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Resumen 

El presente Trabajo de Fin de Máster aborda la necesidad crítica de desarrollar métodos no 

invasivos para predecir la fibrosis hepática en pacientes con insuficiencia cardíaca, 

especialmente en escenarios donde el acceso al FibroScan es limitado. El estudio se propuso 

desarrollar un sistema basado en Machine Learning capaz de predecir la fibrosis hepática 

utilizando variables clínicas relevantes, complementadas con las mediciones del FibroScan como 

referencia diagnóstica. El proceso de desarrollo de estos modelos subraya la importancia 

fundamental de la experimentación y la validación iterativa. Se exploraron diversas vías, como la 

clasificación multiclase inicial, que, al revelar limitaciones por el desbalance de datos y la 

complejidad de grados intermedios, justificó la transición a un enfoque binario más aplicado. 

Este camino adaptativo permitió optimizar los modelos, priorizando el rendimiento en métricas 

específicas según el contexto clínico, como una alta sensibilidad para la detección de la 

enfermedad. La selección de variables de importancia se erigió como un paso crucial, no solo 

para mejorar la interpretabilidad de los modelos más sencillos, como la regresión logística, sino 

también para validar la relevancia clínica de los predictores identificados. En última instancia, 

este trabajo culmina en el desarrollo de herramientas basadas en inteligencia artificial que tienen 

el potencial de integrarse y enriquecer las investigaciones clínicas actuales. Resalta así la 

trascendencia de contar con especialistas que, trabajando activamente en estos modelos y 

explorando diversas estrategias, puedan traducir el potencial del Machine Learning en soluciones 

prácticas y significativas para el avance de la medicina. 

Palabras clave: Fibrosis hepática, insuficiencia cardíaca, aprendizaje automático, FibroScan, 

clasificación binaria. 
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Abstract 

This Master's Thesis addresses the critical need to develop non-invasive methods for predicting 

liver fibrosis in patients with heart failure, especially in settings where access to FibroScan is 

limited. The study aimed to develop a Machine Learning–based system capable of predicting 

liver fibrosis using relevant clinical variables, complemented by FibroScan measurements as the 

diagnostic reference. The development process of these models highlights the fundamental 

importance of experimentation and iterative validation. Various approaches were explored, such 

as the initial multiclass classification, which, upon revealing limitations due to data imbalance 

and the complexity of intermediate fibrosis stages, justified the shift to a more applicable binary 

approach. This adaptive path enabled the optimization of models, prioritizing performance in 

specific metrics according to the clinical context, such as high sensitivity for disease detection. 

The selection of important variables emerged as a crucial step, not only to improve the 

interpretability of simpler models, such as logistic regression, but also to validate the clinical 

relevance of the identified predictors. Ultimately, this work culminates in the development of 

artificial intelligence–based tools with the potential to integrate into and enhance ongoing 

clinical research. It thus underscores the significance of having specialists who, actively working 

on these models and exploring diverse strategies, can translate the potential of Machine Learning 

into practical and meaningful solutions for the advancement of medicine. 

Keywords: Liver fibrosis, heart failure, machine learning, FibroScan, binary classification. 
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1. Introducción 

La insuficiencia cardíaca y la enfermedad hepática presentan una estrecha relación, dado 

que el corazón y el hígado son órganos que colaboran activamente en el mantenimiento de la 

circulación sanguínea. Cuando el corazón pierde la capacidad de bombear sangre de manera 

eficiente, puede provocar congestión: la sangre se acumula en las venas y órganos, generando 

congestión hepática. Esta situación afecta directamente al funcionamiento del hígado, 

provocando su inflamación, y en casos crónicos, conduciendo a procesos de fibrosis hepática. De 

manera bidireccional, un hígado enfermo ya sea por la presencia de fibrosis hepática o por 

enfermedad hepática metabólica (que abarca desde la esteatosis simple hasta la esteatohepatitis 

no alcohólica, NASH) puede impactar negativamente en la función cardíaca. La alteración de la 

estructura hepática aumenta la resistencia al flujo sanguíneo portal, afectando la reserva de 

precarga en el corazón y contribuyendo, además, a la liberación de toxinas que dañan 

directamente el tejido cardíaco. Todo ello disminuye progresivamente la calidad de vida del 

paciente (Xanthopoulos et al., 2019). 

Según de Lédinghen y Vergniol (2008), la elastografía de transición es una técnica no 

invasiva que, utilizada como herramienta diagnóstica, permite identificar fenotipos específicos 

asociados a enfermedad hepática metabólica. La elastografía de transición mediante FibroScan 

ofrece una alternativa rápida, segura y estandarizada para la estimación de rigidez hepática, útil 

para detectar y monitorizar la fibrosis. 

  



10 
 

 

2. Justificación 

En la actualidad, si bien el FibroScan representa una herramienta diagnóstica no invasiva, 

rápida y estandarizada para la estimación de rigidez hepática y la detección de fibrosis, su acceso 

no siempre está garantizado en todos los centros de salud, especialmente en contextos con 

recursos limitados o en pacientes con comorbilidades que dificultan su aplicación. Esta situación 

plantea la necesidad de desarrollar enfoques complementarios que permitan inferir la presencia 

de fibrosis hepática a partir de datos clínicos disponibles de forma más generalizada. 

En este contexto, el uso de métodos basados en Inteligencia Artificial se presenta como 

una herramienta valiosa para apoyar el diagnóstico médico, mediante la construcción de modelos 

predictivos que integren múltiples variables clínicas relevantes. Esto puede facilitar la 

identificación de patrones ocultos en los datos, permitiendo, por ejemplo, reconocer factores con 

mayor influencia en la fibrosis hepática y contribuir así a una toma de decisiones más informada 

y eficiente en pacientes con insuficiencia cardíaca. 
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3. Objetivos 

3.1. Objetivo General 

Desarrollar modelos de inteligencia artificial capaces de predecir la presencia de fibrosis 

hepática en pacientes con insuficiencia cardíaca, utilizando variables clínicas y el FibroScan 

como referencia diagnóstica. 

3.2.Objetivos Específicos 

• Aplicar algoritmos de aprendizaje supervisado para construir modelos de 

predicción binaria (fibrosis: sí/no). 

• Explorar el valor de la inteligencia artificial como herramienta complementaria en 

escenarios donde el acceso al FibroScan sea limitado. 

• Identificar las variables clínicas con mayor influencia en la predicción de fibrosis 

hepática mediante análisis de importancia de características. 
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4. Marco Teórico 

4.1. Relación entre Insuficiencia Cardíaca y Enfermedad Hepática 

Entendiendo que el corazón y el hígado mantienen una relación funcional bidireccional, 

es decir, existen interacciones cardiohepáticas constantes (Figura 1), la comprensión de esta 

interdependencia adquiere especial relevancia en el abordaje clínico de pacientes con afectación 

en uno o ambos órganos. Las causas cardíacas de disfunción hepática incluyen pericarditis 

constrictiva, hipertensión arterial pulmonar (HAP) grave, estenosis mitral, insuficiencia 

tricuspídea (IT), corpulmonale, miocardiopatía isquémica y consecuencias posoperatorias de la 

cirugía de Fontan para la atresia pulmonar y el síndrome del corazón izquierdo hipoplásico 

(Fouad & Yehia, 2014). 

De forma transversal, un hígado afectado por distintas condiciones, como la esteatosis 

hepática, la enfermedad hepática no alcohólica (NAFLD), entre otras, puede influir 

negativamente en la función cardíaca, contribuyendo al deterioro progresivo del rendimiento del 

corazón. “En una etapa avanzada, la enfermedad hepática produce vasodilatación esplácnica y 

sistémica, alteración de la barrera inmunológica, translocación de bacterias intestinales y 

disfunción autonómica, evolucionando hacia un síndrome multiorgánico que afecta al corazón, 

pulmones, riñones y cerebro" (Brankovic et al., 2023). 
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Figura 1 

Circulación hepática 

 

Nota. Interacciones cardiohepáticas, Tomado de Baialardo, A. G. (2015). Síndrome cardio-

hepático: ¿Qué debemos saber como cardiólogos? Insuficiencia cardíaca, 10(2), 66–77.  

4.1.1. Congestión hepática en insuficiencia cardíaca 

“Un efecto exclusivo de la insuficiencia cardíaca, a diferencia de otras causas de colapso 

circulatorio, es la congestión pasiva en el hígado” (Giallourakis et al., 2002). Gran parte del flujo 

sanguíneo que pasa por el hígado proviene del sistema cardiovascular, la insuficiencia cardíaca 

congestiva conduce inevitablemente a una acumulación de sangre en el hígado. Esta congestión 

puede estar provocada por factores como la disminución de la saturación arterial de oxígeno, 

presión venosa central elevada, entre otras. 
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“La congestión pasiva crónica conduce a hipertensión sinusoidal, fibrosis centrolobulillar 

y, en última instancia, cirrosis ("cirrosis cardíaca") y carcinoma hepatocelular después de varias 

décadas de lesión continua” (Fortea et al., 2020, p. 3). Por ello, el diagnóstico y tratamiento 

oportuno de la hepatopatía congestiva resulta fundamental para prevenir la progresión hacia 

complicaciones graves, como la fibrosis hepática y sus consecuencias asociadas. 

Es fundamental considerar las cardiopatías congénitas, especialmente aquellas que 

afectan el lado derecho del corazón, debido a su relación directa con el hígado. Según Hilscher y 

Sánchez (2016), “Cualquier causa de insuficiencia cardíaca ventricular derecha puede precipitar 

congestión hepática, incluyendo pericarditis constrictiva, insuficiencia tricuspídea, estenosis 

mitral, miocardiopatía y cor pulmonale”. 

Figura 2  

Estructura del corazón humano 

 

Nota. Tomado de Ingrassia, V. (2018, mayo 25). Las nuevas válvulas cardíacas que se implantan 

sin operar a corazón abierto. Infobae. https://www.infobae.com/salud/2018/05/25/las-nuevas-

valvulas-cardiacas-que-se-implantan-sin-operar-a-corazon-abierto/ 

https://www.infobae.com/salud/2018/05/25/las-nuevas-valvulas-cardiacas-que-se-implantan-sin-operar-a-corazon-abierto/
https://www.infobae.com/salud/2018/05/25/las-nuevas-valvulas-cardiacas-que-se-implantan-sin-operar-a-corazon-abierto/
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4.1.2. Biomarcadores cardiovasculares y hepáticos en la evaluación de la congestión 

sistémica en insuficiencia cardíaca 

En este contexto, resulta útil comprender la relevancia de ciertas variables fenotípicas, 

como los biomarcadores de congestión NT-proBNP (fragmento N-terminal del péptido 

natriurético tipo B) y CA125 (antígeno carbohidrato 125). Si bien estos ya están consolidados en 

el manejo de la insuficiencia cardíaca, es importante explorar su posible vinculación, directa o 

indirecta, con enfermedades hepáticas. El análisis multivariante mostró que el CA125 se asoció 

positiva e independientemente con presencia de edema periférico, derrame pleural y valores 

elevados de VCI. El NT-proBNP se relacionó con el derrame pleural y el diámetro de VCI, pero 

no con el edema (Llàcer et al., 2021). 

Para evaluar la congestión sistémica y su posible impacto sobre el hígado, resulta 

fundamental considerar biomarcadores como el NT-proBNP y el CA125, ampliamente utilizados 

por los cardiólogos en el seguimiento de pacientes con insuficiencia cardíaca. Además de estos, 

otros parámetros como la gamma-glutamil transferasa (GGT) y la alanina aminotransferasa 

(GPT) pueden aportar información adicional. Aunque tradicionalmente se asocian con daño 

hepático, la elevación de estas enzimas hepáticas puede reflejar congestión venosa hepática 

secundaria a disfunción cardíaca. Según Lab Tests Online (2021), tanto la GGT como la ALP 

aumentan en las enfermedades hepáticas, pero la ALP se puede elevar también cuando existen 

lesiones óseas. Por lo tanto, si la ALP está aumentada, la determinación de GGT es útil para 

saber si el aumento de ALP es atribuible a una enfermedad hepática o a una enfermedad ósea. 

Del mismo modo, la presencia de edemas periféricos puede indicar un compromiso 

hemodinámico avanzado, lo que refuerza la importancia de un enfoque integrado que considere 

tanto variables cardiovasculares como hepáticas en la valoración de estos pacientes. 
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Estudiar la interrelación entre el corazón y el hígado, la relevancia clínica de los 

biomarcadores de congestión y la necesidad de una clasificación fenotípica más precisa en 

patologías como la IC, refuerzan la importancia de una visión integral para el abordaje 

diagnóstico y terapéutico de los síndromes cardiohepáticos. 

4.2. FibroScan y Elastografía de Transición 

El fibroscan es un instrumento que emplea técnicas de medición sofisticadas como la 

elastografia de transición, y más importante de manera no invasiva permite obtener una medida 

aproximada del grado de rigidez y esteatosis en el hígado.  

Figura 3 

FibroScan® Mini+ 430 

 

Nota. FibroScan® Mini+ 430 es ligero y fácil de manejar (5 kg). Es un dispositivo alimentado 

por batería con pantalla táctil de 12,1 pulgadas. Adaptado de Echosens (2018), 

https://www.echosens.com/es/products/fibroscan-mini-2/ 

https://www.echosens.com/es/products/fibroscan-mini-2/


17 
 

Antiguamente para conocer el estado de rigidez o fibrosis del hígado en pacientes era 

realizando una biopsia hepática, que consiste en una prueba ambulatoria que extrae un pequeño 

fragmento de tejido hepático que es analizado por el patólogo. Este método es completamente 

invasivo no está exento de riesgos, además de resultar incómodo para el paciente en cuestión. 

Actualmente, muchas de estas biopsias pueden evitarse utilizando un equipo de elastografía de 

transición(Fibroscan), mediante la cual se obtiene una estimación indirecta del grado de fibrosis 

hepática de una forma no invasiva y con una buena correlación con la biopsia hepática 

(elastografía de transición FibrosScan, n.d.). 

La fibrosis hepática es parte de las alteraciones estructurales y funcionales en la mayoría 

de las enfermedades hepáticas crónicas. Es uno de los principales factores de pronóstico ya que 

la cantidad de fibrosis se correlaciona con el riesgo de desarrollar cirrosis y complicaciones 

relacionadas con el hígado en enfermedades hepáticas crónicas virales y no virales (“EASL-

ALEH Clinical Practice Guidelines,” 2015). 

4.2.1. Fundamentos técnicos del FibroScan 

La elastografía de transición mediante FibroScan utiliza una sonda transductora de 

ultrasonido que genera una onda transversal elástica a través de vibraciones de baja frecuencia 

(50 Hz) y amplitud leve, las cuales atraviesan el tejido hepático. Esta misma sonda emplea 

tecnología de pulso-eco para rastrear la propagación de la onda y medir su velocidad (en m/s), 

permitiendo así estimar la rigidez del hígado en un volumen de tejido aproximadamente 100 

veces mayor que el obtenido por biopsia con aguja. La prueba es rápida y segura, con una 

duración aproximada de entre 5 y 10 minutos. Se recomienda que el paciente esté en ayunas 

entre 2 a 3 horas antes del procedimiento, debido a que la ingesta de alimentos puede aumentar 

temporalmente la rigidez hepática por el incremento del flujo sanguíneo posprandial (Patel & 
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Wilder, 2014). La sonda se aplica sobre la silueta hepática, entre las costillas, en la línea axilar 

media derecha y perpendicular al plano cutáneo. En la pantalla del FibroScan se genera una 

imagen bidimensional de la onda elástica, cuya morfología puede facilitar la obtención de 

registros válidos. 

Además de los aspectos técnicos del procedimiento, es importante considerar tanto la 

posición del paciente como la del operador para garantizar la validez y reproducibilidad de la 

medición. El paciente debe encontrarse completamente recostado en decúbito supino sobre la 

camilla, con el brazo derecho extendido por detrás de la cabeza, lo que facilita el acceso 

intercostal al lóbulo hepático derecho. Se recomienda que adopte una posición ligeramente 

arqueada hacia la izquierda, similar a una forma de "banana", cruzando la pierna derecha sobre la 

izquierda, lo que contribuye a una mejor exposición del área a explorar. 

Asimismo, la posición del operador es determinante para la precisión del estudio. Idealmente, 

debe ubicarse al lado derecho del paciente, sentado en una silla con ruedas que le permita 

libertad de movimiento. El operador debe tener acceso visual directo tanto a la zona de 

aplicación como a la pantalla del dispositivo, utilizando ambas manos de forma coordinada: la 

mano derecha sostiene la sonda y realiza los ajustes necesarios, mientras que la mano izquierda 

ayuda a mantener el ángulo y la presión adecuada para garantizar una correcta transmisión de la 

onda elástica. 

  



19 
 

Figura 4 

Prueba FibroScan 

 

Nota. Evaluación avanzada y no invasiva de la salud hepática. Tomado de Alpharetta Internal 

Medicine (s.f.), https://alpharettainternalmedicine.com/live-health-fibroscan/ 

 

4.2.2. Tipos de sondas y su aplicación clínica 

https://alpharettainternalmedicine.com/live-health-fibroscan/
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Para realizar la medición con FibroScan, se utilizan diferentes tipos de sondas. Las más 

comunes son la sonda M y la sonda XL, aunque en algunos casos también se usa una sonda 

especial para niños. La elección de la sonda depende del tipo de paciente. Por ejemplo, la sonda 

XL se utiliza en personas con sobrepeso, ya que permite obtener mejores resultados en tejidos 

más profundos. En cambio, en personas delgadas, se recomienda la sonda M, que es más precisa 

en esos casos. En conclusión, la elastografía de transición con la sonda XL obtiene una mayor 

proporción de exámenes fiables en pacientes obesos, pero no en pacientes no obesos (Herrero et 

al., 2014). 

Figura 5 

¿Qué sonda FibroScan® se adapta a su paciente? 

 

Nota. FibroScan® ofrece una gama de tres sondas (S+, M+ y XL+) diseñadas para adaptarse a 

las características morfológicas del paciente. Tomado de Echosens (s.f.), 

https://www.echosens.com/es/products/sondas/ 

https://www.echosens.com/es/products/sondas/
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En pacientes adultos, las sondas más comúnmente utilizadas son la sonda M y la sonda 

XL, y su elección depende principalmente del índice de masa corporal (IMC) y de la distribución 

del tejido adiposo, especialmente en la región abdominal. En pacientes con obesidad o 

acumulación significativa de grasa subcutánea, la sonda XL es la opción preferida, ya que 

permite alcanzar estructuras hepáticas más profundas y proporciona mediciones más confiables 

en estos casos. En cambio, en pacientes con constitución delgada o normopeso, la sonda M es 

más apropiada, ya que ofrece alta precisión y facilidad de uso. 

Además, el tamaño y potencia del pulso mecánico generado por la sonda pueden influir en la 

tolerancia del procedimiento. La sonda M, al ser de menor tamaño, genera una estimulación más 

suave, lo que puede ser beneficioso en pacientes con hipersensibilidad, dolor abdominal previo o 

condiciones clínicas delicadas, ya que reduce la incomodidad durante la exploración. Por otro 

lado, aunque la sonda XL es indispensable en contextos de obesidad, su mayor energía y 

necesidad de repetición pueden resultar más molestas en ciertos casos, lo que refuerza la 

importancia de una selección individualizada según las características físicas y clínicas del 

paciente. 
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Tabla 1 

Criterios de selección 

Característica Sonda S+ Sonda M+ con Guided 

VCTE™ 

Sonda XL+ con 

Guided VCTE™ 

Uso principal Para población 

pediátrica 

Para pacientes con 

morfotipo estándar 

Para pacientes con 

obesidad y obesidad 

extrema 

Diseño Diseñada para 

colocarse en un 

espacio 

intercostal 

estrecho 

– Diseñada para mejorar 

la penetración de la 

señal a través de tejidos 

más profundos 

Profundidad de 

la medición 

De 15 a 50 mm De 25 a 70 mm De 35 a 85 mm 

Criterios de 

selección 

Edad < 18 años y 

perímetro 

torácico ≤ 75 cm 

14 años ≤ Edad < 18 años y 

perímetro torácico > 75 cm 

o Edad ≥ 18 años y sonda 

XL+ no recomendada 

Edad ≥ 18 años y sonda 

M+ no recomendada 

Nota. Características técnicas y criterios de selección para las sondas S+, M+ y XL+ de 

FibroScan®. Tomado de Echosens (s.f.), https://www.echosens.com/es/products/sondas/ 

 

 

https://www.echosens.com/es/products/sondas/


23 
 

4.2.3. Interpretación de resultados: escala METAVIR 

La escala METAVIR es una de las más utilizadas para interpretar los resultados del 

FibroScan. Esta clasifica la fibrosis hepática en cinco etapas: F0 (sin fibrosis), F1 (fibrosis leve), 

F2 (fibrosis moderada), F3 (fibrosis avanzada) y F4 (cirrosis). El valor final se obtiene a partir de 

diez mediciones válidas, de las cuales se calcula la mediana, que es la que se utiliza para 

determinar el grado de rigidez hepática. Los resultados del FibroScan se expresan en kilopascales 

(kPa), con un rango que va desde 2,5 hasta 75 kPa. En personas sanas, los valores suelen rondar 

los 5,5 kPa. La correlación entre los valores del FibroScan y los grados de fibrosis según la 

escala METAVIR es la siguiente: menos de 7,6 kPa = F0–F1; entre 7,7 y 9,4 kPa = F2; entre 9,5 

y 14 kPa = F3; y más de 14 kPa = F4 (Bartres & Lens, 2013). 
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Tabla 2 

Valores de rigidez hepática (kPa) según etiología y estadio de fibrosis 

Enfermedad F0 a F1 F2 F3 F4 

Hepatitis B 2 a 7 

kPa 

8 a 9 kPa 8 a 11 kPa 18 kPa o 

más 

Hepatitis C 2 a 7 

kPa 

8 a 9 kPa 9 a 14 kPa 14 kPa o 

más 

Coinfección de HIV/HCV 2 a 7 

kPa 

7 a 11 kPa 11 a 14 

kPa 

14 kPa o 

más 

Enfermedad colestática 2 a 7 

kPa 

7 a 9 kPa 9 a 17 kPa 17 kPa o 

más 

Esteatohepatitis no alcohólica 

(NAFLD/NASH) 

2 a 7 

kPa 

7.5 a 10 

kPa 

10 a 14 

kPa 

14 kPa o 

más 

Enfermedad relacionada con el alcohol 2 a 7 

kPa 

7 a 11 kPa 11 a 19 

kPa 

19 kPa o 

más 

Nota. Adaptado de Información sobre sus resultados de FibroScan, por Bexaray, 2018. 

Recuperado el 24 de junio de 2025 de https://www.bexaray.com/single-

post/2018/11/29/informaci%C3%B3n-sobre-sus-resusltados-de-fibroscan 

 

 

 

https://www.bexaray.com/single-post/2018/11/29/informaci%C3%B3n-sobre-sus-resusltados-de-fibroscan
https://www.bexaray.com/single-post/2018/11/29/informaci%C3%B3n-sobre-sus-resusltados-de-fibroscan
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4.3.Inteligencia Artificial en Medicina 

La implementación de sistemas basados en algoritmos de inteligencia artificial abarca 

desde el diagnóstico hasta el tratamiento de enfermedades. Un ejemplo claro es el análisis de 

imágenes médicas, donde la IA puede detectar patrones o anomalías con mayor rapidez y 

precisión que un humano, facilitando así diagnósticos tempranos. Además, se aplica en el diseño 

de tratamientos personalizados, gracias al desarrollo de dispositivos inteligentes capaces de 

monitorear continuamente al paciente, detectar variaciones en su estado de salud e incluso 

anticipar posibles complicaciones. Asimismo, la IA puede utilizarse con fines predictivos, a 

través de algoritmos capaces de identificar el riesgo de desarrollar ciertas enfermedades antes de 

que se manifiesten clínicamente, lo que permite una intervención temprana y, en muchos casos, 

potencialmente salva vidas gracias a una prevención más eficaz. 

Debido al reciente auge y desarrollo de la inteligencia artificial, se han logrado avances 

significativos en el campo de la medicina, introduciendo soluciones innovadoras en diversas 

áreas. Por ejemplo, se han desarrollado algoritmos de aprendizaje automático capaces de analizar 

datos, evaluar riesgos y, de esta manera, mejorar la eficiencia del trabajo clínico (Raraz-Vidal & 

Raraz-Vidal, 2022).  

 

4.3.1. Aplicaciones específicas en cardiología 

“En cardiología, el uso de la IA se ha estudiado en la predicción de hipertensión esencial, 

la detección de fibrilación auricular por relojes inteligentes, la clasificación de estenosis aórtica 

por análisis de señales cardiomecánicas en sensores inalámbricos portátiles, la clasificación de 
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arritmias mediante electrocardiograma de una sola derivación, etc” (Lanzagorta-Ortega et al., 

2022). 

 La expansión de la inteligencia artificial en distintos ámbitos del conocimiento es cada 

vez más evidente, y el sector sanitario no es la excepción. En medicina, el interés por estas 

tecnologías ha crecido significativamente debido a su potencial para optimizar los procesos 

diagnósticos, terapéuticos y de seguimiento clínico, con el objetivo último de prolongar la vida y 

mejorar su calidad. Dentro de las especialidades médicas, la cardiología se posiciona como una 

de las más relevantes para la aplicación de la IA, no solo por la carga de enfermedad asociada a 

las patologías cardiovasculares, sino también por el papel central que desempeña el corazón en la 

homeostasis del organismo. El mal funcionamiento cardíaco compromete gravemente múltiples 

sistemas del cuerpo humano, afectando de forma directa la funcionalidad y el bienestar del 

paciente. Por ello, el desarrollo de soluciones basadas en IA para el abordaje de enfermedades 

cardíacas representa un campo de investigación prioritario cuando se busca maximizar la 

expectativa y calidad de vida. 

4.3.2. La IA en insuficiencia cardiaca 

El uso de modelos de machine learning en casos de insuficiencia cardíaca puede ser clave 

para desarrollar métodos que permitan una mejor comprensión de la enfermedad y de otras 

afecciones relacionadas, como la enfermedad hepática. Estas condiciones suelen estar 

interconectadas y presentan síntomas o alteraciones similares, lo que dificulta identificar con 

precisión las causas. Dado que los métodos convencionales pueden resultar limitados en estos 

casos, la creación de modelos que integren y analicen ambas enfermedades se vuelve una 

herramienta potencialmente útil y prometedora para mejorar tanto el diagnóstico como el 

tratamiento de los pacientes. 
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En el caso de la insuficiencia cardíaca, la inteligencia artificial puede ser de gran ayuda 

en el cuidado de pacientes que son propensos a sufrir descompensaciones. Es posible desarrollar 

sistemas capaces de detectar señales tempranas de alerta, lo que permite actuar antes de que la 

situación se vuelva grave. Además, la IA puede utilizarse como una herramienta de 

monitorización remota, facilitando un seguimiento más preciso del estado del paciente. También 

resulta útil en la interpretación de enfermedades cardíacas complejas, así como en la 

identificación de otras afecciones relacionadas con la insuficiencia cardíaca (“Aplicaciones de la 

inteligencia artificial en cardiología,” 2019).  

4.4. Modelos de predicción y clasificación aplicados al diagnóstico clínico 

Según Mora Pineda (2022), los métodos de aprendizaje automático pueden usarse tanto 

para clasificación como para predicción, aunque la predicción suele aplicarse en contextos 

binarios (presente o ausente, sí o no, es o no es, etc.) y la clasificación en tareas con múltiples 

categorías, ósea determinar 1 resultado dentro de un grupo de 3 o más resultados posibles según 

la tarea a resolver. “Las técnicas de clasificación son una parte esencial de las aplicaciones de 

machine learning y minería de datos. Aproximadamente el 70 % de los problemas en ciencia de 

datos son problemas de clasificación” (DataCamp, 2024). 

La distribución de Bernoulli predice la probabilidad de que un evento ocurra o no ocurra, 

utiliza 0 y 1, el trabajo basado en clases binarias suele utilizar algoritmos más sencillos y rápidos 

(regresión logística, arboles de decisión, etc). Por el contrario, la clasificación multiclase no 

suele tener una noción de normal o anormal, en este caso se refiere a las tareas de clasificación 

que tienen más de dos etiquetas de clase, es importante ser cuidadoso al momento del etiquetado, 

especialmente cuando se tiene un mayor número de clases (Por ejemplo, rojo = 0, azul = 1, 
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amarillo = 2), esta también puede utilizar una amplia gama de posibles algoritmos (Bosques 

aleatorios, Naïve-Bayes, etc) (Elearning Actual, 2022). 

Figura 6 

Ejemplo de clasificación binaria 

 

Nota. Filtros de correo electrónico (spam, no spam). Tomado de 4 tipos de tareas de clasificación 

en el machine learning, por elearningactual.com, 2022. https://elearningactual.com/4-tipos-de-

tareas-de-clasificacion-en-el-machine-learning/  

Un modelo de predicción clínica se desarrolla generalmente para estimar probabilidades, 

a menudo llamadas simplemente riesgo, para pacientes individuales con el objetivo de 

informarles a ellos, a sus familiares y a los profesionales de la salud sobre el diagnóstico o el 

pronóstico, para ayudar a tomar mejores decisiones (compartidas) sobre pruebas y tratamientos, 

o para realizar estratificaciones de riesgo para ensayos terapéuticos (van Smeden et al., 2021, p. 

142). Según DataCamp (2024), el uso de modelos predictivos convencionales, como árboles de 

https://elearningactual.com/4-tipos-de-tareas-de-clasificacion-en-el-machine-learning/
https://elearningactual.com/4-tipos-de-tareas-de-clasificacion-en-el-machine-learning/
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decisión o regresión logística, puede no ser eficaz en conjuntos de datos desequilibrados, ya que 

tienden a favorecer la clase mayoritaria y a interpretar las clases minoritarias como ruido. 

Figura 7 

Clasificación desequilibrada 

 

Nota. Problema de clasificación desequilibrada. Tomado de Clasificación en Machine Learning: 

Una guía completa para principiantes, por DataCamp (2024), 

https://www.datacamp.com/es/blog/classification-machine-learning 

4.4.1 Métricas de evaluación de modelos predictivos 

El rendimiento del modelo se evalúa típicamente mediante la precisión, la recuperación, 

la exactitud, F1 y el área bajo la curva ROC (característica operativa del receptor). Las métricas 

se calculan utilizando los resultados de la matriz de confusión para cada clase: TP 

https://www.datacamp.com/es/blog/classification-machine-learning
https://www.sciencedirect.com/topics/computer-science/confusion-matrix


30 
 

para verdaderos positivos , TN para verdaderos negativos, FN para falsos negativos y FP 

para falsos positivos (Fan et al., 2021, p. 45) 

Tabla 3 

Métricas de evaluación de modelos de clasificación 

Métrica ¿Qué mide? Fórmula 

Precisión 

(Accuracy) 

Proporción de predicciones 

correctas sobre el total de casos. 

(TP + TN) / (TP + 

TN + FP + FN) 

Precisión positiva 

(Precision) 

Qué proporción de los casos 

predichos como positivos realmente 

lo son. 

TP / (TP + FP) 

Recuperación 

(Recall / Sensibilidad) 

Qué proporción de los casos 

positivos reales fueron 

correctamente identificados. 

TP / (TP + FN) 

Especificidad Qué proporción de los casos 

negativos reales fueron 

correctamente identificados. 

TN / (TN + FP) 

F1-score Media armónica entre la 

precisión y la sensibilidad. 

2 × (Precision × 

Recall) / (Precision + 

Recall) 

https://www.sciencedirect.com/topics/computer-science/true-positive
https://www.sciencedirect.com/topics/computer-science/false-negative
https://www.sciencedirect.com/topics/computer-science/false-positive
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AUC - ROC Capacidad del modelo para 

distinguir entre clases (positivo vs. 

negativo). 

Área bajo la curva 

ROC basada en TPR y 

FPR. 

Nota. Elaboración propia, 2025. 

4.4.2. Modelos Predictivos Basados en Árboles de Decisión 

Según Ciencia de Datos (2017), los métodos basados en árboles han ganado relevancia 

dentro del ámbito predictivo debido a su capacidad para ofrecer buenos resultados en problemas 

de naturaleza diversa. Estos modelos, a diferencia de otros enfoques que utilizan una única 

ecuación válida para todo el espacio muestral, son especialmente útiles cuando el caso de uso 

involucra múltiples variables predictoras que interactúan entre sí de manera compleja y no lineal. 

En estos contextos, resulta difícil identificar un único modelo global que represente 

adecuadamente dichas relaciones. Los algoritmos como Random Forest abordan esta dificultad 

combinando múltiples árboles de decisión, cada uno entrenado con una muestra ligeramente 

distinta del conjunto original mediante técnicas de remuestreo. La predicción final se obtiene 

agregando las predicciones individuales de cada árbol, lo que mejora la robustez y la 

generalización del modelo. Por otro lado, el enfoque Gradient Boosting también emplea una 

combinación de árboles, pero lo hace de manera secuencial: cada nuevo árbol se entrena para 

corregir los errores cometidos por los árboles anteriores, afinando así progresivamente la 

precisión del modelo final. 
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Figura 8 

Comparación modelos basados en arboles 

 

Nota. Tomado de Brandon Wong, 2023, en Medium. Disponible en: 

https://medium.com/@brandon93.w/decision-tree-random-forest-and-xgboost-an-exploration-

into-the-heart-of-machine-learning-90dc212f4948 

 

  

https://medium.com/@brandon93.w/decision-tree-random-forest-and-xgboost-an-exploration-into-the-heart-of-machine-learning-90dc212f4948
https://medium.com/@brandon93.w/decision-tree-random-forest-and-xgboost-an-exploration-into-the-heart-of-machine-learning-90dc212f4948
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5. Metodología 

Este estudio está enfocado en la aplicación de herramientas de Inteligencia Artificial para 

la investigación médica en el ámbito de la insuficiencia cardíaca y su relación con las 

enfermedades hepáticas. Se trata de un estudio cuantitativo, observacional y retrospectivo, 

centrado en el registro y análisis de datos clínicos de pacientes 101 evaluados con diagnóstico de 

insuficiencia cardíaca (IC). 

La recolección de datos se lleva a cabo en el marco del proyecto de investigación 

“Utilidad de la elastografía de transición en el diagnóstico de la insuficiencia cardíaca estadio 

C”, desarrollado por el Instituto de Investigación Sanitaria INCLIVA en colaboración con el 

Hospital Clínico Universitario de Valencia, en el contexto de prácticas profesionales y 

cooperación investigadora. 

Se incluirán en el estudio todos los pacientes con diagnóstico confirmado de IC que 

hayan sido sometidos a una exploración hepática mediante FibroScan. A partir de estos registros, 

se obtendrán variables relacionadas con la rigidez hepática y la esteatosis, así como variables 

clínicas y analíticas relevantes asociadas a la insuficiencia cardíaca. 

5.1. Población y Muestra 

• Pacientes con diagnóstico de IC confirmada por criterios clínicos y 

ecocardiográficos. 

• Exploración hepática realizada con FibroScan. 

• Datos clínicos relacionados a la congestión en IC, incluyendo biomarcadores y 

comorbilidades. 
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5.2.Variables a Analizar 

En este estudio se analizarán diversas variables relevantes tanto desde el punto de 

vista clínico como diagnóstico. Las principales medidas provienen del FibroScan, que 

permite obtener valores para evaluar la rigidez hepática (medida en kPa) y la 

esteatosis hepática (medida mediante el parámetro CAP, en dB/m). 

Además, se incorporarán variables clínicas obtenidas de la unidad de insuficiencia 

cardíaca, especialmente aquellas asociadas con el desarrollo o progresión de la 

fibrosis hepática. 

A continuación, se describen las variables consideradas en el análisis: 

Tabla 4 

Variables Dependientes 

Nombre de la 

Variable 

Utilidad / Qué calcula Valores o Rangos 

típicos 

Grado de 

fibrosis 

Clasificación de fibrosis hepática derivada de la 

rigidez hepática (kPa) medida con FibroScan 

F0–F4 (ej. F0 < 6.5; 

F4 > 14.5 kPa) 

Nota: Elaboración propia, 2025. 
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Tabla 5 

Variables Independientes (Parámetros Demográficos y Fisiológicos) 

Nombre de la 

Variable 

Utilidad / Qué calcula Valores o Rangos 

típicos 

Edad (años) Factor de riesgo general; puede influir en fibrosis Continuo (ej. 18–90 

años) 

Sexo Diferencias fisiológicas en el desarrollo de 

enfermedades hepáticas 

Masculino / 

Femenino 

Peso (kg) Asociado a IMC y riesgo metabólico; influye en 

la esteatosis 

Continuo (ej. 40–

150 kg) 

Nota. Elaboración propia, 2025. 
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Tabla 6 

Variables Clínicas (Comorbilidades) 

Nombre de la 

Variable 

Utilidad / Qué calcula Valores o Rangos típicos 

Grado de 

insuficiencia 

tricuspídea 

Evalúa la severidad del reflujo 

de sangre a través de la 

válvula tricúspide 

0 = No insuficiencia (no IT) ,             

1 = Ligera , 2 = Ligera-moderada,          

3 = Moderada ,4 = Severa 

Historia de 

fibrilación auricular 

Comorbilidad frecuente en 

pacientes con IC 

Sí / No 

Diabetes mellitus Comorbilidad clave en daño 

hepático metabólico 

Sí / No 

Enfermedad renal 

crónica (ERC) 

avanzada 

Relacionada con inflamación 

sistémica y fibrosis 

Sí / No 

Cardiopatía valvular Puede alterar la hemodinámica 

y asociarse a daño hepático 

Sí / No 

Prótesis valvular Indicador de intervenciones 

cardíacas previas 

Sí / No 

Nota. Elaboración propia, 2025. 
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Tabla 7 

Tratamiento Farmacológico Previo 

Nombre de la Variable Utilidad / Qué calcula Valores o Rangos típicos 

Diuréticos de asa 

(furosemida oral) 

Afectan el balance hídrico; 

relevantes en pacientes con IC 

Sí / No – Dosis típica: 20–

80 mg/día 

Furosemida combinada 

(tiazida, Edemox) 

Combinaciones comunes en IC 

avanzada para control de volumen 

Sí / No – Edemox: 50–100 

mg/día 

ARM (antagonistas 

mineralocorticoides) 

Moduladores del sistema RAAS; 

podrían influir en fibrosis 

Sí / No – Espironolactona: 

25–50 mg/día 

iSGLT2 (inhibidores 

SGLT2) 

Efecto beneficioso sobre función 

hepática y cardíaca 

Sí / No – Ej.: 

Dapagliflozina 10 mg/día 

Agonistas GLP-1 RA Mejoran resistencia a insulina y 

pueden reducir esteatosis 

Sí / No – Ej.: Semaglutida 

0.5–2 mg/semana 

Nota. Elaboración propia, 2025. 
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Tabla 8 

Parámetros Analíticos / Laboratorio 

Nombre de la Variable Utilidad / Qué calcula Valores o Rangos 

típicos 

GGT (Gamma-glutamil 

transferasa) 

Enzima hepática elevada en daño 

hepático o colestasis 

U/L (ej. 10–70 U/L) 

ALT / GPT (Alanina 

aminotransferasa) 

Enzima hepática; marcador de daño 

hepatocelular 

U/L (ej. 7–56 U/L) 

Recuento plaquetario Plaquetas reducidas pueden asociarse 

a fibrosis avanzada 

mil/mm³ (ej. 150–400 

mil/mm³) 

NT-proBNP Biomarcador de estrés cardíaco; 

niveles elevados en IC avanzada 

pg/mL (ej. <125 

normal; >300 sugiere 

IC) 

CA125 Marcador utilizado en oncología, pero 

elevado también en IC y ascitis 

U/mL (ej. <35 U/mL 

normal) 

CAP (dB/m) Medición de esteatosis hepática 

mediante FibroScan 

Continuo (ej. 100–400 

dB/m) 

Nota. Elaboración propia, 2025. 
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5.3. Implementación Analítica y Técnicas de Inteligencia Artificial 

5.3.1. Exploración de Datos (EDA) 

Resumen General del Conjunto de Datos 

Para obtener una primera impresión de los datos, es útil revisar la información básica del 

DataFrame. 

# Obtener información general sobre el DataFrame 

print('Información general:') 

data.info() 

info(): Proporciona un resumen del DataFrame, incluyendo: número de entradas, tipo de datos, y 
cantidad de valores no nulos. 

 

#Descripción de datos numéricos 

print('Descripción:') 

data.describe() 

describe(): Genera estadísticas descriptivas (media, desviación estándar, mínimos, máximos, cuartiles) 
para las columnas numéricas. 

 

Distribución por Grado de Fibrosis (Clasificación Multiclase) 

Esta visualización te permitirá entender la cantidad de pacientes en cada uno de los 5 grados de 

fibrosis (F0, F1, F2, F3, F4). Esto es crucial para identificar si hay un desequilibrio de clases, lo 

cual es común en datos médicos. 

Tipo de Gráfica: Gráfico de barras (Count Plot). 

#Conteo Grado de Fibrosis 
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plt.figure(figsize=(8, 5)) 

ax = sns.countplot(x='grado_fibrosis', data=data) 

plt.title('Grado de Fibrosis por pacientes', fontsize=14) 

plt.xlabel('Grado de Fibrosis') 

plt.ylabel('Cantidad de Pacientes') 

 

#Agregar etiquetas con la cantidad en cada barra 

for p in ax.patches: 

    height = p.get_height() 

    if height > 0: 

        ax.text( 

            p.get_x() + p.get_width() / 2,  # posición x (centro de barra) 

            height + 0.5,                   # posición y (un poco arriba de 

la barra) 

            int(height),                    # texto a mostrar (cantidad) 

            ha='center',                   # alineación horizontal 

            fontsize=10 

        ) 

 

plt.show() 

Análisis: Observar si alguna clase tiene significativamente menos muestras que otras (clases 
minoritarias). 

 

Distribución Binaria de Fibrosis (Sí/No) 

Visualizar la proporción de pacientes con y sin fibrosis. 

Tipo de Gráfica: Gráfico de barras (Count Plot). 

#Convertir grados 0 = ausencia de fibrosis(0), 1 a 4 = presencia de 

fibrosis(1) 

fibrosis_binaria = data['grado_fibrosis'].apply(lambda x: 1 if x > 0 else 0) 

 

# Graficar countplot 

plt.figure(figsize=(8, 6)) 

ax = sns.countplot(data=data, x=fibrosis_binaria) 

 

plt.title("Presencia de fibrosis", fontsize=16) 

plt.xlabel('Fibrosis(no=0 | si=1)', fontsize=14) 

plt.ylabel('Cantidad de pacientes', fontsize=14) 

plt.xticks(fontsize=12)  

plt.yticks(fontsize=12)  

 

#Agregar etiquetas con la cantidad en cada barra 

for p in ax.patches: 

    ax.annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2., 

p.get_height()), 

                ha='center', va='center', xytext=(0, 5), textcoords='offset 

points', fontsize=12) 
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plt.grid(axis='y', linestyle='--', alpha=0.7) 

plt.tight_layout()  

plt.show() 

 

Análisis: Evalúa el nivel de desequilibrio entre las clases "Ausencia = 0" y "Presencia = 1". 

 

Análisis de Correlación entre Variables 

La matriz de correlación es una herramienta poderosa para entender las relaciones lineales entre 

las variables numéricas, incluyendo su relación con la variable objetivo. 

Tipo de Gráfica: Mapa de calor (Heatmap) de la matriz de correlación. 

#Matriz de correlación Grado de Fibrosis 

#Excluir E [kPa] alta relación con grado de fibrosis 

data_sin_E = data.drop(columns=['E[kPa]']) 

# Visualización de la correlación entre variables 

plt.figure(figsize=(12, 10)) 

sns.heatmap(data_sin_E.corr(), annot=True, fmt='.2f', cmap='coolwarm') 

plt.title('Matriz de correlación Grado de Fibrosis') 

plt.show() 

 

#Matriz de correlación Presencia de Fibrosis 

#Mostrar grados 0 = ausencia de fibrosis, 1 a 4 = presencia de fibrosis 

data_copia = data.copy() 

data_copia['fibrosis_binaria'] = data['grado_fibrosis'].apply(lambda x: 1 if 

x > 0 else 0) 

#Excluir E [kPa], y grado_fibrosis alta relación con presencia de fibrosis 

data_sin_e = data_copia.drop(columns=['E[kPa]', 'grado_fibrosis']) 

# Visualización de la correlación entre variables 

plt.figure(figsize=(12, 10)) 

sns.heatmap(data_sin_e.corr(), annot=True, fmt='.2f', cmap='coolwarm') 

plt.title('Matriz de correlación Presencia de Fibrosis') 

plt.show() 

Correlaciones entre predictores: Identifica si hay variables predictoras altamente correlacionadas 
entre sí (multicolinealidad). 

 

5.3.2. Modelado 

En esta sección, se detalla la metodología de aprendizaje automático supervisado 

empleada para abordar la tarea de clasificación de la fibrosis hepática. Inicialmente, se exploró 
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un enfoque de clasificación multiclase, y tras evaluar sus resultados, se optó por una estrategia de 

clasificación binaria más enfocada y práctica. 

Para la evaluación del rendimiento, se emplearán las siguientes métricas clave: 

• Precisión (Accuracy): Proporción de predicciones correctas sobre el total de casos. 

• Sensibilidad (Recall): Capacidad del modelo para identificar correctamente los casos 

positivos (presencia de fibrosis). 

• Especificidad: Capacidad del modelo para identificar correctamente los casos negativos. 

• ROC-AUC (Receiver Operating Characteristic - Area Under the Curve): Mide la 

capacidad del modelo para distinguir entre las clases, siendo un indicador robusto del 

rendimiento general del clasificador. 

La implementación del modelo de clasificación se llevó a cabo utilizando el lenguaje de 

programación Python y diversas librerías especializadas en aprendizaje automático 

Exploración Inicial: Clasificación Multiclase de Grado de Fibrosis (F0-F4) 

El primer enfoque de modelado supervisado tuvo como objetivo predecir directamente 

los diferentes grados de fibrosis hepática (F0, F1, F2, F3, F4) utilizando un algoritmo de 

Gradient Boosting. Esta aproximación buscaba una granularidad detallada en la detección de la 

severidad de la fibrosis basándose únicamente en parámetros clínicos y demográficos, 

excluyendo mediciones de FibroScan. 

Implementación del Modelo Multiclase 

El proceso inició con la preparación de los datos y la división en conjuntos de 

entrenamiento y prueba, asegurando que la variable objetivo fuera el grado_fibrosis original. 
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from sklearn.model_selection import train_test_split 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.metrics import ConfusionMatrixDisplay 

 

#Separación de variables 

# Predictores (X): Se eliminan 'E[kPa]' (rigidez hepática) y 

'grado_fibrosis' para simular la ausencia de Fibroscan 

X = data.drop(columns=['E[kPa]', 'grado_fibrosis']) 

#Variable objetivo (y): El grado de fibrosis multiclase (0 a 4) 

y = data['grado_fibrosis'] 

 

#División entrenamiento/prueba 30% 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y, test_size=0.3, random_state=42, stratify=y 

) 

X = Se define X (variables predictoras) excluyendo las mediciones de FibroScan (E[kPa]) y la propia 
variable objetivo.  
y = La variable onjetivo grado_fibrosis con sus categorías (0 a 4).  

 

El modelo GradientBoostingClassifier fue configurado con parámetros específicos y 

entrenado con el conjunto de datos multiclase: 

#Modelo Gradient Boosting multiclase 

gb_model_multi = GradientBoostingClassifier( 

    n_estimators=150,      # Número de árboles en el ensamble 

    learning_rate=0.08,    # Contribución de cada árbol 

    max_depth=4,           # Profundidad máxima de cada árbol 

    min_samples_split=4,   # Mínimo de muestras para dividir un nodo 

    subsample=0.9,         # Fracción de muestras para cada árbol 

    random_state=42 

) 

gb_model_multi.fit(X_train, y_train) 

 

# Realización de predicciones sobre el conjunto de prueba 

y_pred = gb_model_multi.predict(X_test) 

Parámetros del Modelo:  n_estimators, learning_rate, max_depth, min_samples_split, y subsample 
fueron ajustados para optimizar el rendimiento del modelo en esta tarea multiclase. 
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Evaluación del Modelo Multiclase 

#Evaluación del modelo 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

print("\nReporte de clasificación:\n", classification_report(y_test, 

y_pred)) 

 

#Matriz de confusión 

cm = confusion_matrix(y_test, y_pred) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot(cmap='Blues', values_format='d') 

plt.title("Matriz de Confusión - Grado de Fibrosis") 

plt.show() 

 

#Importancia de variables 

importances = pd.Series(gb_model_multi.feature_importances_, 

index=X.columns) 

importances.sort_values().plot(kind='barh', figsize=(8, 6), 

title="Importancia de variables GradientBoostingClassifier multiclase") 

# Las variables más importantes de este modelo multiclase también pueden 

servir como base para la siguiente etapa 

#top_vars = importances.sort_values(ascending=False).head(10).index 

plt.tight_layout() 

plt.show() 

Mostrar evaluación, matriz de confusión, importancia de variables. 

 

Visualizar la curva ROC (Receiver Operating Characteristic) y el Área Bajo la Curva 

(AUC). Esto permite entender mejor la capacidad del modelo para distinguir entre una clase y las 

demás. 

#Calcular curva ROC y AUC multiclase 

#Binarizar etiquetas para el cálculo de ROC multiclase 

from sklearn.preprocessing import label_binarize 

from sklearn.metrics import roc_curve, auc 

from sklearn.multiclass import OneVsRestClassifier 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

#Grados son 0, 1, 2, 3, 4. 

y_test_bin = label_binarize(y_test, classes=np.unique(y_test)) 

y_score = gb_model_multi.predict_proba(X_test) 

 

#Calcular curva ROC y AUC para cada clase (enfoque One-vs-Rest) 

fpr = dict() #False Positive 

tpr = dict() #True Positive 

roc_auc = dict() #Area Under the Curve 

n_classes = y_test_bin.shape[1] #Número total de clases 
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for i in range(n_classes): 

    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i]) 

    roc_auc[i] = auc(fpr[i], tpr[i]) 

 

for i in range(n_classes): 

    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i]) 

    roc_auc[i] = auc(fpr[i], tpr[i]) 

 

# Graficar todas las curvas ROC 

plt.figure(figsize=(8, 6)) 

colors = ['blue', 'orange', 'green', 'red', 'purple'] 

for i in range(n_classes): 

    plt.plot(fpr[i], tpr[i], color=colors[i], label=f'Clase {i} (AUC = 

{roc_auc[i]:.2f})') 

 

plt.plot([0, 1], [0, 1], 'k--') 

plt.xlabel('Falsos Positivos') 

plt.ylabel('Verdaderos Positivos') 

plt.title('Curva ROC Multiclase - Grado de Fibrosis') 

plt.legend(loc='lower right') 

plt.grid() 

plt.tight_layout() 

plt.show() 

Calcular los puntos de la curva ROC (TPR vs FPR) y el área bajo esa curva para cada clase.  

 

Transición al Modelado Principal: Clasificación Binaria de Fibrosis 

(Presencia/Ausencia) 

Dada la complejidad y los resultados no óptimos de la clasificación multiclase (como 

evidenciaron las métricas y las curvas ROC por clase), se redefinió la variable objetivo para una 

tarea de clasificación binaria: predecir la presencia (fibrosis > 0) o ausencia (fibrosis = 0) de 

fibrosis. Este enfoque simplifica el problema, orientando el modelo a una pregunta de mayor 

relevancia clínica para la detección temprana. El siguiente apartado detallará la implementación 

de este modelo de Gradient Boosting binario. 

Modelado Principal: Clasificación Binaria con Gradient Boosting 

Para la tarea de clasificación binaria, se implementó un nuevo modelo de Gradient 

Boosting enfocado en la predicción de la presencia o ausencia de fibrosis. Los pasos de 
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preparación de datos, entrenamiento y evaluación se ajustaron a esta nueva variable objetivo 

binaria. 

Preparación de Datos y División de Variables (Clasificación Binaria) 

En esta fase, se transformó la variable de grado de fibrosis en una binaria 

(fibrosis_binaria). 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score 

from sklearn.utils import compute_sample_weight 

from sklearn.metrics import ConfusionMatrixDisplay 

 

#Separación de variables 

#Crear columna 'fibrosis_binaria' donde, Fibrosis 0 = ausencia, 1= presencia 

data['fibrosis_binaria'] = data['grado_fibrosis'].apply(lambda x: 1 if x > 0 

else 0) 

 

#Predictores (X): Se eliminan 'E[kPa]' (rigidez hepática) y 'grado_fibrosis' 

para simular la ausencia de Fibroscan 

X = data.drop(columns=['fibrosis_binaria', 'E[kPa]', 'grado_fibrosis']) 

#Variable objetivo (y): La nueva columna fibrosis binaria 

y = data['fibrosis_binaria'] 

Se crea una nueva columna fibrosis_binaria (0 = ausencia, 1 = presencia) 
X = variables predictoras) eliminando la columna objetivo (fibrosis_binaria), y las variables 
relacionadas con FibroScan (E[kPa] y grado_fibrosis) para mantener el enfoque en variables clínicas.  
y = fibrosis_binaria' variable objetivo binaria. 

 

División del Conjunto de Datos y Ponderación de Clases 

Para una evaluación robusta del modelo, el conjunto de datos se divide en subconjuntos de 

entrenamiento y prueba. Adicionalmente, se implementa una ponderación de clases para mitigar 

el sesgo que podría surgir de un desequilibrio entre las clases de "presencia" y "ausencia" de 

fibrosis. 
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#División entrenamiento/prueba 30% 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y, test_size=0.3, random_state=42, stratify=y 

) 

 

#Ponderar clases para evitar sesgo 

sample_weights = compute_sample_weight(class_weight='balanced', y=y_train) 

Calcula pesos para cada muestra en el conjunto de entrenamiento, asignando un peso mayor a las 
clases minoritarias para balancear su contribución durante el entrenamiento. 

 

Entrenamiento del Modelo Binario 

Se instancia y entrena el modelo GradientBoostingClassifier con parámetros ajustados 

para optimizar su rendimiento y evitar el sobreajuste, buscando un equilibrio entre capacidad de 

aprendizaje y generalización. 

#Modelo Gradient Boosting con ajustes 

gb_model = GradientBoostingClassifier( 

    n_estimators=100,      # Número de árboles en el ensamble 

    learning_rate=0.09,    # Contribución de cada árbol 

    max_depth=3,           # Profundidad máxima de cada árbol 

    min_samples_split=4,   # Número mínimo de muestras requeridas para 

dividir un nodo interno 

    subsample=0.95,        # Fracción de muestras usadas para ajustar los 

estimadores individuales 

    random_state=42 

) 

 

#Entrenamiento del modelo, aplicando los pesos de muestra calculados 

gb_model.fit(X_train, y_train, sample_weight=sample_weights) 

Los parámetros como n_estimators, learning_rate, max_depth, min_samples_split, y subsample se 
seleccionan para controlar la complejidad del modelo y mejorar su capacidad de generalización. 

 

Predicciones y Evaluación del Modelo 

Una vez entrenado, el modelo se utiliza para realizar predicciones sobre el conjunto de 

prueba. Se ajusta un umbral de clasificación para priorizar una mayor sensibilidad, y finalmente, 

se evalúa el rendimiento del modelo utilizando métricas clave y visualizaciones. 
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#Predicciones con umbral ajustado 

y_probs = gb_model.predict_proba(X_test)[:, 1] # Obtener probabilidades de 

la clase positiva 

threshold = 0.4                            # Umbral de decisión ajustado 

(para mayor sensibilidad) 

y_pred = (y_probs >= threshold).astype(int) # Convertir probabilidades a 

predicciones binarias 

 

#Evaluación del modelo 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

print("\nReporte de clasificación:\n", classification_report(y_test, 

y_pred)) 

 

#Matriz de confusión 

cm = confusion_matrix(y_test, y_pred) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm, 

display_labels=gb_model.classes_) 

 

#Visualizar matriz 

plt.figure(figsize=(6,6)) 

disp.plot(cmap='Blues', values_format='d') 

plt.title('Matriz de Confusión') 

plt.show() 

 

#Importancia de variables 

importances = pd.Series(gb_model.feature_importances_, index=X.columns) 

importances.sort_values().plot(kind='barh', figsize=(8, 6), 

title="Importancia de variables") 

# Las variables 10 más importantes de este modelo binario se usan como base 

para la siguiente etapa 

top_vars = importances.sort_values(ascending=False).head(10).index 

plt.tight_layout() 

plt.show() 

threshold = 0.4: Un umbral más bajo puede aumentar la sensibilidad del modelo.  
Genera y visualiza la matriz de confusión, que detalla los verdaderos positivos, verdaderos negativos, 
falsos positivos y falsos negativos.  
Calcula y visualiza la importancia de cada variable predictora en el modelo, lo que ayuda a entender 
qué características son más influyentes en la predicción. 

 

Evaluación del Modelo Binario, Curva ROC y AUC. 

from sklearn.metrics import roc_curve, roc_auc_score 

 

#Obtener probabilidades de clase 1 

y_probs = gb_model.predict_proba(X_test)[:, 1]  # Probabilidad de clase 

positiva 
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#Calcular curva ROC 

fpr, tpr, thresholds = roc_curve(y_test, y_probs) 

roc_auc = roc_auc_score(y_test, y_probs) 

 

#Graficar 

plt.figure(figsize=(8, 6)) 

plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'Curva ROC (AUC = 

{roc_auc:.2f})') 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')  # Línea base 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('Tasa de Falsos Positivos (FPR)') 

plt.ylabel('Tasa de Verdaderos Positivos (TPR)') 

plt.title('Curva ROC - GradientBoostingClassifier Binario') 

plt.legend(loc="lower right") 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

Calcula directamente el área bajo la curva ROC, una métrica clave para clasificadores binarios que 
mide la capacidad del modelo para distinguir entre las clases. 

 

Refinamiento y Validación: Clasificación Binaria con Regresión Logística y 

Variables Importantes 

Para refinar aún más el modelo binario y aumentar la interpretabilidad, se decidió utilizar 

un modelo de Regresión Logística. Este modelo, más simple y directamente interpretable que 

Gradient Boosting, se aplicó utilizando únicamente las variables 10 más importantes 

identificadas por el modelo de Gradient Boosting binario principal. Este enfoque permite evaluar 

la capacidad predictiva de un subconjunto de características clave con un modelo de base, 

validando su relevancia. 

Preparación de Datos y Escalado para Regresión Logística 

Se seleccionaron las variables importantes y se escalaron los datos, un paso crucial para 

algoritmos basados en distancias como la Regresión Logística, que son sensibles a la escala de 

las características. 
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from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import classification_report, accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from sklearn.metrics import ConfusionMatrixDisplay  

 

#Definir variables (usando top_vars del modelo binario) 

X = data[top_vars] # top_vars se han extraído del modelo binario de Gradient 

Boosting anterior 

y = data['fibrosis_binaria'] 

 

#Escalar y separar datos 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) # Escalar las columnas predictoras 

seleccionadas 

 

X_train, X_test, y_train, y_test = train_test_split( 

    X_scaled, y, test_size=0.3, random_state=42 

) # Dividir datos en entrenamiento/prueba 30% 

X = se compone únicamente de las variables previamente identificadas como top_vars por el modelo 
de Gradient Boosting binario.  
La escala de los datos es esencial para la Regresión Logística. 

 

Entrenamiento del Modelo de Regresión Logística 

El modelo de Regresión Logística se inicializó con un balance de pesos para las clases y 

un número máximo de iteraciones, y luego se entrenó con los datos escalados. 

#Entrenar modelo RL 

model_rl = LogisticRegression(class_weight='balanced', max_iter=1000) 

model_rl.fit(X_train, y_train) 

Se utiliza class_weight='balanced' para manejar posibles desequilibrios en las clases. 

 

 

Predicciones y Evaluación del Modelo de Regresión Logística 



51 
 

Las predicciones se realizaron sobre el conjunto de prueba, aplicando un umbral ajustado 

para balancear la sensibilidad. Finalmente, se calcularon y visualizaron las métricas de 

rendimiento, incluyendo la matriz de confusión y la curva ROC. 

#Predicción con umbral ajustado 

y_probs = model_rl.predict_proba(X_test)[:, 1] # Probabilidad de la clase 

positiva 

 

#Ajustar umbral 

threshold = 0.38 # Un umbral ajustado puede priorizar la sensibilidad, 

dependiendo del contexto clínico 

y_pred_thresh = (y_probs >= threshold).astype(int) # Convertir 

probabilidades a predicciones binarias 

 

#Mostrar Métricas 

print("Accuracy:", accuracy_score(y_test, y_pred_thresh)) 

print("\nReporte de clasificación:\n", classification_report(y_test, 

y_pred_thresh)) 

 

#Matriz de confusión 

cm = confusion_matrix(y_test, y_pred_thresh) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm, 

display_labels=model_rl.classes_) 

 

#Visualizar matriz 

plt.figure(figsize=(6,6)) 

disp.plot(cmap='Blues', values_format='d') 

plt.title('Matriz de Confusión - Regresión Logística Binaria') 

plt.show() 

 

#Curva ROC 

fpr, tpr, _ = roc_curve(y_test, y_probs) 

auc = roc_auc_score(y_test, y_probs) 

 

plt.figure(figsize=(6, 4)) 

plt.plot(fpr, tpr, label=f"AUC = {auc:.2f}") 

plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Clasificador 

aleatorio') 

plt.xlabel('Tasa de Falsos Positivos (1 - Especificidad)') 

plt.ylabel('Tasa de Verdaderos Positivos (Sensibilidad)') 

plt.title('Curva ROC - Regresión Logística Binaria') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

Se utilizan las mismas funciones para evaluar la capacidad discriminativa del modelo de Regresión 
Logística. 
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6. Resultados 

6.1. Presentación de los Hallazgos del Análisis Exploratorio de Datos (EDA) 

Tabla 9 

Información general: 

# Nombre en DataFrame Nombre en Español Tipo de Dato Valores no nulos 

0 sexo Sexo Entero (int64) 101 

1 Edad Edad Entero (int64) 101 

2 dm Diabetes mellitus Entero (int64) 101 

3 cardiopatia_valvular Cardiopatía valvular Entero (int64) 101 

4 protesis_valvular Prótesis valvular Entero (int64) 101 

5 acxfa Antecedentes de fibrilación auricular Entero (int64) 101 

6 irc Enfermedad renal crónica (ERC) Entero (int64) 101 

7 furosemida_oral_dosis Dosis de furosemida oral (mg/día) Decimal (float64) 101 

8 furo_otros Furosemida combinada (tiazidas u otros) Entero (int64) 101 

9 arm Antagonistas de mineralocorticoides (ARM) Entero (int64) 101 

10 isglt2 Inhibidores SGLT2 Entero (int64) 101 

11 aGLP1 Agonistas del receptor GLP-1 Entero (int64) 101 

12 fe Fracción de eyección (FE) Entero (int64) 101 

13 it_grado Grado de insuficiencia tricuspídea (leve/mod/sev) Objeto (texto) 101 

14 peso Peso (kg) Decimal (float64) 101 

15 edemas Presencia de edemas periféricos Entero (int64) 101 

16 gpt ALT / GPT (Alanina aminotransferasa) Entero (int64) 101 

17 ggt GGT (Gamma-glutamil transferasa) Entero (int64) 101 

18 plaquetas Recuento plaquetario (mil/mm³) Entero (int64) 101 

19 ca125 CA125 (U/mL) Entero (int64) 101 

20 ntprobnp NT-proBNP (pg/mL) Entero (int64) 101 

21 CAP[dB/m] CAP (dB/m) – Esteatosis por FibroScan Entero (int64) 101 

22 grado_fibrosis Grado de fibrosis hepática (F0–F4) Entero (int64) 101 

23 E[kPa] Rigidez hepática (E, en kPa) por FibroScan Decimal (float64) 101 

Nota. Exploración por columnas. Elaboración propia, 2025. 
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Distribución de Variables: 

Figura 9 

Distribución de pacientes por grado de fibrosis 

 

Nota: Tomado de código fuente, 2025. 
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Figura 10 

Presencia/ausencia de fibrosis 

 

Nota. Tomado código fuente, 2025. 

 

Correlaciones:  

La matriz de correlación visualizada con un heatmap, destacando las relaciones entre las 

variables predictoras y la variable objetivo. 
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Figura 11 

Grado de Fibrosis 

 

Nota. Tomado código fuente, 2025. 
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Figura 12 

Presencia de Fibrosis 

 

Nota. Tomado de código fuente, 2025. 
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6.2. Resultados de los Modelos de Machine Learning 

6.2.1. Resultados del Modelo de Clasificación Multiclase (Inicial) 

Métricas de Rendimiento (Multiclase - Gradient Boosting) 

 Precisión (Accuracy), reporte de clasificación completo (Precision, Recall, F1-Score por 

clase). 

• Exactitud (Accuracy) = 61%. 

Tabla 10 

Métricas de Rendimiento Modelo Multiclase 

Clase Precisión 

(Precision) 

Sensibilidad 

(Recall) 

F1-

Score 

Soporte 

(Support) 

0 0.64 0.82 0.72 17 

1 0.00 0.00 0.00 1 

2 1.00 0.33 0.50 3 

3 0.00 0.00 0.00 3 

4 0.80 0.57 0.67 7 

Nota. Tomado de código fuente, 2025. 
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Matriz de Confusión Multiclase 

 La matriz de confusión para este modelo, que visualiza los aciertos y errores por cada 

clase de fibrosis. 

Figura 13 

Matriz de Confusión - Grado de Fibrosis 

 

Nota. Clasificación multiclase (f0, f1, f2, f3, f4). Tomado de código fuente, 2025. 

Curvas ROC y AUC Multiclase 

La gráfica de las curvas ROC multiclase con los valores de AUC para cada clase. 
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Figura 14 

Curvas Roc y AUC Clasificación Multiclase 

 

Nota. Tomado de código fuente, 2025. 

 

 

 

 

Importancia de Variables Multiclase 
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La gráfica de barras de la importancia de las características para este modelo. 

Figura 15 

Importancia de variables modelo multiclase 

 

Nota. Tomado de código fuente, 2025. 

 

6.2.2 Resultados del Modelo de Clasificación Binaria (Principal - Gradient Boosting) 

Métricas de Rendimiento (Binario - Gradient Boosting) 

 Precisión (Accuracy), reporte completo (Precision, Recall, F1-Score). 

• Exactitud (Accuracy) = 74%. 
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Tabla 11 

Métricas de Rendimiento Modelo Binario 

Clase Precisión 

(Precision) 

Sensibilidad 

(Recall) 

F1-

Score 

Soporte 

(Support) 

0 0.76 0.76 0.76 17 

1 0.71 0.71 0.71 14 

Nota. Tomado de código fuente, 2025. 

 

Matriz de Confusión Binario 

 La matriz de confusión para este modelo, que visualiza los aciertos y errores. 

Figura 16 

Matriz de Confusión - Presencia de Fibrosis 

 

Nota. Tomado de código fuente, 2025. 
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Curvas ROC y AUC Modelo Binario 

La gráfica de las curvas ROC modelo binario con el valor de AUC. 

Figura 17 

Curvas Roc y AUC Modelo Binario 

 

Nota. Tomado de código fuente, 2025. 

 

 

Importancia de Variables Modelo Binario 

La gráfica de barras de la importancia de las características para este modelo. 
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Figura 18 

Importancia de variables modelo binario 

 

Nota. Tomado de código fuente, 2025. 

 

6.2.3. Resultados del Modelo de Refinamiento (Regresión Logística) 

Métricas de Rendimiento (Regresión Logística) 

 Precisión, Sensibilidad, Especificidad, ROC-AUC. 

• Exactitud (Accuracy) = 71%. 
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Tabla 12 

Métricas de Rendimiento Modelo Regresión Logística 

Clase Precisión 

(Precision) 

Sensibilidad 

(Recall) 

F1-

Score 

Soporte 

(Support) 

0 0.86 0.43 0.57 14 

1 0.67 0.94 0.78 17 

Nota. Tomado de código fuente, 2025. 

Matriz de Confusión Regresión Logística 

 La matriz de confusión para este modelo, que visualiza los aciertos y errores. 

Figura 19 

Matriz de Confusión - Presencia de Fibrosis Regresión Logística 

 

Nota. Tomado de código fuente, 2025. 
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Curvas ROC y AUC Regresión Logística 

La gráfica de las curvas ROC modelo de Regresión Logística con el valor de AUC. 

Figura 20 

Curvas Roc y AUC Regresión Logística 

 

Nota. Tomado de código fuente, 2025. 
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7. Discusión 

La presente sección tiene como objetivo analizar en profundidad los resultados obtenidos 

del modelado predictivo de la fibrosis hepática en pacientes con insuficiencia cardíaca, 

contextualizándolos dentro del marco de la investigación previa y discutiendo sus implicaciones 

clínicas y teóricas, así como las limitaciones y futuras líneas de investigación. 

Análisis del Desempeño del Modelo Multiclase y Justificación del Enfoque Binario 

El estudio inició con una aproximación de clasificación multiclase para predecir los 

distintos grados de fibrosis hepática (F0 a F4) utilizando un modelo de Gradient Boosting. 

Aunque la precisión global alcanzó un 61%, el análisis detallado de las métricas de desempeño y 

la matriz de confusión revelaron limitaciones significativas. Específicamente, el modelo mostró 

una capacidad discriminativa deficiente en las clases intermedias (F1, F2, F3), con valores de 

recall de 0, 0.33 y 0 respectivamente, mientras que las clases extremas (F0 y F4) presentaron un 

rendimiento más aceptable, con AUCs de 0.76 para F0 y hasta 0.89 para F4 (y 0.86 para F2, 

aunque el recall es bajo para esta). Esta disparidad evidenció la dificultad del modelo para 

diferenciar entre estadios que clínicamente pueden tener superposiciones sutiles, así como el 

impacto del reducido número de muestras en algunas clases (clase 0=54, clase 1=4, clase 2=10, 

clase 3=11, clase 4=22). La matriz de confusión confirmó que el modelo aprendió a identificar 

bien la clase con mayor número de muestras (F0), mientras que su desempeño en otras clases fue 

equiparable a una predicción aleatoria. 

Esta observación crítica justificó la transición metodológica hacia una clasificación 

binaria. Se argumentó que, si bien una predicción granular de los grados es deseable, la 

capacidad de detectar la presencia o ausencia de fibrosis es una pregunta clínicamente más 
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urgente y factible con los datos disponibles. Esta simplificación del problema busca ofrecer una 

herramienta de cribado no invasivo que priorice la identificación de pacientes que requieren 

mayor atención. 

Rendimiento del Modelo de Clasificación Binaria (Gradient Boosting) 

La reformulación del problema a una clasificación binaria (ausencia de fibrosis F0 vs. 

presencia de fibrosis F1-F4) mediante un modelo de Gradient Boosting Classifier, con ajustes de 

parámetros y ponderación de clases, resultó en una mejora sustancial del rendimiento y la 

aplicabilidad. El modelo alcanzó una accuracy del 0.74, con un recall del 0.71 para la clase de 

"presencia de fibrosis" (clase 1) y un recall del 0.76 para la clase de "ausencia de fibrosis" (clase 

0). Los F1-scores de 0.76 y 0.71 respectivamente, y un AUC de 0.76, indican que el modelo es 

robusto y ofrece un rendimiento aceptable para la tarea de detección. 

La matriz de confusión del modelo binario mostró un balance razonable, con 13 aciertos 

y 4 errores para la clase 0 (ausencia de fibrosis), y 10 aciertos y 4 errores para la clase 1 

(presencia de fibrosis). Este rendimiento, aunque no es perfecto, es prometedor para su uso como 

herramienta de apoyo en la rápida observación de pacientes. La capacidad de detectar la fibrosis 

de manera automática, especialmente considerando las dificultades que algunos pacientes pueden 

experimentar con pruebas como FibroScan, resalta la ventaja clínica de este enfoque binario. 

Importancia de las Características 

El análisis de la importancia de variables en el modelo de Gradient Boosting binario 

reveló que el modelo se basaba en factores clínicamente relevantes. Destacaron variables 

relacionadas con el daño hepático (GGT, GPT), la esteatosis hepática medida por CAP, y otros 

factores antropométricos como el peso y la edad. Además, parámetros indicadores de congestión 
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y comorbilidades cardíacas, como la insuficiencia tricúspide, la fracción de eyección, NT-

proBNP y CA125, así como el uso combinado de diuréticos, mostraron una alta relevancia. Este 

hallazgo se correlaciona directamente con la realidad clínica y los valores considerados en la 

unidad de insuficiencia cardíaca, lo que refuerza la validez interna del modelo. La relevancia de 

CAP también subraya la importancia de FibroScan en la detección de fibrosis, aunque en el 

modelo predictivo se busca prescindir de esta prueba en la fase de entrada de datos. 

Rendimiento y Utilidad de la Regresión Logística con Variables Seleccionadas 

Posteriormente, se construyó un modelo de Regresión Logística binaria utilizando las 10 

variables más importantes identificadas por el Gradient Boosting, buscando una mayor 

simplicidad y explicabilidad. Los resultados obtenidos fueron una accuracy del 0.71 y un AUC 

del 0.71, lo cual es comparable al modelo de Gradient Boosting principal, validando la 

relevancia predictiva de las características seleccionadas. Cabe destacar un recall de 0.94 para la 

clase de "presencia de fibrosis" (clase 1) y una precision de 0.86 para la clase de "ausencia de 

fibrosis" (clase 0). 

Este modelo de Regresión Logística, al priorizar la detección de la fibrosis con un alto 

recall (reduciendo significativamente los falsos negativos), se alinea con la necesidad clínica de 

localizar pacientes con fibrosis, incluso si esto implica un aumento de falsos positivos. Aunque 

un exceso de falsos positivos no es óptimo en la práctica diaria, este enfoque es valioso en un 

contexto de cribado, donde el sacrificio de especificidad por una mayor sensibilidad es a menudo 

preferible para no pasar por alto casos de enfermedad. La principal ventaja metodológica de la 

regresión logística radica en su interpretabilidad, ya que permite inferir la dirección y magnitud 

del efecto de cada variable, lo que es fundamental en contextos clínicos que requieren 

transparencia y justificación de las decisiones. Este modelo, por tanto, es más adecuado para su 
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potencial integración en protocolos clínicos, facilitando la comprensión por parte de los 

profesionales sanitarios. 

Implicaciones Clínicas y Teóricas 

Los hallazgos de este estudio tienen implicaciones significativas para la práctica clínica y 

el avance del conocimiento en la predicción no invasiva de la fibrosis hepática en pacientes con 

insuficiencia cardíaca. El modelo binario propuesto, basado en variables clínicas accesibles, 

demuestra el potencial de ser una herramienta de apoyo para el cribado inicial, identificando 

pacientes con alta probabilidad de fibrosis que podrían beneficiarse de una evaluación más 

exhaustiva. Esto es particularmente relevante dado que la fibrosis hepática puede ser 

asintomática en sus etapas iniciales y la prueba de FibroScan no siempre es factible. 

Desde una perspectiva teórica, el estudio contribuye al cuerpo de evidencia que respalda 

la utilidad de algoritmos de aprendizaje automático para identificar patrones complejos en datos 

médicos, y valida la relevancia de un conjunto específico de variables clínicas en la predicción 

de la fibrosis en una población específica como la de insuficiencia cardíaca. 

Limitaciones del Estudio y Futuras Líneas de Investigación 

Es importante reconocer las limitaciones del presente estudio. El tamaño de la muestra 

actual (101 pacientes) es relativamente reducido, lo que puede afectar la generalizabilidad de los 

modelos. Un conjunto de datos más amplio y de múltiples centros sería crucial para validar y 

mejorar la robustez de los modelos, y abordar el desequilibrio de clases de manera más efectiva. 

Además, la definición de los grados de fibrosis se basó en mediciones de FibroScan, siendo la 

biopsia hepática el estándar de oro para el diagnóstico definitivo, lo que introduce una limitación 

inherente en la "verdad fundamental" del diagnóstico. 
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Basado en estas consideraciones, las futuras líneas de investigación incluyen: 

• Aumento del Tamaño Muestral: La integración de más muestras, como se plantea 

con el avance de la investigación, será fundamental para aumentar la fiabilidad y 

capacidad predictiva de los modelos. 

• Validación Externa: Realizar validaciones con conjuntos de datos independientes 

para evaluar la transferibilidad y robustez de los modelos en diferentes 

poblaciones. 

• Optimización del Umbral: Explorar metodologías más avanzadas para la 

optimización del umbral de decisión en contextos clínicos donde el costo de los 

falsos negativos es muy alto. 

• Desarrollo de Herramientas Interactivas: Crear una interfaz de usuario o una 

aplicación que permita a los profesionales sanitarios utilizar el modelo de forma 

sencilla para la evaluación rápida de pacientes. 
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8. Conclusiones  

Las conclusiones de este trabajo se fundamentan en el riguroso proceso de modelado y 

análisis de datos, demostrando un progreso significativo en el abordaje de la predicción de 

fibrosis hepática en pacientes con insuficiencia cardíaca. Se ha validado la capacidad de los 

modelos desarrollados para cumplir con los objetivos generales y específicos propuestos, 

sentando las bases para futuras mejoras e implementaciones. 

Cumplimiento del Objetivo General 

El Objetivo General de "Desarrollar modelos de inteligencia artificial capaces de 

predecir la presencia de fibrosis hepática en pacientes con insuficiencia cardíaca, utilizando 

variables clínicas y el FibroScan como referencia diagnóstica" se ha logrado 

satisfactoriamente. A través de la aplicación de algoritmos de aprendizaje automático 

supervisado, se construyeron modelos predictivos que, si bien utilizan la medida de FibroScan 

(E[kPa]) como el estándar de oro para definir la condición de fibrosis (grados o 

presencia/ausencia), operan con variables clínicas como predictores de entrada. Esto es crucial, 

ya que permite que los modelos infieran la presencia de fibrosis sin requerir la realización del 

FibroScan en la fase de predicción, tal como se buscaba en la investigación. 

Cumplimiento de los Objetivos Específicos 

"Aplicar algoritmos de aprendizaje supervisado para construir modelos de 

predicción binaria (fibrosis: sí/no)." 

Este objetivo se ha cumplido al desarrollar exitosamente un modelo de Gradient Boosting 

Classifier para la clasificación binaria de fibrosis (presencia/ausencia). A pesar de los desafíos 

inherentes al desbalance de clases iniciales (F0=54, F1=4, F2=10, F3=11, F4=22), el modelo 
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final binario demostró una accuracy del 0.74 y un recall del 0.71 para la clase de "presencia de 

fibrosis", con un AUC de 0.76. Aunque el rendimiento es aún mejorable y la investigación se 

encuentra en curso con el trabajo de extracción de más datos, estos resultados establecen una 

base robusta y prometedora para la detección no invasiva. La posterior aplicación de un modelo 

de Regresión Logística (con accuracy 0.71 y AUC 0.71) y un recall de 0.94 para la clase de 

"presencia de fibrosis", refuerza la consecución de este objetivo y valida la capacidad de los 

algoritmos para esta tarea. 

"Explorar el valor de la inteligencia artificial como herramienta complementaria en 

escenarios donde el acceso al FibroScan sea limitado." 

Este objetivo ha sido directamente abordado y su valor se ha puesto de manifiesto. Los 

modelos desarrollados utilizan únicamente variables clínicas accesibles, lo que implica el 

potencial desarrollo de una herramienta capaz de complementar o incluso, en el futuro, suplir la 

necesidad inmediata de un FibroScan en contextos donde su realización sea difícil o no se cuente 

con el equipo. Esto representa un avance significativo hacia la democratización del cribado de 

fibrosis, permitiendo una rápida identificación de pacientes en riesgo y facilitando decisiones 

terapéuticas tempranas sin depender de una tecnología específica. 

"Identificar las variables clínicas con mayor influencia en la predicción de fibrosis 

hepática mediante análisis de importancia de características." 

La investigación ha identificado con éxito variables de relevancia en la predicción de 

fibrosis. El análisis de importancia de características del modelo de Gradient Boosting binario 

destacó factores como el peso, indicadores de daño hepático (GGT, GPT), la esteatosis hepática 

(medida con CAP, que refuerza la importancia del FibroScan como referencia), comorbilidades 
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cardíacas (insuficiencia tricuspídea, fracción de eyección), indicadores de congestión (NT-

proBNP, CA125), y el uso de diuréticos. Estas variables no solo concuerdan con la realidad 

clínica y la fisiopatología conocida de la fibrosis en el contexto de la insuficiencia cardíaca, sino 

que también son parámetros en los cuales se hace hincapié en la evaluación de pacientes en las 

unidades de insuficiencia cardíaca. Esta identificación robustece el conocimiento sobre los 

factores predictores y orienta futuras investigaciones y la atención clínica. 

En síntesis, este TFM ha demostrado la viabilidad y el valor de la inteligencia artificial 

para predecir la fibrosis hepática a partir de datos clínicos, proporcionando una herramienta 

complementaria para contextos con limitaciones de acceso a tecnologías avanzadas y destacando 

las variables más influyentes en este proceso. La naturaleza continua de la investigación y la 

integración de más datos prometen una mejora sostenida en la robustez y aplicabilidad de los 

modelos. 
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10. Código Fuente y Repositorio GitHub 

El código fuente para la implementación de los modelos y análisis de este Trabajo de Fin 

de Máster ha sido subido a la plataforma GitHub. Este repositorio contiene el desarrollo 

completo, desde el preprocesamiento de datos hasta la evaluación de los modelos de Machine 

Learning. 

Código fuente disponible en el siguiente enlace: 

• https://github.com/luisstuardo/Prediccion-Fibrosis-Hepatica 

 

 

https://github.com/luisstuardo/Prediccion-Fibrosis-Hepatica

