes, y que, por tanto, deberán ser tenidos en cuenta en los estudios clínicos desarrollados en este ámbito. Así mismo, y con el fin de evitar otro posible sesgo, también sería de gran importancia valorar el grado de adherencia y cumplimiento de la intervención nutricional de la forma más estricta posible, ya que pueden condicionar la eficacia y reproducibilidad de ésta. Tan es así, que ya existen ciertos estudios que evidencian que concretamente una mayor adherencia a la dieta mediterránea puede llegar a contrarrestar esa mayor predisposición genética, por ser portador del fenotipo de riesgo de una determinada enfermedad, entre ellas, de la obesidad⁽⁹⁾.

En definitiva, son aún necesarios un mayor número de estudios en el ámbito de la nutrigenética y la nutrigenómica, para conseguir que los resultados puedan ser reproducibles a nivel de la nutrición de precisión, y extensibles a la población general, por considerar los factores anteriormente mencionados, además de los ya examinados. Por otro lado, parece que la personalización de los tratamientos dietéticos podría resultar más efectiva si se llevasen a cabo estudios en los que se analizase la relación entre la percepción genética del sabor y las técnicas culinarias capaces de potenciar al máximo el mismo.

Esto es así, ya que, de esta forma, se lograría un mayor placer y disfrute de la comida en las personas que tengan que ser sometidas a determinadas dietas debido a sus particularidades genéticas⁽⁹⁾ y, con ello, se alcanzaría una mayor probabilidad de éxito y adherencia a la dieta a largo plazo, en caso de que el tratamiento funcione.

En este contexto han surgido nuevos ámbitos de conocimiento que se presentan como nuevas estrategias en el abordaje terapéutico de este tipo de obesidad. En general, la obesidad se asocia con un estado de inflamación sistémica crónica debido a una alteración tanto en el proceso de regulación de las adipocinas, citocinas y quimiocinas, como en la composición y distribución de las células del sistema inmunitario y de la microbiota intestinal.

En los seres humanos sanos, la flora intestinal se caracteriza por ser muy diversa, estando constituida fundamentalmente por bacterias de cinco filos bacterianos diferentes (*Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria y Verrumicrobia*). Dichos microorganismos son responsables tanto de la formación del moco intestinal como del metabolismo de las proteínas, los polifenoles, los ácidos biliares y las vitaminas. Así mismo, se encargan también de la transformación de los hidratos de carbono complejos en monosacáridos, y de la asimilación de los ácidos grasos de cadena corta y de los gases generados durante el proceso metabólico. Sin embargo, los individuos obesos presentan una flora intestinal mucho menos diversa, con una menor proporción de *Bacteroidetes* frente a las bacterias del filo *Firmicutes*. Esto podría explicar queen ellos exista un mayor aprovechamiento de los nutrientes de la dieta y, con ello, una mayor tendencia a la ganancia de peso.

En este sentido, un reciente estudio desarrollado por Lorenzo et al. (2020) ha evidenciado que aquellos pacientes obesos que son sometidos a una dieta de restricción calórica que siga el patrón de dieta mediterránea, junto con un estilo de vida saludable, incluyendo la práctica de ejercicio físico, y probióticos constituidos, entre otras, a base de cepas antiobesogénicas tales como *Bifidobacterium spp, Akkermansia spp y Prevotella spp*, consiguen tanto una pérdida de peso de hasta más de 4 kg en dos meses y medio, como una mejora del perfil lipídico, glucémico y de la microbiota intestinal, frente a aquellos obesos que sólo reciben tratamiento dietoterápico. De esta forma, se abre un nuevo campo de investigación en el ámbito del abordaje nutricional y la prevención terapéutica de la obesidad⁽¹⁰⁾.

Para el desarrollo de la presente revisión bibliográfica se ha llevado a cabo una introducción con un marco referencial, que relaciona los aspectos más relevantes del tema a tratar, los probables vacíos de conocimiento existentes en la actualidad y las posibles nuevas líneas de investigación que están surgiendo en torno a ello. A continuación, se ha diseñado una pregunta investigable y se han establecido en base a ella una serie de objetivos, incluyendo tanto los generales como los específicos. Por otra parte, se presentaron los resultados mediante dos cuadros, uno de ellos reflejando la estrategia de búsqueda utilizada, y el otro recogiendo una síntesis de los principales artículos encontrados en la búsqueda. Finalmente, los resultados han sido sometidos a discusión para la obtención de las conclusiones de este trabajo.

2. Objetivos

2.1 Pregunta PICO

A continuación, se realiza la descripción de la pregunta Pico en sus diferentes áreas:

Paciente	Pacientes diagnosticados de obesidad poligénica o con mayor propensión genética a desarrollarla.
Intervención	Abordaje nutricional: adecuación de la dieta a las características del paciente, proporcionando una adecuada educación nutricional y una atención sanitaria al mismo.
Comparación	Pacientes que se someten a un abordaje nutricional en comparación con pacientes que no reciben un tratamiento nutricional sino únicamente un tratamiento farmacológico correspondiente a sus patologías asociadas, si las hubiese.
Outcomes	Mejora de la adherencia a la dieta a largo plazo y, por tanto, de su calidad de vida.
Pregunta	Intervención/Eficacia.
Estudio	Estudios clínicos, estudios randomizados controlados.

Tabla 1: definición de la pregunta PICO (Fuente: elaboración propia).

Pregunta de investigación:

¿Una intervención mediante abordaje nutricional sobre pacientes diagnosticados o con propensión genética a la obesidad poligénica mejora la prevención, el pronóstico y la calidad de vida en comparación con aquellos pacientes diagnosticados o con propensión que no son tratados anivel nutricional, sino que únicamente reciben el tratamiento farmacológico acorde a sus patologías asociadas, si las hubiera?

2.2 Objetivos

Objetivo general:

 Determinar si una intervención nutricional mejora la prevención, el pronóstico y la calidad de vida de los pacientes diagnosticados o con propensión hacia la obesidad poligénica.

Objetivos específicos:

- Identificar estrategias nutricionales concretas para el tratamiento de la obesidad poligénica en pacientes diagnosticados.
- Describir un abordaje nutricional óptimo para ayudar a prevenir la propensión genética a la obesidad poligénica en pacientes con mayor predisposición a desarrollarla.
- Describir los genes, hasta ahora descubiertos, que resultan más influyentes en la obesidad poligénica.

3. Metodología

3.1 Diseño del estudio

El presente trabajo ha consistido en el desarrollo de una revisión bibliográfica, a partir de estudios primarios, con el fin de recopilar la información más relevante y actualizada en relacióncon la eficacia de las intervenciones nutricionales en la prevención y tratamiento de los pacientes con propensión genética a la obesidad. Se utilizaron principalmente las bases de datos Pubmed y The Cochrane Library. De forma adicional, se consultó Dialnet and WILEY Online Library para la confección de la introducción del trabajo.

3.2 Muestra y tipo de documentos

Criterios de inclusión y exclusión de los artículos en la búsqueda

Los criterios empleados para seleccionar los artículos que van a ser utilizados en la elaboración de este trabajo han sido:

- Tipo de estudio: solamente se han incluido estudios clínicos y estudios randomizados controlados.
- Año de publicación: se han tenido en cuenta únicamente los artículos publicados entre enero del año 2012 y enero del año 2022, es decir, los publicados en los últimos 10 años.
- Contenido: se consideraron únicamente los artículos que respondían tanto a la pregunta de investigación como al objetivo general y los objetivos específicos de este trabajo. Además, dentro de ellos, tan sólo se han incluido aquellos de los que se disponía del artículo completo de acceso libre.
- Idioma: se han englobado únicamente los artículos escritos en inglés y español.
- Sólo se han incluído aquellos artículos que cumplían con las consideraciones éticas básicas.

Por el contrario, los criterios considerados para excluir los artículos que no debían ser incorporados en esta búsqueda bibliográfica han sido:

- Tipo de estudio: se descartaron las revisiones sistemáticas, los artículos y los metanálisis.
- Año de publicación: se excluyeron aquellos artículos que hubiesen sido publicados antes de enero de 2012.
- Contenido: no se consideraron aquellos artículos cuyo contenido no daba respuesta ni a la pregunta de investigación ni a los objetivos de esta revisión bibliográfica, ni tampoco aquellos que no dispusiesen de texto complete de acceso libre.
- Se descartaron aquellos artículos duplicados.

3.3 Definición de búsqueda bibliográfica

Selección de términos documentales

Se realizaron varias búsquedas en la base de datos Pubmed utilizando lenguaje libre. Enellas se incluyeron palabras clave tales como "Mutation", "Genetics", "Alleles", "Genes", "Diet therapy", "Nutrition Therapy", "Polygenic Obesity", "Obesity", "Leptin", "Leptin-melanocortin pathway", "MC4R", "FTO" y "LEPR" y como operadores booleanos se utilizaron AND y OR. También se realizó la consulta con tesauros MesH aunque se decidió mantener los términos de búsqueda libre por quedar la misma muy delimitada.

Además, se llevó a cabo una búsqueda en la base de datos Cochrane, utilizando de nuevo lenguaje libre e incluyendo para ello palabras clave como "Nutrition therapy", "Diet therapy", "Polygenic Obesity", "Obesity", "Mutation", "Genetics", "Alleles", "Genes", "Leptin", "MC4R", "FTO" y "LEPR", y operadores boleanos como AND y OR.

Base de datos	Palabras clave	Operadores boleanos	Resultados totales (nº)	Resultados lectura del resumen (nº)	Resultados tras lectura crítica (finales) (nº)
Pubmed	Mutation AND (polygenic obesity OR obesity)	AND/OR	(27, 10 años estudios clíni- cos, estudios randomizados)	12	5
Pubmed	Genetics AND polygenic obesity	AND	(4, 10 años es- tudios clínicos, estudios ran- domizados)	4	4
Pubmed	Alleles AND (polygenic obesity OR obesity)	AND/OR	(70, 10 años estudios clíni- cos, estudios randomizados)	20	9

Base de datos	Palabras clave	Operadores boleanos	Resultados totales (nº)	Resultados lectura del resumen (nº)	Resultados tras lectura crítica (finales) (nº)
Pubmed	Genes AND (polygenic obesity OR obesity)	AND/OR	(162, 10 años estudios clíni- cos, estudios randomizados)	38	17
Pubmed	Diet therapy AND(polygenic obesity OR obesity)	AND/OR	(1479, 10 años estudios clínicos, estudios randomizados)	Ruido do- cumental	Ruido do- cumental
Pubmed	Diet therapy AND polygenic obesity	AND	(2, 10 años estudios clínicos, estudios randomizados)	2	2
Pubmed	Nutrition therapy AND (polygenic obesity OR obesity)	AND/OR	(1865, 10 años estudios clínicos, estudios randomizados)	Ruido do- cumental	Ruido do- cumental
Pubmed	Nutrition therapy AND polygenic obesity	AND	(2, 10 años estudios clínicos, estudios randomizados)	2	2
Cochrane	Diet therapy AND polygenic obesity	AND	(3, 10 años estudios clínicos, estudios randomizados)	3	3
Pubmed	Leptin AND nutrition therapy	AND	(126, 10 años estudios clíni- cos, estudios randomizados)	10	2

Base de datos	Palabras clave	Operadores boleanos	Resultados totales (nº)	Resultados lectura del resumen (nº)	Resultados tras lectura crítica (finales) (nº)
Cochrane	Leptin AND nutrition therapy	AND	(147, 10 años estudios clínicos, estudios randomizados)	14	2
Pubmed	Leptin- melanocortin pathway AND polygenic obesity	AND	(2, 10 años estudios clínicos, estudios randomizados)	2	2
Pubmed	MC4R AND (polygenic obesity OR obesity)	AND/OR (9, 10 años estudios clínicos, estudios randomizados) (2, 10 años estudios clínicos, estudios randomizados)		4	0
Pubmed	MC4R AND (polygenic obesity OR obesity) AND Diet therapy			1	1
Cochrane	MC4R AND (polygenic obesity OR obesity)	AND/OR	(30, 10 años estudios clínicos, estudios randomizados)	10	1
Cochrane	MC4R AND (polygenic obesity OR obesity) AND Diet therapy	AND/OR	(6, 10 años estudios clínicos, estudios randomizados)	3	1

Base de datos	Palabras clave	Operadores boleanos	Resultados totales (nº)	Resultados lectura del resumen (nº)	Resultados tras lectura crítica (finales) (nº)
Pubmed	FTO AND polygenic obesity	AND	(1, 10 años estudios clínicos, estudios randomizados)	1	1
Pubmed	FTO AND (polygenic obesity OR obesity) AND Diet therapy	AND/OR	(9, 10 años estudios clínicos, estudios randomizados)	6	4
Cochrane	FTO AND polygenic obesity	AND	(4, 10 años estudios clínicos, estudios randomizados)	1	1
Cochrane	FTO AND (polygenic obesity OR obesity) AND Diet therapy	AND/OR	(6, 10 años estudios clínicos, estudios randomizados)	2	2
Pubmed	LEPR AND (polygenic obesity OR obesity)	AND/OR	(8, 10 años estudios clínicos, estudios randomizados)	3	2
Cochrane	LEPR AND (polygenic obesity OR obesity)	AND/OR	(8, 10 años estudios clínicos o randomizados)	2	1

Base de datos	Palabras clave	Operadores boleanos	Resultados totales (nº)	Resultados lectura del resumen (nº)	Resultados tras lectura crítica (finales) (nº)
Cochrane	obesity OR obesity) AND Diet therapy		(2, 10 años estudios clínicos, estudios randomizados)	2	2
Pubmed	(Nutrition therapy OR Diet therapy) AND (polygenic obesity OR obesity) AND (Mutation OR Genetics OR Alleles OR Genes)	AND/OR	(251, 10 años estudios clínicos, estudios randomizados)	90	11
Cochrane	(Nutrition therapy OR Diet therapy) AND (polygenic obesity OR obesity) AND (Mutation OR Genetics OR Alleles OR Genes)		(202, 10 años estudios clínicos, estudios randomizados)	17	9

Tabla 2: Estrategias de búsqueda (fuente: elaboración propia).

3.4 Estrategia de búsqueda global

La estrategia de búsqueda general fue establecida y aplicada en dos bases de datos, Pubmed

y The Cochrane Library, mediante el empleo de los términos y filtros que a continuación se

describen:

Pubmed:

Mediante el uso de la base de datos Pubmed, se llevó a cabo una búsqueda global utilizando

tanto términos libres como términos biomédicos del tesauro MesH, quedando excluidos todos

aquellos estudios que no fuesen ensayos clínicos o estudios randomizados controlados,

desarrollados en los últimos 10 años. De esta forma, se obtuvieron los resultados que se

exponen a continuación:

Búsqueda mediante términos libres:

(Nutrition therapy OR Diet therapy) AND ((polygenic obesity OR obesity) AND (Mutation OR

Genetics OR Alleles OR Genes)

Filtros: últimos 10 años, estudios clínicos, estudios randomizados

251 resultados

Búsqueda mediante consulta al tesauro MesH:

("Nutrition therapy"[Mesh] OR "Diet therapy"[Mesh]) AND ("polygenic obesity" OR "obesi-

ty"[Mesh]) AND ("Mutation"[Mesh] OR "Genetics"[Mesh] OR "Alleles"[Mesh] OR "Genes"[Mesh])

Filtros: últimos 10 años, estudios clínicos, estudios randomizados

15 resultados

The Cochrane Library:

Por otro lado, se realizó una búsqueda complementaria utilizando para ello la base de datos

The Cochrane Library. En este caso, se emplearon únicamente términos libres y, de nuevo,

quedaron excluidos todos aquellos estudios que no estuviesen catalogados como ensayos

clínicos o randomizados controlados realizados entre el 2012 y el 2022. Los resultados

obtenidos se muestran a continuación:

20

Búsqueda mediante términos libres:

(Nutrition therapy OR Diet therapy) AND ((polygenic obesity OR obesity) AND (Mutation OR Genetics OR Alleles OR Genes)

Filtros: últimos 10 años, estudios clínicos, estudios randomizados

202 resultados

Consideraciones éticas

Atendiendo a la tipología del presente trabajo, correspondiente a una revisión bibliográfica, no ha sido necesaria ni la evaluación ni la aprobación de éste por parte de un comité de ética. A pesar de ello, se ha comprobado que todos aquellos estudios analizados cumplen las consideraciones éticas básicas para ser considerados en esta revisión.

4. Resultados

Los estudios seleccionados para el desarrollo de este trabajo han sido únicamente ensayos clínicos aleatorizados, en los que principalmente se han incluido individuos adultos sanos, portadores de genes posiblemente relacionados con un probable desarrollo de obesidad. Dichos individuos han sido sometidos a diferentes tipos de intervenciones dietéticas, comparándose los resultados obtenidos de cada una de ellas con el efecto logrado al someter a esas mismas dietas a pacientes obesos no portadores de dichos genes. La mayor parte de los estudios incluidos se han realizado en los últimos cinco años, principalmente entre los años 2017 y 2021.

Los individuos incorporados en dichos estudios debían carecer de cualquier enfermedad, fundamentalmente alteraciones cardiovasculares, renales o hepáticas, algún tipo de cáncer, restricciones de actividad física o bien encontrarse en período de embarazo o lactancia. Además, debían cumplir con los criterios de inclusión específicos de cada ensayo clínico, presentar disponibilidad absoluta durante el desarrollo del mismo y mostrar el compromiso de cumplir todos los procedimientos requeridos. Por último, ningún participante podía encontrarse formando parte de ningún otro ensayo clínico. Asimismo, los participantes fueron seleccionados por centros de investigación principalmente, y eran pertenecientes a regiones muy diversas, por lo que se han observado participantes de diferentes etnias y razas.

Los estudios se han seleccionado siguiendo la metodología CASPE para ensayos clínicos. El documento de evaluación puede encontrarse en el ANEXO 1. El resumen del proceso de selección se encuentra en el siguiente diagrama (ilustración 1).

Ilustración 1: Diagrama de flujo tipo PRISMA de los resultados obtenidos en la selección de artículos. (Fuente: elaboración propia)

Los principales resultados obtenidos se encuentran sintetizados en la tabla 3, que puede encontrarse en el ANEXO 2.

5. Discusión

Uno de los mayores desafíos que presenta actualmente la terapia nutricional en el tratamiento de la obesidad poligénica, basándose en la evidencia científica vigente, consiste en poder dar una explicación a la gran variedad de respuestas que pueden observarse en individuos de características homogéneas, frente a una misma pauta dietética y de estilo de vida saludable. Esto es en parte debido a que cada uno somos únicos y reaccionamos de manera diferente a causa de nuestros genes. Así, si se lograse dar respuesta a la compleja interacción existente entre los factores genéticos, epigenéticos y del estilo de vida de los individuos, que afectan tanto a la ingesta y gasto energético como al metabolismo de los mismos, se podrían desarrollar estrategias preventivas y de tratamiento que resultasen más exitosas en el abordaje de la obesidad a largo plazo⁽²⁵⁾.

Es posible que en base a los datos recogidos en esta revisión sistemática no se obtengan resultados suficientes en relación a los genes implicados en el desarrollo de la obesidad poligénica, ya que la gran mayoría de ellos son aún desconocidos para la ciencia actual, y aquellos que han sido descubiertos ofrecen mecanismos de acción tan diversos, e incluso muchos de ellos aún desconocidos, que resulta difícil establecer tanto su implicación concreta en el desarrollode la obesidad como una terapia nutricional precisa para prevenirla o tratarla.

5.1 Nuevos biomarcadores predictivos de obesidad poligénica

Uno de los aspectos más reveladores hallados en un reciente ensayo clínico realizado por Tan et al. (2020), consistió en la demostración de la existencia de un buen indicador de la predisposición genética a la obesidad, los puntajes de riesgo poligénico (PRS). Los PRS permiten conocer el efecto de varios polimorfismos de un gen sobre una determinada enfermedad, en este caso sobre la obesidad, y su tratamiento, la pérdida de peso. Así, se ha podido demostrar que aquellas personas con un PRS más alto para los polimorfismos rs9930501, rs9930506 yrs9932754 del gen FTO y rs1042713 y rs1042714 del gen ADRB2 presentan un mayor riesgo de desarrollar obesidad. Por tanto, una detección temprana de estas variantes genéticas podría ser de gran utilidad en la prevención de la obesidad en personas con riesgo genético de desarrollarla. Además, un PRS más elevado para estos genes también sería indicativo de un mayor porcentaje de grasa corporal total, de masa grasa, de circunferencia de cintura y de proteína C reactiva, fiel reflejo del estado inflamatorio general que suelen presentar los individuos obesos⁽¹¹⁾. Asimismo, el polimorfismo rs9930506 ha demostrado estar fuertemente asociado al índice de masa corporal (IMC), y relacionado únicamente con la expresión del gen FTO, de forma que, al llevar a cabo una intervención sobre el estilo de vida, es decir, sobre la pauta dietética y el nivel de ejercicio físico, se podrían inducir cambios en los niveles de expresión tanto de este gen como del gen IRX3, ejerciendo así un efecto sobre la obesidad⁽¹⁹⁾.

Además, ha quedado probado a través del estudio Celis-Morales et al. (2017), que los portadores del polimorfismo rs9939609 del gen FTO presentan mayores pérdidas tanto de peso como de circunferencia de cintura, al recibir un tratamiento nutricional personalizado frente a aquellos portadores que reciben pautas nutricionales estandarizadas. Sin embargo, no se aprecian diferencias a nivel antropométrico entre si el individuo es conocedor o no de la presencia del polimorfismo antes del inicio del tratamiento⁽¹⁵⁾.

El gen FTO resulta ser uno de los genes más estudiados con relación a la obesidad y la masa grasa. Este gen se encuentra en el cromosoma 16, y codifica para una enzima, la alfa-cetoglutarato-dependiente de la dioxigenasa, que es la responsable de la regulación de la termogénesis y la diferenciación de los adipocitos, contribuyendo así de manera significativa a la acumulación de la grasa corporal. También se encuentra asociado con la regulación de la homeostasis energética y la tasa metabólica, pudiendo inducir así un aumento de la ingesta de alimentos⁽²⁰⁾. De esta forma, si se llegase a conocer el mecanismo por el cual éste y otros genes influyen en la pérdida de masa grasa, sin alterar la masa magra (como se ha visto en el gen FTO), durante los tratamientos nutricionales, se podría contribuir de forma más exitosa desde el abordaje nutricional al tratamiento de la obesidad asociada a factores genéticos⁽²⁰⁾. Es por ello que, los tratamientos nutrigenéticos podrían ser fundamentales en el abordaje nutricional de los pacientes con predisposición genética a la obesidad. Esto es así, puesto que a través de la nutrigenética se podría detectar de manera temprana los genotipos o variantes genéticas capaces de influir en ciertos nutrientes, y así diseñar estrategias nutricionales personalizadas que resultasen efectivas en la pérdida de peso de este tipo de pacientes⁽¹¹⁾.

Uno de los recientes hallazgos en relación con el tratamiento nutricional personalizado ha sido la detección de cambios en la metilación de los genes asociados con la obesidad. Gracias a este reciente estudio desarrollado por Keller et al. (2020), se ha observado que cuando un paciente obeso es sometido a una intervención nutricional con el fin de disminuir su peso y mejorar su estado metabólico, se producen metilaciones específicas en su ADN que permitirían pronosticar la efectividad de la estrategia dietética. Con ello, se ha podido concluir que las metilaciones de los genes asociados a la obesidad se pueden utilizar como biomarcadores de pronóstico de la efectividad de una intervención nutricional, favoreciendo así el diseño de un tratamiento nutricional más personalizado⁽²⁵⁾.

Otro de los biomarcadores recientemente descubiertos han sido los microARNs, que tienen la capacidad de ser regulados por los propios nutrientes de la dieta, expresándose de manera diferente en respuesta al tratamiento dietético al que esté siendo sometido el individuo. Por ello, pueden considerarse como un biomarcador predictivo de la efectividad de una estrategia dietética orientada hacia la pérdida de peso, pudiendo de nuevo implementarse para llevar a cabo una nutrición más personalizada. Además, son capaces de regular la expresión de genes relacionados con las vías de control del peso corporal, la obesidad, la adiposidad, el metabolismo lipídico, la inflamación, la señalización de las adipocitoquinas, la homeostasis de la glucosa y la sensibilidad a la insulina, por lo que también constituyen una buena diana terapéutica de patologías metabólicas⁽¹³⁾.

5.2 Estrategias nutricionales

Se han encontrado una gran variedad de estrategias nutricionales probadas con los diferentes genes asociados a la obesidad, que se han descubierto hasta el momento, sin que ninguna de ellas se haya mostrado como referencia en el abordaje nutricional de la obesidad asociada a los genes. El patrón de dieta mediterránea, especialmente si se asocia a una restricción energética y a un estilo de vida saludable, es decir, a una práctica constante de actividad física, ha mostrado un papel clave tanto en la prevención de la obesidad como en la contribución a la pérdida de peso⁽¹⁴⁾. El estudio llevado a cabo por Di et al. (2018), ha permitido apreciar que existe una importante asociación entre la pérdida de grasa corporal total y de grasa ginoide y el seguimiento de una dieta mediterránea, no pudiendo quedar probado la influencia del polimorfismo rs9939609 del gen FTO en dicha contribución. Este patrón dietético, debido a su particular distribución de los macro y micronutrientes, es considerado una de las pautas nutricionales más saludables del mundo. Se caracteriza por presentar un alto contenido de grasas saludables, aportadas por el consumo de aceite de oliva virgen extra y pescado principalmente, así como por el alto consumo tanto de frutas como de verduras, legumbres y cereales no refinados, un consumo moderado de lácteos y un bajo consumo de productos cárnicos (20)

En relación a uno de los patrones característicos de la dieta mediterránea marcado por la recomendación de consumo de grasas saludables, se ha analizado un estudio llevado a cabo por Huang et al. (2019), en el que ha quedado patente que cuanto mayor sea el consumo de ácidos grasos poliinsaturados de cadena larga (PUFA) ℧-3 y de pescado, como principal fuente alimentaria de los mismos, en los individuos portadores de algún puntaje de riesgo genético, mayores pérdidas de peso experimentarán a largo plazo. Con ello, puede probarse que la ingesta de estos PUFA supone una interacción muy beneficiosa con los genes asociados a la obesidad, de manera que un consumo abundante de los mismos, así como de pescado, puede disminuir la influencia genética en el cambio de peso corporal a largo plazo⁽¹⁷⁾.

Otra de las estrategias nutricionales probadas bajo de la influencia de los genes FTO y ADRB2 fue la presentada en el estudio anteriormente descrito, Tan et al. (2020), con el fin de demostrar no sólo la influencia de estos genes en el desarrollo de la obesidad, sino también los beneficios a nivel antropométrico, dietético y cardiometabólico que pueden experimentar los portadores de estas variantes genéticas al ser sometidos a la dieta Hipcref. Este patrón dietético se caracteriza fundamentalmente por presentar una restricción calórica de entre 300 y 500 kcal/día con respecto a una dieta estándar. Además, suele mostrar un contenido hiperproteico, aportando las proteínas alrededor del 30 % de las kilocalorías diarias, así como un aporte graso de en torno al 30 %, y un aporte ligeramente inferior de hidratos de carbono, que supondrían aproximadamente el 40 % de las kilocalorías diarias.

Además, se identifica por presentar un aporte de 15 mg/día de vitamina E y 25 g/día de fibra dietética. Según se ha demostrado en este estudio, los individuos obesos con predisposición genética a la obesidad presentan resultados muy beneficiosos en el control del peso corporal al ser sometidos a esta dieta. Asimismo, los individuos estudiados con un PRS más alto para las variantes genéticas rs9930501, rs9930506 y rs9932754 del gen FTO y rs1042713 y rs1042714 del gen ADRB2 mostraron importantes mejorías tanto a nivel antropométrico como a nivel cardiometabólico y de reducción de los niveles de proteína C reactiva, al ser sometidos a esta estrategia dietética durante 6 meses⁽¹¹⁾.

A lo largo de algunos de los estudios analizados, los individuos portadores de polimorfismos de riesgo, cuya influencia en la obesidad ya había sido probada, son sometidos a distintos tipos de estrategias nutricionales, ligeramente distintas a las anteriormente descritas, obteniéndose de nuevo una amplia variabilidad de resultados que impiden establecer un abordaje nutricional concreto para el tratamiento de los pacientes con propensión genética a la obesidad. Todas ellas se caracterizan por ser hipocalóricas, presentando una restricción energética de alrededor del 30 % de las kilocalorías totales diarias requeridas por cada individuo, pero difieren en la diferente distribución de los macronutrientes^(12,14):

- Una de ellas consiste en una dieta baja en grasas, con la siguiente distribución de macronutrientes: 60 % de hidratos de carbono, 18 % de proteínas y 22 % de grasas^(12,14).
- La otra, es una dieta moderadamente alta en proteínas, y la distribución de macronutrientes consiste en: 40 % de hidratos de carbono, 30 % de proteínas y 30 % de grasas^(12,14)

En uno de los estudios, Goni et al. (2018), se ha puesto de manifiesto la existencia de una interacción significativa entre el polimorfismo de riesgo rs10182181 del gen ADCY3 y la dieta baja en grasas, mostrando mayores pérdidas de la masa grasa del tronco, mejorías superiores de los parámetros antropométricos y de la composición corporal, y mejores respuestas a la intervención dietética⁽¹⁴⁾.

En el estudio Assmann et al. (2020), se ha podido percibir que los microARNs se ven positivamente regulados cuando el individuo es sometido a una dieta baja en grasas, mostrando una mayor efectividad de la estrategia dietética en individuos con propensión genética a la obesidad, además de una reducción de los niveles de leptina⁽¹³⁾.

Por tanto, para estos genes estudiados, parece que el abordaje nutricional que presentaría mejores resultados para la pérdida de peso en individuos con sobrepeso u obesidad, sería una dieta hipocalórica, baja en grasas, con una distribución de macronutrientes de 60 % de hidratos de carbono, 18 % de proteínas y 22 % de grasas.

5.3 Limitaciones

Una de las principales limitaciones encontradas en los propios estudios analizados, es que tanto los tamaños de muestra empleados como la duración de la intervención, resultan demasiado pequeños para posteriormente poder extrapolar los datos a la población mundial. Esto es así, dada la gran variabilidad interindividual que existe a nivel genético y su consiguiente repercusión a nivel nutricional.

Además, los ensayos se realizan con población de lugares geográficos muy concretos cuyos hábitos y objetivos nutricionales, en ocasiones, difieren de los de la población española, por lo que de nuevo los datos serían relativamente extrapolables.

Asimismo, ninguno de los estudios analizados compara las mismas variantes genéticas con el mismo tipo de intervención nutricional, por lo que sería necesario el desarrollo de más estudios en este sentido.

6. Conclusiones

6.1 Conclusiones

El desarrollo de una intervención nutricional en pacientes con propensión genética a la obesidad, atendiendo a la evidencia científica encontrada, supondría una importante mejora del pronóstico general de los pacientes. Esto es así, ya que, independientemente de que logren una mayor o menor pérdida de peso en función de los genes de los que sean portadores y de la estrategia nutricional seleccionada, sí se suele observar una mejora tanto en los parámetros bioquímicos como antropométricos y, con ello, una mejora de algunas de las patologías asociadas, como pueda ser la diabetes, las enfermedades cardiovasculares o el estado inflamatorio general que suelen presentar los pacientes obesos, viéndose por tanto mejorada su calidad de vida. Es por ello que, resulta de gran importancia, la posibilidad de poder llevar a cabo tareas de educación nutricional con este tipo de pacientes, de forma que puedan lograr unos hábitos de vida saludables que mejoren no sólo la adherencia al patrón dietético a largo plazo, sino también una mayor garantía de éxito.

Todos los estudios analizados concluyen que a la hora de diseñar una estrategia nutricional para el abordaje de los pacientes con propensión genética a la obesidad, no sólo deberían tenerse en cuenta parámetros habituales como la edad, el sexo, la etnia, el nivel de grasa corporal y el resto de parámetros antropométricos y bioquímicos, sino que también sería necesario considerar los antecedentes genéticos de cada individuo, y las interacciones existentes entre éstos y las diferentes estrategias nutricionales, con el fin de poder conseguir la mejor adaptación de la dieta al individuo, lográndose unos efectos más individualizados y, por tanto, un mayor éxito. Asimismo, también resultaría interesante tener en cuenta los factores ambientales, ya que se ha visto que la interacción de éstos con las diferentes variantes genéticas puede condicionar la respuesta de un individuo frente a una determinada dieta y, por tanto, su eficacia.

No se han encontrado estrategias nutricionales concretas para el tratamiento de la obesidad poligénica. Sin embargo, a pesar de haberse probado multitud de patrones dietéticos con los diferentes genes, hasta ahora conocidos, asociados a dicha obesidad, ninguno de ellos se ha establecido como patrón nutricional de referencia en el abordaje de la obesidad poligénica.

Las intervenciones nutricionales con las que se han encontrado mejores resultados fueron la dieta hipocalórica baja en grasa y la dieta Hipcref, caracterizada por ser un patrón dietético hipocalórico, moderadamente alto en proteínas, y con un aporte de 15 mg/día de vitamina E y 25 g/día de fibra, siempre unido al estilo de vida saludable, la práctica de actividad física diaria, y un patrón de dieta mediterránea.

6.2 Futuras líneas de investigación

Dado que las intervenciones dietéticas que han mostrado mayor eficacia presentan un perfil unificable, pero que aún no ha sido estudiado, se podría proponer ampliar los estudios mediante una intervención nutricional basada en una dieta hipocalórica, con un bajo contenido en grasas, de las cuales se debería priorizar el consumo de ácidos grasos poliinsaturados de cadena larga ℧-3, siendo el pescado su principal fuente alimentaria, y un contenido moderadamente alto de proteínas; además, se debería incluir 15 mg/día de vitamina E, ya que presenta efecto antioxidante e inmunomodulador, y podría ser capaz de regular la expresión del gen FTO atenuando el aumento de peso; y 25 g/día de fibra dietética, debido a que podría lograr modificar la asociación entre el gen FTO y la obesidad, además de favorecer el control del peso en aquellos individuos portadores de más alelos de riesgo⁽⁵⁾. Para ello, se deberá seguir un patrón de dieta de tipo mediterráneo, acompañado de una práctica diaria de actividad física moderada y un estilo de vida saludable.

6.3 Reflexión personal

Por todo ello, y a pesar de que no se haya podido dar respuesta a través de esta revisión a un abordaje nutricional óptimo para la prevención de la obesidad poligénica, sí se han conseguido identificar nuevos biomarcadores predictivos de la misma, como puedan ser los microARNs, la metilación del ADN y los PRS, que permiten precedir tanto el riesgo de obesidad como la eficacia de la intervención nutricional, mostrando sobre todo un efecto muy positivo frente a la dieta hipocalórica baja en grasas.

Para concluir, aunque la ciencia se encuentre en constante evolución, el abordaje nutricional de los individuos con propensión genética a la obesidad supone aún un importante reto para los dietistas-nutricionistas. Esto es así, dado que, aunque la genética pueda provocar que exista una mayor predisposición a desarrollarla, los factores ambientales que rodean al individuo también constituyen un importante condicionante. Por todo ello, aunque aún sean necesarios nuevos estudios en el ámbito de la genética nutricional, ya que existen numerosos vacíos de conocimiento en este sentido, el nacimiento de nuevas áreas de investigación pueden ser de gran ayuda en este ámbito para el dietista-nutricionista. Así, a través de la nutrigenética, la nutrigenómica, el cada vez mayor descubrimiento del microbioma y su relación con la obesidad, y el hallazgo de nuevos biomarcadores, que permitirán llevar a cabo una prevención o diagnóstico precoz de este tipo de obesidad, el dietista-nutricionista podrá desarrollar un trabajo multidisciplinar junto con otros profesionales, pudiendo así lograr una mejor calidad de vida de los individuos afectados, mediante la personalización de sus tratamientos dietéticos, y utilizando como base éstas y otras nuevas herramientas de conocimiento que puedan ir surgiendo.

Referencias bibliográficas:

- Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology [Internet].
 Vol. 23, Nature Reviews Genetics. Nature Publishing Group; 2022 [citado 15 de marzo de 2022]. p. 120-33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459824/#!po=1.02041
- Sun X, Luquet S, Small DM. DRD2: Bridging the Genome and Ingestive Behavior [Internet]. Vol. 21, Trends in Cognitive Sciences. NIH Public Access; 2017 [citado 15 de marzo de 2022]. p. 372-84. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745142/
- Mărginean CO, Meliţ LE. New insights regarding genetic aspects of childhood obesity: A minireview [Internet]. Vol. 6, Frontiers in Pediatrics. 2018 [citado 27 de mayo de 2022]. p. 271. Disponible en: www.frontiersin.org
- 4. National Human Research Institute. Gen, Definition [Internet]. NIH. 2022 [citado 27 de mayo de 2022]. Disponible en: https://www.genome.gov/es/genetics-glossary/Gen
- Winslow LLC T. Diccionario de genética del NCI [Internet]. NCI. 2020 [citado 27 de mayo de 2022]. Disponible en: https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionarios-genetica/def/gen
- National Human Genome Research Institute. Cromosoma, definition [Internet]. NIH.
 2022 [citado 27 de mayo de 2022]. Disponible en: https://www.genome.gov/es/genetics-glossary/Cromosoma
- Martos-Moreno, G.A, Serra-Juhé, C, Pérez Jurado, L.A, Argente, J. Aspectos genéticos de la obesidad [Internet]. Vol. 8, Rev Esp Endocrinol Pediatr; 2017 [citado 15 de marzo de 2022]. Disponible en: https://www.endocrinologiapediatrica.org/revistas/P1-E22/P1-E22-S1079-A391.pdf
- 8. Fairbrother U, Kidd E, Malagamuwa T, Walley A. Genetics of Severe Obesity [Internet]. Vol. 18, Current Diabetes Reports. Springer; 2018 [citado 15 de marzo de 2022]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105241/
- 9. Corella D, Barragán R, Ordovás JM, Coltell Ó. Nutrigenética, nutrigenómica y dieta mediterránea: una nueva visión para la gastronomía. Vol. 35, Nutricion hospitalaria. 2018. p. 19-27.
- 10. Lorenzo O, Crespo-Yanguas M, Hang T, Lumpuy-Castillo J, Hernández AM, Llavero C, et al. Adición de Probióticos a la Terapia Anti-Obesidad por Estimulación Eléctrica Percutánea del Dermatoma T6. Un estudio piloto. Revista Internacional de Investigación Ambiental y Salud Pública [Internet] 3 de Octubre de 2020 [citado 20 de mayo de 2022];17(19):7239. Disponible en: http://dx.doi.org/10.3390/ijerph17197239

- 11. Tan PY, Mitra SR. The Combined Effect of Polygenic Risk from FTO and ADRB2 Gene Variants, Odds of Obesity, and Post-Hipcref Diet Differences. Lifestyle Genomics [Internet]. 1 de marzo de 2020 [citado 15 de marzo de 2022];13(2):84-98. Disponible en: https://www.karger.com/Article/FullText/505662
- Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Cuervo M, Goni L, Martinez JA. Models integrating genetic and lifestyle interactions on two adiposity phenotypes for personalized prescription of energy-restricted diets with different macronutrient distribution. Front Genet [Internet]. 2019 [citado 15 de marzo de 2022];10(JUL):686. Disponible en: https://www.frontiersin.org/articles/10.3389/fgene.2019.00686/full
- Assmann TS, Riezu-Boj JI, Milagro FI, Martínez JA. Circulating adiposity-related microRNAs as predictors of the response to a low-fat diet in subjects with obesity. J Cell Mol Med [Internet]. 1 de marzo de 2020 [citado 15 de marzo de 2022];24(5):2956-67. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/jcmm.14920
- 14. Goni, L, Riezu-Boj, J.I, Milagro, F.I, Corrales, F.J, Ortiz, L, Cuervo, M, Martínez, J.A. Interaction between an ADCY3 Genetic Variant and Two Weight-Lowering Diets Affecting Body Fatness and Body Composition Outcomes Depending on Macronutrient Distribution: A Randomized Trial. Nutrients 2018, 10, 789; doi:10.3390/nu10060789 [Internet]. 19 de junio de 2018 [citado 15 de marzo de 2022]. Disponible en: https://www.mdpi.com/2072-6643/10/6/789
- 15. Celis-Morales C, Marsaux CFM, Livingstone KM, Navas-Carretero S, San-Cristobal R, Fallaize R, et al. Can genetic-based advice help you lose weight? Findings from the Food4Me European randomized controlled trial. Am J Clin Nutr [Internet]. 1 de mayo de 2017 [citado 6 de mayo de 2022];105(5):1204-13. Disponible en: https://academic.oup.com/ajcn/article/105/5/1204/4637724
- 16. Van Bussel IPG, Backx EMP, De Groot CPGM, Tieland M, Müller M, Afman LA. The impact of protein quantity during energy restriction on genome-wide gene expression in adipose tissue of obese humans. Int J Obes [Internet]. 24 de marzo de 2017 [citado 15 de marzo de 2022];41(7):1114-20. Disponible en: https://www.nature.com/articles/ijo201776
- 17. Huang T, Wang T, Heianza Y, Zheng Y, Sun D, Kang JH, et al. Habitual consumption of long-chain n-3 PUFAs and fish attenuates genetically associated long-term weight gain. Am J Clin Nutr [Internet]. 1 de marzo de 2019 [citado 15 de marzo de 2022];109(3):665-73. Disponible en: https://pubmed.ncbi.nlmih.gov/30629107/
- 18. Adamska-Patruno E, Goscik J, Czajkowski P, Maliszewska K, Ciborowski M, Golonko A, et al. The MC4R genetic variants are associated with lower visceral fat accumulation and higher postprandial relative increase in carbohydrate utilization in humans. Eur J Nutr [Internet]. 1 de octubre de 2019 [citado 6 de mayo de 2022];58(7):2929-41. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30945034/

- 19. Doaei S, Kalantari N, Izadi P, Salonurmi T, Mosavi Jarrahi A, Rafieifar S, et al. Changes in FTO and IRX3 gene expression in obese and overweight male adolescents undergoing an intensive lifestyle intervention and the role of FTO genotype in this interaction. J Transl Med [Internet]. 24 de mayo de 2019 [citado 15 de marzo de 2022];17(1):176. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534854/
- Di Renzo L, Cioccoloni G, Falco S, Abenavoli L, Moia A, Sinibaldi Salimei P, et al. Influence of FTO rs9939609 and Mediterranean diet on body composition and weight loss: A randomized clinical trial NCT01890070 NCT. J Transl Med [Internet].
 de noviembre de 2018 [citado 15 de marzo de 2022];16(1):308. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233363/
- 21. Marsaux CFM, Celis-Morales C, Livingstone KM, Fallaize R, Kolossa S, Hallmann J, et al. Changes in physical activity following a genetic-based internet-delivered personalized intervention: Randomized controlled trial (Food4Me). J Med Internet Res [Internet]. 1 de febrero de 2016 [citado 6 de mayo de 2022];18(2). Disponible en: https://pubmed.ncbi.nlm.nih.gov/26851191/
- 22. Huang T, Qi Q, Li Y, Hu FB, Bray GA, Sacks FM, et al. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial. Am J Clin Nutr [Internet]. 1 de mayo de 2014 [citado 6 de mayo de 2022];99(5):1126-30. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24622803/
- 23. De Luis DA, Martín DP, Izaola O. Adiponectin gene variant rs266729 interacts with different macronutrient distributions of two different hypocaloric diets during nine months. Nutr Hosp [Internet]. 2021 [citado 6 de mayo de 2022];38(2):274-80. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33620233/
- 24. Carayol J, Chabert C, Di Cara A, Armenise C, Lefebvre G, Langin D, et al. Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator. Nat Commun [Internet]. 12 de diciembre de 2017 [citado 15 de marzo de 2022];8(1):1-14. Disponible en: https://www.nature.com/articles/s41467-017-02182-7
- 25. Keller M, Yaskolka Meir A, Bernhart SH, Gepner Y, Shelef I, Schwarzfuchs D, et al. DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: the CENTRAL trial. Genome Med [Internet]. 1 de diciembre de 2020 [citado 6 de mayo de 2022];12(1). Disponible en: https://pubmed.ncbi.nlm.nih.gov/33198820/
- 26. Huang, T, Zheng, Y, Hruby, A, Williamson, D.A, Bray, G.A, Shen, Y, Sacks, F.M, Qi, L. Dietary Protein Modifies the Effect of the MC4R Genotype on 2-Year Changes in Appetite and Food Craving: The POUNDS Lost Trial1–3. The Journal of Nutrition Nutritional Epidemiology [Internet]. 1 de febrero de 2017 [citado 15 de marzo de 2022]; Disponible: https://academic.oup.com/jn/article/147/3/439/4584810 1 de fe-

- brero de 2017 [citado 15 de marzo de 2022]; Disponible: https://academic.oup.com/jn/article/147/3/439/4584810
- 27. Primo D, Izaola O, de Luis D. Effects of a high protein/low carbohydrate low-calorie diet versus a standard low-calorie diet on anthropometric parameters and cardio-vascular risk factors, role of polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CB2R). Endocrinol Diabetes y Nutr [Internet]. 1 de agosto de 2020 [citado 6 de mayo de 2022];67(7):446-53. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31839571/
- 28. Clément K, van den Akker E, Argente J, Bahm A, Chung WK, Connors H, et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 1 de diciembre de 2020;8(12):960-70. Es la 22
- 29. Gulati S, Misra A, Tiwari R, Sharma M, Pandey RM, Upadhyay AD. The influence of polymorphisms of fat mass and obesity (FTO, rs9939609) and vitamin D receptor (VDR, Bsml, Taql, Apal, Fokl) genes on weight loss by diet and exercise interventions in non-diabetic overweight/obese Asian Indians in North India. Eur J Clin Nutr [Internet]. 1 de abril de 2020 [citado 6 de mayo de 2022];74(4):604-12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32001813/
- 30. Garavito P, Mosquera-Heredia MI, Fang L, Payares F, Ruiz M, Arias I, et al. Polimorfismos de los genes del sistema leptina-melanocortina asociados con la obesidad en la población adulta de Barranquilla. Biomédica [Internet]. 15 de junio de 2020 [citado 6 de mayo de 2022];40(2):257-69. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505507/

7. Anexos

ANEXO 1

Criterios de lectura crítica de la evidencia clínica siguiendo la metodología CASPE (Elaboración: Cabello, J.B. (2005))

A/¿Son válidos los resultados del ensayo?

Preguntas "de eliminación"

1 ¿Se orienta el ensayo a una pregunta claramente definida? Una pregunta debe definirse en términos	□ SÍ	□ NO SÉ	NO
de:			
 La población de estudio. 			
 La intervención realizada. 			
 Los resultados considerados. 			
2¿Fue aleatoria la asignación de los pa-			
cientes a los tratamientos?	SÍ	NO SÉ	NO
- ¿Se mantuvo oculta la secuencia de alea- torización?			
3¿Fueron adecuadamente considerados			
hasta el final del estudio todos los pa- cientes que entraron en él?	SÍ	NO SÉ	NO
– ¿El seguimiento fue completo?			
 ¿Se interrumpió precozmente el es- tudio? 			
 ¿Se analizaron los pacientes en el grupo al que fueron aleatoriamente asignados? 			

Preguntas de detalle

4¿Se mantuvo el cegamiento a: - Los pacientes. - Los clínicos. - El personal del estudio.	□ SÍ	□ NO SÉ	□ NO	
5¿Fueron similares los grupos al comienzo				
del ensayo?	SÍ	NO SÉ	NO	
En términos de otros factores que pudieran tener efecto sobre el resultado: edad, sexo, etc.				
6¿Al margen de la intervención en estudio				
los grupos fueron tratados de igual modo?	□ SÍ	NO SÉ	NO	
B/ ¿Cuáles son los resultados?	ı			
7¿Es muy grande el efecto del tratamiento?				
¿Qué desenlaces se midieron?				
¿Los desenlaces medidos son los del proto- colo?				
8¿Cuál es la precisión de este efecto?				
¿Cuáles son sus intervalos de confianza?				

C/¿Pueden ayudarnos estos resultados?

9¿Puede aplicarse estos resultados en tu medio o población local? ¿Crees que los pacientes incluidos en el ensayo son suficientemente parecidos a tus pacientes?	□ SÍ	NO SÉ]	NO
10 ¿Se tuvieron en cuenta todos los resultados de importancia clínica? En caso negativo, ¿en qué afecta eso a la decisión a tomar?	□ SÍ	□ NO SÉ		NO
11 ¿Los beneficios a obtener justifican los riesgos y los costes? Es improbable que pueda deducirse del ensayo pero, ¿qué piensas tú al respecto?	□ SÍ		NO	

ANEXO 2

Los principales resultados obtenidos de la búsqueda bibliográfica se encuentran sintetizados en la siguiente tabla (Tabla 3) (Fuente: elaboración propia)

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
The combined	Tan PY	2020	Conocer las	Estudio	Intervención dietética	178	El tercer tercil de puntajes	Las personas con un PRS
effect of poly-	y Mitra		probabilidades	trans-	(6 meses). Dos gru-	adultos	de riesgo poligénico (PRS)	más alto para FTO
genic risk from	SR.		de desarrollar	versal y	pos: dieta Hipcref	mala-	se asoció con un mayor	(rs9930501, rs9930506 y
FTO and			obesidad y có-	ensayo	(hipocalórica 300-500	sios	riesgo de desarrollar obesi-	rs9932754) y ADRB2
ADRB2 gene			mo puede con-	contro-	kcal menos que el	(chinos,	dad si lo comparamos con	(rs1042713 y rs1042714),
variants, odds			tribuir al peso la	lado	grupo control, 30 %	indios	el 1er tercil de PRS.	presentan mayores proba-
of obesity, and			acción combi-	aleatori-	proteínas y grasas 40	de Ma-	Edad, sexo, práctica de	bilidades de obesidad.
Posthipcref			nada variantes	zado	% hidratos de car-	lasia y	actividad física y consumo	PRS es un buen indicador
diet			genéticas del		bono, 25 g/día de	mala-	de sustancias tóxicas: 3er	de la predisposición gené-
differences ⁽¹¹⁾			gen FTO y		fibra y 15 mg/día de	yos)	tercil de PRS: aumentado	tica a la obesidad. La de-
			ADRB2; efectos		vitamina E; y grupo	mayores	comparado con el 1er tercil.	tección temprana de las
			a nivel antropo-		control: con pautas	de 18	2º tercil no aumenta el ries-	variantes genéticas de
			métrico, dietéti-		dietéticas estándar	años.	go.	FTO y ADRB2 estudiadas
			co y cardiome-		relativas a la pérdida		Parámetros antropométri-	puede permitir la detección
			tabólico al ser		de peso, 10-15 %		cos: el 1er tercil es el que	temprana de personas con
			sometidos a una		proteínas, 20-30 %		presenta valores más bajos	riesgo genético de obesi-
			intervención		grasas y 55-70 % de		en comparación con el 2º y	dad.
			dietética (alta en		hidratos de carbono).		el 3er tercil.	Además, un PRS más alto
			proteínas, vita-				Parámetros dietéticos, no	es indicativo de un aumen-
			mina E y fibra				se aprecian diferencias	to tanto en el porcentaje de
			con restricción				relevantes ni en cuanto a	
			calórica.					

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
							las diferentes dietas ni en	grasa corporal total como
							relación a la adherencia a	de masa grasa, y también,
							la dieta entre los tres terci-	de las medidas de la cir-
							les.	cunferencia de la cintura y
							Grupo étnico, PRS superior	de proteína C reactiva. Las
							para los indios (menor	personas con un PRS más
							predisposición genética a la	alto experimentan mejores
							obesidad) que para los	respuestas a nivel antro-
							chinos.	pométrico y cardiometabó-
							Parámetros cardiometabó-	lico tras ser sometidos a
							licos, 2º y 3er tercil: impor-	una dieta Hipcref durante 6
							tante disminución de los	meses que a una dieta
							niveles de proteína C reac-	estándar de pérdida de
							tiva al ser sometidos a la	peso, observándose re-
							dieta hipocalórica modera-	ducciones significativas en
							damente alta en proteínas	los niveles de proteína C
							(dieta Hipcref) en compara-	reactiva. Se requieren
							ción con la dieta control y el	otros ensayos clínicos so-
							resto de terciles, después	bre población de otras
							de los 6 meses de inter-	ubicaciones geográficas.
							vención.	

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
Models inte-	Ramos-	2019	Conocer el gra-	Ensayo	Medidas antropomé-	232	De los 232 adultos selec-	Para llevar a cabo inter-
grating genetic	López		do de influencia	clínico	tricas y de presión	adultos	cionados, 31 fueron exclui-	venciones de nutrición de
and lifestyle	O, Rie-		de la genética y	aleatori-	arterial, analíticas de	españo-	dos por mala adherencia al	precisión personalizadas,
interactions on	zu-Boj		los factores	zado	sangre y evaluacio-	les de	plan dietético, por lo que	es necesario tener en
two adiposity	JI, Mila-		ambientales en		nes de la ingesta	ascen-	tan solo se consideraron	cuenta la edad, el sexo, el
phenotypes for	gro FI,		la pérdida de		mediante cuestiona- rios de frecuencia de	dencia	201 individuos.	nivel de grasa corporal y
personalized	Cuervo		grasa corporal		consumo de alimen-	caucá-	Ambas dietas indujeron	los antecedentes genéticos
prescription of	M, Goni		total y la reduc-		tos validados con 137	sica.	disminuciones estadística-	con el fin de conseguir la
energy-	L y Mar-		ción del períme-		ítems, así como de la		mente significativas en la	mejor adaptación de las
restricted diets	tínez JA.		tro de cintura		actividad física, me-		adiposidad, la composición	diferentes dietas para cada
with different			cuando indivi-		diante otro cuestiona-		corporal y el perfil lipídico.	individuo.
macronutrient			duos con sobre-		rio de 17 ítems.		Se hallaron 26 polimorfis-	El análisis de las interac-
distribution ⁽¹²⁾			peso u obesidad		Asignación aleatoria		mos diferentes asociados	ciones entre los genes y
			son sometidas a		de las dietas: Ia		con la adiposidad y especí-	las dietas puede permitir
			dietas de		dieta LF: 60 % de		ficos para cada	de las mismas y, con ello,
			restricción calórica.		hidratos de carbono		intervención dietética.	conseguir unos efectos
					(HC), 18 % proteinas (P), y 22 %		Además de las variables	más individualizados.
					grasas (G); y la dieta		fenotípicas (edad, sexo,	Las interacciones entre las
					moderadamente alta		estilo de vida y adiposidad),	variantes genéticas y los
					en P (MHP): 40 %		las variables genéticas	factores ambientales (estilo
							(polimorfismos y puntajes	20

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					los HC, un 30 %		de riesgo genético) y los	de vida) condicionan la
					las P y un 30 % las		factores ambientales son	respuesta que puede tener
					G.		los principales responsa-	cada individuo a una dieta
					Semana 8 ^a y 17 ^a :		bles de los niveles de adi-	baja en grasas y a una
					registro de alimentos		posidad obtenidos en fun-	moderadamente alta en
					pesados de 3 días-		ción de la dieta.	proteínas. Esto resulta útil
					Se evaluó la adhe-			a la hora de diseñar estra-
					rencia a la dieta y se			tegias nutricionales perso-
					realizaron llamadas			nalizadas para la preven-
					motivacionales a los			ción y el tratamiento de la
					participantes.			obesidad, teniendo en
					También se aisló			cuenta no sólo factores
					material genético a			genéticos sino también
					partir de muestras de			ambientales y clínicos,
					epitelio oral, utilizan-			además del fenotipo.
					do un kit líquido vali-			
					dado (Maxwell 16			
					Buccal Swab LEV			
					DNA Purification Kit).			
Circulating	Ass-	2020	Investigar los	Ensayo	Asignación aleatoria,	78 adul-	Todos los individuos some-	Los microARNs constitu-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
adiposityrela- ted microRNAs as predictors of the re- sponse to a lowfat diet in subjects with obesity ⁽¹³⁾	mann TS, Rie- zu-Boj JI, Mila- gro FI. y Martínez JA.		estudio microARNs circulantes que actúan como biomarcadores de adiposidad al someter a indi- viduos obesos a dos dietas es- pecíficas, una alta en proteí- nas y otra baja en grasas. De-	clínico aleatori- zado. Ensayo casos- control desarro- llado de acuerdo con las pautas Strobe.	dos dietas durante 16 semanas a dos tipos de dietas de menos de 1200 kcal/día calculada de manera individualizada para cada individuo mediante la fórmula de Mifflin. Una de las dietas fue moderadamente alta en proteínas (40 % HC, 30 % P y 30 % G), y	tos obesos y 25 adultos no obesos (IMC inferior a 25 kg/m²).	tidos a ambos tipos de dietas experimentaron mejoras en tanto en los parámetros antropométricos como metabólicas, pero no se encontraron diferencias en cuanto a la pérdida de peso, ni el perfil lipídico ni el de la glucosa. Los individuos sometidos a una dieta baja en grasas experimentaron una reduc-	yen un biomarcador predictivo y/o una diana terapéutica para el tratamiento de los trastornos metabólicos. Se encuentran implicados en vías de control del peso corporal, en la homeostasis de la glucosa, en la sensibilidad a la insulina y en el metabolismo lipídico. Además, los miRNAs, al ser regulados por nutrien-
			terminar si pue- den servir como predictores tempranos de la pérdida de peso a nivel de la nutrición de precisión en el diseño de tra-	Strobe.	otra baja en grasas (60 % HC, 18 % P y 22 % G). Se evaluó la adherencia y distribución real de macronutrientes (alimentos pesados en la 8ª y en la 16ª semana).		ción de los niveles de lepti- na, cosa que no fue obser- vada en el caso de los indi- viduos sometidos a la dieta moderadamente alta en proteínas. De los 86 microARNs obje- to de estudio, 26 se expre- saron de manera diferen-	tes de la dieta y por compuestos bioactivos, pueden expresarse de diferente forma en respuesta a una determinada dieta, por lo que han mostrado efectividad para predecir la respuesta a la dieta baja en grasas.

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
			tamientos per-		Consumo de energía		cial entre los individuos con	Se ha visto que los miR-
			sonalizados		y nutrientes: software		obesidad y los individuos	NAs circulantes se encuen-
			para la obesi-		y tablas de composi-		normopeso. De ellos, 9 se	tran asociados con la obe-
			dad.		ción de alimentos		asociaron con la dieta baja	sidad y pueden ser utiliza-
					españolas validadas.		en grasas pero no con la	dos como biomarcadores
					Frecuencia de con-		dieta alta en proteínas. Sin	predictivos de pérdida de
					sumo de 137 alimen-		embargo, de esos 9, tan	peso, pudiendo así imple-
					tos correspondiente		sólo 7 sirvieron para dife-	mentarse en la nutrición de
					al año anterior al		renciar a los respondedo-	precisión.
					estudio (cuestionario		res a la dieta baja en gra-	Se sugiere para futuros
					semicuantitativo vali-		sas frente a los que no	estudios emplear tanto
					dado).		respondieron a la misma,	tamaños de muestra más
					Se realizaron medi-		mientras que los otros 2	grandes como una mayor
					das de peso, altura y		restantes, mostraron una	duración de la intervención
					circunferencia de		interacción entre el grupo	para determinar si estos
					cintura (procedimien-		dietético y la respuesta a la	miRNAs participan en la
					tos validados); tam-		dieta. De ellos, sólo miR-	regulación de los meca-
					bién se determinaron		22-3p mostró una asocia-	nismos celulares que con-
					los niveles de gluco-		ción estadísticamente signi-	trolan la pérdida de peso y,
					sa, colesterol total,		ficativa con un descenso en	por tanto, su consideración
					triglicéridos, insulina,		el riesgo de no responder a	como marcadores precisos

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					el índice		la dieta baja en grasas.	de la obesidad.
					HOMAIR, y la activi-		Existen 7 miRNAs que	
					dad física expresada		participan en vías de regu-	
					en equivalentes me-		lación de la lipolisis en adi-	
					tabólicos (MET); es-		pocitos, esfingolípidos,	
					timaciones de la		FoxO, TNF, Wnt y vías de	
					composición corporal		señalización de la adipoci-	
					mediante absorcio-		toquina, a través de distin-	
					metría de rayos X de		tos mecanismos pero con	
					doble energía.		acciones complementarias	
					Se seleccionaron 86		en cuanto su modulación y	
					microARNs relacio-		función.	
					nados con la adiposi-			
					dad y la pérdida de			
					peso, basándose en			
					la literatura existente			
					y mediante búsqueda			
					en la base de datos			
					miRWalk 2.0.			
Interaction	Goni, L,	2018	Comprobar los	Ensayo	Asignación aleatoria,	147	Se obtuvieron interacciones	El estudio mostró un inter-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
between an	Riezu-		efectos de la	clínico	dos tipos de dieta	indivi-	significativas entre el geno-	acción significativa gen-
ADCY3 genetic	Boj, J.I,		variante genéti-	aleatori-	hipocalóricas (ambas	duos	tipo ADCY3 rs10182181 y	dieta, mostrando asocia-
variant and	Milagro,		ca ADCY3	zado	con una restricción	con	la ingesta dietética en	ción entre la variante gené-
two weight-	F.I, Co-		rs10182181		del 30 % sobre los	sobre-	cuanto a cambios en la	tica ADCY3 rs10182181 y
lowering diets	rrales,		sobre los cam-		requerimientos de	peso u	grasa corporal y en las	la composición en macro-
affecting body	F.J,		bios en la com-		energía de cada indi-	obesi-	mediciones de la composi-	nutrientes de dietas hipo-
fatness and	Ortiz, L,		posición corpo-		viduo mediante Mif-	dad	ción corporal (peso, circun-	calóricas, reflejándose
body composi-	Cuervo,		ral, el peso y		flin). Se tiene en	(IMC:	ferencia de cintura, masa	cambios tanto en las medi-
tion outcomes	M, Mar-		variables antro-		cuenta la actividad	25-40	grasa (en kg y en porcenta-	das antropométricas como
depending on	tínez,		pométricas,		física.	kg/m^2).	je), masa muscular, grasa	en la composición corporal
macronutrient	J.A.		como la circun-		Dieta 1: 60 % HC, un		del tronco, grasa androide,	de los individuos partici-
distribution: A			ferencia de la		18 % P y un 22 % G;		grasa ginoide y grasa vis-	pantes.
randomized			cintura, al some-		Dieta 2: 40 % HC,		ceral).	Además, los individuos
trial ⁽¹⁴⁾			ter a individuos		30 % P y 30 % G.		La dieta moderadamente	portadores del alelo G
			con sobrepeso y		8° y 16° semana:		alta en proteínas se asoció	rs10182181 que fueron
			obesidad a dos		evalúa el grado de		con una menor disminución	asignados a la dieta baja
			tipos de estrate-		adherencia a la dieta		de la masa grasa, de la	en grasas mostraron una
			gias dietéticas		mediante cuestiona-		grasa del tronco y la grasa	mayor disminución de la
			diferentes.		rio de alimentos en 3		androide, y una mayor dis-	masa grasa del tronco, de
					días.		minución de la masa ma-	la grasa ginoide y la grasa
					Medidas antropomé-		gra. Sin embargo, la dieta	androide que los portado-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					tricas al inicio y al		baja en grasas se asoció	res del mismo alelo some-
					final del estudio y		con una mayor disminución	tidos a la dieta alta en pro-
					distribución corporal		de la grasa del tronco, la	teínas.
					mediante absorció-		grasa androide, la grasa	Por lo tanto, este estudio
					metro de rayos X de		ginoide y la grasa visceral.	refleja que los portadores
					energía dual (DEXA).			del alelo menor de los ge-
					Para el genotipado			notipos ADCY3 podrían
					se emplearon células			presentar una mejor res-
					bucales epiteliales.			puesta a una intervención
								dietética orientada hacia la
								pérdida de peso, utilizando
								para ello una dieta baja en
								grasas.
Can genetic-	Celis-	2017	Conocer si el	Ensayo	Este estudio forma	5662	Se encontraron mayores	En una intervención de 6
based advice	Morales		hecho de difun-	clínico	parte de un ensayo	perso-	pérdidas (casi el doble) de	meses de duración, tanto
help you lose	C, Mar-		dir información	contro-	clínico mayor deno-	nas	peso y de circunferencia	el tratamiento nutricional
weight? Find-	saux		relativa a la	lado	minado Food4Me.	entre 18	de cintura a los 6 meses de	personalizado como uno
ings from the	CFM,		masa grasa y al	aleatori-	Los participantes	y 73	intervención entre los por-	no personalizado presenta
Food4Me Eu-	Living-		genotipo de	zado	fueron asignados de	años, de	tadores de genotipo de	efectividad en la pérdida de
ropean ran-	stone		riesgo del gen		manera aleatoria a	7 países	riesgo FTO (AT/AA) frente	peso y de la circunferencia

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
domized con-	KM,		FTO que se		cuatro grupos (trata-	euro-	a los portadores sin riesgo	de cintura en individuos
trolled trial ⁽¹⁵⁾	Navas-		asocia a la obe-		miento 6 meses):	peos.	(TT).	con sobrepeso u obesidad.
	Carret-		sidad entre indi-		-Grupo 0: solo recibió		Las pérdidas experimenta-	Sin embargo, aquellos que
	ero S,		viduos someti-		información sobre		das por los sujetos de ries-	son portadores del alelo de
	San-		dos a un trata-		pautas dietéticas y		go fueron superiores al 5 %	riesgo para el gen FTO, y
	Cristobal		miento nutricio-		actividad física no		de su peso corporal y cir-	que además son conoce-
	R, Fal-		nal personaliza-		personalizada.		cunferencia de cintura ini-	dores de ello, y reciben un
	laize R,		do. Comparar el		-Grupo 1: información		cial.	tratamiento nutricional per-
	et al.		impacto en		personalizada en		Las pérdidas fueron mayo-	sonalizado basado en la
			cuanto a la dis-		cuanto a la dieta y la		res entre los participantes	genética, experimentan
			minución de los		actividad física te-		de riesgo que desconocían	pérdidas de peso y de cir-
			parámetros		niendo en cuenta su		su genotipo que entre	cunferencia de cintura ma-
			asociados a la		peso actualGrupo 2:		aquellos que eran conoce-	yores que los que reciben
			obesidad entre		asesoramiento per-		dores de este a los tres	pautas nutricionales están-
			los portadores		sonalizado a nivel		meses de intervención.	dar.
			del alelo de		dietético y de activi-			El hecho de conocer de
			riesgo que entre		dad física teniendo			forma previa al inicio del
			aquellos que no		en cuenta tanto el			tratamiento nutricional si el
			presentan ese		peso actual como el			individuo es portador del
			genotipo.		fenotipo, en concreto			alelo de riesgo rs9939609
					la circunferencia de			para el gen FTO (AT/AA) y,

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					cintura y el colesterol			por tanto, recibir un trata-
					en sangreGrupo 3:			miento nutricional persona-
					recibió información			lizado basado en la genéti-
					personalizada de			ca, no supone una mayor
					nuevo sobre la dieta			pérdida ni de peso corporal
					y la actividad física			ni de circunferencia de
					pero en este caso			cintura frente a aquellos
					teniendo en cuenta			individuos que no son co-
					tanto el peso actual,			nocedores de ello y que
					el fenotipo y el geno-			reciben un tratamiento
					tipo, concretamente			nutricional personalizado
					se consideraron 5			pero no basado en la gené-
					variantes genéticas:			tica.
					el FTO, el factor de			Los portadores del alelo de
					transcripción 7			riesgo para el gen FTO
					(TCF7L2), apolipo-			experimentan pérdidas de
					proteína E y la meti-			peso y de circunferencia de
					lenetetrahidrofolato			cintura mayores que aque-
					reductasa (MTHFR).			llos individuos no portado-
					Peso, la altura y la			res, independientemente
					circunferencia de			de que sean conocedores

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					cintura recogidos al			previos o no de su genéti-
					inicio del ensayo y			ca, y siempre y cuando
					durante el 3er y el 6º			reciban un tratamiento
					mes del estudio.			nutricional personalizado.
					Muestras biológicas a			
					través de correo pos-			
					tal, las cuales fueron			
					tomadas mediante un			
					hisopo bucal de ex-			
					tracción de ADN.			
The impact of	Van	2017	Valorar si exis-	Ensayo	Asignación aleatoria	61 per-	12 semanas de interven-	El consumo de una dieta
protein quanti-	Bussel		ten diferencias	contro-	a dos tipos de dietas	sonas	ción nutricional: disminu-	normoproteica e hipocaló-
ty during en-	IPG,		en cuanto a la	lado	hipocalóricas, con	sanas	ción del peso corporal en	rica, con una restricción
ergy re-	Backx		expresión géni-	paralelo	una restricción ener-	con	todos los participantes del	energética del 25 %, resul-
striction on	EMP, De		ca al someter a	doble	gética del 25 % y una	sobre-	estudio, independientemen-	ta beneficiosa, ya que con-
genome-wide	Groot		individuos obe-	ciego	duración de 12 se-	peso y	te del tipo de dieta aplica-	duce a una menor expre-
gene expres-	CPGM,		sos a una dieta		manas. Dieta 1: rica	obesi-	da, con una pérdida media	sión de los genes relacio-
sion in adi-	Tieland		hiperproteica		en proteínas 1,7 g/kg	dad, y	de peso de 9,4 kg. No se	nados con la inflamación
pose tissue of	M, Mül-		con restricción		de peso/día. Dieta 2:	edades	observan diferencias signi-	del tejido adiposo blanco,
obese hu-	ler M,		energética o a		normoproteica, 0,9	com-	ficativas en el peso entre la	cosa que no se observa si

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
mans ⁽¹⁶⁾	Afman		una dieta nor-		g/kg de peso/día.	prendi-	dieta hiperproteica y los	la dieta fuese hiperprotei-
	LA.		moproteica e		Además, tanto al	das	asignados a la normopro-	ca.
			hipocalórica.		inicio del estudio	entre los	teica.	El contenido en proteínas
			Evaluar si la		como al finalizar el	55 y los	Se observan 530 genes	de la dieta no refleja cam-
			restricción ener-		mismo se realizó una	70 años.	que se expresan de mane-	bios en el peso corporal, la
			gética desenca-		biopsia del tejido		ra diferente entre los pa-	circunferencia de cintura y
			dena cambios a		adiposo blanco de 22		cientes sometidos a una	los niveles de glucosa, sino
			nivel de la ex-		de los participantes,		dieta hiperproteica e hipo-	que la reducción en el peso
			presión génica		correspondiendo 10		calórica y los asignados a	corporal y en el resto de
			en el tejido adi-		de ellas a participan-		la normoproteica e hipoca-	parámetros se deberían a
			poso blanco.		tes sometidos a la		lórica.	la restricción energética del
					dieta hiperproteica y		Pacientes sometidos a la	25 % que presenta la dieta.
					las 12 restantes a los		dieta normoproteica: menor	Además, esa restricción
					pacientes asignados		expresión de los genes	energética del 25 % induce
					a las dieta normopro-		relativos al inflamasoma, a	una menor expresión de
					teica. Con estas		la respuesta inmune adap-	las vías relacionadas con
					biopsias se pretendía		tativa, a las vías relaciona-	el metabolismo lipídico y
					aislar el ARN total y		das con el ciclo celular en	energético, las cuales se
					poder conocer si se		el tejido adiposo y a la infil-	encuentran parcialmente
					producen cambios en		tración de células inmunes.	reguladas en el tejido adi-
					la expresión génica		Este fenómeno no se ob-	poso blanco en los huma-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					cuando el paciente se somete a una dieta normoproteica e hipocalórica o cuan- do consume una dieta hiperproteica e hipocalórica.		serva si el paciente es sometido a una dieta hiperproteica, sino que por el contrario se atisba una mayor expresión de genes asociados al metabolismo del nitrógeno, al ciclo celular, a la señalización de la vía olfativa y de GPCR.	nos.
Habitual con-	Huang	2019	Demostrar si	Estudio	Cada 2 años se re-	Tres	El consumo de ácidos gra-	La ingesta de ácidos gra-
sumption of	T, Wang		existe una aso-	de	cogieron datos relati-	cohor-	sos poliinsaturados de ca-	sos poliinsaturados de
long-chain n-3	T, Hei-		ciación genética	cohortes	vos al estilo de vida e	tes, dos	dena larga ℧-3 disminuye	cadena larga ℧-3 y la in-
PUFAs and	anza Y,		entre la ganan-	pros-	historial clínico me-	de des-	de manera importante la	gesta de pescado disminu-
fish attenuates	Zheng		cia de peso o la	pectivo	diante cuestionarios	cubri-	asociación genética con el	yen de manera importante
genetically	Y, Sun		obesidad a largo		autoadministrados.	miento y	aumento del IMC a largo	la asociación genética con
associated	D, Kang		plazo y el con-		Se evaluó la ingesta	una de	plazo.	los cambios de peso e IMC
long-term	JH, et al.		sumo de ácidos		de ácidos grasos	replica-	Ingesta de pescado: su	a largo plazo.
weight gain ⁽¹⁷⁾			grasos poliinsa-		poliinsaturados de	ción.	consumo también se en-	Una mayor ingesta de pes-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
			turados ℧-3 de		cadena larga ℧-3	Descu-	cuentra relacionado con el	cado y ácidos grasos po-
			cadena larga, o		mediante cuestiona-	brimien-	puntaje de riesgo genético	liinsaturados de cadena
			de pescado,		rios semicuantitativos	to: -1 ^a	en los cambios del IMC a	larga ℧-3 en los individuos
			como principal		autocumplimentable	cohorte	largo plazo tanto en hom-	portadores del puntaje de
			fuente de este		validados con 122	6773	bres como en mujeres.	riesgo genético, supone
			nutriente en la		ítems, que eran en-	hombes	Asociación similar (menos	mayores disminuciones del
			dieta.		viados cada 4 años.	de	significativa) entre la inges-	IMC y el peso corporal a
			Se plantea la		Se evaluó también el	EEUU,	ta de pescado y el cambio	largo plazo. Por el contra-
			hipótesis de que		nivel de actividad	profe-	de peso a largo plazo. La	rio, a menores ingestas,
			el consumo		física semanal y su	sionales	ingesta de ácidos grasos	mayores aumentos del IMC
			elevado de pes-		intensidad, expresa-	de la	poliinsaturados de cadena	y el peso.
			cado o de áci-		da en forma de equi-	salud,	largo ℧-3 (α-linolénico,	Se prueba que la ingesta
			dos grasos po-		valentes metabólicos,	entre 40	EPA y DHA) no mostraron	de PUFA presenta una
			liinsaturados		y el consumo de be-	y 75	una asociación relevante	interacción beneficiosa con
			℧-3 puede re-		bidas alcohólicas,	años;	con el cambio de peso	los genes asociados a la
			ducir el efecto		bebidas azucaradas	-2 ^a	corporal a largo plazo. Tan	obesidad, es decir, con la
			genético sobre		y alimentos fritos.	cohorte	sólo DHA mostró una inter-	susceptibilidad genética al
			el cambio de		El peso corporal se	11330	acción mínimamente signi-	aumento de peso a largo
			peso a largo		midió al inicio del	enfer-	ficativa con el cambio de	plazo.
			plazo o la obe-		estudio y se solicitó	meras	IMC a largo plazo. Consu-	Se demuestra una eviden-
			sidad.		información al res-	entre 30	mo de pescado y de ácidos	cia reproducible de que la

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					pecto en cada uno de	y 55	grasos ℧-3: se encontraron	ingesta abundante de áci-
					los cuestionarios	años.	interacciones significativas	dos grasos poliinsaturados
					enviados.	Replica-	con el factor de transcrip-	de cadena larga ℧-3 y
					También se evalua-	ción:	ción 7 (TCF7-L2) y el regu-	pescado puede disminuir la
					ron 77 polimorfismos	6254	lador del crecimiento neu-	influencia genética en el
					de un solo nucleótido	mujeres	ronal (NEGR1). Ingesta de	cambio de peso corporal a
					que ya se sabía aso-	meno-	pescado y ácidos grasos ℧-	largo plazo.
					ciado al IMC.	paúsi-	3 reducen de manera im-	
						cas de	portante la asociación ge-	
						EEUU.	nética de NEGR1 y	
							TCF7L2 con los cambios	
							en el IMC a largo plazo.	
The MC4R	Ad-	2019	El objetivo del	Estudio	-Inicio del estudio:	Partici-	Para rs17782313, los por-	Los polimorfismos de un
genetic vari-	amska-		estudio consistió	de	bioimpedancia eléc-	paron	tadores del genotipo CC	solo nucleótido (SNP) del
ants are asso-	Patruno		en analizar si	cohortes	trica. Medición de	927	mostraron una mayor acu-	gen MC4R son capaces de
ciated with	E,		algunas de las	aleatori-	altura y la circunfe-	indivi-	mulación de grasa visceral,	modular el metabolismo
lower visceral	Goscik		variantes gené-	zado	rencia de cintura y	duos,	no mostrándose asociación	pospandrial.
fat accumula-	J, Czaj-		ticas del gen		cadera. Nivel de acti-	473	con el resto de parámetros	En el caso del polimorfismo
tion and higher	kowski		MC4R que se		vidad física (equiva-	hom-	estudiados (ingesta dietéti-	rs1350341, los portadores
postprandial	P,		encuentran aso-		lentes metabólicos)	bres y	ca, actividad física, el gasto	del genotipo GG, a diferen-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
relative in-	Malisze		ciadas con la		por semana.	454	energético y utilización de	cia de los portadores del
crease in car-	wska K,		obesidad, influ-		-Diarios de alimentos	mujeres,	sustratos tras la ingesta y	genotipo AA, tienen una
bohydrate uti-	Ci-		yen en las pre-		de 3 días, donde las	con una	en ayunas).	menor acumulación de
lization in hu-	borowski		ferencias ali-		porciones ingeridas	edad	Para rs633265, también se	grasa visceral y un mayor
mans ⁽¹⁸⁾	M,		mentarias, en la		se debían indicar por	media	observa una importante	consumo de hidratos de
	Golonko		cantidad y en la		pesada de los ali-	de	acumulación de grasa vis-	carbono después de las
	A, et al.		distribución de		mentos o mediante	40,22	ceral en el caso del genoti-	comidas.
			la grasa corpo-		comparación con	años.	po TT, no mostrándose	Este estudio podría servir
			ral, en la acu-		fotos de raciones	De	ninguna asociación rele-	de base para conocer las
			mulación de		estándar y cálculo de	ellos,	vante con el resto de pa-	vías genéticas que regulan
			grasa a nivel		la ingesta energética	597	rámetros estudiados ni en	la acumulación de la grasa
			visceral, en los		y de macronutrientes	tenían	el resto de genotipos.	corporal para poder desa-
			niveles de in-		mediante el software	sobre-	En el caso de rs12970134,	rrollar estrategias de pre-
			gesta y ayuno,		Dieta 4.	peso u	se mostró un IMC más alto,	vención y tratamiento per-
			en la actividad		-Calorimetría indirec-	obesi-	un mayor contenido tanto	sonalizado de la obesidad.
			física y en el		ta tras recibir una	dad	de grasa corporal total co-	
			gasto energético		ingesta estándar de	(IMC	mo de masa grasa visceral	
			después de		450 kcal y un alto	medio	y abdominal subcutánea	
			llevar a cabo		porcentaje de hidra-	de	para el genotipo AA. Sin	
			ingestas con		tos de carbono	31,37	embargo, tampoco se	
			diferente conte-		(89,3 % de HC, 10,7 % P y	kg/m²) y	muestra ninguna asocia-	

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
			nido de macro-		0 % Grasas). Entre 7	una	ción significativa con la	
			nutrientes.		y 15 días después,	edad	ingesta dietética, la activi-	
					se repitió el proceso	media	dad física, el gasto energé-	
					con 24 individuos,	de	tico y la utilización de sus-	
					que fueron sometidos	44,20	tratos tras la ingesta y en	
					de nuevo una ingesta	años.	ayunas.	
					de 450kcal, pero esta	Los 330	Para rs1350341, se obser-	
					vez con una distribu-	restan-	va una mayor acumulación	
					ción diferente de los	tes eran	de la grasa visceral en el	
					macronutrientes	indivi-	caso de los portadores del	
					(45,1 % HC, 29,7 %	duos	genotipo AA, mientras que	
					P y 25,2 % G).	sanos	en el caso de los portado-	
					En ambos casos las	con	res de GG se muestra una	
					ingestas debieron	normo-	mayor acumulación de la	
					realizarlas en 10	peso,	masa grasa subcutánea	
					minutos y con sólo		abdominal. Además, éstos	
					150ml de agua, y se		muestran una menor utili-	
					tomaron medidas del		zación de los hidratos de	
					gasto calórico en		carbono y una mayor oxi-	
					ayunas (0min), y		dación de las grasas en	
					cada 30 minutos		ayunas, y un mayor con-	

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					hasta completar las		sumo de los hidratos de	
					4h para conocer el		carbono después de las	
					uso qué hace cada		comidas. Tampoco se en-	
					individuo de los hi-		contraron asociaciones con	
					dratos de carbono y		el gasto energético en ayu-	
					las grasas después		nas ni después de las co-	
					de las comidas.		midas.	
					-Se genotiparon po-			
					limorfismos de un			
					solo nucleótido (SNP)			
					del gen MC4R en los			
					927 sujetos partici-			
					pantes.			
Changes in	Doaei S,	2019	Demostrar si	Ensayo	Intervención de 18	En el	El nivel de expresión géni-	Una intervención sobre el
FTO and IRX3	Kalantari		una intervención	de cam-	semanas: -Muestras	estudio	ca de IRX3 se reguló al alza	estilo de vida de varones
gene expres-	N, Izadi		sobre el estilo	po alea-	de sangre en la se-	partici-	en el grupo de intervención	adolescentes con sobrepe-
sion in obese	P, Salo-		de vida de ado-	torizado	mana inicial y final de	paron	con respecto al grupo con-	so u obesidad, es decir,
and over-	nurmi T,		lescentes con		la intervención. De	62 ado-	trol, no ocurriendo lo mismo	sobre su dieta y el nivel de
weight male	Mosavi		sobrepeso y		ellas se extrajo el	lescen-	para el FTO, que no expe-	actividad física, puede
adolescents	Jarrahi		obesidad puede		ARN para determinar	tes con	rimentó apenas variación	inducir cambios en los

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
undergoing an	Α,		inducir cambios		los cambios de ex-	sobre-	entre los grupos ni al inicio	niveles de expresión de los
Intensive life-	Rafieifar		en la expresión		presión del gen FTO	peso u	ni al final de la intervención.	genes FTO e IRX3, ejer-
style interven-	S, et al.		de los genes		e IRX3, los cuales se	obesi-	Se observó una importante	ciendo así un efecto sobre
tion and the			FTO e IRX3,		evaluaron mediante	dad y	asociación entre el genoti-	la obesidad.
role of FTO			relacionados		el software REST.	edades	po FTO y la expresión gé-	El genotipo FTO condicio-
genotype in			con la obesidad		-Dieta personalizada	com-	nica de FTO.	na la expresión de los ge-
this interac-			genética, y la		para el control de	prendi-	El alelo de riesgo	nes, lo cual puede suponer
tion ⁽¹⁹⁾			función del ge-		peso y a un plan de	das	rs9930506, asociado al	que el resultado de los
			notipo FTO en		actividad física indivi-	entre 12	IMC, se relaciona única-	cambios en el estilo de
			la asociación		dualizado durante 18	y 16	mente con la expresión del	vida sea diferente depen-
			genética-		semanas.	años.	gen FTO pero no con la	diendo del genotipo que
			obesidad-estilo		-Tanto los hábitos		expresión del IRX3.	presente cada individuo.
			de vida.		dietéticos de los ado-		La expresión de FTO se	
					lescentes como su		encuentra disminuida en	
					nivel de actividad		los portadores del alelo de	
					física, fueron evalua-		riesgo (rs9930506) en el	
					dos mediante cues-		grupo de intervención y, sin	
					tionarios semicuanti-		embargo, se encuentra	
					tativos validados: un		aumentada en aquellos	
					cuestionario de fre-		individuos no portadores	
					cuencia de consumo		del mismo. En cambio, la	

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					de alimentos con 168		expresión del gen IRX3 se	
					alimentos habitual-		encuentra aumentada en	
					mente consumidos		los portadores del alelo de	
					por los iraníes y en		riesgo en el grupo de inter-	
					raciones estándar y		vención.	
					un cuestionario inter-		El efecto de la intervención	
					nacional de actividad		sobre la expresión de FTO	
					física, expresada en		depende del genotipo de	
					MET/min/semana.		FTO, pero no de IRX _{3.}	
Influence of	Laura Di	2018	Determinar si el	Ensayo	Tras un ayuno de 12	180	La grasa corporal total se	Existe una importante aso-
FTO rs9939609	Renzo,		alelo rs9939609	clínico	horas, los participan-	indivi-	vio disminuida de manera	ciación entre el seguimien-
and Mediterra-	Giorgia		del gen FTO	aleatori-	tes fueron sometidos	duos	dependiente a la interven-	to de una dieta mediterrá-
nean diet on	Ciocco-		influye tanto en	zado	a: análisis antropo-	italia-	ción nutricional y a la inter-	nea y la variación de la
body composi-	loni,		la pérdida de		Métrico; análisis de	nos, de	acción gen-dieta.	grasa corporal total y de la
tion and	Simone		peso como en		la composición cor-	raza	Se observaron aumentos	grasa corporal ginoide.
weight loss: A	Falco,		los cambios de		poral mediante ab-	caucá-	de peso en portadores del	La dieta mediterránea
randomized	Ludovico		la composición		sorciometría de rayos	sica y	alelo de riesgo rs9939609	constituye un tratamiento
clinical trial ⁽²⁰⁾	Abena-		corporal al so-		X de doble energía y	mayores	en el grupo control, y pér-	nutricional muy eficaz para
	voli,		meter a los indi-		bioimpedancia eléc-	de 16	didas de peso en portado-	reducir la masa grasa cor-
	Ales-		viduos a una		trica; toma de	años.	res de riesgo del grupo de	poral, sin embargo, la in-
	sandra		dieta de estilo		muestra de material	Dividi-	intervención.	fluencia de FTO en los

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
	Moia,		mediterráneo		genético mediante un	dos de	Además, en el grupo de	tejidos corporales cuando
	Paola		durante un mes,		hisopo de saliva.	manera	intervención se observaron	el individuo es sometido a
	Sinibaldi		y poder además		Y registro dietético	aleatoria	pérdidas de una mayor	un tratamiento nutricional
	Salimei		determinar si		de 3 días.	en dos	cantidad de masa grasa	concreto es aún incierta, y
	y Anto-		dicha variante		Participantes del	grupos	ginoide que en el grupo	se requiere de más estu-
	nino De		del gen resulta		grupo de interven-	control e	control, independientemen-	dios para determinar su
	Lorenzo.		influyente en la		ción: dieta de estilo	inter-	te de la presencia o no del	influencia concreta. Sólo se
			respuesta a una		mediterráneo durante	vención.	alelo de riesgo de FTO.	ha podido probar su aso-
			dieta concreta.		un mes, consistente		Sin embargo, el agua cor-	ciación con la variación del
					en una dieta isocaló-		poral total se redujo de	agua corporal total inde-
					rica con un aporte del		manera importante en los	pendientemente del tipo de
					55 % de HC, un 20 %		portadores del alelo de	dieta. Esta variación del
					de P. Además, dicha		riesgo, independientemente	agua corporal total puede
					dieta debía aportar		del tipo del tipo de dieta al	inducir a error con respecto
					25g de fibra y menos		que hayan sido sometidos.	a la pérdida de peso, ya
					de un 1 % de ácidos			que puede suponer una
					grasos trans.			disminución del IMC y del
					Los participantes del			peso, sin que exista una
					grupo control no fue-			pérdida real de masa gra-
					ron sometidos a nin-			sa.
					guna dieta concreta			Tanto el tratamiento nutri-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					pero recibieron edu-			cional como la asociación
					cación nutricional.			gen-dieta repercuten en la
								masa grasa corporal total,
								sin embargo, FTO no mos-
								tró esa misma respuesta.
Changes in	Marsaux	2016	Analizar si el	Ensayo	Ensayo aleatorio. 6	1607	Al inicio del estudio, de los	No se ha observado una
Physical Activ-	CFM,		hecho de que el	clínico	meses de duración. 4	adultos	874 portadores de riesgo y	mejora de la actividad físi-
ity Following a	Celis-		paciente sea	contro-	grupos: -Grupo 0:	mayores	los 405 no portadores de	ca al revelar a los indivi-
Genetic-Based	Morales		conocedor de	lado	reciben pautas dieté-	de 18	los que se disponían de	duos si son o no portado-
Internet-	C, Liv-		que es portador	aleatori-	ticas y de actividad	años,	datos sobre actividad física	res del alelo de riesgo de
Delivered Per-	ingstone		de un alelo de	zado de	física estándar, es	proce-	basal, no se observaron	FTO y llevar a cabo una
sonalized In-	KM,		riesgo del gen	cuatro	decir, no personali-	dentes	diferencias significativas en	intervención personalizada.
tervention:	Fallaize		FTO para la	brazos	zadasGrupo 1:	de 7	la actividad física practica-	Los individuos conocedo-
Randomized	R, Ko-		obesidad por	dentro	pautas dietéticas y de	países	da por ambos grupos.	res de que no eran porta-
Controlled	lossa S,		divulgación del	del es-	actividad física per-	euro-	De los participantes com-	dores del alelo de riesgo
Trial	Hall-		mismo tiene una	tudio	sonalizadas, basadas	peos	prendidos entre los grupos	tendieron a abandonar el
(Food4Me) ⁽²¹⁾	mann J,		repercusión en	Food4-	en su dieta y nivel de	Este	1 y 3, se instó a 807 de	estudio de forma más rápi-
	et al.		el cambio de la	Me	actividad física ac-	estudio	ellos a aumentar la práctica	da y tuvieron un desgaste
			actividad física		tualGrupo 2: se	es parte	de actividad física de forma	mayor que los portadores
			practicada por el		añade a lo indicado	del es-	personalizada.	del alelo de riesgo.

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
			individuo.		en el grupo 1 el feno-	tudio	Sin embargo, en el grupo 3,	Con los datos obtenidos en
					tipo, en este caso	mayor	donde se les informó de la	este estudio no se puede
					basado en la circun-	Food4-	presencia o ausencia de	afirmar que exista una
					ferencia de cintura y	Me.	riesgo al ser portadores del	asociación importante en-
					el colesterol en san-		polimorfismo de FTO, no se	tre la personalización de la
					greGrupo 3: se		observó un aumento signi-	intervención, la divulgación
					añade a lo indicado		ficativo de la actividad físi-	del riesgo de portar el po-
					en el grupo 2 el ge-		ca respecto al grupo 0, por	limorfismo rs9939609 de
					notipo, en este caso		lo que no existe interrela-	FTO y la inducción al cam-
					FTO. Se indicó a		ción importante entre la	bio en la práctica de activi-
					los participantes los		personalización de la inter-	dad física.
					días donde debían		vención, la divulgación del	
					mantener 8h de		riesgo de portar el polimor-	
					ayuno, y tras ello		fismo rs9939609 de FTO y	
					recolectar la muestra		la inducción al cambio en la	
					de ADN (kit de auto-		práctica de actividad física.	
					colección), medir el		Dentro de los individuos del	
					peso, altura y circun-		grupo 3, conocedores de	
					ferencia de la cintura		su genotipo, aquellos que	
					(al inicio, a los 3 y a		no eran portadores del	
					los 6 meses) y usar		alelo de riesgo presentaron	

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					el acelerómetro (en-		un desgaste y una inten-	
					tregado al inicio del		ción de abandono mayor	
					estudio). Los cues-		que los portadores del alelo	
					tionarios utilzados		de riesgo.	
					están validados uy se			
					entregan por Internet.			
FTO genotype,	Huang	2014	Investigar si se	Ensayo	En el estudio partici-	737	Los 6 primeros meses,	Los individuos portadores
dietary protein,	T, Qi Q,		producen cam-	clínico	paron 737 adultos	adultos;	teniendo en cuenta la edad,	del genotipo FTO
and change in	Li Y, Hu		bios a largo	aleatori-	con sobrepeso u	589	sexo, etnia, IMC inicial,	rs9939609 sometidos a
appetite: the	FB, Bray		plazo en el ape-	zado	obesidad, a los que	eran de	cambio de peso y los valo-	una dieta hiperproteica
preventing	GA,		tito en sujetos		se genotipó FTO	raza	res iniciales para los anto-	durante dos años manifies-
overweight	Sacks		con el genotipo		rs9939609, y fueron	blanca,	jos de alimentos, se com-	tan una disminución de su
using novel	FM, et		FTO (homocigó-		sometidos a nuevas	112 de	probó que existían impor-	percepción del apetito y el
dietary strate-	al.		ticos para la		estrategias dietéticas	raza	tantes asociaciones entre	antojo de alimentos, siendo
gies trial ⁽²²⁾			masa grasa y		de prevención de	negra,	el genotipo FTO	ésta aún mayor si además
			obesidad aso-		sobrepeso u obesi-	25 his-	rs9939609, ingesta hiper-	son portadores del alelo A.
			ciada) someti-		dad, con el fin de	panos y	proteica, los cambios en los	Por tanto, estos nuevos
			dos a una inges-		evaluar los cambios	11 asiá-	antojos de alimentos y las	hallazgos evidencian que
			ta hiperproteica.		que se producen en	ticos.	percepciones de apetito,	una intervención nutricional
					el apetito, los antojos,	Rango	asociándose una disminu-	personalizada en estos

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					la saciedad, el ham-	de edad	ción de estas últimas con el	individuos ayudaría en la
					bre y el consumo	40-60	alelo A y la dieta hiperpro-	prevención de la obesidad.
					prospectivo.	años;	teica. Sin embargo, durante	
						IMC	la intervención completa	
						entre 30	(dos años), no se encontra-	
						y 35	ron efectos del gen FTO en	
						kg/m².	otras medidas del apetito.	
Adiponectin	De Luis	2021	Analizar el efec-	Ensayo	Ensayo aleatorio	269	Todos los participantes	El polimorfismo rs266729
gene variant	DA,		to que tiene	de inter-	durante 9 meses a	indivi-	completaron el estudio sin	del gen ADIPOQ parece
rs266729 in-	Martín		sobre la pérdida	vención	dos tipos de dietas	duos	abandonos.	estar relacionado con tras-
teracts with	DP,		de peso y los	aleatori-	hipocalóricas: -Dieta	obesos,	De los 136 participantes	tornos en el metabolismo
different mac-	Izaola O.		parámetros	zado.	1: una alta en proteí-	de los	que recibieron la dieta hi-	de la glucosa, como la
ronutrient dis-			bioquímicos el		nas y baja en hidra-	cuales	perproteica, 55 tenía el	diabetes tipo 2, pero no
tributions of			polimorfismo		tos de carbono con la	199	alelo de riesgo (genotipos	con la pérdida de peso, la
two different			rs266729 del		siguiente distribución	fueron	GG o GC) y todos alcanza-	cual en este caso se debe
hypocaloric			gen ADIPOQ,		nutricional: 1050	mujeres	ron los objetivos de la in-	únicamente a la restricción
diets during			tras someter a		kcal/día, 33 % HC,	y 70	tervención nutricional.	calórica a la que ha sido
nine months ⁽²³⁾			los participantes		34 % P y 33 % G.	hom-	Los 133 participantes res-	sometidos los participantes
			durante 9 me-		-Dieta 2: hipocalórica	bres,	tantes recibieron la dieta	durante los 9 meses de
			ses a dos tipos		severa estándar con	con	hipocalórica estándar. De	intervención.

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
			de dietas, una hiperproteica y baja en hidratos de carbono, y otra hipocalórica severa estándar.		un aporte de 1093kcal/día, 53 % HC, 20 % P y 27 % GSe recomendó la realización de ejercicio aeróbico al menos 3 veces a la semana durante 45 minutos al día Se evaluaron los registros de ingesta de 3 díasAl inicio como a los 3 y 9 meses se llevaron a cabo analíticas: perfil lipídico, proteína C reactiva, insulina y adopicinas. Medidas de la tensión arterial y medidas antropométricas;	edades com- prendi- das entre 25 y 65 años (edad media de 50,2 años) e IMC medio de 37,3 kg/m².	ellos, 62 eran portadores del alelo de riesgo, y también consiguieron los objetivos de la intervención. Por tanto, independientemente del genotipo del que sean portadores y de la dieta a la que hayan sido sometidos, todos los participantes lograron una pérdida de peso. Además, sólo aquellos que no eran portadores del alelo de riesgo (genotipo CC), independientemente de la dieta empleada, obtuvieron mejorías en los parámetros bioquímicos (colesterol total, LDL, insulina, HOMA-IR y adiponectina).	Los no portadores del alelo de riesgo, independientemente de la dieta a la que hayan sido sometidos, mostraron una mejoría mayor de sus parámetros bioquímicos frente a los portadores del alelo de riesgo. Sin embargo, la pérdida de peso fue muy similar entre los portadores de riesgo y los no portadores, no estando influida ni por la diferente distribución de macronutrientes de la dieta ni por la genética estudiada en este caso, sino únicamente por la restricción calórica y la práctica de ejercicio físico. Se propone que con el fin

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					bioimpedancia eléc-			de lograr una intervención
					trica.			nutricional más personali-
					-Detección de la va-			zada se realice un estudio
					rianrte rs266729 del			genético previo antes de
					gen ADIPOQ en san-			iniciar el tratamiento con
					gre.			una dieta hipocalórica para
								la pérdida de peso.
Protein quanti-	Carayol	2017	Realizar un	Estudio	Todos los participan-	Partici-	De las 1129 proteínas es-	Se identificaron señales
tative trait lo-	J,		análisis de locus	de	tes fueron sometidos	paron	tudiadas, 192 fueron aso-	cis-pQTL y trans-pQTL
cus study in	Chabert		de rangos cuan-	cohortes	a una dieta hipocaló-	494	ciadas al IMC, siendo la	asociadas tanto al inicio
obesity during	C, Di		titativos de pro-		rica de 8 semanas	indivi-	leptina la que mostró mayor	como al final de la inter-
weight-loss	Cara A,		teínas (pQTL)		para tratar de identifi-	duos	asociación con el mismo.	vención nutricional.
identifies a	Ar-		en 1129 proteí-		car factores genéti-	obesos	Así mismo, fue descubierto	La dieta hipocalórica en sí
leptin regula-	menise		nas e integrar		cos que influyan en la	agrupa-	el receptor de netrina (NE-	permite identificar interme-
tor ⁽²⁴⁾	C,		los datos para		variación de los nive-	dos por	TRIN-1), que puede ser	diarios muy distantes que
	Lefebvre		tratar de averi-		les de proteínas. Se	edad,	clave en la retención de	no daban ser p-QTL antes
	G,		guar si existe un		les estudiaron 1129	sexo y	macrófagos en el tejido	de la intervención nutricio-
	Langin		mecanismo		proteínas, ya que son	centro	adiposo y promover la re-	nal, como es el caso del
	D, et al.		genético que		buenos indicadores	de reali-	sistencia a la insulina y un	gen FAM46A,que tiene un
			regule las pro-		del estado metabóli-	zación	estado inflamatorio crónico.	efecto regulador para la

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
			teínas que se		co de un individuo y	del en-	Durante la dieta hipocalóri-	leptina, la cual ha demos-
			encuentran aso-		cambios en los nive-	sayo	ca de 8 semanas se obser-	trado estar fuertemente
			ciadas al IMC		les de las mismas a		vó una variación de 104	asociada con el IMC.
			antes y después		lo largo de una inter-		proteínas, de las cuales 51	
			de una interven-		vención nutricional		presentaban un efecto ne-	
			ción nutricional		pueden ser buenos		gativo, ya que su expresión	
			orientada a la		predictores a largo		aumentaba con la pérdida	
			pérdida de peso		plazo.		de peso, y 53 presentaron	
							un efecto positivo, ya que	
							su expresión disminuía con	
							la pérdida de peso.	
							Al realizar el estudio de	
							locus de rangos cuantitati-	
							vos de estas proteínas	
							(pQTL), se descubrió que	
							tras una intervención nutri-	
							cional empleando una dieta	
							hipocalórica, se identifica-	
							ron pQTL que no eran de-	
							tectables antes de la inter-	
							vención, lo cual es una	

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
							evidencia, ya que refleja	
							que los cambios en la ho-	
							meostasis pueden afectar a	
							los intermediarios de pro-	
							teínas, que pueden ser	
							activados mediante una	
							intervención dietética.	
DNA methyla-	Keller M,	2020	Evaluar los	Ensayo	Ensayo aleatorio. 6	278	Todos los individuos que	El éxito de una interven-
tion signature	Yaskolk		cambios en los	contro-	meses. Dos tipos de	indivi-	participaron en el análisis	ción nutricional, basada en
in blood mir-	a Meir A,		niveles de grasa	lado	dieta de estilo medi-	duos,	de metilación del ADN,	diferentes estrategias die-
rors success-	Bernhart		visceral des-	aleatori-	terráneo: una baja en	90 %	obtuvieron pérdidas de	téticas y la práctica de
ful weight-loss	SH,		pues de some-	zado	grasas y otra baja en	hom-	peso medias de 3,65 kg,	ejercicio físico, y destinada
during lifestyle	Gepner		ter a un grupo		hidratos de carbono.	bres,	asícomo una importante	a mejorar el estilo de vida
interventions:	Υ,		de individuos		-Grupo 1: Dieta baja	con una	dis- minución de la grasa	del paciente, disminuir su
the CENTRAL	Shelef I,		durante 18 me-		en grasas y actividad	edad	visce- ral y una notable	peso y mejorar su estado
trial ⁽²⁵⁾	Schwarz		ses a una dieta		física moderada, -	media	mejora de los parámetros	metabólico, se podría evi-
	fuchs D,		de estilo medite-		Grupo 2: dieta baja	de 48	metabólicosasociados a la	denciar en la metilación
	et al.		rráneo baja en		en grasas sin activi-	años y	obesidad (hemoglobina	específica del ADN de
			grasas o en		dad física, -Grupo 3:	un IMC	glicosilada e insulina).	cada individuo.
			hidratos de car-		dieta baja de hidratos	medio	De los individuos seleccio-	Los cambios en la metila-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
			bono con o sin		de carbono y activi-	de 30,8	nados para el análisis de	ción de los genes asocia-
			práctica de ejer-		dad física moderada -	kg/m².	metilación del ADN, todos	dos con la obesidad pue-
			cicio físico.		Grupo 4: dieta baja		perdieron peso durante los	den servir como biomarca-
					en hidratos de car-		6 primeros meses de inter-	dores de pronóstico que
					bono y sin práctica		vención. Sin embargo, de	podrían contribuir a deter-
					de ejercicio físico.		ellos, los que menos per-	minar si una terapia nutri-
					-Análisis de material		dieron (denominados no	cional orientada a la pérdi-
					genético en sangre		respondedores), recupera-	da de peso y tratamiento
					de todos los partici-		ron o incluso superaron su	de la obesidad puede re-
					pantes más 140 indi-		peso inicial en los 12 me-	sultar efectiva para un de-
					viduos aleatrorios.		ses siguientes, mientras	terminado paciente, permi-
					Las muestras de		que los que más perdieron	tiendo así un avance en el
					sangre se tomaron al		durante la primera fase	tratamiento nutricional per-
					inicio y a los 18 me-		(denominados respondedo-	sonalizado.
					ses.		res), perdieron alrededor	Concretamente, el gen
							de un 16 % más de su peso	RNF39 y procesos como la
							inicial en el siguiente año	adhesión celular o la unión
							de intervención. Estos indi-	de iones de calcio, podrían
							viduos mostraron una im-	ser buenos predictores de
							portante variación en la	éxito en el tratamiento nu-
							metilación del ADN de va-	tricional orientado a la pér-

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
							rios genes. Además, se identificaron hasta 15 CpG (regiones de ADN promotoras de genes) asociadas negativamente con los cambios en el peso corporal, como NUDT3 y NCOR2.	dida de peso.
Dietary protein	Huang,	2017	Evaluar si se	Ensayo	Los participantes	Partici-	Durante el genotipado se	Los individuos obesos por-
modifies the	Т,		produce alguna	contro-	fueron asignados de	paron	observó que la frecuencia	tadores del polimorfismo
effect of the	Zheng,		modificación del	lado	manera aleatoria a	735	de aparición del genotipo	rs7227255 del gen MC4R
MC4R geno-	Y, Hru-		efecto del geno-	aleatori-	cuatro dietas que	adultos	variaba de manera signifi-	sometidos a una dieta de
type on two	by, A,		tipo MC4R so-	zado	diferían entre sí en la	entre 40	cativa tanto entre ambos	pérdida de peso hiperpro-
year changes	William-		bre el apetito al		distribución de los	y 60	sexos como entre las dife-	teica e hipocalórica expe-
in appetite and	son,		someter a indi-		macronutrientes.	años,	rentes razas, siendo más	rimentan un aumento supe-
food craving:	D.A,		viduos con so-		Además se evaluó el	con	frecuente la aparición del	rior de los niveles de apeti-
The POUNDS	Bray,		brepeso u obe-		genotipo MC4R	sobre-	alelo de riesgo (A) entre	to y antojos que los indivi-
Lost Trial ⁽²⁶⁾	G.A,		sidad a una		rs7227255 en 735	peso y	hombres que entre muje-	duos obesos no portado-
	Shen, Y,		dieta de pérdida		participantes y los	obesi-	res, y entre los individuos	res.
	Sacks,		de peso durante		aspectos relaciona-	dad:	de raza negra que entre los	Todo ello evidencia tanto la

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
	F.M, Qi, L.		dos años y analizar si existe alguna interacción entre el genotipo MC4R y las distintas dietas orientadas a la pérdida de peso con diferente distribución de macronutrientes sobre los cambios en el apetito		dos con el apetito, como los antojos, el hambre, la saciedad y el consumo poten- cial de alimentos.	eran de raza blanca, 110 de raza negra, 25 hispanos y 10 asiáticos. De todos ellos, 450 eran mujeres y 285 hombres. Todos	de otras etnias. No se observaron diferencias significativas del genotipo MC4R con respecto a los cambios en el peso corporal o la circunferencia de cintura. Sin embargo, sí se observó un efecto más prolongado en la pérdida de la circunferencia de cintura que en la pérdida de peso. Además, los participantes portadores del alelo A presentaron mayores aumentos en los niveles de antojos que aquellos que no eran portadores. En respuesta a una dieta hipocalórica e hiperproteica, el alelo A está relacio-	importancia como la eficacia de una intervención nutricional personalizada en la prevención de la obesidad.

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
						los par-	nado con mayores aumen-	
						ticipan-	tos tanto en los niveles de	
						tes pre-	apetito como en los niveles	
						senta-	de antojo.	
						ron un		
						IMC		
						entre 29		
						y 37		
						kg/m ² .		
Effects of a	Primo D,	2020	Conocer el efec-	Ensayo	Ensayo aleatorio.	268	Todos los participantes	Los individuos portadores
high pro-	Izaola O,		to que puede	clínico	Dos tipos de dietas:	indivi-	completaron el estudio sin	del alelo A del polimorfismo
tein/low car-	de Luis		tener el polimor-	aleatori-	-Dieta 1:	duos	abandonos. De todos ellos,	rs3123554 del CB2R se
bohydrate low-	D.		fismo rs3123554	zado	hipocalórica	obesos	sólo 94 pacientes presenta-	encuentran asociados a un
calorie diet			del gen CB2R a	pros-	Severa (1050	caucá-	ron el genotipo GG (sin	peso corporal bastante
versus a			nivel antropo-	pectivo	kcal/día), hiperprotei-	sicos,	riesgo), y los 174 restantes	superior que los no porta-
standard low-			métrico y bio-		ca (34 % P), baja en	con	mostraron los genotipos	dores, sin embargo, al ser
calorie diet on			químico en indi-		HC (aporte del	edades	GA o AA (portadores del	sometidos a una dieta hi-
anthropomet-			viduos obesos		33%)y el 33% G.,	com-	alelo A, de riesgo).	pocalórica, independiente-
ric parameters			que han expe-		Dieta 2:hipocalórica	prendi-	Los portadores del alelo A	mente de la distribución de
and cardio-			rimentado una		severa(1093kcal/día),	das	experimentaron mayores	macronutrientes de la
					pero			
					con una distribución			

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
vascular risk factors, role of polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CBR2) ⁽²⁷⁾			pérdida de peso al ser sometidos a dos tipos de dietas de manera aleatoria durante 9 meses: una dieta hipocalórica, hiperproteica y baja en hidratos de carbono y otra hipocalórica estándar.		estándar de los macronutrientes: 20 % P, 53 % HC y 27 % G. En ambas grupos se aconsejó llevar a cabo una práctica de ejercicio físico aeróbico durante 1 hora diaria, al menos 3 veces a la semanaBioimpedancia eléctrica para conocer su composición corporal, analíticas de sangre para la determinación de los parámetros bioquímicos a estudiar y para la extracción de las muestras de ADN, y mediciones de la	entre los 25 y los 65 años, IMC superior a 30 kg/m²	pérdidas de peso, de IMC, de circunferencia de cintura, de masa grasa y de presión arterial, que los que no portaban el alelo de riesgo, independientemente de la dieta a la que fueron sometidos. Los individuos no portadores del alelo de riesgo presentaron una mayor disminución de los niveles de colesterol, triglicéridos, glucosa, insulina y HOMA-IR, que aquellos que eran portadores, independientemente de la dieta recibida. Los niveles de los marcadores inflamatorios y de las adipocitoquinas no mostraron diferencias entre	misma, experimentan mayores pérdidas de peso y mejoras importantes del resto de parámetros antropométricos (masa grasa, circunferencia de cintura e IMC) que los no portadores. Por el contrario, la mejoras asociadas al perfil bioquímico (niveles de colesterol, triglicéridos, glucosa e insulina), no se encuentran relacionadas ni con la intervención dietética ni con la presencia del alelo A.

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					tensión arterial, al		ambos genotipos ni para	
					inicio del estudio y a		las diferentes dietas, sin	
					los 3 y 9 meses.		embargo, los niveles de	
							leptina se vieron disminui-	
							dos tanto en los portadores	
							como en los no portadores	
							del alelo A y para ambas	
							dietas.	
Efficacy and	Clément	2020	Estudiar la efi-	Ensayo	Durante un año, se	21 indi-	De los 10 participantes con	En ambos ensayos se con-
safety of set-	K, van		cacia y seguri-	multi-	realizaron dos ensa-	viduos	deficiencia de POMC, 8	cluyó que la setmelanotida,
melanotide, an	den		dad de setmela-	céntrico	yos multicéntricos	obesos,	alcanzaron un umbral de	agonista de MC4R, se
MC4R agonist,	Akker E,		notida en la	de fase	abiertos, uno con 10	de los	pérdida de peso del 10 %.	asociaba a una importante
in individuals	Argente		reducción del	3	participantes obesos	cuales	De estos 8, sólo 7 llegó a	pérdida de peso y una
with severe	J, Bahm		hambre y el		con deficiencia de	10 pre-	perder el 25 %. De esos 7,	disminución en la percep-
obesity due to	Α,		peso corporal		POMC y otro con 11	senta-	sólo 3 llegaron a perder el	ción del hambre después
LEPR or POMC	Chung		en individuos		participantes obesos	ban	30 %, y de ellos, sólo 1	de un año de tratamiento.
deficiency:	WK,		con una obesi-		con deficiencia de	defi-	llegó a perder el 35 % de	Además, se llegó a la con-
single-arm,	Connors		dad asociada a		LEPR. Sin embargo,	ciencia	supeso inicial.	clusión de que la setmela-
open-label,	H, et al.		un déficit de		se produjo el aban-	de	De los 11 participantes del	notida era mejor tolerado
multicentre,			POMC o de		dono de varios parti-	POMC	ensayo con deficiencia de	que otros agonistas de

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
phase 3 trials ⁽²⁸⁾			LEPR durante un año.		cipantes por cuestiones de seguridad y sólo continuaron en el mismo 9 individuos con deficiencia de POMC y 7 con deficiencia de LEPR. Los participantes de ambos estudios, una vez alcanzada la dosis terapéutica individualizada de setmelanotida por vía subcutánea, recibieron el tratamiento durante 52 semanas, de las que 4 de ellas fueron tratados con placebo.	(5 hombres y 5 mujeres) y 11 presentaban deficiencia de LEPR (3 hombres y 8 mujeres). Mayores de 6 años con IMC superior a	LEPR, sólo 5 llegaron a perder el 10 % del peso inicial, llegando todos ellos a perder el 20 % pero ninguno llegó a alcanzar la pérdida del 25 % de su peso inicial después de un año. Además, la puntuación media de hambre disminuyó de 8,1 a 5,8 en el ensayo de deficiencia de POMC, y de 7,0 a 4,1 en el de la deficiencia de LEPR.	MC4R, y no producía un aumento de la frecuencia cardíaca, ni de la tensión arterial, ni presentaba nuevos problemas de seguridad.

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
						30		
						kg/m ² en		
						adul- tos		
						o un		
						percentil		
						superior		
						a 95		
						entre 6		
						y 18		
						años.		
The influence	Gulati S,	2019	Estudiar en los	Ensayo	6 meses de interven-	100	Después de 6 meses de	En los genotipos FTOSNP
of polymor-	Misra A,	2019	indios asiáticos	clínico	ción. Al inicio, medida	indivi-	intervención nutricional,	rs9939609 TT, UDR
	•						· ·	·
phisms of fat	Tiwari R,		la posible rela-	pre-post	de los parámetros	duos	actuando no sólo a nivel de	BsmISNP rs1544410 bb y
mass and obe-	Sharma		ción entre los	inter-	antropométricos.	adultos	la dieta sino también a nivel	TaqIVDRSNP rs731236
sity (FTO,	M, Pan-		polimorfismos	vención	Además, se les mi-	indios	de la actividad física, se	TT, la pérdida de peso tras
rs9939609) and	dey RM,		de los genes		dieron ciertos pará-	asiáti-	observó una disminución	los 6 meses de interven-
vitamin D re-	Upadh-		FTO		metros bioquímicos	cos con	importante tanto de los	ción fue superior al 5 %, a
ceptor (VDR,	yay AD.		(rs9939609) y		como la glucosa en	edades	parámetros antropométri-	diferencia del resto de ge-
Bsml, Taql,			UDR (Bsml,			com-	cos (peso corporal, IMC,	notipos, cuya pérdida fue

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
Apal, Fokl)			Taql, Apal, Forl)		ayunas, la adiponec-	prendi-	circunferencias, pliegues y	inferior.
genes on			y la obesidad, y		tina, la hemoglobina	das	nivel de masa grasa), como	
weight loss by			si una interven-		glicosilada, la insuli-	entre los	de los valores bioquímicos	
diet and exer-			ción nutricional		na, colesterol total y	11 y los	(glucosa en ayunas, insuli-	
cise interven-			y de actividad		fracciones, triglicéri-	60 años	na sérica, proteína C reac-	
tions in non-			física puede		dos y calcio sérico.	y un	tiva y colesterol total y frac-	
diabetic over-			verse influen-		Todos los participan-	IMC	ciones. Tan sólo la adipo-	
weight/obese			ciada por ellos		tes recibieron aseso-	superior	nectina no se vió disminui-	
Asian Indians					ramiento dietético	a 23	da, pero no se consideró	
in North India					individualizado, tanto	kg/m².	relevante).	
(29)					verbal como escrito,	53	Además, se observó que	
					sobre la dieta hipoca-	eran	tras los seis meses de in-	
					lórica a la que iban a	hom-	tervención, los niveles de	
					ser sometidos te-	bres y	ingesta total de energía y	
					niendo en cuenta su	47 mu-	de hidratos de carbono	
					peso, nivel de activi-	jeres.	había disminuido de mane-	
					dad física y raza. Se		ra significativa.	
					les aconsejó el con-			
					sumo preferente de			
					verduras, frutas, ali-			
					mentos integrales			

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
					ricos en fibra, produc-			
					tos lácteos desnata-			
					dos o bajos en grasa;			
					reducir el consumo			
					de alcohol, azúcares,			
					grasas, y sal; hacer			
					45 minutos de cami-			
					nata rápida diaria; y			
					no tomar suplemen-			
					tos n i de calcio ni de			
					vitamina D. Segui-			
					miento mensual.			
Polymor-	Gulati S,	2020	Analizar el papel	Estudio	Ensayo aleatorio. Los	211	Se observó que tanto la	El polimorfismors17782313
phisms of	Misra A,		que tienen en la	descrip-	participantes del es-	adultos,	edad como las medidas	del gen MC4R es el único
leptin-	Tiwari R,		obesidad, y en	tivo	tudio fueron someti-	entre 20	antropométricas, las de	de los tres po- limorfismos
melanocortin	Sharma		sus variables	trans-	dos tanto a la medida	y 69	glucemia tras 12 horas de	estudiados quese asoció a
system genes	M, Pan-		tanto clínicas	versal	de parámetros antro-	años.	ayuno, los triglicéridos, la	un aumento dela tensión
associated	dey RM,		como bioquími-		pométricos como a	111	hemoglobina glicosilada y	arterial y a una disminución
with obesity in	Upadh-		cas, los polimor-		analíticas de sangre	fueron	el riesgo cardiovascular	del HDL en los
an adult popu-	yay AD.		fismos rs167270		tras 12 horas de	obesos	global, eran muy superiores	participantes con obesidad,

Título	Autores	Año	Objetivo del estudio	Método	Diseño	Ámbito o po- blación	Resultados	Conclusiones
lation from			del gen LEP,		ayuno para la obten-	(IMC	entre los obesos. Sin em-	lo cual representa un obje-
Barranquilla ⁽³⁰⁾			rs1137101 del		ción de su ADN ge-	superior	bargo, al estudiar las fre-	tivo importante a la hora de
			gen LEPR y		nómico.	a 30	cuencias alélicas y genotí-	diseñar una intervención
			rs17782313 del		Se estudiaron las	kg/m²).	picas de los polimorfismos,	nutricional de un tratamien-
			gen MC4R		características clíni-	155	tan sólo el polimorfismo	to de obesidad y sus con-
					cas y bioquímicas de	no obe-	rs17782313 del gen MC4R	secuencias metabólicas y
					los participantes y	sos,	fue significativamente su-	cardiovasculares.
					comparar los datos	grupo	perior en el grupo de los	
					correspondientes a	control	obesos.	
					los obesos con los	(IMC		
					del grupo control.	entre 18		
						y 25		
						kg/m²).		