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Resumen
Los sistemas de question answering biomédico actuales enfrentan limitaciones en ex-

plicabilidad, lo que obstaculiza su adopción en entornos clínicos donde la interpretabilidad
es fundamental para la toma de decisiones médicas basadas en evidencia.

Se desarrolló MultimodalBioQA, un sistema multimodal que integra procesamiento
textual y visual con capacidades de explicabilidad (XAI). El módulo textual implementa
búsqueda híbrida combinando bases de datos vectoriales locales (PubMedBERT 768D) con
consultas en tiempo real a PubMed API, utilizando GPT-4o para extracción de evidencia
científica a nivel de oración. El módulo visual emplea un modelo LLaVA-LLaMA 3 8B
con fine-tuning LoRA especializado para análisis de imágenes médicas.

La contribución principal es el sistema de explicabilidad integrado que combina cuatro
métodos complementarios: GradCAM, Attention Maps, Integrated Gradients y mapeo
concepto-región con bounding boxes mediante técnicas de segmentación automática. Esta
integración permite generar respuestas fundamentadas con trazabilidad completa desde
la evidencia hasta la conclusión.

La arquitectura integra múltiples componentes: LLaVA-LLaMA 3 8B, GPT-4o, Bio-
medNLP - PubMedBERT, Segment Anything Model (SAM), bases de datos vectoriales
RAG, y APIs UMLS/MeSH y PubMed. El sistema se implementa como una arquitectura
multiagente con LlamaIndex, coordinada mediante un Writer Agent central que sintetiza
respuestas diferenciadas según el tipo de consulta biomédica.

La evaluación en competencias internacionales demostró rendimiento competitivo: los
módulos textual y visual del sistema obtuvieron desempeño top 10 en BioASQ Tarea 13B
e ImageCLEFmed Caption 2025, confirmando su efectividad en comparación con sistemas
de instituciones de investigación consolidadas a nivel mundial.

Este trabajo contribuye al desarrollo de sistemas de IA médica interpretable mediante
la integración de explicabilidad multimodal desde el diseño, estableciendo una base técnica
para futuras herramientas de apoyo clínico que combinen precisión con transparencia en
el análisis de información biomédica.

Palabras clave: Question Answering Biomédico, IA Multimodal, XAI, IA Generativa,
IA Agéntica, PLN Biomédico, Visual Transformers, Multimodal Transformers, RAG, IA
Médica
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Abstract
Current biomedical question answering systems face limitations in explainability, which

hinders their adoption in clinical environments where interpretability is fundamental for
evidence-based medical decision-making.

We developed MultimodalBioQA, a multimodal system that integrates textual and
visual processing with explainability capabilities (XAI). The textual module implements
hybrid search combining local vector databases (PubMedBERT 768D) with real-time
PubMed API queries, utilizing GPT-4o for sentence-level scientific evidence extraction.
The visual module employs a LLaVA-LLaMA 3 8B model with specialized LoRA fine-
tuning for medical image analysis.

The primary contribution is an integrated explainability system that combines four
complementary methods: GradCAM, Attention Maps, Integrated Gradients, and concept-
region mapping with bounding boxes through automatic segmentation techniques. This
integration enables the generation of grounded responses with complete traceability from
evidence to conclusion.

The architecture integrates multiple components: LLaVA-LLaMA 3 8B, GPT-4o, Bio-
medNLP - PubMedBERT, Segment Anything Model (SAM), RAG vector databases, and
UMLS/MeSH and PubMed APIs. The system is implemented as a multi-agent archi-
tecture with LlamaIndex, coordinated through a central Writer Agent that synthesizes
differentiated responses according to biomedical query type.

Evaluation in international competitions demonstrated competitive performance: the
system’s textual and visual modules achieved Top 10 results in BioASQ Task 13B and
ImageCLEFmed Caption 2025, confirming their effectiveness compared to systems from
established research institutions worldwide.

This work contributes to the development of interpretable medical AI systems th-
rough the integration of multimodal explainability from design, establishing a technical
foundation for future clinical support tools that combine precision with transparency in
biomedical information analysis.

Keywords: Biomedical Question Answering, Multimodal AI, XAI, Generative AI,
Agentic AI, Biomedical NLP, LLM, Visual Transformers, Multimodal Transformers, RAG,
Health AI
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1. Introducción
La integración de sistemas de inteligencia artificial en el dominio biomédico ha expe-

rimentado un crecimiento exponencial en la última década, transformando fundamental-
mente la manera en que se accede, procesa y sintetiza el conocimiento médico (Warner et
al., 2024). En este contexto, los sistemas de question answering (Q&A) biomédico han
emergido como una tecnología crítica para democratizar el acceso a información científica
especializada, permitiendo que profesionales de la salud, investigadores y estudiantes for-
mulen consultas en lenguaje natural y obtengan respuestas precisas basadas en evidencia
científica actualizada (Kell et al., 2024).

La medicina moderna se caracteriza por su naturaleza inherentemente multimodal,
donde la toma de decisiones clínicas requiere la integración de información textual (li-
teratura científica, historiales clínicos, guías de práctica) e información visual (imágenes
radiológicas, histopatológicas, microscópicas) (Simon et al., 2024). Sin embargo, los sis-
temas de Q&A biomédico tradicionales han operado predominantemente en modalidades
aisladas, limitando su capacidad para proporcionar análisis integrales que reflejen la reali-
dad clínica multidimensional (Warner et al., 2024). Esta fragmentación de modalidades
representa una limitación significativa para la medicina de precisión, donde la síntesis
de evidencia multimodal es fundamental para diagnósticos precisos y planificación tera-
péutica personalizada. La necesidad de sistemas que puedan procesar simultáneamente
consultas textuales complejas y análisis de imágenes médicas especializadas es imperativa
para avanzar hacia herramientas de apoyo clínico verdaderamente integradas (Tariq et al.,
2025).

Paralelamente al desarrollo de capacidades multimodales, la comunidad médica y re-
gulatoria ha identificado la explicabilidad como un requisito fundamental para la adopción
responsable de sistemas de IA en entornos clínicos (Cálem et al., 2024). A diferencia de
otros dominios donde los modelos black-box pueden ser aceptables, la medicina exige
transparencia interpretativa que permita a los profesionales comprender, validar y con-
fiar en las recomendaciones generadas por sistemas automatizados (Guidotti et al., 2018;
Markus et al., 2021). La explicabilidad en IA médica trasciende la mera interpretación de
resultados; constituye un imperativo ético y regulatorio que determina la viabilidad de
la implementación clínica. En esta área los sistemas no solo deben proporcionar respues-
tas precisas, sino también articular el razonamiento subyacente, identificar las fuentes de
evidencia y permitir la verificación independiente de las conclusiones generadas (Markus
et al., 2021). Esta exigencia se intensifica en el contexto multimodal, donde la integración
de información textual y visual requiere mecanismos de explicabilidad sofisticados que
puedan elucidar las contribuciones relativas de cada modalidad al resultado final (Borys
et al., 2023).

Por lo tanto, el presente sistema pretende ser un aporte en el avance hacia la resolución
de esta problemática.

2. Motivación
La convergencia entre inteligencia artificial y medicina representa uno de los desafíos

más apremiantes y prometedores en la actualidad. Mi trabajo en MultimodalBioQA
emerge de una convicción profunda: que las decisiones clínicas respaldadas por sistemas
interpretables pueden transformar radicalmente los resultados para los pacientes, espe-
cialmente en contextos donde el tiempo de diagnóstico es crítico.
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La medicina de precisión asistida por IA no es meramente una innovación tecnoló-
gica; es una oportunidad de democratizar el acceso a diagnósticos de calidad y reducir
las disparidades en la atención médica. Cada algoritmo que desarrollamos, cada modelo
que entrenamos, cada sistema de explicabilidad que implementamos, tiene el potencial
de traducirse en intervenciones más tempranas, tratamientos más efectivos y, en última
instancia, en preservar vidas.

Mi trayectoria académica y profesional ha sido, en retrospectiva, una preparación de-
liberada hacia este momento de convergencia. Los fundamentos en ciencias de la compu-
tación, la experiencia en procesamiento de lenguaje natural, el trabajo con datos biomédi-
cos masivos, y la investigación independiente en explicabilidad de modelos, han confluido
en una visión clara: contribuir al desarrollo de sistemas de IA médica que no solo sean
precisos, sino también transparentes y confiables para los profesionales de la salud y los
pacientes.

El desarrollo de MultimodalBioQA representa más que un logro técnico; encarna
una filosofía de investigación centrada en el impacto humano. Creo profundamente que
la explicabilidad integrada no es solo un requisito técnico, sino un imperativo ético que
reconoce que, en medicina, entender el "por qué"detrás de una recomendación puede
ser tan crucial como la recomendación misma. Esta investigación me ha confirmado que
la intersección entre IA y medicina biomédica es donde mi contribución puede ser más
significativa. La complejidad inherente de los datos médicos multimodales, la necesidad
crítica de interpretabilidad en decisiones clínicas, y el potencial transformador de estas
tecnologías, constituyen un espacio donde siento que la excelencia técnica a la que aspiro
se encuentra con el propósito social. Mi objetivo es consolidar una línea de investigación
que no solo avance el estado del arte en IA médica, sino que también establezca nuevos
estándares para la responsabilidad y transparencia en el desarrollo de herramientas de
apoyo clínico. Sinceramente aspiro a que mi trabajo contribuya a un futuro donde la IA
médica no solo sea más inteligente, sino también más humana en su capacidad de explicar,
justificar y generar confianza tanto en los profesionales que dedican sus vidas a sanar como
en sus pacientes que, tarde o temprano, somos todos.

3. Justificación de la investigación
Los sistemas de Q&A biomédico existentes enfrentan limitaciones arquitectónicas y

metodológicas significativas que impiden su adopción generalizada en entornos clínicos
(Jin et al., 2022). En primer lugar, la mayoría de los sistemas especializados operan en
modalidades únicas, requiriendo que los usuarios consulten múltiples herramientas para
obtener análisis completos. Esta fragmentación no solo reduce la eficiencia del workflow
clínico, sino que también introduce inconsistencias en la interpretación y síntesis de la
información multimodal.

En segundo lugar, los enfoques actuales de explicabilidad en IA médica tienden a
ser superficiales o limitados a técnicas individuales (por ejemplo, únicamente attention
maps). Esta aproximación fragmentada no logra proporcionar la comprensión holística
requerida para validación clínica, donde los profesionales necesitan entender tanto las
contribuciones específicas de características individuales como las interacciones complejas
entre modalidades.

Además, los sistemas existentes frecuentemente sacrifican interpretabilidad en favor de
rendimiento, o viceversa, creando un trade-off artificial que limita su utilidad práctica. La
investigación actual incluye marcos arquitectónicos que demuestran que la explicabilidad
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puede coexistir, e incluso potenciar, el rendimiento competitivo en tareas biomédicas
complejas.

Por otra parte, el advenimiento de los grandes modelos de lenguaje (LLMs) y los sis-
temas multimodales avanzados ha creado oportunidades sin precedentes para superar las
limitaciones históricas de los sistemas de Q&A biomédico (Thirunavukarasu et al., 2023).
Los LLMs modernos demuestran capacidades extraordinarias para comprensión contex-
tual, síntesis de información compleja y generación de explicaciones articuladas, mientras
que los modelos multimodales emergentes pueden procesar simultáneamente información
textual y visual con un nivel de expertise especializado (Singhal et al., 2023).

Simultáneamente, las arquitecturas multiagente han emergido como un paradigma pro-
metedor para orquestar sistemas complejos que requieren especialización específica para
el dominio manteniendo coordinación global (Pandey et al., 2024). Este enfoque permite
la construcción de sistemas donde agentes especializados manejan aspectos específicos del
procesamiento (búsqueda de literatura, análisis visual, síntesis de respuestas) mientras
un mecanismo de coordinación central asegura coherencia y calidad en el output final
(Pandey et al., 2024).

La convergencia de estas tecnologías emergentes presenta una oportunidad única para
desarrollar sistemas de Q&A biomédico que no solo superen las limitaciones actuales en
términos de multimodalidad y explicabilidad, sino que establezcan nuevos estándares de
transparencia, rendimiento y utilidad clínica en IA médica.

En este contexto, el desarrollo de sistemas de Q&A biomédico multimodal con explica-
bilidad integrada representa una frontera crítica de investigación que tiene el potencial de
transformar fundamentalmente la interacción entre los profesionales de la salud y el cono-
cimiento médico digitalizado. Estos sistemas deben abordar simultáneamente los desafíos
técnicos del procesamiento multimodal, los requisitos metodológicos de la explicabilidad
holística y las exigencias prácticas de la implementación clínica (Simon et al., 2024).

El presente trabajo aborda esta convergencia de desafíos mediante el desarrollo de
un sistema multiagente que integra capacidades avanzadas de procesamiento textual y
visual con mecanismos de explicabilidad multitécnica, estableciendo una base sólida para
la próxima generación de herramientas de IA médica interpretable.

3.1. Objetivo ODS

Este trabajo de investigación se enmarca dentro del Objetivo de Desarrollo Sostenible
(ODT) de Salud y Bienestar de la Unión Europea, el que tiene como finalidad asegurar
una vida saludable y promover el bienestar para todas las personas, sin importar la edad.
Sus propósitos incluyen disminuir la mortalidad materna e infantil, combatir tanto enfer-
medades transmisibles como no transmisibles, y garantizar el acceso universal a servicios
de salud esenciales y a medicamentos seguros (ONU, s.f.).

Una aplicación de información biomédica puede contribuir de manera directa a este
objetivo mediante:

- El acceso sencillo a información médica actualizada y fiable.
- La promoción de la prevención y el autocuidado en temas de salud.
- El fortalecimiento de la educación sanitaria en la sociedad.
- El apoyo a la vigilancia epidemiológica y al monitoreo de enfermedades.
Tanto la OMS como la ONU reconocen que la salud digital, incluidas las aplicaciones

biomédicas, desempeña un papel fundamental como impulsora para alcanzar los objetivos
ODS. Esto se debe a que amplía la cobertura de servicios de salud, refuerza la respuesta
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ante emergencias sanitarias y contribuye al bienestar global (Organización Mundial de la
Salud, 2021).

4. Objetivos

4.1. Objetivo principal

Desarrollar un sistema multiagente de IA explicable para question answering biomé-
dico multimodal que integre capacidades avanzadas de procesamiento textual y visual,
combinando grandes modelos de lenguaje, transformers visuales multimodales y técnicas
de explicabilidad para aportar en el desarrollo de herramientas de apoyo clínico interpre-
tables.

4.2. Objetivos secundarios

Objetivo secundario 1: Diseñar e implementar una base de datos vectorial completa
con más de 30 millones de artículos PubMed utilizando embeddings especializados
(BiomedNLP-PubMedBERT) con el fin de establecer una infraestructura RAG ro-
busta que permita búsqueda semántica de alta precisión y recuperación de evidencia
científica actualizada.

Objetivo secundario 2: Implementar un sistema de explicabilidad que combine múl-
tiples técnicas, como GradCAM, Attention Maps e Integrated Gradients, con mapeo
concepto-región y generación automática de bounding boxes con el objetivo de apor-
tar en el desarrollo de transparencia en IA médica multimodal.

Objetivo secundario 3: Validar la efectividad del sistema mediante una evaluación
modular diferenciada en los desafíos BioASQ Task 13b (módulo textual) e Image-
CLEFmed Caption 2025 (módulo visual) para demostrar buen desempeño a nivel
internacional en ambas modalidades.
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5. Marco teórico
El desarrollo de sistemas de question answering biomédico multimodal requiere la con-

vergencia de múltiples disciplinas técnicas que han evolucionado significativamente en la
última década (Jin et al., 2022). El procesamiento de lenguaje natural biomédico enfren-
ta desafíos únicos derivados de la complejidad terminológica y la necesidad de precisión
extrema en contextos clínicos. Paralelamente, los avances en grandes modelos de lenguaje
(Chen et al., 2025) han revolucionado las capacidades de comprensión y generación de
texto, mientras que las técnicas de recuperación aumentada por generación (RAG) han
emergido como soluciones fundamentales para mitigar alucinaciones y proporcionar acceso
a información actualizada (Gao et al., 2025).

En el dominio visual, la interpretación automática de imágenes médicas presenta de-
safíos específicos relacionados con la variabilidad anatómica, los artefactos técnicos y la
necesidad crítica de contextualización clínica. Los modelos multimodales recientes, parti-
cularmente los Large Vision-Language Models (LVLMs), han demostrado capacidades
prometedoras para integrar información textual y visual, aunque su aplicación en medici-
na requiere consideraciones especiales de explicabilidad y transparencia. La explicabilidad
constituye un requisito fundamental en aplicaciones médicas, donde la interpretabilidad
de las decisiones automatizadas determina la viabilidad de adopción clínica. Las técnicas
de visualización de activaciones neuronales, atribución de características y segmentación
explicativa proporcionan mecanismos para entender el razonamiento de modelos comple-
jos. Finalmente, la evaluación rigurosa mediante benchmarks especializados como BioASQ
(Nentidis et al., 2025) e ImageCLEFmedical (Damm & et al., 2025) establece estándares
de desempeño y comparabilidad que guían el desarrollo de sistemas clínicamente viables.

5.1. Procesamiento de lenguaje natural biomédico

El Procesamiento de Lenguaje Natural Biomédico (BioNLP) es un campo fundamental
que busca automatizar la extracción, curación y síntesis de conocimiento a partir de la
vasta y creciente literatura biomédica (Chen et al., 2025). Su importancia radica en la
necesidad de superar los desafíos que impone el volumen masivo de publicaciones, como
los aproximadamente 5000 artículos que se añaden diariamente solo a PubMed (Chen
et al., 2025). A continuación, se detallan los desafíos específicos de este dominio, el papel
del Reconocimiento de Entidades Nombradas Biomédicas (BioNER) y la integración del
Sistema Unificado de Lenguaje Médico (UMLS).

5.1.1. Desafíos específicos del dominio médico

El dominio biomédico presenta obstáculos inherentes para el PLN, que van más allá
de los encontrados en campos generales:

Volumen y naturaleza dinámica

La literatura biomédica es inmensamente voluminosa y se expande continuamente
con nuevos descubrimientos, lo que lleva a un problema constante de palabras fuera del
vocabulario (OOV) (Chen et al., 2025; Song et al., 2021). Por ejemplo, en marzo de
2024, PubMed ya contenía más de 36 millones de artículos, con unas 10 mil publicaciones
adicionales al mes solo sobre COVID-19 (Chen et al., 2025).
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Terminología compleja y ambigüedad

Las Entidades Nombradas Biomédicas (BioNEs) suelen estar compuestas por varias
palabras, como "hereditary nonpolyposis colorectal cancer syndrome"(Song et al.,
2021).

Una misma entidad puede ser referida con múltiples términos; por ejemplo, "Long
COVID"tiene hasta 763 términos diferentes (Chen et al., 2025).

Un mismo término puede describir entidades distintas, como .AP2", que puede refe-
rirse a un gen, una sustancia química o una línea celular (Chen et al., 2025).

Las abreviaturas también pueden tener múltiples significados, como "B"para "bacillus.o
"whole blood"(Song et al., 2021).

Existen entidades en cascada, donde una entidad se incrusta dentro de otra, como
"HTLV-I"dentro de "HTLV-I-infected cord blood lymphocytes"(Song et al., 2021).

Necesidad de alta precisión

Dada la naturaleza crítica de la información médica, cualquier inconsistencia, informa-
ción faltante o alucinación en las salidas de los modelos de PLN puede tener implicaciones
significativas, requiriendo una validación manual exhaustiva (Chen et al., 2025).

Datos etiquetados limitados

A diferencia de los dominios generales, la disponibilidad de conjuntos de datos bio-
médicos etiquetados es notablemente menor. Esto dificulta las estrategias de ajuste fino
(fine-tuning), ya que los modelos ajustados en datos limitados pueden carecer de gene-
ralización y el etiquetado manual requiere personal profesional altamente cualificado, lo
que es costoso y consume mucho tiempo (Chen et al., 2025; Zhuang et al., 2024).

Inconsistencias en la anotación

Incluso en los "gold-standard corpora"(GSC), pueden existir diferencias significativas
en las anotaciones entre expertos, tanto en la tipificación como en los límites de las
entidades, lo que afecta la precisión del modelo (Song et al., 2021).

5.1.2. BioNER y entity linking

El Reconocimiento de Entidades Nombradas Biomédicas (BioNER) es una tarea fun-
damental en la extracción de información, cuyo objetivo es identificar BioNEsb (como
genes, proteínas, enfermedades, sustancias químicas y especies) en la literatura biomédica
no estructurada (Song et al., 2021).

El proceso de BioNER implica la preparación de conjuntos de datos adecuados, la
extracción de características de la entidad y la clasificación de las entidades candidatas.
Mientras que los enfoques tradicionales se basan en diccionarios y reglas, sufriendo del
problema OOV, las metodologías de aprendizaje profundo han logrado un rendimiento de
vanguardia en BioNER (Song et al., 2021).
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Modelos de deep learning

Incluyen redes neuronales simples (como CNN y LSTM para capturar características
locales y globales), el aprendizaje multitarea (que comparte parámetros entre diferentes
tareas de BioNER o combina BioNER con tareas relacionadas como la normalización de
entidades nombradas, NEN) y el aprendizaje por transferencia (Song et al., 2021).

Modelos preentrenados

Ejemplos como BioBERT, BioELMo y HunFlair, preentrenados en grandes corpus
biomédicos, han demostrado una mejora significativa en la extracción de características y
la convergencia del modelo para tareas específicas de BioNER (Song et al., 2021).

5.1.3. UMLS y su integración

El Sistema Unificado de Lenguaje Médico (UMLS), desarrollado y mantenido por la
Biblioteca Nacional de Medicina (NIH), es una herramienta fundamental en la informática
biomédica (Jing, 2021a). Fue diseñado para integrar numerosos vocabularios y estánda-
res ampliamente utilizados en el campo biomédico, facilitando la interoperabilidad y la
comprensión semántica entre diferentes sistemas (Jing, 2021a). UMLS se compone de tres
fuentes de conocimiento clave:

Metatesauro: Contiene aproximadamente 4,4 millones de conceptos y 16 millones
de nombres de conceptos únicos de 218 vocabularios de origen en 25 idiomas (Jing,
2021a).

Red semántica: Proporciona una categorización consistente para todos los con-
ceptos del UMLS (Jing, 2021a).

Léxico SPECIALIST y herramientas léxicas: Ofrecen herramientas sintácticas
para normalizar cadenas y variantes léxicas (Jing, 2021a).

La integración de UMLS en el PLN ha sido un área muy activa, siendo uno de los
tres temas más frecuentes en las publicaciones revisadas (Jing, 2021a). Sus aplicaciones
incluyen:

Reconocimiento y extracción de conceptos

Permite la identificación de eventos adversos a medicamentos, propiedades contextua-
les y trastornos (Jing, 2021a).

Reconocimiento de entidades nombradas (NER)

Crucial para identificar términos médicos en texto libre (Jing, 2021a).

Reconocimiento y extracción de relaciones

Fundamental para descubrir interacciones fármaco-fármaco, relaciones enfermedad-
tratamiento y asociaciones entre enfermedades (Jing, 2021a).
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Herramientas léxicas

El léxico SPECIALIST del UMLS actúa como una base léxica para las aplicaciones de
PLN (Jing, 2021a).

Además, UMLS ha demostrado ser eficaz en la aumentación de datos para modelos
de aprendizaje profundo en BioNLP. El método UMLS-EDA (UMLS-based Easy Data
Augmentation) incorpora el conocimiento de UMLS para mejorar significativamente el
rendimiento de modelos de aprendizaje profundo para BioNER y clasificación, especial-
mente en escenarios de escasez de datos de entrenamiento (Kang et al., 2021). Este enfoque
ha permitido que modelos como LSTM-CRF superen a sus contrapartes basadas en BERT
en ciertas tareas (Kang et al., 2021).

En resumen, UMLS es un pilar que proporciona la base terminológica y semántica
necesaria para abordar la complejidad del lenguaje biomédico, impulsando el desarrollo
de soluciones de PLN más precisas y robustas para la extracción de conocimiento crítico.

5.2. Fundamentos de los grandes modelos de lenguaje (LLMs)

La aplicación de modelos avanzados en el ámbito biomédico representa un avance
significativo.

5.2.1. Arquitectura Transformer

La arquitectura Transformer, propuesta en el artículo Attention is All you Need (Vas-
wani et al., 2017), revolucionó los modelos de transducción de secuencias al basarse exclu-
sivamente en mecanismos de atención, prescindiendo de la recurrencia y las convoluciones.
Su importancia radica en su capacidad para paralelizar significativamente la computación
durante el entrenamiento, reduciendo drásticamente los tiempos necesarios. Además, per-
mite el modelado de dependencias a larga distancia con un número constante de operacio-
nes secuenciales, superando las limitaciones de los modelos recurrentes y convolucionales
en el aprendizaje de estas dependencias. Esto ha sido crucial para su éxito en tareas como
la traducción automática, donde logró resultados de vanguardia (Vaswani et al., 2017).

5.2.2. LLMs

Los Grandes Modelos de Lenguaje (LLMs), ejemplificados por modelos avanzados
como GPT-4o, demuestran una inteligencia más general a través de diversas capacidades
(Bubeck et al., 2023; Wei et al., 2022):

Capacidades de razonamiento: GPT-4, por ejemplo, exhibe un dominio del len-
guaje y puede resolver tareas complejas en matemáticas y codificación. En el ámbito
biomédico, GPT-4 superó el 80 % de precisión en las pruebas del US Medical Li-
censing Exam y puede generar código Python para evaluar el riesgo de diabetes
basándose en datos del paciente.

Generación de texto: Estos modelos producen texto de alta calidad, a menudo
indistinguible del generado por humanos, y pueden adaptarlo a diferentes estilos y
contextos (Bubeck et al., 2023; Wei et al., 2022).

Papel en Q&A (Preguntas y Respuestas): GPT-3 ya mostraba un fuerte ren-
dimiento en tareas de Q&A, siendo competitivo o incluso superando a modelos
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previamente ajustados en ciertos escenarios (Bubeck et al., 2023). GPT-4, además,
puede actuar como “juez” para determinar la similitud semántica entre respuestas,
mejorando la evaluación de la veracidad y el razonamiento (Bubeck et al., 2023). Su
habilidad para usar herramientas externas, como motores de búsqueda, le permite
obtener información actual y responder preguntas complejas (Bubeck et al., 2023).

El sistema MultimodalBioQA utiliza LLMs como GPT-4o para responder a preguntas
biomédicas complejas, aprovechando su capacidad para comprender y generar texto en
contextos especializados.

5.2.3. LLMs en biomedicina

Los grandes modelos de lenguaje (LLMs) han demostrado un potencial significativo
en el dominio biomédico, donde la comprensión del lenguaje natural y la extracción de
información son cruciales. Sin embargo, generalmente, los LLMs de propósito general no
están optimizados para el lenguaje clínico y biomédico, que posee una terminología y una
base de conocimientos muy específicas, lo que hace que los LLMs de propósito general a
menudo requieran adaptación para un rendimiento óptimo. Las estrategias de adaptación
incluyen:

Pre-entrenamiento continuado: Entrenar adicionalmente un LLM general sobre gran-
des corpus biomédicos (p. ej., PubMed, EHRs desidentificados). Ejemplos notables
incluyen BioBERT (basado en BERT, pre-entrenado en PubMed) (Lee et al., 2020),
ClinicalBERT (pre-entrenado en notas clínicas MIMIC-III), PubMedBERT, BioMe-
gatron, GatorTronGPT (basado en GPT, entrenado en EHRs y texto general) y, más
recientemente, BioMistral (basado en Mistral, pre-entrenado en PubMed Central).

Fine-tuning específico: Ajustar un LLM (general o biomédico) en conjuntos de datos
específicos de tareas clínicas (p. ej., para respuesta a preguntas médicas, extracción
de entidades).

Instruction tuning médico: Ajustar LLMs utilizando conjuntos de datos de ins-
trucciones y respuestas específicas del dominio médico. (Dettmers et al., 2023).

Aplicaciones clínicas: Los LLMs adaptados se aplican a una amplia gama de tareas
en biomedicina, como respuesta a preguntas clínicas (Q&A), extracción de informa-
ción (NER, extracción de relaciones), resumen de textos médicos (literatura, notas
clínicas), generación de diálogos médico-paciente, clasificación de textos, apoyo a la
decisión clínica y análisis de datos de EHR. Las tendencias recientes muestran una
adaptación creciente de los LLMs generales potentes (como Llama, Mistral, GPT)
al dominio biomédico, aprovechando sus capacidades emergentes de razonamiento y
aprendizaje few-shot (Chen et al., 2025).

Desafíos pendientes
Estas capacidades, si bien generales, tienen un inmenso potencial para transformar la

atención médica y la investigación biomédica, aunque es crucial abordar las limitaciones
como las “alucinaciones” y los sesgos inherentes en los datos de entrenamiento (Bubeck
et al., 2023).

El sistema MultimodalBioQA utiliza modelos adaptados al dominio biomédico, como
PubMedBERT, para mejorar la precisión y la relevancia de las respuestas a preguntas
biomédicas complejas.
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5.3. Prompt engineering y Few-Shot learning

El aprendizaje basado en prompts representa un cambio de paradigma en NLP, donde,
a diferencia del aprendizaje supervisado tradicional, se reformulan las tareas para que se
parezcan más a las que se resuelven durante el entrenamiento original del LLM, con la
ayuda de un prompt textual (P. Liu et al., 2023). Esto permite que el modelo de lenguaje,
pre-entrenado con grandes cantidades de texto sin procesar, realice aprendizaje con pocos
ejemplos (few-shot learning) o incluso sin ejemplos (zero-shot learning), adaptándose a
nuevos escenarios con poca o ninguna data etiquetada (P. Liu et al., 2023).

La ingeniería de prompts o prompt engineering es el proceso de diseñar una función de
prompting que modifique la entrada original en un prompt textual con espacios sin llenar,
para que el modelo de lenguaje los complete probabilísticamente (P. Liu et al., 2023). La
ingeniería de prompts se centra en la formulación óptima de instrucciones textuales para
lograr que los modelos de lenguaje comprendan de manera precisa las tareas solicitadas.

Los componentes clave del prompt engineering incluyen: Ingeniería de Plantillas de
Prompts (Prompt Template Engineering) e Ingeniería de Respuestas de Prompts (Prompt
Answer Engineering).

5.3.1. Ingeniería de Plantillas de Prompts

Este enfoque se basa en el diseño de estructuras o plantillas de prompts que incorporan
espacios reservados específicos destinados a ser completados por el modelo. La literatura
especializada identifica dos modalidades principales:

Prompts de tipo Cloze (completación de espacios): Esta metodología presenta
al modelo enunciados con espacios en blanco que deben ser rellenados. Por ejemplo:
“La capital de Japón es [Z].” Esta técnica resulta particularmente eficaz con modelos
de tipo BERT y arquitecturas similares basadas en codificadores bidireccionales (P.
Liu et al., 2023).

Prompts de tipo Prefix (continuación textual): En esta modalidad, se propor-
ciona al modelo un contexto inicial que debe completar de forma coherente. Por
ejemplo: “¿Cuál es la capital de Japón? [Z]” Este enfoque se adapta mejor a mode-
los generativos autorregresivos como la familia GPT (P. Liu et al., 2023).

El diseño de estas plantillas puede realizarse mediante dos aproximaciones comple-
mentarias:

1. Diseño manual: Basado en la intuición y experiencia humana para la formulación
de prompts efectivos (P. Liu et al., 2023).

2. Diseño automatizado: Empleando algoritmos de optimización que identifican au-
tomáticamente las formulaciones más eficaces para cada tarea específica (P. Liu et
al., 2023).

En aplicaciones multimodales que integran texto e imágenes —como sistemas de aná-
lisis de imágenes médicas— se incorporan embeddings visuales como componentes adi-
cionales del prompt, expandiendo así las capacidades de representación del contexto de
entrada.

El diseño de un prompt apropiado es crucial, ya que especifica la tarea que el modelo
debe realizar (P. Liu et al., 2023).
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5.3.2. Ingeniería de Respuestas de Prompts

La ingeniería de respuestas de prompts se enfoca en la definición y estructuración
de las salidas esperadas del modelo de lenguaje. Esta metodología establece parámetros
específicos para el formato y la naturaleza de las respuestas generadas (P. Liu et al., 2023).

Las respuestas pueden adoptar diferentes modalidades según los requerimientos de la
tarea (P. Liu et al., 2023):

Respuestas de palabra única: Como clasificaciones binarias (p. ej., “positivo”,
“negativo”)

Frases concisas: Para respuestas factuales específicas (p. ej., “capital de China”)

Oraciones completas: Para tareas que requieren explicaciones detalladas

Adicionalmente, es posible establecer esquemas de mapeo que vinculen las respues-
tas textuales con categorías o valores numéricos específicos. Por ejemplo, la respuesta
“positivo” puede mapearse a la clase 1 en un sistema de clasificación binaria.

El diseño de estas estructuras de respuesta puede implementarse mediante dos enfo-
ques:

1. Diseño manual: Elaboración de taxonomías y listas de respuestas válidas basadas
en conocimiento experto

2. Optimización automatizada: Evaluación sistemática de diferentes formatos de
respuesta para identificar las configuraciones más efectivas

5.3.3. Aprendizaje Few-Shot mediante Prompts

El aprendizaje few-shot constituye una técnica de condicionamiento contextual donde
se proporciona un número limitado de ejemplos demostrativos dentro del propio prompt,
permitiendo al modelo inferir patrones y generalizar a nuevas instancias (Gupta et al.,
2021; P. Liu et al., 2023).

Ejemplo ilustrativo:

“La capital de Francia es París. La capital de Alemania es Berlín. La capital
de Japón es [Z].”

A partir de estos ejemplos demostrativos (shots), el modelo puede deducir correcta-
mente que la respuesta apropiada es “Tokio”, aplicando el patrón identificado en los casos
precedentes (P. Liu et al., 2023).

Esta metodología, también denominada demonstration learning o aprendizaje por de-
mostración, ha demostrado particular eficacia en modelos de gran escala, donde la capa-
cidad de generalización a partir de contextos limitados resulta especialmente pronunciada
(Gupta et al., 2021; P. Liu et al., 2023).

El sistema MultimodalBioQA representa una aplicación práctica de las técnicas de
ingeniería de prompts en el dominio biomédico. Este sistema integra información textual
e imagenológica médica para resolver consultas complejas en un contexto biomédico.

La implementación utiliza técnicas de prompt engineering, que incorporan metodolo-
gías de few-shot learning, cuidadosamente diseñadas con ejemplos demostrativos especí-
ficos del dominio para orientar las respuestas del modelo. Esta aproximación ilustra la
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aplicabilidad y efectividad de estas técnicas incluso en dominios altamente especializa-
dos y técnicamente exigentes como la biomedicina, donde la precisión y la coherencia
contextual son requisitos críticos.

5.4. Recuperación Aumentada por Generación (RAG)

La Generación Aumentada por Recuperación (RAG) es un paradigma crucial que
combina las fortalezas de la recuperación de información y los grandes modelos de len-
guaje (LLMs) generativos para abordar sus limitaciones intrínsecas (W. Zhang & Zhang,
2025). Los LLMs a menudo producen “alucinaciones”, es decir, respuestas inconsistentes
o sin sentido, debido a su dependencia de parámetros fijos y datos de entrenamiento po-
tencialmente desactualizados (W. Zhang & Zhang, 2025). RAG mitiga esto al recuperar
información externa, actualizada y específica del dominio (memoria no paramétrica) y
proporcionarla como contexto al LLM, fundamentando así sus respuestas y haciéndolas
más factuales, veraces y confiables (Amugongo et al., 2025; W. Zhang & Zhang, 2025).

Un componente técnico central de RAG implica el uso de embeddings y bases de datos
vectoriales (Amugongo et al., 2025). Tanto las consultas de usuario como los documentos
externos se transforman en representaciones numéricas densas llamadas embeddings me-
diante modelos codificadores pre-entrenados (W. Zhang & Zhang, 2025). Estas represen-
taciones vectoriales de alta dimensión capturan el significado semántico. Los embeddings
de documentos se almacenan e indexan en bases de datos vectoriales (por ejemplo, uti-
lizando Qdrant) (W. Zhang & Zhang, 2025), lo que permite una búsqueda eficiente del
Producto Interior Máximo (MIPS) para encontrar los documentos más relevantes según
su similitud con el embedding de la consulta (Lewis et al., 2020; W. Zhang & Zhang,
2025).

En un contexto clínico, RAG es particularmente impactante, ya que la atención médica
es un dominio intensivo en conocimiento que exige información precisa y actual (Amu-
gongo et al., 2025). RAG aborda las limitaciones críticas de los LLMs en medicina, como
la generación de contenido inexacto o el uso de conocimiento obsoleto (Amugongo et al.,
2025). Al recuperar información de bases de datos médicas externas, repositorios de litera-
tura o sistemas expertos, los LLMs basados en RAG pueden proporcionar respuestas más
precisas, completas, factuales y seguras a preguntas clínicas (Amugongo et al., 2025). Esto
mejora capacidades como la selección de pacientes para ensayos clínicos, la identificación
de criterios de inclusión/exclusión, y el razonamiento diagnóstico, especialmente cuando
se aumenta con grafos de conocimiento (Amugongo et al., 2025).

El sistema MultimodalBioQA utiliza una base vectorial local Qdrant (Öztürk &
Mesut, 2024) alimentada con embedding de documentos de PubMed (Liang et al., 2021).
También se guarda la información recuperada de la ontología y grafo de conocimiento
UMLS (Bodenreider, 2004) que se utiliza para enriquecer los prompts de preguntas bio-
médicas. Además, también se guardan los ejemplos de preguntas y respuestas "gold"que
se proporcionan al sistema con técnica de few-shot prompting. El sistema permite la re-
cuperación de información relevante y actualizada, mejorando la precisión y la relevancia
de las respuestas generadas por el modelo.
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5.5. Grafos de conocimiento (KG) y ontologías médicas en IA

Los Grafos de conocimiento (KGs) son representaciones estructuradas del conocimien-
to que modelan entidades (nodos) y las relaciones entre ellas (aristas). Las ontologías
proporcionan un vocabulario formal y una estructura taxonómica para un dominio es-
pecífico. En el ámbito biomédico y sanitario, los KGs y las ontologías son herramientas
poderosas para (Chandak et al., 2023; Nicholson & Greene, 2020; Y. Zhang et al., 2025):

Organizar información compleja: Integrar datos heterogéneos de diversas fuentes
(literatura, bases de datos clínicas, EHRs) en un modelo unificado.

Habilitar el razonamiento: Permitir inferencias sobre las relaciones entre conceptos
médicos (p. ej., inferir interacciones medicamentosas, identificar factores de riesgo).

Mejorar la comprensión semántica: Proporcionar definiciones y relaciones estanda-
rizadas para términos médicos, facilitando la interoperabilidad y la interpretación
consistente.

Apoyar aplicaciones clínicas: Servir como base para sistemas de apoyo a la decisión
clínica, descubrimiento de fármacos, fenotipado de enfermedades y análisis predic-
tivo.

Recursos biomédicos clave

UMLS (Unified Medical Language System): Es un compendio masivo de vocabula-
rios y estándares biomédicos que actúa como un metatesauro, conectando conceptos
de más de 200 fuentes, incluyendo SNOMED CT, MeSH, ICD, RxNorm, LOINC,
etc. Su objetivo es promover la interoperabilidad. Aunque su cobertura es extensa
(más de 3,7 millones de conceptos), puede que las vistas de los conceptos no sean
uniformes. Se utiliza ampliamente en NLP biomédico y como base para construir
HKGs (Healthcare Knowledge Graphs) (Bodenreider, 2004; Jing, 2021b).

SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms): Es con-
siderada la ontología clínica más completa, basada en lógica formal, que cubre un
amplio espectro de conceptos clínicos (diagnósticos, procedimientos, síntomas, etc.).
Su adopción en EHRs está creciendo, impulsada por estándares como FHIR. SNO-
MED CT se utiliza para estandarizar la documentación clínica, apoyar la extracción
de información de texto libre (normalización de conceptos) y, cada vez más, como
fuente de conocimiento para modelos de IA. A pesar de su potencial, se necesita
más evidencia sobre sus beneficios clínicos directos y persisten desafíos en su imple-
mentación. (Gaudet-Blavignac et al., 2021; Vuokko et al., 2023)

Otras ontologías/KGs: Existen numerosas ontologías y KGs específicos de dominio
(p. ej., Gene Ontology, Human Phenotype Ontology, KGs de enfermedades como
SPOKE para esclerosis múltiple, KGs construidos a partir de literatura, etc.) (Ash-
burner et al., 2000; Robinson et al., 2008).

Integración de KGs con LLMs/RAG (Graph-RAG)
La combinación de KGs y LLMs es un área de investigación muy activa que busca

aprovechar las fortalezas complementarias de ambos.
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Los LLMs, aunque potentes en lenguaje, a menudo carecen de conocimiento factual
específico, son propensos a alucinaciones y difíciles de interpretar. Los KGs ofrecen co-
nocimiento estructurado, verificable y explícito que puede anclar a los LLMs. Además,
la estructura del grafo permite modelar relaciones complejas que pueden ser difíciles de
capturar solo con texto (Matsumoto et al., 2024).

Paradigmas de integración
La integración de KGs y LLMs puede clasificarse en varias categorías (Gao et al., 2025;

Matsumoto et al., 2024; Soman et al., 2024; Zhao et al., 2025):

KG-enhanced LLMs: Usar KGs para mejorar el pre-entrenamiento o el fine-tuning
de LLMs, o para proporcionar conocimiento durante la inferencia (p. ej., vía RAG).

LLM-augmented KGs: Utilizar LLMs para ayudar en la construcción, completitud
o validación de KGs a partir de texto u otras fuentes.

Synergized LLMs + KGs: Frameworks donde LLMs y KGs colaboran de forma más
estrecha y bidireccional.

GraphRAG: Este término se refiere específicamente al uso de KGs como la base de
conocimiento externa en un sistema RAG. El flujo de trabajo típico implica:

Construcción/Indexación del Grafo: Crear o utilizar un KG relevante (p. ej., ex-
trayendo entidades y relaciones de documentos fuente, posiblemente con ayuda de
LLMs ) e indexarlo para la recuperación.

Recuperación Guiada por Grafo: Dada una consulta, identificar entidades relevan-
tes en el KG y recuperar información estructuralmente conectada (nodos vecinos,
tripletas, subgrafos completos). Esto puede implicar atravesar el grafo.

Generación Aumentada por Grafo: Utilizar la información estructurada recuperada
del grafo (y potencialmente el texto asociado a nodos/aristas) para aumentar el
prompt del LLM y generar la respuesta final.

El sistema MultimodalBioQA utiliza un sistema Graph-RAG basado en UMLS
que aprovecha la estructura semántica del grafo de conocimiento médico para enriquecer
prompts biomédicos. El sistema navega por las relaciones conceptuales de UMLS mediante
su API, almacena la información recuperada en una base de datos vectorial para optimizar
futuras consultas y presenta los resultados al usuario con plena transparencia.

5.6. Inteligencia artificial multimodal en biomedicina

La IA Multimodal en el contexto biomédico se refiere a modelos de inteligencia artificial
que integran y procesan múltiples tipos de datos (p. ej., imágenes médicas, notas clínicas,
datos de EHR, genómica, datos tabulares, gráficos) para mejorar el rendimiento en tareas
clínicas como el diagnóstico, pronóstico o planificación del tratamiento. El objetivo es
lograr una comprensión más holística, similar a la práctica clínica humana donde los
expertos integran información de diversas fuentes. Se distingue de la IA multicanal, que
utiliza múltiples entradas del mismo tipo de datos (p. ej., diferentes secuencias de RM)
(Simon et al., 2024; Kumar et al., 2024).
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Los enfoques multimodales son beneficiosos porque diferentes modalidades pueden pro-
porcionar información complementaria, cooperativa o redundante, lo que potencialmente
conduce a predicciones más robustas, precisas y generalizables en comparación con los
enfoques unimodales. La propia naturaleza de los datos clínicos y la toma de decisiones
médicas es intrínsecamente multimodal.

Sin embargo, el aprendizaje multimodal presenta desafíos fundamentales (Schouten
et al., 2025):

Representación: Cómo transformar datos de diferentes modalidades en formatos
legibles por máquina (p. ej., vectores) preservando las relaciones y el contexto entre
ellas.

Fusión: Cómo combinar eficazmente las representaciones de múltiples modalidades
en un modelo predictivo.

Alineación: Cómo alinear automáticamente datos de diferentes modalidades, espa-
cial o temporalmente (p. ej., señales ECG y PPG, o modalidades de imagen).

Traducción: Cómo mapear datos de una modalidad a otra (p. ej., generar texto a
partir de una imagen médica).

Co-aprendizaje: Cómo transferir conocimiento aprendido de una modalidad para
mejorar el aprendizaje en otra, especialmente útil cuando una modalidad tiene datos
limitados o ruidosos.

Además de estos desafíos teóricos, existen obstáculos prácticos como la taxonomía in-
consistente en la literatura, la escasez de datos multimodales a gran escala, representativos
y bien anotados, el riesgo de sesgos en los datos existentes y la brecha entre las prácticas
de recopilación de datos clínicos y los formatos requeridos para el desarrollo en IA (Simon
et al., 2024).

5.6.1. Estrategias de fusión multimodal

La fusión multimodal se define como el proceso de combinar información o represen-
taciones derivadas de diferentes modalidades dentro de un modelo de IA. Las estrategias
de fusión se clasifican comúnmente según la etapa del procesamiento en la que ocurre la
integración:

Fusión temprana (Early Fusion): Combina datos en bruto o características de bajo
nivel extraídas de cada modalidad cerca de la capa de entrada del modelo. Esta
estrategia puede requerir una alineación cuidadosa de los datos y puede ser sensible
a información irrelevante para la tarea específica (Boulahia et al., 2021; Stahlschmidt
et al., 2022).

Fusión tardía (Late Fusion): Combina las predicciones o salidas generadas por mo-
delos unimodales separados y entrenados en cada modalidad (p. ej., mediante en-
samblaje de modelos). Aunque conceptualmente simple, puede tener limitaciones en
la explotación de correlaciones complejas entre modalidades durante el proceso de
aprendizaje (Boulahia et al., 2021; Stahlschmidt et al., 2022).
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Fusión intermedia/conjunta/híbrida (Intermediate/Joint/Hybrid Fusion): Integra
características extraídas de diferentes modalidades en capas intermedias del modelo,
permitiendo una interacción más profunda entre ellas durante el procesamiento. Los
mecanismos de atención, especialmente la atención cruzada (cross-attention) dentro
de los Transformers, son particularmente adecuados para facilitar este tipo de fu-
sión, permitiendo que las representaciones de diferentes modalidades interactúen y
se influencien mutuamente. La fusión también puede clasificarse como basada en el
modelo (model-based), donde la arquitectura está diseñada específicamente para la
fusión, o agnóstica al modelo (model-agnostic), donde la fusión ocurre antes o des-
pués del modelo principal (Boulahia et al., 2021; Guarrasi et al., 2025; Stahlschmidt
et al., 2022).

Las arquitecturas Transformer, gracias a mecanismos como la atención cruzada y la
atención multicabeza, facilitan naturalmente estrategias de fusión intermedia sofisticadas
que van más allá de la simple concatenación o el promedio en etapas tardías (Vaswani et
al., 2017; Zhou et al., 2023). La atención cruzada, diseñada originalmente para relacionar
la salida del codificador con la entrada del decodificador, puede adaptarse para relacionar
secuencias derivadas de diferentes modalidades (p. ej., características de imagen y embed-
dings de texto) (Bi et al., 2024). Esto permite una ponderación e integración dinámica y
dependiente del contexto de la información de diferentes fuentes dentro de las capas ocul-
tas del modelo, representando un enfoque de fusión más potente en comparación con los
métodos estáticos tempranos o tardíos (Xie et al., 2025). Esta ventaja arquitectónica es
probablemente un impulsor clave para la adopción de Transformers en tareas biomédicas
multimodales complejas (Al-hammuri et al., 2023).

La transición hacia el procesamiento multimodal es una tendencia dominante en la IA
médica, reflejando la naturaleza multifacética de los datos clínicos (Xiao et al., 2025; Yin et
al., 2024). El éxito de estos sistemas depende críticamente de la elección de codificadores
específicos para cada modalidad (como ViT para imágenes) y de estrategias de fusión
sofisticadas que permitan una integración significativa de la información heterogénea (Li
et al., 2024).

5.7. Grandes modelos de lenguaje y visión (LVLMs)

Los grandes modelos de lenguaje y visión (LVLMs, por sus siglas en inglés), como
LLaVA, aprovechan el poder de modelos de lenguaje como LLaMA para generar datos
multimodales de instrucciones a partir de pares imagen-texto, empleando representaciones
simbólicas como captions y bounding boxes (H. Liu et al., 2023). LLaVA conecta un
codificador visual (por ejemplo, CLIP) con un modelo de lenguaje (por ejemplo, Vicuna)
y los ajusta de manera conjunta de extremo a extremo, habilitando así la comprensión
visual y lingüística de propósito general. Esto facilita capacidades como chat multimodal
y clasificación zero-shot mediante la similitud imagen-texto (Huang et al., 2021; H. Liu
et al., 2023).

5.7.1. Categorización de LLaVA-LLaMA según estrategias de fusión

El modelo LLaVA-LLaMA utilizado en este proyecto se clasifica como un modelo de
fusión intermedia híbrida (H. Liu et al., 2023; Yin et al., 2024). Su arquitectura emplea
una estrategia de fusión intermedia donde:
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Las características visuales se extraen mediante un codificador de visión congelado
(CLIP ViT-L/14).

Un proyector MLP de dos capas actúa como conector de modalidades (H. Liu et al.,
2023).

El modelo de lenguaje (LLaMA/Vicuna) procesa las representaciones fusionadas
para generar salidas textuales.

Esta arquitectura permite la interacción profunda entre modalidades sin requerir
entrenamiento conjunto desde cero (H. Liu et al., 2023).

El sistema MultimodalBioQA utiliza LLaVA-LLaMA como modelo de lenguaje y
visión para responder preguntas visuales biomédicas complejas, aprovechando su capaci-
dad para integrar texto e imágenes de manera efectiva. La fusión intermedia permite al
modelo generar respuestas más precisas y contextualizadas, combinando la información
visual de las imágenes médicas con el conocimiento textual de los documentos biomédicos.

5.8. Visión computacional médica

El captioning de imágenes médicas (MIC, por sus siglas en inglés) es un área en
evolución dentro de la inteligencia artificial que integra la visión por computador y el pro-
cesamiento del lenguaje natural para comprender y describir automáticamente imágenes
médicas, abordando así la generación manual de informes por parte de los radiólogos, un
proceso que resulta laborioso y propenso a errores (Beddiar et al., 2023).

El grounding visual médico es fundamental en este campo, especialmente para patolo-
gías sutiles que ocupan pequeñas porciones de la imagen (Huang et al., 2021). Frameworks
como GLoRIA aprenden representaciones globales y locales al contrastar subregiones de
la imagen con palabras en los informes emparejados, enfatizando áreas significativas me-
diante pesos de atención, sin requerir detectores de objetos preentrenados (Huang et al.,
2021).

Un modelo relevante en esta área incluye el Segment Anything Model (SAM), un mode-
lo fundacional para la segmentación de imágenes. SAM está diseñado para ser promptable,
lo que permite la transferencia zero-shot a diversas tareas como la detección de bordes,
la generación de propuestas de objetos y la segmentación de instancias, mediante el uso
de prompts flexibles (por ejemplo, puntos, cajas, texto) (Kirillov et al., 2023).

Por otra parte, Grad-CAM proporciona explicaciones visuales para redes neuronales
convolucionales (CNNs) al generar mapas de localización discriminativos por clase a partir
de gradientes, destacando las regiones importantes de la imagen para una predicción
particular. Grad-CAM es aplicable a una amplia variedad de arquitecturas CNN, incluidas
aquellas empleadas en captioning de imágenes y visual question answering, sin requerir
cambios arquitectónicos (Huang et al., 2021; Selvaraju et al., 2020).

A pesar de estos avances, el captioning médico enfrenta desafíos significativos. A di-
ferencia del captioning de imágenes genéricas, en el ámbito médico es necesario captar
relaciones complejas entre objetos de la imagen y hallazgos clínicos, requiriéndose alta
precisión y el uso de terminología médica estructurada y precisa, así como la correc-
ta identificación de hallazgos anómalos poco frecuentes (Beddiar et al., 2023). Entre las
principales limitaciones se encuentran la escasez, el tamaño reducido, el desbalance de
clases y la heterogeneidad de los datasets médicos anotados de alta calidad, además de
las preocupaciones relativas a la privacidad. Los modelos también presentan dificultades
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para manejar oraciones largas, el orden de las palabras y la localización precisa de ano-
malías sutiles (Beddiar et al., 2023). Asimismo, las métricas automáticas actuales suelen
no captar matices semánticos, y la obtención de evaluaciones humanas costosas por parte
de expertos médicos sigue siendo una barrera.

El sistema MultimodalBioQA utiliza técnicas de captioning de imágenes médicas
para generar descripciones precisas y contextualizadas de las imágenes biomédicas. La
integración de técnicas como SAM permiten al sistema identificar y resaltar áreas rele-
vantes en las imágenes médicas, facilitando una comprensión más profunda y precisa de
los hallazgos clínicos.

5.9. Question answering multimodal

5.9.1. Fundamentos de sistemas de Q&A multimodal

Los sistemas de Preguntas y Respuestas Visuales (VQA) surgieron como un problema
interdisciplinario que demanda conocimientos tanto de la Visión por Computadora (CV)
como del Procesamiento del Lenguaje Natural (NLP) (Gupta et al., 2021). En VQA, la
tarea consiste en responder preguntas formuladas sobre una imagen, donde el sistema debe
aprender y generar respuestas basándose en las características extraídas de la imagen de
entrada (Gupta et al., 2021). A diferencia de las tareas típicas de CV, que se centran en
problemas como la identificación de acciones o la clasificación de imágenes, las tareas de
VQA son inherentemente más complejas, requiriendo una inteligencia superior que incluye
el reconocimiento de objetos, la extracción de características semánticas, el conocimiento
externo y el sentido común (Gupta et al., 2021).

Tradicionalmente, en NLP, los sistemas de aprendizaje supervisado predicen una sali-
da y a partir de una entrada x utilizando un modelo P (y|x; θ) (P. Liu et al., 2023). Sin
embargo, la disponibilidad insuficiente de datos anotados para muchas tareas ha impul-
sado el desarrollo de métodos de aprendizaje basados en prompts. Estos métodos utilizan
modelos de lenguaje (LM) que modelan directamente la probabilidad del texto P (x; θ)
para predecir y, reduciendo o eliminando la necesidad de grandes conjuntos de datos
etiquetados (P. Liu et al., 2023).

El avance en CV y NLP durante la última década ha introducido técnicas de apren-
dizaje automático que han mejorado la eficiencia en la resolución de problemas como la
detección de objetos, la segmentación y la clasificación de imágenes en CV, así como la
traducción automática y los sistemas de preguntas y respuestas en NLP (Gupta et al.,
2021). La combinación de estas áreas es fundamental para la VQA multimodal.

5.9.2. Estado del arte en integración texto + visión en medicina

El dominio médico es uno de los campos donde la VQA desempeña un papel crucial
al proporcionar asistencia médica a los usuarios finales (Gupta et al., 2021). La VQA
en el dominio médico (VQA-Med) es una tarea compleja y de gran importancia, ya que
los usuarios pueden plantear preguntas sencillas con respuestas de “Sí/No” o preguntas
desafiantes que requieren una respuesta detallada y descriptiva. Esta diversidad de tipos
de preguntas, provenientes de distintos usuarios como pacientes, estudiantes de medicina,
clínicos y expertos, exige enfoques específicos para cada tipo de consulta para evitar
confusión y proporcionar asistencia precisa (Gupta et al., 2021).

Para abordar esta complejidad, se han propuesto arquitecturas como la red jerárquica
profunda multimodal (Gupta et al., 2021) y la red pre-entrenada multinivel de fusión
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VB-MVQA (Cai et al., 2023). La red jerárquica, denominada HQS-VQA (Hierarchical
Question Segregation based Visual Question Answering), primero analiza y clasifica las
preguntas/consultas de los usuarios finales y luego incorpora un enfoque específico para
cada tipo de consulta para la predicción de respuestas (Gupta et al., 2021). Una técnica
clave dentro de HQS-VQA es la segregación de preguntas (QS), que clasifica las preguntas
en dos tipos principales: ‘Sí/No’ y ‘Otros’ (Gupta et al., 2021). Para esta segregación, se
utiliza un modelo de aprendizaje automático estadístico simple, como una Máquina de
Vectores de Soporte (SVM), basado en características diseñadas manualmente y en la
frecuencia de palabras. Esta técnica evita la necesidad de crear sistemas distintos para
diferentes tipos de preguntas, lo que podría generar confusión y malestar en el usuario
final (Gupta et al., 2021).

En el modelo HQS-VQA, las representaciones de las preguntas y las imágenes se gene-
ran utilizando Bidirectional Long Short Term Memory (Bi-LSTM) y Inception-Resnet-v2,
respectivamente. Estas representaciones se fusionan y se pasan a un modelo de predicción
de respuestas específico en los nodos hoja de la jerarquía. Los experimentos demuestran
que HQS-VQA supera a los modelos de referencia en conjuntos de datos como RAD y
CLEF18, lo que sugiere la efectividad de la segregación de preguntas en VQA-Med (Gupta
et al., 2021).

Por otro lado, el modelo VB-MVQA aborda la limitación de datos en VQA-Med explo-
tando el pre-entrenamiento. Incorpora Contrastive Language-Image Pre-training (CLIP) y
mecanismos de atención para extraer características de imágenes médicas de manera efec-
tiva. VB-MVQA utiliza múltiples capas de atención apiladas y Bilinear Attention Network
junto con Bidirectional Long Short-Term Memory (Bi-LSTM) (Cai et al., 2023). También
introduce el razonamiento condicionado por la visión (vision-conditioned reasoning) para
guiar la selección de importancia sobre características fusionadas multimodales y mejorar
la información semántica de la imagen, lo que ayuda a eliminar el sesgo lingüístico. Este
modelo ha demostrado mejoras significativas en la precisión sobre modelos de última ge-
neración en conjuntos de datos de referencia como VQA-RAD, SLAKE y VQA-Med-2019,
especialmente en preguntas abiertas y datos con sesgo lingüístico (Cai et al., 2023).

Los conjuntos de datos para VQA-Med incluyen preguntas en lenguaje natural sobre
imágenes radiográficas de diferentes modalidades como angiogramas, resonancias magné-
ticas, tomografías computarizadas y ultrasonidos, así como diversas orientaciones como
sagital, axial, longitudinal y coronal (Gupta et al., 2021).

5.9.3. Estrategias de generación de respuestas

Respuestas exactas vs. ideales: Reglas de formato y expectativas En el contexto
de desafíos de Q&A como BioASQ, que se centran en el dominio biomédico, las respuestas
pueden clasificarse en “exactas” o “ideales”. Esta distinción es crucial para satisfacer las
diversas necesidades de información de los expertos biomédicos (Tsatsaronis et al., 2015).

Preguntas “Yes/No” : Esperan una respuesta binaria de ‘sí’ o ‘no’ como respuesta
“exacta”. Para estas, la evaluación se realiza mediante precisión (accuracy). Además,
se espera una respuesta “ideal”, que es un resumen en forma de párrafo (Tsatsaronis
et al., 2015).

Preguntas factoid: Buscan una entidad nombrada específica como respuesta “exac-
ta”. La evaluación de la respuesta exacta incluye la precisión estricta (strict accu-
racy) y la precisión indulgente (lenient accuracy), así como el rango recíproco medio
(MRR). La respuesta “ideal” es un resumen (Tsatsaronis et al., 2015).
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Preguntas de lista: Requieren una lista de entidades nombradas como respuesta
“exacta”. Los sistemas deben devolver una lista de nombres de entidades que, en
conjunto, constituyan una única respuesta. La evaluación de la respuesta exacta se
basa en precisión (P), recall (R) y F-measure (F1), promediados sobre las preguntas
de lista. La respuesta “ideal” también es un resumen (Tsatsaronis et al., 2015).

Preguntas de resumen: Solo esperan una respuesta “ideal” en forma de resumen
(Tsatsaronis et al., 2015).

Para las respuestas “ideales”, que son resúmenes de párrafo, se establecen límites de
longitud (ej., 200 palabras en BioASQ). La evaluación de estas respuestas se realiza ma-
nualmente por expertos biomédicos, considerando criterios como el recall de información,
la precisión de información, la ausencia de repetición y la legibilidad. También se utilizan
medidas automáticas como ROUGE para comparar el resumen generado con resúmenes
de referencia creados por humanos (Tsatsaronis et al., 2015).

5.9.4. Síntesis multimodal: Integración visual + textual con explicabilidad

La síntesis de respuestas en sistemas VQA-Med implica la fusión de características
extraídas tanto de imágenes como de texto (Cai et al., 2023; Gupta et al., 2021). Modelos
como HQS-VQA utilizan Bi-LSTM para representaciones de preguntas e Inception-Resnet-
v2 para características de imagen, fusionando ambas antes de la predicción de la respuesta
(Gupta et al., 2021). VB-MVQA, por su parte, aplica múltiples capas de atención apiladas
y Bilinear Attention Network para fusionar la información multimodal, introduciendo un
razonamiento condicionado por la visión para guiar la selección de importancia y mejorar
la información semántica de la imagen, con el fin de eliminar el sesgo lingüístico (Cai
et al., 2023). La explicabilidad es crucial en el dominio médico; el análisis de errores en los
sistemas VQA-Med es fundamental para descubrir las causas potenciales de los errores y
sus soluciones, guiando así la investigación futura (Gupta et al., 2021).

5.9.5. Inserción de citas y evidencia científica (PMID, snippets)

En el ámbito biomédico, la provisión de evidencia científica para las respuestas es de
suma importancia. Los desafíos como BIOASQ requieren que los sistemas no solo generen
respuestas, sino que también recuperen y presenten documentos relevantes y snippets de
texto que las respalden (Tsatsaronis et al., 2015).

Los identificadores de artículos PubMed (PMID) se utilizan en los conjuntos de
datos como referencia única para cada artículo (Tsatsaronis et al., 2015).

Los snippets son fragmentos de texto relevantes de los artículos, identificados por
el artículo del que provienen y sus offsets (posiciones de inicio y fin de caracteres)
dentro del mismo. Estos snippets pueden ser utilizados por los expertos biomédicos
para formular respuestas ideales y se espera que los sistemas los recuperen como
parte de la evidencia (Tsatsaronis et al., 2015).

La capacidad de los sistemas para proporcionar snippets de texto precisos y relevantes,
junto con los documentos de origen, es evaluada rigurosamente, incluso considerando la
superposición de snippets en lugar de una coincidencia exacta para la precisión y el recall.
Un ejemplo de una respuesta ideal en BIOASQ incluso incluye los PMIDs de los artículos
de los que se extrajo la información (Tsatsaronis et al., 2015).
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5.9.6. Formato estructurado

Los datos utilizados en VQA-Med a menudo tienen un formato estructurado o semi-
estructurado.

Metadata de imágenes: Las imágenes médicas se acompañan de preguntas en
lenguaje natural y se describen con diversas modalidades (ej., angiograma, resonan-
cia magnética, tomografía computarizada, ultrasonido) y orientaciones (ej., sagital,
axial, longitudinal, coronal) (Gupta et al., 2021). Esta metadata es esencial para el
procesamiento y entendimiento de las imágenes por parte del modelo.

Formato de datos: Los conjuntos de datos de referencia, como los utilizados en
BIOASQ, suelen seguir un formato JSON para estructurar preguntas, conceptos,
documentos, respuestas exactas e ideales, snippets y triples. Esto permite una ma-
nipulación programática eficiente de los datos (Tsatsaronis et al., 2015).

Texto argumentativo en respuestas ideales: Las respuestas “ideales” son re-
súmenes en forma de párrafo que combinan información de múltiples fuentes pa-
ra proporcionar una respuesta concisa y comprensible. Estas respuestas deben ser
coherentes, legibles y precisas, sintetizando la información recuperada de manera
argumentativa para satisfacer la necesidad de información del usuario. Por ejem-
plo, una respuesta a “¿Cuál es el mecanismo de acción de la abiraterona?” sería un
párrafo que describe cómo funciona el fármaco (Tsatsaronis et al., 2015).

En resumen, los sistemas Q&A multimodales, especialmente en el dominio médico, se
benefician de la integración profunda de la información visual y textual, estrategias de
prompting para el aprendizaje eficiente con pocos datos, y la generación de respuestas
estructuradas que pueden ser tanto exactas como resúmenes ideales, siempre respaldadas
por evidencia citada.

5.10. Explicabilidad y transparencia clínica

Según Barredo Arrieta et al., dada una cierta audiencia, la explicabilidad se refiere a los
detalles y razones que un modelo proporciona para hacer que su funcionamiento sea claro o
fácil de entender ((Barredo Arrieta et al., 2020)). La explicabilidad y la transparencia son
imperativos fundamentales para el avance y la adopción de la inteligencia artificial (IA)
y el aprendizaje automático (ML) en el sector médico. Dada la alta responsabilidad y la
posible repercusión en vidas humanas, los sistemas de IA utilizados en la atención sanitaria
deben justificar sus decisiones, proporcionar explicaciones claras y ser inherentemente
interpretables.

5.10.1. Sistemas de explicabilidad ante-hoc y post-hoc

Las técnicas de explicabilidad se clasifican según cuándo se aplica la explicación y si
son específicas del modelo.

Métodos ante-hoc (inherentemente explicables): Son algoritmos diseñados
desde cero para ser transparentes y comprensibles. Ejemplos incluyen modelos li-
neales, árboles de decisión y sistemas basados en reglas. En el contexto médico, los
sistemas basados en reglas pueden proporcionar declaraciones lógicas que los clíni-
cos pueden interpretar directamente. Los Concept Bottleneck Models (CBMs) son
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un ejemplo de un enfoque ante-hoc, ya que están construidos para predecir con-
ceptos intermedios explícitamente antes de la salida final. Esto permite intervenir
directamente en los conceptos (p.ej., modificar el valor predicho de “espolón óseo”
en una radiografía) y observar cómo esto afecta la predicción final, facilitando una
interacción más rica entre el humano y el modelo.

Métodos post-hoc: Se aplican a modelos de “caja negra” (como las redes neuro-
nales profundas) después de que han sido entrenados para proporcionar una expli-
cación de sus decisiones. Estos métodos pueden ser agnósticos al modelo (aplicables
a cualquier algoritmo de ML, como LIME y SHAP) o específicos del modelo (como
Grad-CAM para CNNs). Proporcionan principalmente explicaciones locales para
decisiones individuales. Sin embargo, existe preocupación sobre la fiabilidad de las
explicaciones post-hoc y su vulnerabilidad a ataques adversariales.

5.10.2. Activaciones neuronales: Grad-CAM y Attention Maps

La visualización de las activaciones neuronales es una técnica clave en la explicabilidad
visual, a menudo presentada como mapas de calor (heatmaps) que resaltan las regiones
de entrada importantes para la decisión de un modelo.

Grad-CAM (Gradient-weighted Class Activation Map) es un método post-hoc de
uso extendido que genera mapas de saliencia utilizando los gradientes del resultado
de una clase con respecto a los mapas de activación de la última capa convolucional.
Permite identificar las características discriminatorias que el modelo utilizó para una
clasificación específica. Grad-CAM es aplicable a una amplia gama de arquitecturas
de Redes Neuronales Convolucionales (CNN) sin requisitos arquitectónicos específi-
cos. Las visualizaciones producidas por Grad-CAM, por ejemplo, cuando se aplican
a radiografías, pueden ayudar a los sujetos humanos a identificar objetos con mayor
precisión.

Score-CAM es un método novedoso de explicación visual post-hoc que elimina la
dependencia de los gradientes. En cambio, determina la importancia de cada mapa
de activación utilizando su puntuación de “Increase of Confidence” (aumento de
confianza) en la clase objetivo. Score-CAM busca mejorar el rendimiento visual y
la imparcialidad al interpretar los procesos de toma de decisiones del modelo, y ha
demostrado una mejor capacidad de discriminación de clases en comparación con
otros métodos basados en gradientes.

Mecanismos de atención (Attention Maps): Como se utilizan en la investiga-
ción, mejoran la interpretabilidad visual al permitir que la red se enfoque y adapte
a la escala correcta de un objeto dentro de una imagen. Esto es crucial para que los
observadores humanos comprendan si una red neuronal está identificando correcta-
mente un objeto sin confundirlo con su entorno.

5.10.3. Atribución de características: Integrated Gradients y otros métodos

Los métodos de atribución de características cuantifican la contribución de componen-
tes específicos de entrada a la decisión de un modelo.

LIME (Local Interpretable Model-agnostic Explanations) es un método post-hoc
que genera explicaciones al aproximar el comportamiento de un modelo de “caja

32



negra” localmente con un modelo interpretable más simple. Por ejemplo, para la
clasificación de texto, LIME puede resaltar la importancia de los síntomas indivi-
duales para una predicción de gripe. En imágenes, puede generar superpíxeles que
indican las regiones cruciales para una clasificación (p.ej., un gato).

Integrated Gradients es un método de atribución basado en gradientes que asigna
puntuaciones de importancia a las características de entrada. Su aplicación permite
visualizar cómo un conjunto de CNNs clasifica el estado del receptor de estrógeno a
partir de imágenes de resonancia magnética de mama.

SHAP (SHapley Additive exPlanations) ofrece un enfoque unificado para interpre-
tar las predicciones del modelo al calcular los valores de Shapley para la contribu-
ción de cada característica. Se ha utilizado para cuantificar el impacto a nivel de
características individuales en los resultados de pacientes con influenza grave, pro-
porcionando una comprensión clara de qué variables son más importantes para las
predicciones del modelo.

5.10.4. Segmentación explicativa: integración de SAM con bounding boxes y
conceptos médicos

La Segment Anything Model (SAM) representa un avance significativo como mode-
lo fundacional para la segmentación de imágenes, diseñado para realizar una segmenta-
ción “promptable”. SAM puede generar máscaras de segmentación válidas para cualquier
prompt dado, ya sean puntos, cajas, máscaras o incluso texto. Su arquitectura separa la
codificación de la imagen de la codificación del prompt y la decodificación de la másca-
ra, permitiendo una segmentación rápida y la conciencia de la ambigüedad al predecir
múltiples máscaras para un solo prompt.

Integración con bounding boxes y conceptos médicos: Aunque SAM es un
modelo de propósito general, su capacidad de segmentación a partir de bounding
boxes es altamente relevante para aplicaciones médicas. En entornos clínicos, los
expertos a menudo identifican áreas de interés (p.ej., tumores, lesiones, estructuras
anatómicas) con bounding boxes. SAM podría transformar estas cajas en segmenta-
ciones precisas de alta calidad, que a su vez sirven como explicaciones visuales para
el diagnóstico o pronóstico, de manera similar a cómo las segmentaciones de U-Net
son consideradas explicaciones visuales. Esto permite que el resultado de SAM se
interprete en el contexto de conceptos médicos predefinidos por expertos, mejoran-
do la comprensión y la confianza del médico. SAM ya ha demostrado su capacidad
de transferencia de conocimiento a dominios como las imágenes de rayos X, lo que
subraya su potencial en el campo médico.

5.10.5. Importancia para validación clínica y aceptación regulatoria

En el campo de la IA, se considera que, dada una audiencia, una Inteligencia Artificial
explicable es aquella que proporciona detalles o razones para hacer que su funcionamiento
sea claro o fácil de entender (Barredo Arrieta et al., 2020). La explicabilidad en inteligencia
artificial (XAI) es indispensable para la validación clínica y la aceptación regulatoria de
los sistemas de IA en medicina, por varias razones críticas:
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Confianza y rendición de cuentas: Los modelos de ML, especialmente los de
“caja negra”, carecen de la transparencia necesaria para que los médicos los confíen
plenamente, lo que impide su adopción generalizada. La explicabilidad fomenta una
confianza adecuada al permitir que los profesionales entiendan el “porqué” detrás de
una decisión, lo que es vital en escenarios de alto riesgo donde las vidas humanas
están en juego.

Detección de sesgos y errores: Las explicaciones ayudan a identificar sesgos la-
tentes o errores en el modelo, como en el caso de pacientes con asma y neumonía,
donde el modelo asoció erróneamente el asma con un menor riesgo de mortalidad
debido a sesgos en los datos de entrenamiento. La XAI permite exponer tales com-
portamientos indeseables y garantiza que las decisiones algorítmicas sean justas y
éticas.

Validación clínica y mejora de decisiones: Los clínicos necesitan información
detallada sobre las predicciones de los modelos, incluyendo el subconjunto de ca-
racterísticas que impulsan una predicción, para compararlas con su juicio clínico y
calibrar su confianza en el sistema. Las explicaciones visuales y textuales, incluso si
son extrañas, requieren métodos sistemáticos para investigar y corregir el razona-
miento erróneo. La XAI puede mejorar la confianza del clínico, lo que es un factor
clave para la adopción práctica del modelo.

Cumplimiento normativo: Regulaciones como el Reglamento General de Pro-
tección de Datos (RGPD) de la UE exigen que las decisiones automatizadas sean
explicables y que los interesados tengan derecho a una intervención humana y a una
explicación de la decisión. La explicabilidad se convierte en una necesidad para el
cumplimiento legal y la protección de los derechos del paciente.

Colaboración humano-IA: La XAI permite una colaboración más eficaz entre
médicos y sistemas de IA. Los sistemas que pueden explicar sus resultados ayudan
a los médicos a comprender la cadena de razonamiento, verificar la sugerencia del
sistema y hacer una evaluación de la fiabilidad, lo que conduce a un mejor diagnóstico
y resultados para los pacientes.

En resumen, la integración de la explicabilidad en los sistemas de IA, a través de
visualizaciones, atribuciones de características y segmentación explicativa, es fundamental
para superar la opacidad de la “caja negra” y garantizar que la IA se convierta en una
herramienta de confianza y responsabilidad en la práctica médica.

El sistema MultimodalBioQA incorpora técnicas de explicabilidad para propor-
cionar justificaciones claras y comprensibles de las respuestas generadas, facilitando la
confianza y la comprobación de las respuestas del sistema. La integración de modelos
como SAM permite resaltar áreas relevantes en las imágenes médicas, mejorando la inter-
pretabilidad y la transparencia del sistema.

5.11. Sistemas multiagente para procesamiento biomédico

El paradigma agéntico en Inteligencia Artificial (IA), a menudo denominado .Agentic
AI", se refiere a sistemas de IA diseñados para operar con un alto grado de autonomía,
capaces de percibir su entorno, tomar decisiones, planificar y ejecutar acciones complejas
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para alcanzar objetivos a largo plazo con mínima intervención humana continua (xiRise-
PotentialLarge2023a).

El paradigma agéntico se refiere al desarrollo de sistemas de IA (a menudo basados en
LLMs) que pueden actuar de forma autónoma para alcanzar objetivos complejos. Estos
agentes pueden razonar, planificar, descomponer tareas, utilizar herramientas (como APIs,
bases de datos, buscadores web) y aprender de la interacción (xiRisePotentialLarge2023a,
wangSurveyLargeLanguage2024).

Estado del arte del paradigma agéntico
Se están desarrollando agentes que pueden interactuar con el mundo, realizar tareas

complejas y aprender de la experiencia. Estos agentes pueden ser simples (realizando
tareas específicas) o complejos (capaces de razonar y planificar) (Park et al., 2023). A
continuación, se presentan algunos de los enfoques y desarrollos más destacados en este
campo:

• LLMs como controladores: Los LLMs se utilizan como el çerebro.o controlador
central de los agentes, aprovechando su capacidad de comprensión del lenguaje natural y
razonamiento para interpretar objetivos, generar planes y seleccionar acciones (Xi et al.,
2023; Yao et al., 2023).

• Planificación y uso de herramientas: Arquitecturas como ReAct (Reasoning
and Acting) (Yao et al., 2023) y marcos como LangChain o AutoGen (Wu et al., 2023)
facilitan la creación de agentes que pueden interactuar con herramientas externas. Esto les
permite superar las limitaciones inherentes del conocimiento estático del LLM y realizar
acciones en el mundo real (o digital).

• Memoria y aprendizaje: Se está investigando cómo dotar a los agentes de memoria
a corto y largo plazo para mejorar su rendimiento en tareas extendidas y aprender de
experiencias pasadas (Xi et al., 2023). • Sistemas Multi-Agente: Hay un interés creciente
en sistemas donde múltiples agentes colaboran o compiten para resolver problemas más
complejos, simulando dinámicas sociales o de equipo (Park et al., 2023; Wu et al., 2023).

• Aplicaciones potenciales: Aunque aún en desarrollo, los agentes de IA tienen po-
tencial en automatización de tareas complejas, asistencia personal, investigación científica
(ej. formulación de hipótesis, diseño de experimentos), y potencialmente en tareas clínicas
(ej. monitorización de pacientes, gestión de información) (Wang et al., 2023).

5.12. Benchmarks y evaluación

5.12.1. BioASQ: Tareas y métricas de evaluación

BioASQ es una serie de retos internacionales que promueven avances en la indexación
semántica biomédica a gran escala y la respuesta a preguntas (Nentidis et al., 2023, 2025;
Tsatsaronis et al., 2015). El desafío BioASQ sirve como punto de referencia a largo plazo
para la respuesta a preguntas biomédicas, con ediciones recientes (2023-2024) que de-
muestran un notable progreso en el campo. Los sistemas que compiten abordan distintos
retos en varias fases. La fase A se centra en la recuperación de información de artículos
de PubMed (Novoa et al., 2023) para identificar fragmentos relevantes para preguntas
concretas. En la fase A+, los participantes deben responder a varios tipos de preguntas
(sí/no, factoide, lista, resumen) recuperando la bibliografía pertinente de PubMed y pro-
porcionando tanto respuestas exactas como respuestas ideales en forma de párrafo. La
fase B requiere que los participantes proporcionen respuestas exactas e ideales utilizando
fragmentos de texto proporcionados.
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La disponibilidad del conjunto de datos BioASQ curado manualmente, que contiene
miles de pares pregunta-respuesta y fragmentos estándar de oro, sigue permitiendo estos
avances (Krithara et al., 2023a, 2023b).

Figura 1: Entregable de la tarea 13b Fase A+ de bioASQ: extracción de snippets y ran-
keo,respuesta exacta y respuesta ideal en formato JSON.

Fase A
El sistema recibe preguntas en inglés.

Debe devolver:

Lista de hasta 10 artículos (por relevancia).

Lista de hasta 10 snippets (fragmentos, con posición).

Desde BioASQ12 hay una "Fase A+.en la que se pide a los sistemas responder con
respuestas exactas/ideales, usando solo los documentos recuperados (antes de recibir los
datos gold).

Fase B
El sistema recibe la pregunta y la lista gold de artículos y snippets.

Debe devolver:

Respuesta exacta (solo yes/no, factoid, list).

Respuesta ideal (todos los tipos de pregunta).

Puede participar solo en una fase o en ambas.

Tipos de pregunta

Yes/no: Respuesta 2es.o "no". Se evalúa con F1 macro.

Factoid: Respuesta con una entidad (nombre, número). Lista de hasta 5 candidatos.
Evaluación principal: MRR.

List: Lista de entidades (máx. 100). Se evalúa con F1.

Summary: Solo respuesta ideal, párrafo resumen.
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Métricas de bioASQ
Estas son las métricas con las que se evaluó el módulo de Q&A textual del sistema:

Métricas oficiales para respuestas exactas

Yes/No: F1 macro-averaged (maF1): F1 para 2es 2F1 para "no", promediados.
Métrica oficial desde BioASQ7. También se calcula accuracy para referencia, pero
no es oficial.

Factoid: MRR (Mean Reciprocal Rank): Oficial. Premia respuestas correctas en
posiciones más altas de la lista (hasta 5 nombres). Strict Accuracy (correcta si
la respuesta gold es la primera) y Lenient Accuracy (correcta si está en las cinco
primeras) se reportan, pero no son oficiales.

List: Mean F-measure (F1): Oficial. Se calcula sobre la coincidencia entre la lis-
ta retornada y la lista gold (sin sinónimos repetidos). También se calculan mean
precision y mean recall como métricas de apoyo.

Métricas oficiales para respuestas ideales
Las respuestas ideales son evaluadas tanto manual como automáticamente:

Manual: Cuatro criterios, todos con escala 1–5:

1. Recuperación de información: ¿Incluye toda la información relevante?

2. Precisión de información: ¿Evita información irrelevante?

3. Repetición: ¿Evita repetir la misma información?

4. Legibilidad: ¿Es fácil de leer y fluida?

La puntuación oficial es la media de las valoraciones manuales de los expertos bio-
médicos.

Automática: ROUGE-2 y ROUGE-SU4 (superposición de bigramas y skip-bigramas),
comparando la respuesta generada con las gold (o snippets).

5.12.2. ImageCLEFmedical: Tareas y métricas de evaluación

El reto ImageCLEFmedical Caption 2025 se compone de tres tareas interconectadas:
Detección de Conceptos, Predicción de Leyendas y Explicabilidad (Damm & et al., 2025;
Ionescu, 2025). En la tarea de detección de conceptos, los sistemas identifican la presencia
de conceptos médicos relevantes en una imagen, prediciendo eficazmente un conjunto de ID
de conceptos UMLS (Unified Medical Language System) (Bodenreider, 2004) o términos
que describen el contenido de la imagen.

Esto sirve de base para el caption, ya que proporciona los "bloques de construcción"de
la escena. En la tarea de predicción de captions, los sistemas generan una descripción
textual coherente de toda la imagen, que idealmente incorpora los conceptos detectados y
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describe su interacción. La tarea de explicabilidad requiere que los participantes den una
explicación del caption en un pequeño subconjunto de imágenes, por ejemplo, resaltando
regiones de la imagen y proporcionando una justificación textual adicional. El componente
de explicabilidad pretende mejorar la interpretabilidad y la confianza, permitiendo a los
expertos médicos verificar por qué se predijo un caption o un concepto.

Tareas Las tareas del reto ImageCLEFmedical Caption 2025 son:

Figura 2: Ilustración del formato esperado del entregable la tarea de Caption y Concept.
Entregable real incluía CUIs y captions de más de 19 mil imágenes en formato .JSON.

Tarea de detección de conceptos

El primer paso para el captioning automático de imágenes y la comprensión de escenas
es identificar la presencia y localización de conceptos relevantes en un gran corpus de imá-
genes médicas. Basándose en el contenido visual de la imagen, esta subtarea proporciona
los elementos fundamentales para la etapa de comprensión de escenas, identificando los
componentes individuales a partir de los cuales se componen los captions. Además, los
conceptos pueden aplicarse para la recuperación de imágenes e información basada en el
contexto.

La evaluación se realiza en términos de métricas de cobertura de conjuntos, tales como
precisión, recall y combinaciones de ambas.

Tarea de predicción de captions

Sobre la base del vocabulario de conceptos detectados en la primera subtarea, así
como la información visual de su interacción en la imagen, los sistemas participantes
deben componer captions coherentes para la totalidad de una imagen. En este paso, más
allá de la mera cobertura de conceptos visuales, la detección de la interacción entre los
elementos visibles es crucial para lograr un buen desempeño.

Este año, el desafío utiliza BERTScore como métrica principal de evaluación y ROU-
GE como métrica secundaria para la subtarea de predicción de captions. También se
publicarán otras métricas, como MedBERTScore, MedBLEURT y BLEU.

Tarea de explicabilidad

Además, se solicita a los participantes que proporcionen explicaciones para los captions
de un pequeño subconjunto (que será publicado junto con el dataset de prueba) de imá-
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genes. No existen limitaciones técnicas para esta tarea. Las explicaciones serán evaluadas
manualmente por un radiólogo en cuanto a interpretabilidad, relevancia y creatividad.

Figura 3: Entregable de la tarea de explicabilidad. Detecta los objetos en la imagen y los
localiza con bounding boxes.

Métricas de evaluación Cada tarea del desafío ImageCLEF medical caption utiliza
métricas de evaluación distintas (Damm & et al., 2025; Ionescu, 2025).

A. Detección de conceptos

La tarea de detección de conceptos emplea la metodología de puntuación F1 con el
siguiente enfoque (Damm & et al., 2025; Ionescu, 2025):

Implementación: Método de puntuación F1 de scikit-learn de Python (v0.17.1-2)
con promedio binario.

Proceso: Arreglos binarios que indican la presencia (1) o ausencia (0) del concepto,
tanto para las predicciones como para los valores de referencia (ground truth).

Estructura de puntuación: La puntuación primaria considera todos los conceptos y
la secundaria filtra únicamente aquellos conceptos anotados manualmente.

Ground truth: Basado en un subconjunto reducido de la versión AB 2022 de UMLS
utilizado en los datos de entrenamiento.
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B. Evaluación de la predicción de captions

La evaluación de la predicción de captions combina seis métricas agrupadas en dos
aspectos: Métricas de relevancia (cuatro métricas) y métricas de factualidad (dos métricas)
(Damm & et al., 2025; Ionescu, 2025).

B1. Métricas de relevancia
Estas métricas incluyen la evaluación de similitud entre imagen y caption, así como

métricas de relevancia basadas en texto, como BERTScore (recall), ROUGE-1 (medida
F) y BLEURT.

Similitud entre imagen y caption: utiliza un modelo de embeddings para imágenes
médicas que evalúa la relación semántica entre los captions generados y sus imágenes
correspondientes. Este enfoque calcula los embeddings tanto del texto del caption
como de la imagen médica, y luego mide la similitud entre ellos para determinar
qué tan bien el caption representa el contenido visual.

BERTScore (recall): utiliza el modelo Microsoft/deberta-xlarge-mnli con pondera-
ción por frecuencia inversa de documentos (IDF).

ROUGE-1 (medida F): mide la superposición de unigramas entre los captions gene-
rados y los de referencia.

BLEURT: emplea el checkpoint BLEURT-20 para la evaluación basada en juicio
humano.

B2. Métricas de factualidad
Las siguientes métricas se utilizan en el reto ImageCLEFmedical Caption para evaluar

la factualidad de los captions generados (Damm & et al., 2025; Ionescu, 2025):

UMLS Concept F1: evalúa la precisión médica de los captions generados extrayendo
entidades médicas mediante la herramienta MedCAT y calculando la puntuación F1
entre los conceptos UMLS predichos y los de referencia.

AlignScore: proporciona una evaluación de la consistencia factual mediante una
implementación basada en RoBERTa, que evalúa la alineación de la información
entre los textos generados y los de referencia. El proceso implica dividir los contextos
largos en fragmentos manejables y hacer coincidir sistemáticamente cada frase con
afirmaciones con el fragmento de contexto más relevante para determinar la precisión
factual. El resultado final representa una puntuación media de alineación calculada
en todas las frases con afirmaciones, proporcionando una medida integral de cuán
bien el caption generado mantiene la consistencia factual respecto al material de
referencia.

C. Explicabilidad

En la tarea de explicabilidad, un radiólogo experto evaluó la calidad de las expli-
caciones generadas por cada sistema utilizando una escala Likert de 5 puntos, donde 5
representaba la máxima puntuación. La evaluación incluyó tanto el caption generado co-
mo la visualización acompañante para cada imagen, considerando múltiples categorías
de evaluación. El radiólogo valoró la calidad del caption a través de cuatro dimensiones:
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legibilidad, idoneidad clínica, nivel de detalle y enfoque, que se consolidaron en una pun-
tuación media del caption. La calidad de la visualización se evaluó de forma similar en
tres aspectos: coherencia visual-textual, exhaustividad de la visualización y enfoque de la
visualización, lo que resultó en una puntuación media de visualización. Además, el experto
valoró la idoneidad de la metodología y asignó una calificación global, creando un marco
de evaluación integral que recogía tanto la calidad de los componentes individuales como
el rendimiento holístico del sistema (Damm & et al., 2025; Ionescu, 2025).

6. Metodología
La investigación se enmarcó en la estrategia de investigación diseño y creación (Oa-

tes, 2006), enfocada en el desarrollo de un artefacto tecnológico innovador como principal
contribución. Siguiendo esta metodología, se diseñó e implementó iterativamente un siste-
ma multimodal basado en una arquitectura multiagente (con un agente central “escritor”)
que integra procesamiento textual y visual. El módulo textual implementa una búsqueda
híbrida combinando una base de datos vectorial con un modelo de lenguaje biomédico
(PubMedBERT) y consultas en tiempo real a PubMed, empleando además GPT-4 pa-
ra extraer fragmentos relevantes. El módulo visual emplea un modelo de visión-lenguaje
(LLaVA-LLaMA 8B) ajustado mediante un adaptador LoRA para análisis de imágenes
médicas. Como innovación principal, el sistema integra un mecanismo de explicabilidad
que combina Grad-CAM, mapas de atención e Integrated Gradients con el modelo
Segment Anything (SAM) para mapear conceptos médicos a regiones de las imáge-
nes.

Para evaluar el artefacto desarrollado, se siguió la recomendación de Oates (Oates,
2006) de realizar una validación rigurosa: primero se evaluó cada módulo por separado,
y luego se llevaron a cabo pruebas experimentales con el sistema integrado, utilizando
benchmarks internacionales (BioASQ(Nentidis et al., 2025) e ImageCLEFmed (Damm &
et al., 2025)) para medir su desempeño en tareas de búsqueda biomédica y análisis de
imágenes clínicas. El sistema logró buenos resultados en general, ya que está dentro de
los top 10 en cinco de seis tareas, lo que evidencia la eficacia de la solución propuesta
y demuestra la contribución válida del artefacto, cumpliendo con los criterios de rigor y
relevancia de la metodología de diseño y creación.

6.1. Datos

Corpus de BioASQ
Se utilizarán los datasets y otros recursos proporcionados por BioASQ, pues se parti-

cipó en desafíos de NLP que permiten el acceso a datos curados por expertos biomédicos
(Krithara et al., 2023a). BioASQ es un proyecto de investigación que busca avanzar en el
estado del arte de la recuperación de información biomédica y la comprensión del lenguaje
natural. Proporciona un corpus de datos anotados para evaluar sistemas de IA en tareas
como la respuesta a preguntas biomédicas, la extracción de información y la generación
de resúmenes. El corpus incluye preguntas formuladas por expertos, respuestas correctas
y documentos relevantes, lo que permite entrenar y evaluar modelos de IA en un contexto
biomédico realista (Nentidis et al., 2023, 2025).

El dataset de prueba consistía en un fichero .JSON que contenía 80 preguntas para
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responder por lote.

Corpus de CLEF
Se utilizó una versión ampliada del conjunto de datos Radiology Objects in Context

(ROCO) Versión 2 en las tareas del reto ImageCLEFmedical Caption. Como en ediciones
anteriores, el conjunto de datos procede de artículos biomédicos del subconjunto PMC
OpenAccess (Damm & et al., 2025; Ionescu, 2025). También utilizamos el conjunto de
datos ROCOv2 del año anterior para el fine-tuning (Rückert et al., 2024). El conjunto de
entrenamiento consta de 79.789 imágenes radiológicas (principalmente radiografías, tomo-
grafías computarizadas, resonancias magnéticas, etc.) recogidas de la literatura biomédica,
cada una emparejada con un caption y un conjunto de etiquetas de concepto UMLS. Los
conjuntos de datos del reto se describen con más detalle en el documento oficial del reto
(Damm & et al., 2025; Ionescu, 2025).

El dataset de prueba del reto ImageCLEFmedical Caption 2025 contiene 19.267 imáge-
nes radiológicas, cada una con un caption y un conjunto de etiquetas de concepto UMLS,
además del diccionario de CUIs que traduce los códigos CUIs a lenguaje natural.

Figura 4: Imagen de muestra del conjunto de pruebas del Desafío ImageCLEF. Fuente:
ImageCLEFmedical Caption 2025 test 1260, CC BY, Curcean et al., 2024.
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6.2. Métricas de evaluación

Para evaluar el rendimiento del sistema se utilizarán las métricas específicas de cada
tarea según se explicó anteriormente en secciones 5.12.1 y 5.12.2.

6.3. Configuración experimental

Para la ejecución de este diseño experimental se utilizó una combinación de dos con-
figuraciones de hardware distintas:

Una estación de trabajo de escritorio equipada con un procesador Intel Core i9 y
una unidad de procesamiento gráfico (GPU) NVIDIA GeForce RTX 5090 con 32
GB de memoria GDDR7 dedicada. Este equipo se empleó para todas las tareas
computacionales con altos requerimientos de GPU, como fine-tuning, carga en base
de datos Qdrant (por ser una base de datos local) y el desarrollo del sistema.

Un ordenador portátil, también equipado con un procesador Intel Core i9, que in-
cluye una GPU NVIDIA GeForce RTX 4070 con 8 GB de memoria. Este portátil
se utilizó para análisis y preprocesamiento de archivos, además de la redacción del
trabajo.

La asignación de estos recursos se basó en las demandas computacionales y la compa-
tibilidad del sistema.El grado exacto de utilización de cada GPU varió en función de las
demandas específicas de cada experimento.

6.4. Arquitectura agéntica del sistema

6.4.1. Fundamentos de sistemas multiagente en aplicaciones biomédicas

El sistema desarrollado se fundamenta en principios de arquitectura multiagente, defi-
nida como un paradigma computacional donde múltiples entidades autónomas (agentes)
colaboran para resolver problemas complejos que exceden las capacidades de los siste-
mas monolíticos (Wooldridge, 2009). En el contexto biomédico, los sistemas multiagente
han demostrado particular efectividad para manejar la complejidad inherente del dominio
médico, donde los diferentes aspectos del procesamiento de información requieren de un
expertise especializado (Isern et al., 2010).

Según la taxonomía de Ferber (Ferber, 1998), el sistema de Q&Aimplementado corres-
ponde a una arquitectura multiagente cooperativa donde los agentes comparten objetivos
comunes y colaboran para maximizar la utilidad global del sistema. Esta clasificación se
alinea con los requisitos de coherencia y precisión necesarios en aplicaciones biomédicas
(Croatti et al., 2020).

6.4.2. Clasificación y tipología de agentes implementados

Siguiendo la taxonomía de Russell y Norvig (Stuart & Peter, 2021), los agentes im-
plementados pueden clasificarse como agentes basados en objetivos (goal-based agents)
que mantienen representaciones internas del estado del problema y utilizan conocimiento
específico del dominio para tomar decisiones. Específicamente, el sistema Multimodal-
BioQA implementa cinco tipos de agentes especializados:
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Agente de Investigación (Researcher Agent) Implementa un patrón de agente de
información según la clasificación de Genesereth y Nilsson (Genesereth & Nilsson, 2014),
especializado en recuperación y síntesis de conocimiento científico. Este agente integra las
siguientes capacidades:

Búsqueda híbrida: Combinación de búsqueda vectorial local (Qdrant) con con-
sultas en tiempo real a APIs externas (PubMed).

Extracción automática: Utilización de GPT-4o para extracción de snippets a
nivel de oración.

Enriquecimiento contextual: Integración de terminología médica estandardizada
(UMLS/MeSH).

Agente de Escritura (Writer Agent) Es agente funciona como un agente coordina-
dor según la taxonomía de Durfee y Lesser (Durfee & Lesser, 1991) y es responsable de la
síntesis final de información proveniente de múltiples fuentes especializadas. Implementa
estrategias de generación diferenciadas basadas en el tipo de consulta (yes/no, factoid,
list, summary) y gestiona la integración de evidencia multimodal.

Agente de Visión (Vision Agent) Constituye un agente perceptual especializado
(Murphy, 2019) que procesa información visual mediante modelos multimodales avanzados
(LLaVA-LLaMA 3 8B). Este agente encapsula funcionalidades de:

Generación de conceptos médicos a partir de imágenes.

Producción de captions descriptivos especializados.

Integración con sistemas de explicabilidad visual.

Agente de Explicabilidad (Explainability Agent) Implementa un agente de moni-
toreo y explicabilidad (Mueller et al., s.f.) que es responsable de generar interpretaciones
comprensibles de las decisiones del sistema. Integra múltiples técnicas de explicabilidad
como GradCAM, Attention Maps e Integrated Gradients con mapeo concepto-región.

Agente de Chatbot interactivo (Chatbot Agent) Funciona como un agente de
interfaz (Bradshaw, 1997) que gestiona la interacción con usuarios mediante validación
interactiva de tipos de pregunta y confirmación de parámetros de consulta.

6.4.3. Arquitectura de comunicación y coordinación

Patrón de comunicación El sistema MulmodalBioQA implementa un patrón de co-
municación jerárquico con coordinación central según la clasificación de Stone y Veloso
(Stone & Veloso, 2000). La comunicación inter-agente se realiza mediante estructuras
de datos estandarizadas que actúan como mensajes estructurados (Finin et al., 1994),
garantizando coherencia semántica y trazabilidad de información.

La arquitectura de comunicación sigue el modelo Contract Net Protocol adaptado
(Smith, 1980), donde:

1. El Router de modalidad determina el tipo de procesamiento requerido.
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2. Los agentes especializados ejecutan tareas específicas de manera autónoma.

3. El Writer Agent / Agente de Escritura actúa como el coordinador central e
integra resultados.

Gestión de estados y persistencia Cada agente mantiene un estado interno inde-
pendiente según el principio de autonomía local (Jennings, 1999).

6.4.4. Herramientas y frameworks de implementación

LlamaIndex como framework agéntico La implementación utiliza LlamaIndex co-
mo framework base para la construcción de agentes, aprovechando sus capacidades de:

Gestión de embeddings: Configuración centralizada mediante Settings.embed_model.

Integración de herramientas: Conexión continua con APIs externas y bases de
datos vectoriales.

Orquestación de flujos: Coordinación de pipelines complejos de procesamiento.

Componentes tecnológicos especializados El sistema integra componentes tecno-
lógicos especializados que actúan como herramientas agénticas según el concepto de tool-
using agents definido por Schick et al. (Schick et al., 2023):

Qdrant: Base de datos vectorial para búsqueda semántica distribuida.

BiomedNLP-PubMedBERT: Modelo de embedding especializado en dominio
biomédico.

APIs externas: PubMed, UMLS, OpenAI GPT-4o.

Modelos multimodales: LLaVA-LLaMA 3 8B con adaptadores LoRA.

Esta aproximación se alinea con el paradigma de augmented agents propuesto por
Mialon et al. (Mialon et al., 2023), donde los agentes extienden sus capacidades mediante
el uso sistemático de herramientas externas especializadas.

6.4.5. Características de autonomía y especialización

Autonomía operacional Según los criterios de Wooldridge y Jennings (Wooldridge &
Jennings, 1995), el sistema demuestra las cuatro características fundamentales de agentes
inteligentes:

1. Autonomía: Cada agente opera independientemente sin control directo externo.

2. Reactividad: Los agentes responden a cambios en su entorno operativo.

3. Pro-actividad: Los agentes toman iniciativa para cumplir objetivos específicos.

4. Sociabilidad: Los agentes interactúan mediante protocolos de comunicación estruc-
turados.
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Especialización por dominio La arquitectura implementa especialización funcional
(Tambe, 1997), donde cada agente se enfoca en aspectos específicos del problema:

Separación de responsabilidades: Cada agente maneja un aspecto único del
procesamiento.

Expertise específico: Agentes optimizados para tareas particulares (NLP, visión,
síntesis).

Tolerancia a fallos: Degradación elegante cuando agentes individuales fallan.

6.4.6. Validación del paradigma agéntico

Cumplimiento de criterios arquitectónicos El sistema satisface los criterios esta-
blecidos por Ferber (Ferber, 1998) para sistemas multiagente efectivos:

1. Distribución: Procesamiento distribuido entre agentes especializados

2. Interacción: Comunicación estructurada mediante protocolos definidos

3. Coordinación: Mecanismo central de síntesis y coherencia

4. Organización: Jerarquía clara con roles y responsabilidades definidos

Ventajas de la aproximación agéntica La implementación agéntica proporciona be-
neficios específicos para aplicaciones biomédicas complejas (Isern et al., 2010):

Escalabilidad modular: Agentes pueden ser modificados independientemente.

Mantenibilidad: Separación clara de responsabilidades facilita debugging.

Extensibilidad: Nuevos agentes pueden agregarse sin afectar funcionalidad exis-
tente.

Robustez: Tolerancia a fallos mediante redundancia y degradación elegante.

6.5. Diseño de arquitectura de IA

Como se justificó en el apartado anterior, este sistema implementa una arquitectura
de agentes distribuidos que integra capacidades de procesamiento de texto e imagen para
responder consultas biomédicas complejas. La aplicación principal (app.py) constituye el
núcleo orquestador que coordina múltiples agentes especializados mediante una interfaz
de usuario desarrollada en Streamlit.

La aplicación principal implementa un Sistema de Explicabilidad Integrado que com-
bina LLaVA con técnicas de interpretabilidad visual (GradCAM, Attention Maps, Inte-
grated Gradients).

Arquitectura dual: El sistema maneja consultas de texto mediante búsqueda en
PubMed y síntesis con GPT-4o, mientras que las consultas de imagen emplean análisis
visual con mapeo concepto-región y generación automática de bounding boxes etiquetadas.
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Innovación principal: La integración de explicabilidad multi-nivel que correlaciona
conceptos médicos extraídos por LLaVA con regiones espaciales específicas de la imagen,
proporcionando interpretabilidad visual comprehensiva para análisis médico.

A continuación, se presenta un diagrama de la arquitectura de alto nivel del sistema:
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Figura 5: Diseño de arquitectura de IA para el sistema multimodal de Question answering.
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6.5.1. Agentes de procesamiento especializados

Agente de Investigación (researcher_agent.py)

El researcher_agent constituye el núcleo del sistema de recuperación de información
biomédica, implementando una arquitectura híbrida que combina búsqueda en bases de
datos vectoriales locales con consultas en tiempo real a la API de PubMed.

Arquitectura de búsqueda híbrida

El agente implementa una estrategia de búsqueda multicapa:

def run_researcher(question: str, question_data: Dict) -> Dict:

Generación de consultas optimizadas: Utiliza GPT-4o para extraer entidades
médicas significativas de la pregunta mediante un método especializado. Este en-
foque supera las limitaciones de los sistemas NER tradicionales al comprender el
contexto semántico.

Búsqueda primaria en PubMed API: Ejecuta búsquedas directas en la API
de PubMed con parámetros optimizados (hasabstract[text]) para garantizar la
disponibilidad de contenido completo.

Extracción de Snippets a nivel de oración: Implementa una función que utiliza
GPT-4o para extraer oraciones específicas que responden directamente a la pregun-
ta, en lugar de devolver abstracts completos. Esta técnica mejora significativamente
la precisión de la evidencia.

Enriquecimiento Contextual

El sistema implementa múltiples capas de enriquecimiento:

Integración UMLS/MeSH: La función _query_umls_for_context() consulta
las terminologías médicas estandarizadas para proporcionar definiciones contextua-
les de términos médicos identificados.

Recuperación Few-Shot : Implementa _retrieve_few_shot_example_from_file()
para obtener ejemplos similares que guían la generación de respuestas, mejorando
la consistencia y calidad del output.

Ranking y filtrado: _filter_and_rank_snippets() utiliza una combinación de
scores de relevancia originales y matching de palabras clave para optimizar la selec-
ción de evidencia.

Optimizaciones de rendimiento

Manejo de Tiempo de Respuesta: Implementa timeouts configurables y retry
logic con backoff exponencial

Cache de Consultas UMLS: Mantiene cache a nivel de módulo para evitar con-
sultas repetitivas

Gestión de Rate Limits: Implementa delays configurables para respetar las limi-
taciones de las APIs externas
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Agente de Escritura (writer_agent.py)

El writer_agent representa la capa de síntesis que transforma evidencia científica
cruda en respuestas coherentes y bien estructuradas.

Sistema de generación diferenciada por tipo

El agente implementa estrategias de generación específicas según el tipo de pregunta:

def run_writer(question: str, qtype: str, snippets: List[Dict],
mesh_info: Optional[Dict], few_shot_example: Optional[Dict]) -> Dict:

Prompts especializados: Cada tipo de pregunta (yesno, factoid, list, summary)
utiliza prompts optimizados con instrucciones específicas para el formato de res-
puesta esperado.

Validación de respuestas: _validate_exact_answer() implementa validation
logic específica por tipo para asegurar conformidad con formatos esperados.

Síntesis dual: Genera tanto exact_answer (respuesta directa) como ideal_answer
(explicación detallada) para proporcionar información a múltiples niveles de granu-
laridad.

Procesamiento de consultas de imagen

Para consultas multimodales, el agente implementa:

Detección automática de imagen Q&A: _is_image_qa_question() identifica
consultas relacionadas con análisis de imagen basándose en patrones lingüísticos y
metadatos.

Prompts contextualizados para imagen: _build_image_qa_prompt() crea prompts
específicos que incorporan resultados del análisis visual, conceptos detectados y me-
tadatos de explicabilidad.

Integración de resultados multimodales: Combina información textual y visual
para generar explicaciones completas.

Mejores prácticas de generación

Control de Temperatura: Utiliza diferentes valores de temperatura según el tipo
de tarea (0.0 para exact answers, 0.2–0.3 para ideal answers)

Gestión de Tokens: Implementa límites adaptativos de tokens basados en la com-
plejidad de la consulta

Citación Automática: Incluye referencias automáticas a PMIDs en las respuestas
generadas

Agente de Visión (vision_agent.py)

El vision_agent encapsula la funcionalidad de análisis de imagen médica utilizando
modelos LLaVA fine-tuned para el dominio biomédico.
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Arquitectura del modelo

class VisionAgent:
def __init__(self, base_model_path, adapter_repo, device="auto",

load_in_4bit=True, merge_adapters=False):

Modelo base LLaVA: Utiliza xtuner/llava-llama-3-8b-v1_1-transformers
como modelo base con adaptadores LoRA especializados en imaging médico.

Optimizaciones de memoria: Implementa quantización 4-bit opcional y merge
de adaptadores para optimizar el uso de memoria GPU.

Gestión de dispositivos: Detección automática y configuración de dispositivos
(CUDA/CPU) con fallbacks elegantes.

Funcionalidades especializadas

Generación de conceptos: generate_concepts() extrae conceptos médicos es-
tructurados de imágenes utilizando prompts especializados en español para el do-
minio médico.

Generación de captions: generate_captions() produce descripciones textuales
detalladas de imágenes médicas siguiendo convenciones radiológicas.

Procesamiento natch: Soporte para procesamiento eficiente de múltiples imágenes
con gestión optimizada de memoria.

Características Técnicas Avanzadas

Manejo de inputs diversos: Soporte para múltiples formatos de entrada inclu-
yendo rutas de archivo, objetos PIL, y data URIs base64.

Patch size management: Implementa corrección automática del patch_size para
compatibilidad con diferentes versiones del procesador.

Gestión de memoria: Implementa cleanup manual de tensores y cache CUDA
para prevenir memory leaks durante inferencia prolongada.

Prompts Especializados

El agente utiliza prompts cuidadosamente diseñados:

CONCEPT_PROMPT = "USER: <image>
Enumera los conceptos médicos clave (CUIs) observados o inferidos
en esta imagen.
ASSISTANT:Los conceptos médicos clave son:"

CAPTION_PROMPT = "USER: <image>
¿Cuál es la descripción o el caption de esta imagen médica?
ASSISTANT:"

Estos prompts están optimizados para el dominio médico y diseñados para maximizar
la precisión y relevancia de las respuestas generadas.
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6.5.2. Herramientas de análisis especializado

Sistema de validación interactiva: El chatbot_agent implementa inferencia heu-
rística de tipos de pregunta con confirmación interactiva, utilizando patrones especializa-
dos y auto-confirmación temporal para optimizar la clasificación de consultas.

Análisis de explicabilidad: El explainability_agent orquesta pipelines complejos
combinando SAM para segmentación, GPT-4o para etiquetado contextual, y VisionAgent
para extracción de conceptos, generando visualizaciones integrales con heatmaps y ano-
taciones automáticas.

NER biomédica avanzada: El ner_tool integra modelos transformer especializados
con enriquecimiento UMLS/MeSH que implementa cache inteligente, filtrado de entidades
y mapeo selectivo para optimizar la extracción de información médica.

Innovación técnica: La combinación de segmentación automática (SAM) con eti-
quetado contextual (GPT-4o) guiado por conceptos extraídos por LLaVA representa un
enfoque innovador para explicabilidad visual en imágenes médicas.

6.6. Sistema de base de datos vectorial y gestión de datos

Ingesta de PubMed: Sistema de procesamiento streaming que maneja archivos
XML.gz masivos mediante parsing incremental con lxml.etree.iterparse. Implementa
batching multinivel para embeddings (BiomedNLP-PubMedBERT, 768D) y operaciones
Qdrant, con optimizaciones específicas para ingesta masiva y gestión de memoria.

Preparación Few-Shot : Pipeline de optimización para GPT-4o que incluye detec-
ción automática de idioma, normalización de tipos de pregunta, y optimización de JSON
para minimizar token usage. Implementa validación comprehensiva de calidad con umbral
mínimo del 80 % de ejemplos válidos.

Base de datos vectorial: Utiliza Qdrant con colecciones especializadas para artículos
PubMed y ejemplos few-shot. Implementa búsqueda semántica integrada con LlamaIndex
para recuperación contextual en tiempo de ejecución.

Batching multinivel: El procesamiento streaming con batching multinivel permite
manejar datasets de gran escala (millones de artículos) manteniendo uso de memoria
constante, mientras que la optimización específica para GPT-4o mejora significativamente
la eficiencia de token usage en few-shot learning.

El sistema implementa una arquitectura híbrida que combina recuperación de infor-
mación vectorial con técnicas de few-shot prompting para respuestas de consultas biomé-
dicas. La infraestructura se fundamenta en Qdrant como base de datos vectorial y utiliza
modelos de embeddings especializados en el dominio biomédico.

6.6.1. Componentes de ingesta de datos

Ingesta de literatura científica (ingest_pubmed.py) Este componente constituye
el núcleo del pipeline de procesamiento de literatura biomédica. El proceso implementa
las siguientes etapas:

Preprocesamiento de datos: Utiliza lxml.etree.iterparse para procesamiento efi-
ciente de archivos XML.gz de PubMed, empleando análisis incremental para opti-
mizar el uso de memoria.

Extracción de metadatos: Implementa un parser robusto que extrae título, re-
sumen, autores, fechas de publicación, términos MeSH, palabras clave y DOI. El
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sistema maneja múltiples formatos de fechas incluyendo MedlineDate con normali-
zación automática.

Generación de embeddings: Emplea el modelo BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext (768 dimensiones) optimizado para texto biomédico. Im-
plementa truncamiento a 510 tokens para mantener coherencia semántica.

Optimizaciones de rendimiento:

• Batching de embeddings (512 textos por lote)

• Batching de upserts a Qdrant (512 puntos por lote)

• Configuración de optimizadores Qdrant para ingesta masiva

• Detección automática de GPU/CPU para aceleración

Ingesta de ejemplos Few-Shot (ingest_few_shots.py) Este módulo gestiona la
creación de una colección especializada para ejemplos de entrenamiento:

Procesamiento de ejemplos: Carga ejemplos desde training13b.json y genera
embeddings de las preguntas usando el mismo modelo biomédico.

Almacenamiento estructurado: Mantiene el input (pregunta) y output (respues-
ta completa en JSON) para recuperación posterior.

Validación de integridad: Implementa verificación de estructura JSON y manejo
robusto de errores.

Figura 6: Colecciones de Qdrant: pubmed_articles_biomebert con más de 36 millones de
vectores totales y pubmed_few_shot_examples con 85 vectores.

6.6.2. Preparación y optimización de datos

Optimización Few-Shot para GPT-4o Implementa un pipeline de optimización es-
pecífico para modelos de lenguaje grandes:

Normalización de tipos: Clasifica automáticamente preguntas en categorías (yesno,
factoid, list, summary) con mapeo consistente.
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Optimización de tokens: Truncamiento automático manteniendo coherencia se-
mántica, con límites específicos (500 chars input, 2000 chars output).

Validación de calidad: Métricas de validación con umbral mínimo del 80 % de
ejemplos válidos.

6.6.3. Sistema de recuperación

Utilidades de Base de Datos Vectorial (vector_store_utils.py) Proporciona la
interfaz de recuperación en tiempo de ejecución:

Búsqueda semántica: Utiliza el embedding del query para encontrar ejemplos
similares en la colección few-shot.

Integración con LlamaIndex: Se integra con Settings.embed_model para con-
sistencia en la generación de embeddings.

Manejo de errores: Implementa degradación elegante cuando los componentes no
están disponibles.

6.6.4. Configuraciones de optimización

El sistema implementa múltiples optimizaciones para rendimiento en producción:

Gestión de memoria: Batching adaptativo basado en recursos disponibles

Persistencia de estado: Logging de archivos procesados para reinicios incremen-
tales

Timeout configurations: Configuraciones de timeout optimizadas para operacio-
nes de red

Retry logic: Implementación de Tenacity para reintentos exponenciales

6.7. Metodología de Fine-tuning

Arquitectura del Modelo y Estrategia de Adaptación.

Utilizamos LLaVA-LLaMA-3-8B como modelo base, implementando adaptación LoRA
con rank r = 16, α = 32 y dropout 0,05. Los módulos objetivo incluyen todas las proyec-
ciones de atención (q_proj, k_proj, v_proj, o_proj), los componentes MLP (gate_proj,
up_proj, down_proj) a lo largo de 32 capas transformer, y las capas lineales del proyec-
tor multimodal. Esta selección permite una adaptación eficiente tanto de las capacidades
lingüísticas como de razonamiento cruzado entre modalidades.

Dataset e ingeniería de prompts.

El conjunto de datos ROCOv2 proporciona imágenes radiológicas con sus correspon-
dientes captions y conceptos médicos codificados como CUIs (Concept Unique Identifiers).
Implementamos una estrategia diversificada de prompts que abarca cinco categorías de
plantillas: captioning básico, identificación de conceptos, integración multimodal, consul-
tas dirigidas sobre conceptos y descripciones condicionales. Cada muestra de entrena-
miento recibe una plantilla asignada aleatoriamente para mejorar la robustez del modelo
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y prevenir el sobreajuste. El formato de instrucción sigue un paradigma conversacional
estructurado:

USER: <image>\n[Consulta específica de la tarea]
ASSISTANT: [Respuesta generada]

Configuración de entrenamiento.

Hiperparámetros: Learning rate de 5e−5 con cosine annealing, batch size efectivo de
32 (acumulación de gradientes 4× 8), longitud máxima de secuencia de 1024 tokens, en-
trenamiento de precisión mixta (bfloat16/float16).
Optimización: Optimizador AdamW con ratio de warmup del 3 %, gradient checkpointing
para eficiencia de memoria, evaluación cada 250 iteraciones.
Procesamiento de Etiquetas: El collator personalizado implementa instruction tuning me-
diante enmascaramiento selectivo, donde los tokens de entrada reciben la etiqueta −100
y solo las respuestas del asistente contribuyen al cálculo de la pérdida.

Figura 7: Conclusión del proceso de fine-tuning del modelo de visión y lenguaje LLaVA-
LLaMA 3 8B con una train loss de 1.03 y una eval loss de 1.06.

Gestión de memoria y escalabilidad.

Para abordar limitaciones computacionales, implementamos procesamiento por blo-
ques (chunked) del dataset, permitiendo entrenamiento a gran escala en hardware limita-
do. El pipeline incluye limpieza automática de memoria y almacenamiento intermedio en
disco para los bloques de datos procesados.

Preprocesamiento de datos.

El pipeline de preprocesamiento integra anotaciones multimodales mediante la fusión
sistemática de captions y conceptos, mapeo semántico de CUIs a nombres canónicos y
validación integral de los datos. Los conceptos médicos se traducen de códigos CUI a
términos legibles utilizando el diccionario de mapeo proporcionado.
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Proceso de entrenamiento.

El entrenamiento se realiza mediante fine-tuning eficiente en parámetros durante una
época, con posibilidad de early stopping. El collator de datos personalizado asegura la
alineación correcta de tensores multimodales e implementa la estrategia de enmascara-
miento para instruction tuning. Los checkpoints del modelo se conservan en función de la
optimización de la pérdida de validación.

Instruction tuning multimodal.

Nuestro enfoque extiende el instruction tuning al dominio médico mediante la di-
versificación estratégica de prompts y tareas dirigidas de identificación de conceptos. La
metodología permite al modelo realizar tareas tanto descriptivas como analíticas sobre
imágenes médicas.

Adaptación eficiente en parámetros

La configuración de LoRA se dirige a los componentes críticos del modelo mientras pre-
serva la eficiencia computacional. Este enfoque reduce significativamente los parámetros
entrenables, manteniendo la expresividad del modelo para tareas de análisis de imágenes
médicas.

7. Descripción técnica del sistema
A continuación, se presenta un diagrama con el flujo de información y una descrip-

ción técnica detallada del sistema de Question Answering Biomédico Multimodal con
Explicabilidad Incorporada, llamado MultimodalBioQA, con fines de reproducibilidad
y extensión del trabajo.
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Figura 8: Flujo de información detallado del sistema multimodal de Question answering.

El sistema implementa una arquitectura de agentes distribuidos que integra capacida-
des de procesamiento de texto e imagen para responder consultas biomédicas complejas.
La aplicación principal (app.py) constituye el núcleo orquestador que coordina múltiples
agentes especializados mediante una interfaz de usuario desarrollada en Streamlit.
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7.1. Aplicación Principal (app.py)

La aplicación principal implementa un sistema integrado de explicabilidad que combina
múltiples técnicas de interpretabilidad para el análisis de imágenes médicas:

IntegratedExplainabilitySystem: Clase principal que integra LLaVA (Large Lan-
guage and Vision Assistant) con técnicas de explicabilidad visual incluyendo GradCAM,
Attention Maps e Integrated Gradients. Esta integración representa una innovación sig-
nificativa al combinar modelos multimodales con técnicas de interpretabilidad tradicio-
nales.

Pipeline de procesamiento dual: El sistema maneja dos flujos principales:

1. Flujo de Texto: Utiliza researcher_agent para búsqueda en PubMed y writer_agent
para síntesis

2. Flujo de Imagen: Emplea vision_agent con sistema de explicabilidad integrado
para análisis visual

Gestión de sesiones: Implementa un sistema robusto de gestión de sesiones con iden-
tificadores únicos para rastrear análisis de explicabilidad y mantener coherencia en
procesamiento batch.

7.1.1. Procesamiento de Consultas Multimodales

La función process_full_query() implementa la lógica central del sistema:

Listing 1: Función principal de procesamiento de consultas
def process_full_query(question_data: dict) -> dict:

Esta función orquesta el procesamiento completo mediante:

Inferencia de tipo de pregunta: Utiliza heurísticas avanzadas y confirmación inter-
activa para clasificar preguntas en categorías (yesno, factoid, list, summary, concepts,
caption, location)

Enrutamiento condicional: Dirige el procesamiento según la presencia de datos de
imagen

Sistema de explicabilidad integrado: Para consultas de imagen, aplica análisis de
explicabilidad completo que incluye:

• Extracción de conceptos médicos mediante LLaVA

• Generación de mapas de activación (GradCAM)

• Análisis de atención (Attention Maps)

• Cálculo de gradientes integrados (Integrated Gradients)

• Mapeo automático concepto-región con bounding boxes
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7.1.2. Sistema de configuración (config.py)

El módulo de configuración implementa un sistema centralizado de gestión de pará-
metros que abarca:

Configuración de APIs: Gestión de claves para OpenAI, NCBI/PubMed, UMLS

Configuración de base de datos vectorial: Parámetros para Qdrant incluyendo
URLs, colecciones y límites de búsqueda

Configuración de modelos: Especificación de modelos de embedding (BiomedNLP-
PubMedBERT), NER biomédico, y configuración de LLaVA

Optimizaciones de hardware: Configuración automática de dispositivos (CUDA/C-
PU), quantización 4-bit, y gestión de memoria

7.2. Innovaciones arquitectónicas

Sistema de explicabilidad integrado

La principal innovación arquitectónica radica en la integración continua de múltiples
técnicas de explicabilidad:

Explicabilidad multi-nivel: Combina explicabilidad a nivel de atención (Attention
Maps), activación (GradCAM) y gradientes (Integrated Gradients).

Mapeo Concepto-Región: Implementa un método que mapea conceptos médicos
extraídos por LLaVA a regiones específicas de la imagen mediante análisis especializado.

Bounding boxes automáticas: Genera automáticamente bounding boxes etiquetadas
que correlacionan conceptos médicos con ubicaciones espaciales.

Arquitectura de agentes distribuidos

El sistema implementa un patrón de arquitectura de agentes donde cada agente tiene
responsabilidades específicas:

Separation of concerns: Cada agente maneja un aspecto específico del procesamiento.

Comunicación asíncrona: Los agentes se comunican mediante estructuras de datos
estandarizadas.

Tolerancia a fallos: Implementa fallbacks elegantes cuando los componentes indivi-
duales fallan.

7.3. Agentes de procesamiento

7.3.1. Agente de Investigación (researcher_agent.py)

El researcher_agent constituye el núcleo del sistema de recuperación de información
biomédica, implementando una arquitectura híbrida que combina búsqueda en bases de
datos vectoriales locales con consultas en tiempo real a la API de PubMed.

59



Arquitectura de búsqueda híbrida

El agente implementa una estrategia de búsqueda multicapa:

Listing 2: Función principal del agente de investigación
def run_researcher(question: str , question_data: Dict) -> Dict:

Generación de consultas mejoradas: Utiliza GPT-4o para extraer entidades médi-
cas significativas de la pregunta mediante el método _extract_medical_entities_with_gpt4o().
Este enfoque supera las limitaciones de los sistemas NER tradicionales al comprender
el contexto semántico.

Búsqueda primaria en Qdrant: Ejecuta búsquedas de tipo Qdrant-first donde busca
de preferencia en la base de datos vectorial y luego en la API de PubMed con paráme-
tros optimizados (hasabstract[text]) para garantizar la disponibilidad de contenido
completo.

Extracción de snippets a nivel de oración: Implementa una función que utiliza
GPT-4o para extraer oraciones específicas que responden directamente a la pregunta,
en lugar de devolver abstracts completos. Esta técnica mejora significativamente la
precisión de la evidencia.

Enriquecimiento contextual

El sistema implementa múltiples capas de enriquecimiento:

Integración UMLS/MeSH: La función _query_umls_for_context() consulta las
terminologías médicas estandarizadas para proporcionar definiciones contextuales de
los términos médicos identificados.

Recuperación Few-Shot: Implementa _retrieve_few_shot_example_from_file()
para obtener ejemplos similares que guían la generación de respuestas, mejorando la
consistencia y calidad del output.

Ranking y filtrado: _filter_and_rank_snippets() utiliza una combinación de sco-
res de relevancia originales y matching de palabras clave para optimizar la selección de
evidencia.

Optimizaciones de rendimiento

Cache de consultas UMLS: Mantiene cache a nivel de módulo para evitar consultas
repetitivas.

Gestión de rate limits: Implementa delays configurables para respetar las limita-
ciones de las APIs externas que bloquean las consultas cuando exceden el límite de
uso.

7.3.2. Agente de Escritura (writer_agent.py)

El writer_agent representa la capa de síntesis que transforma evidencia científica
cruda en respuestas coherentes y bien estructuradas.

60



Sistema de generación diferenciada por tipo

El agente implementa estrategias de generación específicas según el tipo de pregunta:

Listing 3: Función principal del agente de escritura
def run_writer(question: str , qtype: str , snippets: List[Dict],

mesh_info: Optional[Dict], few_shot_example:
Optional[Dict]) -> Dict:

Prompts especializados: Cada tipo de pregunta (yesno, factoid, list, summary) uti-
liza prompts optimizados con instrucciones específicas para el formato de respuesta
esperado.

Validación de respuestas: _validate_exact_answer() implementa lógica de vali-
dación específica por tipo para asegurar conformidad con formatos esperados.

Síntesis dual: Genera tanto exact_answer (respuesta directa) como ideal_answer
(explicación detallada) para proporcionar información a múltiples niveles de granulari-
dad.

Procesamiento de consultas de imagen

Para consultas multimodales, el agente implementa:

Prompts contextualizados para imagen: usa una función que crea prompts espe-
cíficos que incorporan resultados del análisis visual, conceptos detectados y metadatos
de explicabilidad.

Integración de resultados multimodales: Combina información textual y visual
para generar explicaciones integrales.

Mejores prácticas de generación

Control de temperatura: Utiliza diferentes valores de temperatura según el tipo de
tarea (0.0 para exact answers, 0.2-0.3 para ideal answers.)

Gestión de tokens: Implementa límites adaptativos de tokens basados en la comple-
jidad de la consulta.

Citación automática: Incluye referencias automáticas a PMIDs en las respuestas
generadas por el Agente de Escritura.

7.3.3. Agente de Visión (vision_agent.py)

El vision_agent encapsula la funcionalidad de análisis de imagen médica utilizando
modelos LLaVA fine-tuned para el dominio biomédico.
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Arquitectura del agente

Listing 4: Clase principal del agente de visión
class VisionAgent:

def __init__(self , base_model_path , adapter_repo , device="auto"
,

load_in_4bit=True , merge_adapters=False):

Modelo base LLaVA: Utiliza xtuner/llava-llama-3-8b-v1_1-transformers como
modelo base con el adaptador LoRA ajustado con el dataset radiográfico del reto visual.

Optimizaciones de memoria: Implementa quantización 4-bit opcional y fusión de
adaptadores para optimizar el uso de memoria GPU.

Gestión de dispositivos: Detección automática y configuración de dispositivos (CU-
DA/CPU) con fallbacks.

Funcionalidades especializadas

Generación de conceptos: generate_concepts() extrae conceptos médicos estruc-
turados de imágenes utilizando prompts en español para el dominio médico.

Generación de captions: generate_captions() produce descripciones textuales de-
talladas de imágenes médicas siguiendo convenciones radiológicas.

Procesamiento en batch: Soporte para procesamiento eficiente de múltiples imágenes
con gestión optimizada de memoria.

Características técnicas avanzadas

Manejo de diversos inputs: Soporte para múltiples formatos de entrada, lo que
incluye rutas de fichero, objetos PIL, y data URIs base64.

Gestión de patch size: Implementa corrección automática del patch_size para tener
compatibilidad con diferentes versiones del procesador.

Gestión de memoria: Implementa cleanup manual de tensores y cache CUDA para
prevenir memory leaks durante inferencia prolongada.

Prompts especializados

El agente utiliza prompts cuidadosamente diseñados:

Listing 5: Prompts especializados para el agente de visión
CONCEPT_PROMPT = "USER: <image >\\ nEnumera los conceptos medicos

clave (CUIs) observados o inferidos en esta imagen .\\ nASSISTANT:
Los conceptos medicos clave son:"

CAPTION_PROMPT = "USER: <image >\\ nCual es la descripcion de esta
imagen medica ?\\ nASSISTANT:"

Estos prompts están personalizados para el dominio médico y diseñados para maximi-
zar la precision y relevancia de las respuestas generadas.
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7.3.4. Agente de chatbot interactivo (chatbot_agent.py)

El chatbot_agent implementa un sistema de validación interactiva de tipos de pregun-
ta que utiliza inferencia heurística combinada con confirmación del usuario para optimizar
la precisión en la clasificación de consultas.

Sistema de inferencia de tipos

Listing 6: Función de inferencia de tipos de pregunta
def infer_question_type(question: str) -> str:

El sistema implementa una cascada de patrones heurísticos organizados jerárquica-
mente:

Patrones de yes/no (Prioridad): Utiliza expresiones regulares para identificar pre-
guntas binarias:

Listing 7: Patrones para preguntas Yes/No
yesno_patterns = [

r’^(is|are|do|does|did|can|could|will|would|should|has|have|
had)\s’,

r’\beffective\b.*\ bfor\b’,
r’\bassociated\b.*\ bwith\b’

]

Detección de listas: Identifica preguntas que requieren respuestas enumerativas me-
diante patrones como ˆ(what|which)
s+.*
s+(are|include).

Clasificación summary: Reconoce solicitudes de síntesis mediante patrones como
ˆ(summarize|describe|explain).

Factoid por defecto: Utiliza factoid como categoría de fallback para preguntas espe-
cíficas no clasificadas.

Interfaz de confirmación interactiva

La función interactive_type_confirmation() implementa un sistema de UI avan-
zado:

Visualización contextual: Presenta la pregunta original y el tipo inferido en un
contenedor estilizado con HTML/CSS personalizado.

Confirmación de selección: Permite al usuario confirmar o modificar el tipo inferido
con todas las opciones disponibles (yesno, factoid, list, summary).

Auto-confirmación temporal: Implementa un countdown de 5 segundos que auto-
confirma la selección para optimizar la experiencia de usuario en casos de alta confianza.

Gestión de estado: Utiliza st.session_state para mantener persistencia del tipo
confirmado a través de la sesión.
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7.3.5. Agente de Explicabilidad (explainability_agent.py)

El explainability_agent constituye un wrapper de alto nivel que orquesta el pipeline
completo de análisis de explicabilidad para imágenes médicas.

Arquitectura de Gestión de Archivos

El agente implementa un sistema robusto de gestión de archivos:

Directorio de uploads seguro: Implementa save_uploaded_image() que maneja
múltiples tipos de objetos de archivo (Flask, FastAPI, BytesIO) con validación de ex-
tensiones y nombres únicos.

Estructura organizada de directorios: Crea automáticamente subdirectorios para
imágenes, heatmaps y metadatos, facilitando la organización y recuperación de resul-
tados.

Gestión de sesiones: Genera identificadores únicos de sesión combinando timestamps
y hashes para garantizar trazabilidad sin colisiones.

Pipeline de análisis integrado

La función central analyze_image() orquesta:

Invocación de herramientas especializadas: Llama a analyze_medical_image_tool()
de explainability_tool.py para el análisis técnico.

Enriquecimiento de metadatos: Agrega información temporal, rutas de archivos y
URLs web-ready para integración con interfaces de usuario.

Gestión elegante de errores: Implementa manejo completo de errores con logging
detallado y fallbacks apropiados.

Sistema de recuperación y limpieza

Recuperación de resultados: get_analysis_results() permite recuperar análi-
sis previos mediante session_id, facilitando la persistencia de resultados a través de
sesiones.

Limpieza automática: cleanup_old_files() implementa garbage collection tempo-
ral para mantener el sistema limpio, con configuración de retención personalizable.

Endpoint factory: create_explainability_endpoint() genera funciones endpoint
ready-to-use para integración con frameworks web.

7.4. Herramientas de análisis especializado

7.4.1. Herramienta de NER biomédica (ner_tool.py)

El ner_tool implementa un sistema avanzado de extracción de entidades biomédicas
con integración UMLS/MeSH para enriquecimiento semántico.
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Gestión de tickets UMLS

Listing 8: Función de gestión de tickets UMLS
def _get_umls_ticket () -> Optional[str]:

Implementa un sistema robusto de autenticación con UMLS:

Caché de tickets: Mantiene tickets de sesión con gestión automática de expiración y
margen de seguridad de 5 minutos.

Renovación automática: Detecta expiraciones de tickets y renueva automáticamente
sin interrumpir el flujo de trabajo.

Retry lgic con backoff : _query_umls_with_retry() implementa reintentos auto-
máticos con manejo de errores 401 (unauthorized).

Pipeline de NER Optimizado

El sistema de NER implementa múltiples optimizaciones:

Caché de pipelines: _get_ner_pipeline() mantiene cache a nivel de módulo para
evitar recargas costosas de modelos.

Filtrado avanzado: _filter_ner_entities() elimina:

• Tokens subword de BERT.

• Entidades con scores de confianza <0.5.

• Palabras comunes (stopwords).

• Tokens sin caracteres alfabéticos.

Agregación de estrategias: Utiliza aggregation_strategy="simple" para agrupar
automáticamente word pieces en entidades coherentes.

Enriquecimiento avanzado con UMLS

La función principal implementa:

Clasificación de entidades clínicas: Categoriza automáticamente entidades en tipos
clínicos vs. no-clínicos basándose en labels especializados:

Listing 9: Labels clínicos para clasificación
clinical_labels = {

’DISEASE ’, ’DRUG’, ’CHEMICAL ’, ’GENE’, ’PROTEIN ’,
’TREATMENT ’, ’PROCEDURE ’, ’SYMPTOM ’, ’ANATOMY ’

}

Mapeo UMLS selectivo: Aplica enriquecimiento UMLS solo a entidades clínicas
identificadas, optimizando eficiencia y relevancia.

Estructura de resultados: Retorna un diccionario estructurado con entidades pro-
cesadas, clasificaciones clínicas, mapeos UMLS y manejo de errores.
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7.4.2. Herramientas especializadas adicionales

Herramienta de Explicabilidad (explainability_tool.py)

Implementa el análisis técnico de explicabilidad combinando múltiples tecnologías:

Integración SAM + GPT-4o: Combina Segment Anything Model para segmentación
con GPT-4o para etiquetado de regiones.

Pipeline de análisis completo:

Listing 10: Función de análisis de imagen médica
def analyze_medical_image(self , image_path: str , session_id: str

= None) -> dict:

• Carga y valida imagen
• Obtiene contexto con VisionAgent (caption + conceptos)
• Genera máscaras con SAM
• Etiqueta regiones con GPT-4o
• Crea visualizaciones (imagen anotada + heatmap)
• Guarda resultados estructurados

Etiquetado contextual: _label_region_with_gpt4o() utiliza los conceptos extraí-
dos por LLaVA como contexto para mejorar la precisión del etiquetado de regiones.

Detector de elementos gráficos (arrow_detector_tool.py)

Implementa técnicas de visión por computadora como análisis geométrico para detectar
elementos direccionales:

Detección de contornos: Utiliza OpenCV para identificar formas de flecha mediante
análisis de contornos y aproximación poligonal.

Análisis direccional: advanced_arrow_detection() implementa:

• Detección de líneas con Hough Transform
• Extrapolación direccional para predecir targets
• Generación de bounding boxes en ubicaciones predichas

Procesador de ficheros (file_preprocessing_tool.py)

Proporciona capacidades de ingesta de documentos:

Soporte Multi-formato: Maneja PDF, DOCX, PPTX, XLSX, TXT.

Procesamiento de URLs: process_url() implementa:

• Detección automática de tipo de contenido (HTML vs PDF)
• Extracción de texto de PDFs con PyMuPDF
• Parsing automático de HTML con BeautifulSoup
• Limitación de contenido (15,000 caracteres) para prevenir overload
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7.4.3. Sistema de base de datos vectorial y gestión de datos

Se implementó una base de datos vectorial local utilizando Qdrant para mejorar la
capacidad de búsqueda y recuperación de snippets. Luego ya se le encontraron otros usos
como crear una colección para almacenar los ejemplos de preguntas y respuestas para few
shot.

Sistema de ingesta de artículos biomédicos (ingest_pubmed.py)

El sistema de ingesta constituye el componente de mayor complejidad técnica junto
con el fine tuning del modelo de visión y lenguaje, implementando un pipeline optimizado
para procesamiento masivo de más de 30 millones de artículos científicos de PubMed.

Arquitectura de procesamiento Streaming

Listing 11: Función de procesamiento de artículos PubMed
def process_pubmed_article_node(article_node , source_file_name):

El sistema implementa procesamiento streaming mediante lxml.etree.iterparse
para manejar archivos XML.gz de gran tamaño sin cargar el documento completo en
memoria:

Parsing incremental: Utiliza iterparse con eventos (’end’,) para procesar no-
dos PubmedArticle individualmente, liberando memoria inmediatamente después del
procesamiento.

Gestión de memoria: Implementa elem.clear() y eliminación de nodos previos para
prevenir memory leaks durante procesamiento prolongado:

Listing 12: Gestión de memoria durante parsing
elem.clear()
while elem.getprevious () is not None:

del elem.getparent ()[0]

Batching multinivel: Utiliza dos niveles de batching :

• EMBEDDING_BATCH_SIZE (512): Para generación de embeddings en GPU.

• UPSERT_BATCH_SIZE (512): Para operaciones de inserción en Qdrant.

Extracción de metadatos

El sistema implementa una extracción completa de metadatos con manejo robusto de
formatos inconsistentes:

Parsing de fechas avanzado: parse_date_from_node() maneja múltiples formatos:

Listing 13: Función de parsing de fechas
def parse_date_from_node(date_node):

# Prioridad: Year/Month/Day -> MedlineDate -> fallbacks
year = safe_find_text(date_node , ".// Year")
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month_str = safe_find_text(date_node , ".// Month")
# Mapeo inteligente de meses (numericos y textuales)
month = MONTH_MAP.get(month_str.lower().strip(), month_str.

strip())

Extracción de abstracts estructurados: Maneja abstracts con etiquetas (BACKGROUND,
METHODS, RESULTS, CONCLUSIONS) mediante itertext() para capturar contenido ani-
dado.

Gestión de autores: Procesa listas de autores con fallbacks para nombres incompletos
y manejo de iniciales.

Metadatos enriquecidos: Extrae términos MeSH, palabras clave, DOIs, títulos de
journals y URLs de documentos.

Optimizaciones de rendimiento para producción

Configuración de Optimizador Qdrant: Ajusta parámetros para ingesta masiva:

Listing 14: Configuración del optimizador Qdrant
qdrant_client.update_collection(

collection_name=COLLECTION_NAME ,
optimizers_config=models.OptimizersConfigDiff(

indexing_threshold =100000 , # Optimizar menos
frecuentemente

flush_interval_sec =60 # Flushear menos
frecuentemente

)
)

Truncamiento de tokens: truncate_text_to_tokens() utiliza el tokenizer de BiomedNLP-
PubMedBERT para truncar a 510 tokens manteniendo coherencia semántica.

Retry Logic con Tenacity: Implementa reintentos exponenciales para operaciones
de red:

Listing 15: Implementación de retry logic
@retry(stop=stop_after_attempt (5), wait=wait_exponential(

multiplier =1, min=4, max =30))
def upsert_points_to_qdrant(points_to_upsert):

Procesamiento Incremental: Mantiene log de archivos procesados (processed_files.log)
para permitir reinicios sin reprocesamiento.

Gestión de dispositivos y embeddings

Detección automática de hardware: Configura automáticamente GPU/CPU ba-
sándose en disponibilidad de CUDA.

Modelo especializado: Utiliza microsoft/BiomedNLP-PubMedBERT (768 dimensio-
nes) optimizado para texto biomédico.
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Batching eficiente: Procesa embeddings en lotes para maximizar utilización de GPU
mientras controla uso de VRAM.

7.5. Sistema de ingesta Few-Shot (ingest_few_shots.py)

El sistema maneja la creación de una colección especializada para ejemplos de entre-
namiento que guían la generación de respuestas.

Carga y validación de datos

Listing 16: Función de carga de datos de entrenamiento
def load_training_data(filepath: str) -> list:

Implementa carga robusta con múltiples validaciones:

Detección de Estructura: Maneja tanto listas directas como objetos con clave "questions".

Validación de Integridad: Verifica la presencia de campos requeridos ("body") antes
del procesamiento.

Manejo de Errores JSON: Implementa logging detallado para errores de decodifi-
cación y estructura.

Procesamiento de ejemplos

El sistema procesa ejemplos manteniendo la estructura completa para una recupera-
ción posterior:

Input para embedding: Utiliza el texto de la pregunta ("body") para generar em-
beddings de búsqueda.

Output completo: Almacena el registro completo como JSON string para preservar
toda la información contextual.

Consistencia de modelos: Utiliza el mismo modelo de embedding (BiomedNLP-
PubMedBERT) que el sistema principal para garantizar coherencia semántica.

7.5.1. Preparación de Few-Shot

Este componente implementa un sistema sofisticado de optimización de ejemplos few-
shot específicamente diseñado para GPT-4o.

Pipeline de optimización GPT-4o

Listing 17: Función de creación de dataset optimizado para GPT-4o
def create_gpt4o_optimized_dataset(questions_data: List[Dict],

golden_answers_data: List[Dict]) -> List[Dict]:

Implementa optimizaciones específicas para modelos de última generación como GPT-
4o:
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Detección de Idioma: determine_language() utiliza análisis heurístico basado en
palabras clave para clasificación español/inglés.

Normalización de Tipos: extract_question_type() implementa mapeo consistente
de tipos de pregunta con fallbacks inteligentes.

Optimización de Longitud: Truncamiento automático con límites específicos (500
chars input, 2000 chars output) optimizados para la ventana de contexto de GPT-4o.

Limpieza y estructuración de datos

Listing 18: Función de limpieza y validación de texto
def clean_and_validate_text(text: str , max_length: int = None) ->

str:

Normalización de espacios: Elimina espacios extra y caracteres problemáticos me-
diante regex.

Truncamiento preservando palabras: Corta en límites de palabras para mantener
coherencia semántica.

Validación de entrada: Maneja casos edge como texto vacío, None, o tipos incorrec-
tos.

Optimización JSON

El desafío bioASQ solicita entregables en formato JSON por lo que se tuvo que trabajar
en el formato de salida (Nentidis et al., 2025).

Listing 19: Función de optimización de salida JSON
def optimize_json_output(data: Dict[str , Any]) -> str:

Implementa optimización específica para reducir usage de tokens:

Serialización compacta: Utiliza separadores mínimos y ensure_ascii=False.

Truncamiento automático: Reduce campos específicos (como ideal_answer) si el
output excede límites.

Preservación de estructura: Mantiene la estructura requerida mientras optimiza el
contenido.

Validación de Calidad

Listing 20: Función de validación de calidad de ejemplos
def validate_examples_quality(examples: List[Dict]) -> Dict[str ,

Any]:

Sistema completo de quality assurance:
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Validación de estructura: Verifica presencia de campos requeridos (input, output,
metadata).

Validación JSON: Confirma que el campo output contiene JSON válido.

Métricas de longitud: Valida que inputs y outputs tienen longitudes mínimas apro-
piadas.

Reporting detallado: Genera reportes con estadísticas e identificación específica de
problemas.

7.6. Utilidades de base de datos vectorial (vector_store_utils.py)

Proporciona la interfaz de alto nivel para búsqueda semántica en tiempo de ejecución.

7.6.1. Integración con LlamaIndex

Listing 21: Función de recuperación de ejemplos similares
def retrieve_similar_few_shot_examples(query_text: str , language:

str , top_k: int = 3) -> List[Dict]:

Embedding consistente: Utiliza Settings.embed_model de LlamaIndex para garan-
tizar coherencia con el sistema de embeddings principal.

Búsqueda semántica: Ejecuta búsqueda vectorial en la colección few-shot utilizando
cosine similarity.

Manejo elegante de errores: Implementa fallbacks apropiados cuando componentes
no están disponibles.

Gestión de dependencias

Imports condicionales: Maneja de forma elegante la ausencia de bibliotecas opcio-
nales.

Logging informativo: Proporciona mensajes claros sobre disponibilidad de compo-
nentes.

Configuración de timeout: Implementa timeouts apropiados para operaciones de
red.

7.6.2. Sistema de conversión de datos (convert_jsonl_to_json.py)

Herramienta especializada para conversión eficiente de formatos de datos con minimi-
zación de uso de memoria.
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Procesamiento streaming

Listing 22: Función de conversión JSONL a JSON con wrapper
def convert_jsonl_to_json_with_wrapper(input_jsonl_path: str ,

output_json_path: str , chunk_size: int = 100) -> bool:

Archivo Temporal: Utiliza tempfile.NamedTemporaryFile para construir el JSON
final de manera incremental.

Procesamiento línea por línea: Evita cargar el archivo completo en memoria pro-
cesando cada línea individualmente.

Wrapping Automático: Agrega automáticamente la estructura {"questions": [...]}
requerida por el formato BioASQ.

Optimizaciones de rendimiento

Chunked processing: Procesa archivos en chunks configurables para balancear me-
moria y rendimiento.

Progress reporting: Implementa logging periódico para monitorear progreso en ar-
chivos grandes.

Error recovery: Continúa procesamiento incluso cuando líneas individuales fallan,
reportando errores sin interrumpir el proceso completo.

7.7. Integración final y análisis arquitectónico global

El sistema implementa una arquitectura de microservicios distribuidos que integra
múltiples paradigmas de IA para crear una plataforma integral de question answering
biomédico multimodal.

La arquitectura tiene un patrón arquitectónico híbrido y combina elementos de:

Event-Driven architecture: Los agentes se comunican mediante estructuras de datos
estandarizadas que actúan como eventos entre componentes.

Pipeline architecture: El procesamiento sigue flujos estructurados con etapas bien
definidas.

Microservices pattern: Cada agente encapsula funcionalidad específica con interfaces
claramente definidas.

Repository pattern: La base de datos vectorial actúa como repositorio centralizado
de conocimiento científico.

7.7.1. Innovaciones técnicas

A continuación, menciono los elementos arquitectónicos más innovadores del sistema
o que ayudan a diferenciarlo de otros sistemas:
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Sistema de explicabilidad integrado

A mi parecer, la principal contribución técnica del sistema radica en la integración de
múltiples técnicas de explicabilidad visual:

Explicabilidad multimodal: Combina explicabilidad basada en atención (LLaVA),
activación (GradCAM), y gradientes (Integrated Gradients) en un pipeline unificado.

Mapeo Concepto-Región: método que correlaciona conceptos médicos extraídos por
LLaVA con regiones espaciales específicas mediante análisis de mapas de activación:

Bounding Boxes contextualizadas: Genera automáticamente bounding boxes eti-
quetadas que no solo identifican regiones, sino que las contextualiza dentro del dominio
médico específico.

Extracción de snippets a nivel de oración

Innovación en la forma de recuperación de información biomédica:

Mejor precisión: Mejor que métodos tradicionales de recuperación que devuelven
abstracts completos, extrayendo únicamente oraciones que responden directamente a la
pregunta.

Contextualización GPT-4o: Utiliza capacidades de comprensión avanzada para iden-
tificar relevancia semántica más allá del matching de keywords.

Preservación de Fuentes: Mantiene trazabilidad completa con PMIDs y scores de
relevancia para verificación científica.

Pipeline de procesamiento híbrido

Búsqueda dual: Combina base de datos vectorial local (Qdrant) con consultas en
tiempo real a PubMed API para maximizar cobertura y actualidad.

Few-Shot Learning contextual: Implementa recuperación semántica de ejemplos
few-shot que guían la generación de respuestas, lo que mejora la coherencia y la calidad
del sistema.

Enriquecimiento UMLS: Aplica terminología médica estandarizada selectivamente
solo a entidades clínicas identificadas, de modo de optimizar la eficiencia.

7.7.2. Flujos de procesamiento especializados

Se puede consultar el diagrama de la arquitectura para contextualizar este apartado.

Flujo de consultas de texto

1. Ingesta y clasificación: chatbot_agent clasifica tipo de pregunta con confirma-
ción interactiva del usuario.

2. Investigación dual: researcher_agent ejecuta búsqueda híbrida (Qdrant + Pub-
Med API).
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3. Extracción automática: GPT-4o extrae snippets relevantes a nivel de oración.

4. Enriquecimiento contextual: NER biomédica + mapeo UMLS/MeSH.

5. Síntesis especializada: writer_agent genera respuestas diferenciadas por tipo.

Flujo de consultas de imagen

1. Análisis visual primario: vision_agent (LLaVA) extrae conceptos y genera cap-
tions.

2. Explicabilidad multitécnica:

GradCAM para mapas de activación.

Attention Maps para análisis de atención.

Integrated Gradients para atribución.

3. Segmentación: SAM genera máscaras + GPT-4o etiqueta regiones.

4. Mapeo concepto-región: Método propio correlaciona conceptos con ubicaciones.

5. Visualización integrada: Genera imagen anotada + heatmaps + bounding boxes.

7.7.3. Optimizaciones de rendimiento y escalabilidad

Para concluir la descripción de la arquitectura del sistema MultimodalBioQA se
mencionan las optimizaciones utilizadas en cuanto a memoria y tolerancia a fallos.

Gestión de memoria y recursos

Quantización 4-bit: Reduce uso de VRAM en modelos de visión manteniendo preci-
sión.

Batching adaptativo: Optimiza throughput de embeddings y operaciones de base de
datos.

Cache multinivel: Pipelines NER, tickets UMLS, y embeddings con TTL configura-
bles.

Limpieza automática: Limpieza automática de archivos temporales y caché.

Tolerancia a fallos

Fallbacks elegantes: Cada componente implementa degradación elegante cuando al-
guna dependencia falla.

Procesamiento incremental: Capacidad de reanudar procesos interrumpidos sin pér-
dida de progreso. Esto es especialmente útil en los componentes que toman muchas horas
o días para ejecutarse como el fine-tuning del modelo de visión y lenguaje o la ingesta
de artículos médicos en la base de datos vectorial local.
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Cronograma general
La duración total estimada del proyecto es de aproximadamente 16 semanas, comen-

zando el 10 de marzo de 2025 y finalizando el 25 de junio de 2025.

8. Cronograma del Proyecto

Fase Tareas Semanas

Fase 1: Configuración y re-
visión de literatura

SetUp Inicial 1-4

Fase 2: Corpus y métricas Corpus + Métricas 5-6
Fase 3: Implementación de
sistemas baselines

Prototipos (para retos) 6-9

Fase 4: Evaluación de re-
sultados

Evaluar resultados de
desafíos

9-10

Fase 4: Desarrollo de sis-
tema integrado

Adaptar sistema inte-
grado

10-12

Fase 5: Experimentación Testeo Modelos Finales 12-15
Fase 6: Análisis y redac-
ción

Redacción Informe Fi-
nal

10-16

Cuadro 1: Cronograma de actividades del proyecto (marzo-junio 2025).

Fuente. Elaboración propia a partir de la planificación del proyecto.
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9. Resultados esperados

9.1. Resultado esperado 1
Lograr precisión de recuperación de información biomédica mediante arquitectura RAG hí-

brida.
Se espera demostrar que se logra precisión de recuperación de información científica para

responder preguntas exactas (exact_answers) mediante la implementación de un sistema RAG
híbrido que combine base de datos vectorial local (Qdrant) y consultas en tiempo real a PubMed
API.

Métricas de validación:

Performance competitivo en BioASQ Task 13b: posicionamiento entre los 10 primeros
lugares a nivel internacional.

Latencia optimizada: < 30 segundos para consultas textuales complejas.

Cobertura de literatura: acceso a > 30 millones de artículos PubMed con búsqueda semán-
tica.

9.2. Resultado esperado 2
Demostración de capacidad de procesamiento multimodal con explicabilidad integrada para

análisis de imágenes médicas.
Se espera validar la capacidad del sistema para procesar consultas multimodales (texto +

imagen) con explicabilidad integral, integrando análisis visual avanzado (LLaVA-LLaMA 3) con
técnicas de explicabilidad multitécnica (GradCAM, Attention Maps, Integrated Gradients) y
mapeo concepto-región.

Métricas de validación:

Performance en ImageCLEFmed Caption: posicionamiento destacado en el top 10 en tareas
de análisis visual médico.

Integración técnica: funcionamiento estable del pipeline completo de explicabilidad.

Mapeo concepto-región: generación automática de bounding boxes contextualizadas.

9.3. Resultado esperado 3
Implementación satisfactoria de sistema unificado multiagente para procesamiento biomédico

textual y visual.
Se espera demostrar la viabilidad de una arquitectura multiagente unificada que maneje

sin problemas consultas biomédicas textuales y visuales dentro de un framework coherente, con
agentes especializados convergiendo en un Writer Agent central para síntesis de respuestas con-
sistentes.

Métricas de validación:

Integración arquitectónica: funcionamiento estable de pipelines duales convergentes.

Escalabilidad operacional: manejo eficiente de cargas de trabajo mixtas.
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10. Aportes
A continuación, se presentan los principales aportes del sistema desarrollado:

10.1. Aportes metodológicos
10.1.1. Integración de técnicas de explicabilidad multimodal

Esta investigación contribuye metodológicamente mediante la integración sistemática de múl-
tiples técnicas de explicabilidad visual en un framework unificado para análisis de imágenes médi-
cas. La combinación de GradCAM, Attention Maps e Integrated Gradients con mapeo concepto-
región representa un avance en la aplicación de métodos de interpretabilidad complementarios
en el dominio biomédico. Esta aproximación permite obtener perspectivas explicativas multidi-
mensionales que abordan diferentes aspectos del proceso de toma de decisiones del modelo.

10.1.2. Arquitectura multiagente para procesamiento biomédico híbrido

El diseño arquitectónico propuesto constituye un aporte en el desarrollo de sistemas dis-
tribuidos para aplicaciones biomédicas complejas. La implementación de agentes especializados
con convergencia en un componente central de síntesis permite mantener especialización técnica
mientras se garantiza coherencia en los resultados. Esta aproximación demuestra la viabilidad
de manejar múltiples modalidades de entrada (texto e imagen) dentro de un framework arqui-
tectónico unificado.

10.1.3. Extracción de evidencia científica guiada por LLM

La investigación aporta una metodología para extracción de snippets a nivel de oración
utilizando capacidades de comprensión avanzada de large language models. Este enfoque supera
las limitaciones de métodos tradicionales basados en similarity scoring, permitiendo identificar
evidencia científica específica que responde directamente a consultas formuladas, mejorando la
precisión y relevancia de la información recuperada.

10.2. Aportes técnicos
10.2.1. Sistema RAG híbrido para área biomédica

Se desarrolló una infraestructura de recuperación augmentada que combina búsqueda vec-
torial local con consultas en tiempo real a bases de datos especializadas. La implementación
procesó exitosamente más de 30 millones de artículos PubMed utilizando embeddings especiali-
zados (BiomedNLP-PubMedBERT), estableciendo una base técnica para búsqueda semántica a
gran escala en literatura científica biomédica.

10.2.2. Mapeo Concepto-Región en imágenes médicas

La investigación desarrolló un método que correlaciona automáticamente conceptos médicos
extraídos por modelos multimodales con regiones espaciales específicas en imágenes médicas. Esta
funcionalidad permite generar bounding boxes contextualizadas con etiquetado semánticamente
coherente, contribuyendo al desarrollo de herramientas de análisis visual más interpretables para
aplicaciones clínicas.

10.2.3. Pipeline de explicabilidad integrado para modelos multimodales

Se implementó un sistema que procesa simultáneamente múltiples tipos de mapas de expli-
cabilidad (activación, atención, gradientes) y los integra en visualizaciones comprehensivas. Esta
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implementación técnica demuestra la factibilidad de combinar diferentes enfoques de interpreta-
bilidad en un pipeline operacional para análisis de imágenes médicas en tiempo real.

10.3. Aportes empíricos
10.3.1. Validación en benchmarks internacionales

Los resultados obtenidos en competencias internacionales especializadas proporcionan evi-
dencia empírica sobre la efectividad de los métodos propuestos. El posicionamiento competitivo
en BioASQ Task 13b (2◦ y 3◦ lugar) valida la efectividad del módulo textual, mientras que
los resultados en ImageCLEFmed Caption 2025, particularmente el 2◦ lugar en explicabilidad,
confirman la contribución en interpretabilidad visual.

10.3.2. Demostración de coexistencia entre performance y explicabilidad

La investigación proporciona evidencia empírica de que la integración de explicabilidad com-
prehensiva no compromete el performance competitivo en tareas especializadas. Los resultados
demuestran que sistemas con múltiples técnicas de interpretabilidad pueden mantener efectividad
comparable a sistemas optimizados únicamente para performance.

10.3.3. Escalabilidad de procesamiento multimodal

Los experimentos realizados confirman la viabilidad técnica de procesar volúmenes indus-
triales de literatura científica (30M+ artículos) manteniendo tiempos de respuesta operacionales
(< 30 segundos para consultas textuales y < 60 segundos para consultas visuales). Esta validación
empírica es relevante para la implementación de sistemas similares en entornos de producción.

10.4. Aportes al conocimiento disciplinar
10.4.1. Caracterización de arquitecturas agénticas en biomedicina

Esta investigación contribuye al entendimiento de cómo arquitecturas multiagente pueden
ser aplicadas efectivamente en dominios especializados que requieren procesamiento de múltiples
modalidades de información. Los resultados proporcionan insights sobre patrones de coordinación
entre agentes especializados y mecanismos de convergencia para síntesis de información compleja.

10.4.2. Evaluación de few-shot learning contextual en área biomédica

La implementación y evaluación de recuperación few-shot contextual mediante búsqueda
semántica aporta conocimiento sobre la efectividad de este enfoque en dominios técnicos es-
pecializados. Los resultados sugieren que la recuperación de ejemplos contextuales mejora la
consistencia de respuestas en tipos de pregunta específicos del dominio biomédico.

10.4.3. Análisis de integración modal en sistemas de question answering

Los resultados proporcionan evidencia sobre la viabilidad de integrar procesamiento textual
y de imagen en sistemas de Q&A biomédico manteniendo coherencia arquitectónica. Esta con-
tribución es relevante para el desarrollo de sistemas similares que requieran manejo simultáneo
de múltiples modalidades de información científica.
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11. Resultados
Los resultados del sistema de question answering biomédico multimodal con explicabilidad

incorporada se presentan en tres secciones principales: resultados de módulo de question ans-
wering textual, resultados de módulo de question answering visual y resultados de rendimiento
operacional.

11.1. Resultados del módulo de question answering textual
El módulo de question answering textual ha sido evaluado utilizando un conjunto de datos

de preguntas biomédicas conforme a los requisitos del desafío Task 13b de bioASQ (Nentidis
et al., 2025). Cada set de prueba consistía en alrededor de 80 preguntas de distinto tipo para
responder.

Para ese desafío se desarrollaron dos aplicaciones, una para concursar en la Fase A y A+
y otra para la Fase B. A continuación, se presentan los resultados obtenidos, los que fueron
obtenidos y validados por bioASQ (Nentidis et al., 2025).

Las aplicaciones fueron evaluadas en los conjuntos de pruebas oficiales BioASQ 13B. Se
informa el rendimiento en todos los lotes de las fases en las que participaron los sistemas: Lotes
3 y 4 de las Fases A, A+ y B. Los resultados incluyen métricas para respuestas exactas (con
desglose por tipo de pregunta) y respuestas ideales (puntuaciones ROUGE). Las tablas 1, 2 y 3
resumen las métricas de evaluación de los sistemas, tal y como las proporciona la herramienta
de evaluación de los organizadores de BioASQ (Nentidis et al., 2025).

11.1.1. Resultados de la Fase A

Cuadro 2: Fase A: Snippetss

Lote Mean Prec. Recall F Measure MAP GMAP

Lote 3 0.0254 0.1097 0.0392 0.0000 0.0000
Lote 4 0.0177 0.1318 0.0292 0.0000 0.0000

Rendimiento de la Fase A

En la Fase A (Tabla 1), los resultados no fueron óptimos debido a dos factores principales:
una base de datos vectorial incompleta y las limitaciones de la API de PubMed. La base de datos
de PubMed contiene más de 30 millones de registros y, lamentablemente, no se pudo completar
el proceso de indexación a tiempo para este desafío. Además, evaluaciones recientes e informes de
competiciones destacan varios retos a la hora de utilizar la API de PubMed para la extracción de
fragmentos y las métricas asociadas, especialmente en tareas de respuesta a preguntas biomédicas
y recuperación de información. Los principales problemas identificados son:

Baja recuperación y resultados incompletos: La API de PubMed a menudo devuelve
documentos insuficientes o inexistentes para las consultas tipo pregunta, lo que provoca una
baja recuperación en las tareas de recuperación. Esta limitación afecta significativamente
a la eficacia de la extracción de fragmentos, ya que el conjunto de resúmenes candidatos
es inadecuado.

Rendimiento de la extracción de fragmentos: Cuando los fragmentos se extraen
utilizando métodos basados en modelos lingüísticos amplios (por ejemplo, el método de la
cadena de pensamiento GPT-3.5), la recuperación y la precisión media de los fragmentos
suelen estar por debajo de la media en comparación con otros sistemas.
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Esto representa un área de mejora, ya que la limitación de la API podría solucionarse man-
teniendo una base de datos vectorial completa de PubMed. Producto de esta experiencia se
desarrolló un sistema de ingesta de literatura biomédica que permite la indexación completa de
los artículos de PubMed, lo que se detalla en la sección de Metodología.

11.1.2. Resultados de la Fase A+

En la Fase A+, evaluamos el rendimiento del sistema en la respuesta a preguntas biomédicas
a través de múltiples tipos de respuesta. Esta fase evalúa tanto la capacidad del sistema para
proporcionar respuestas cortas precisas (sí/no, factoides y preguntas de lista) como su capacidad
para generar respuestas ideales basadas en pruebas. En las tablas siguientes se presentan los
resultados del lote 3, con métricas estándar como la precisión, la puntuación F1 macromediada,
el rango recíproco medio (MRR), la precisión, la recuperación y la medida F de las respuestas
exactas, así como las puntuaciones ROUGE de las respuestas ideales. Estos resultados ofrecen
una visión completa de la eficacia del sistema en el manejo de diversas tareas biomédicas de
aseguramiento de la calidad.

Cuadro 3: Fase A+: Lote 3: Respuesta exacta

Yes/No Factoid List

System Acc. F1
Ye

s

F1
No

M
ac

ro
F1

S.
Acc.

L.
Acc.

M
RR

M
. P

rec
.

Reca
ll

F-
M

AQAMS 0.8182 0.8750 0.6667 0.7708 0.1500 0.2000 0.1750 0.3394 0.3586 0.3478

Cuadro 4: Fase A+: Lote 3: Respuesta ideal (Puntuación Rouge)

R-2 (Rec) R-2 (F1) R-SU4 R-SU4 (F1)

0.2135 0.0690 0.2516 0.0778

Para la Fase A+ (Tabla 2), el sistema de Q&A textual alcanzó una precisión sí/no del 92,31 %,
con una puntuación F1 del 94,74 % para las respuestas “sí” y del 85,71 % para las respuestas
“no” (media macro F1 = 90,23 %). Esto indica que nuestro sistema manejó las preguntas sí/no
con eficacia, probablemente debido a que la plantilla de preguntas guiaba al modelo GPT para
proporcionar respuestas directas sí/no apoyadas en pruebas.

Cuadro 5: Fase A+: Lote 4: Respuesta exacta

Yes/No Factoid List

System Acc. F1
Ye

s

F1
No

M
ac

ro
F1

S.
Acc.

L.
Acc.

M
RR

M
. P

rec
.

Reca
ll

F-
M

AQAMS 0.9231 0.9474 0.8571 0.9023 0.4091 0.4091 0.4091 0.2807 0.2897 0.2778

Las puntuaciones factoides para el sistema de Q&A textual en el Lote 4 fueron de aproxi-
madamente 0,41 para la precisión estricta, la precisión indulgente y el rango recíproco medio
(MRR). Esto indica que aproximadamente el 41 % de las preguntas factoides tenían la cadena
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Cuadro 6: Fase A+: Lote 4: Respuesta ideal (Puntuación Rouge)

R-2 (Rec) R-2 (F1) R-SU4 (Rec) R-SU4 (F1)

0.1840 0.0616 0.2273 0.0763

de respuesta correcta presente (aunque fuera parcialmente) en las respuestas exactas. El rendi-
miento de las preguntas factoides, aunque moderado, refleja la dificultad de localizar entidades
exactas en un entorno de recuperación abierto: los errores se debían a que el sistema proporcio-
naba respuestas correctas que no coincidían exactamente con el formato de referencia o a que
faltaba una de las múltiples respuestas correctas.

Las preguntas con listas resultaron más difíciles para el sistema de Q&A textual en la fase
A+: se obtuvo una puntuación F1 de 0,2778, con una precisión de ∼0,28 y una recuperación de
∼0,29. La baja precisión de las listas sugiere que mi sistema a veces no era capaz de responder con
precisión. La baja precisión en preguntas de tipo lista sugiere que el sistema a veces pronosticó en
exceso elementos que no estaban en la lista gold (incluidos elementos plausibles, pero incorrectos),
mientras que la magnitud similar de la recuperación indica que tampoco acertó muchos elementos
gold. Esto no es sorprendente, ya que las preguntas de tipo lista suelen requerir la recuperación
exhaustiva de muchos datos relevantes; si no se recuperaran documentos relevantes debido al
índice vectorial parcial, el sistema no incluiría esos elementos en la lista.

Las puntuaciones ROUGE de respuesta ideal para el sistema de Q&A textual fueron ROUGE-
2 F1 = 0,0616 y ROUGE-SU4 F1 = 0,0763. Estas puntuaciones, aunque aparentemente bajas,
son típicas en la evaluación de respuestas ideales de BioASQ, ya que incluso las respuestas ideales
escritas por humanos pueden diferir en su redacción (Nentidis et al., 2025). Nuestro ROUGE-2
recall de 0,1840 muestra que aproximadamente el 18 % de los bigramas de las respuestas ideales
de referencia estaban presentes en nuestras respuestas, lo que representa una cobertura razonable,
pero deja margen de mejora en la selección de contenidos.

11.1.3. Resultados de la fase B

En la fase B, del sistema de Q&A textual demostró un buen rendimiento. Las preguntas
sí/no se respondieron con un 95,45 % de precisión (macro F1 = 93,94 %), lo que indica un único
error en todas las preguntas sí/no del lote 3. La estrategia del sistema de comprobación del
contenido de los fragmentos para ver si son afirmativos o negativos fue muy eficaz. La estrategia
del sistema de comprobar el contenido del fragmento en busca de pruebas afirmativas o negativas
demostró su eficacia. La puntuación F1 de las respuestas “sí” fue del 96,97 %, ligeramente superior
a la de las respuestas “no” (90,91 %), lo que sugiere que quizá una pregunta “no” se respondió
incorrectamente o con menos confianza.

Cuadro 7: Fase B: Lote 3: Respuestas exactas

Yes/No Factoid List

System Acc. F1
Ye

s

F1
No

M
ac

ro
F1

S.
Acc.

L.
Acc.

M
RR

M
. P

rec
.

Reca
ll

F-
M

AQAMS2 0.9545 0.9697 0.9091 0.9394 0.3000 0.3500 0.3250 0.6333 0.6456 0.6310

Los resultados en preguntas de tipo factoide del sistema de Q&A textual fueron un 30,00 %
de precisión estricta y un 35,00 % de precisión indulgente, con una MRR de 0,3250. Estas pun-
tuaciones son algo inferiores a las obtenidas por el sistema de Q&A textual en la fase A+, lo que
parece contraintuitivo dado que la fase B proporciona fragmentos relevantes. Tras un análisis
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Cuadro 8: Fase B: Lote 3: Respuestas ideales (puntuaciones Rouge)

R-2 (Rec) R-2 (F1) R-SU4 (Rec) R-SU4 (F1)

0.3567 0.1888 0.3643 0.1795

más detallado, esto puede deberse a que algunas preguntas factoides del Lote 3 requerían una
síntesis a partir de varios fragmentos o implicaban formatos de respuesta difíciles (por ejemplo,
un nombre de gen específico entre muchos). En varios casos, la respuesta exacta de mi siste-
ma era parcialmente correcta, pero no una coincidencia exacta, lo que afectaba a la precisión
estricta. El hecho de que la precisión indulgente fuera un 5 % superior implica que, en algunos
casos, la respuesta contenía un elemento correcto, pero omitía otros para factoides con múltiples
respuestas aceptables.

Cuadro 9: Fase B: Lote 4: Respuestas exactas

Yes/No Factoid List

System Acc. F1
Ye

s

F1
No

M
ac

ro
F1

S.
Acc.

L.
Acc.

M
RR

M
ea

n Pr
ec.

Reca
ll

F-
M

AQAMS2 0.9231 0.9500 0.8333 0.8917 0.5455 0.5455 0.5455 0.5904 0.4934 0.5277

Cuadro 10: Fase B: Lote 4: Respuestas ideales (Puntuaciones Rouge)

R-2 (Rec) R-2 (F1) R-SU4 (Rec) R-SU4 (F1)

0.3077 0.1787 0.3274 0.1837

El rendimiento de las preguntas de tipo lista en la fase B fue especialmente notable: el sistema
de Q&A textual obtuvo un F1 de 0,6310, con una precisión de ∼0,633 y una recuperación de
∼0,646. Esto representa una mejora sustancial con respecto al rendimiento de la lista de la fase
A+. Con los snippets gold disponibles, el sistema pudo identificar la mayoría o la totalidad de
los elementos de la lista mencionados, lo que dio lugar a una alta recuperación, manteniendo
la precisión. Lo atribuimos al enfoque basado en NER: al extraer entidades de los snippets
(fragmentos de artículos), el sistema de Q&A textual pudo enumerar los elementos directamente
a partir del texto, minimizando las respuestas perdidas y las adiciones irrelevantes.

Las puntuaciones ROUGE de la respuesta ideal en la fase B también fueron más altas:
ROUGE-2 F1 = 0,1888 (aproximadamente 3 veces la del sistema de Q&A textual de la Fase A)
y ROUGE-SU4 F1 = 0,1795, con una recuperación de alrededor de 0,36 para ambas métricas. Esto
indica que las respuestas ideales generadas por el sistema de Q&A textual tenían un solapamiento
sustancialmente mayor con las respuestas de referencia. La recuperación de ROUGE-2 de ∼0,3567
sugiere que nuestras respuestas capturaron aproximadamente el 35 % del contenido de bigramas
de las respuestas ideales gold, lo que representa una cobertura significativa.

La mejora en el rendimiento de las respuestas ideales puede explicarse por el contexto sim-
plificado: con snippets limitados centrados en la pregunta, el agente Writer podía incluir más
fácilmente hechos relevantes y frases presentes en los snippets, que a menudo se alinean con las
respuestas de referencia (ya que esas referencias a menudo se derivan de los mismos snippets).
Esencialmente, las respuestas ideales de la Fase B constituyen resúmenes guiados por fragmentos
de artículos (snippets) que el sistema gestionó eficazmente utilizando las pruebas proporcionadas.
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11.2. Resultados del módulo de question answering visual
Las tres tareas fueron evaluadas en los conjuntos de test oficiales de ImageCLEFmedical

(Damm & et al., 2025). Se reporta el rendimiento en todas las tareas en las que participó el
sistema: Detección de conceptos, Predicción de captions y Explicabilidad. Los resultados incluyen
diferentes métricas para cada tarea, como se explicó anteriormente en la Sección 5.12.2. Las
Tablas 1, 2 y 3 resumen las métricas de evaluación para nuestro sistema, según lo proporcionado
por la herramienta oficial de evaluación de los organizadores de ImageCLEF (Damm & et al.,
2025).

11.2.1. Resultados en Detección de conceptos

Para consultar los resultados de Detección de conceptos, véase la Tabla correspondiente.

Cuadro 11: Resultados de la detección de conceptos

Método F1 F1 secundario

Sistema 0.3982 0.8329

F1: Puntuación F1 primaria. Media armónica entre precisión y exhaustividad para la tarea
principal de detección de conceptos, indicando el equilibrio entre falsos positivos y falsos
negativos.

F1 secundario: Puntuación F1 secundaria. Puntuación F1 para una tarea auxiliar o secun-
daria de detección de conceptos (por ejemplo, conceptos manuales).

11.2.2. Resultados en Predicción de captions

Para consultar los resultados de Predicción de captions, véase la Tabla correspondiente.

Cuadro 12: Resultados de la predicción de captions

Simil. BERT ROUGE-1 BLEURT P.Rel. UMLS F1 AlignS P.Fact. Global

0.8251 0.5953 0.2389 0.3094 0.4922 0.1366 0.0964 0.1165 0.3043

Similitud: Similitud de texto entre el caption predicho y el de referencia (por ejemplo,
coseno o Levenshtein).

BERTScore (Recall): Similitud semántica basada en embeddings contextuales de BERT,
centrada en el recall.

ROUGE-1: Superposición de unigramas (palabras individuales) entre la predicción y la
referencia; común en tareas de resumen.

BLEURT: Métrica aprendida para evaluar generación de texto, combinando distintos as-
pectos de calidad.

Promedio de relevancia: Promedio de la puntuación de relevancia entre el caption generado
y la imagen.

UMLS Concept F1: Puntuación F1 que mide la coincidencia de conceptos UMLS (Unified
Medical Language System) entre predicción y referencia.
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AlignScore: Indica qué tan bien el contenido semántico del caption generado se alinea con
la imagen o el caption de referencia.

Promedio de factualidad: Media de la corrección factual de los captions generados, evaluada
automática o manualmente.

Global: Puntuación global agregada/resumida que sintetiza el rendimiento del modelo en
varias métricas.

11.2.3. Resultados en explicabilidad

Para consultar los resultados de la tarea de Explicabilidad, véase la Tabla correspondiente.

Cuadro 13: Tarea de explicabilidad - Resultados de evaluación humana

L.C. A.Clin. N.D.C. F.C. P.M.C. Coh. V-T Comp.V F.V. P.M.V. A.M. Global

3.4 2.4 2.8 4.1 3.2 1.9 1.9 1.9 1.9 2.0 2.6

Legibilidad del caption (L.C.): Facilidad de lectura y comprensión del caption.

Adecuación clínica del caption (A.Clin.): Relevancia y adecuación médica o clínica.

Nivel de detalle del caption (N.D.C.): Cantidad de detalle relevante en el caption.

Foco del caption (F.C.): Si el caption se centra en el hallazgo o sujeto principal.

Puntuación media del caption (P.M.C.): Media de la evaluación humana en todos los
criterios del caption.

Coherencia visual-textual (Coh. V-T): Consistencia y claridad entre la visualización y el
caption.

Completitud de la visualización (Comp.V): Si la visualización es suficientemente completa
para la tarea.

Foco de la visualización (F.V.): Enfoque de la visualización sobre la región o hallazgo clave.

Puntuación media de la visualización (P.M.V.): Media en los criterios de visualización.

Adecuación de la metodología (A.M.): Idoneidad de la metodología según expertos huma-
nos.

Global: Evaluación global humana.

11.3. Resultados operacionales
Métricas de latencias del sistema

Estas métricas se obtuvieron a partir de la ejecución del sistema en un entorno de producción
simulado, utilizando un conjunto de datos de prueba representativo del 10 % de los test set. Las
métricas se calcularon durante un período de 48 horas con cargas de trabajo típicas.
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11.3.1. Latencias del sistema

Componente Latencia Media (s) Desviación Estándar (s)

Búsqueda Qdrant 3 0.5
Flujo visual 56 9
Flujo textual 17 3

Cuadro 14: Análisis de latencias por componente del sistema multimodal.

Capacidad de respuesta: >99 % para preguntas de tipo textual y visual.
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12. Análisis y Discusión
La evaluación de sistemas de Question Answering (Q&A) biomédico multimodal presenta

desafíos metodológicos importantes debido a la ausencia de estándares consolidados que aborden
la complejidad inherente de la integración multimodal en dominios especializados. Esta limitación
metodológica está muy acentuada en el contexto biomédico, donde la evaluación debe considerar
no solo la precisión técnica sino también la relevancia y la interpretabilidad clínica.

Ante esta ausencia de marcos de evaluación estandarizados para sistemas multimodales in-
tegrados, recurriré a un enfoque de evaluación modular que permitirá la validación sistemática
de componentes individuales antes de proceder a la evaluación del sistema completo.

Considerando la necesidad de obtener retroalimentación de primer nivel en desafíos globales
de inteligencia artificial médica, el presente estudio adopta una metodología de evaluación
tripartita que descompone el análisis en componentes especializados:

12.1. Estructura de evaluación modular
12.1.1. Evaluación cuantitativa del módulo de Question Answering Textual

El componente textual del sistema se someterá a evaluación siguiendo los protocolos esta-
blecidos en el Task 13b de BioASQ (Nentidis et al., 2025), el cual representa el estándar de
facto para la evaluación de sistemas de Q&A biomédico. El detalle de las métricas utilizadas
se encuentra en la sección 5.12.1 y proporcionan un baseline comparable con el estado del arte
internacional.

La selección del Task 13b de BioASQ se justifica por su adopción generalizada en la comuni-
dad de investigación biomédica y su metodología de evaluación rigurosa que considera tanto la
precisión factual como la coherencia clínica de las respuestas generadas.

12.1.2. Evaluación cuantitativa del módulo de Question Answering Visual

El componente visual se evaluará conforme a los criterios establecidos en el ImageCLEF-
medical Caption Task (Damm & et al., 2025), el cual constituye la competencia internacional
más reconocida para la generación de captions médicos automatizados. El detalle de las métricas
utilizadas se encuentra en la sección 5.12.2.

La utilización del reto ImageCLEFmedical permite la comparación directa con sistemas espe-
cializados en análisis de imágenes médicas, proporcionando contexto para evaluar el rendimiento
del componente visual en relación con el estado del arte específico del dominio.

12.1.3. Análisis cualitativo de la integración multimodal

Dado que aún no son comunes los sistemas multimodales aplicados al área médica y a que
existe una ausencia de benchmarks específicos, se realizará un análisis cualitativo completo que
examine los siguientes puntos:

Flujo de Q&A textual: Evaluación de la capacidad del sistema para generar respuestas
coherentes y relevantes a partir de la información textual.

Flujo de Q&A visual: Evaluación de la capacidad del sistema para generar respuestas
coherentes y relevantes a partir de la información visual y textual integrada.

Coherencia inter-modal: Evaluación de la coherencia textual-visual y fusión semántica.

Arquitectura agéntica: Evaluación del aporte de la arquitectura agéntica en sistemas
biomédicos multimodales.
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Benchmarking disciplinarios

La utilización de competencias internacionales establecidas como BioASQ (Nentidis et al.,
2025) y ImageCLEFmedical (Damm & et al., 2025) asegura la comparabilidad con trabajos
previos y proporciona contexto para la evaluación del rendimiento relativo. Esta aproximación
permite situar el rendimiento del sistema desarrollado dentro del panorama competitivo interna-
cional, lo que facilita la identificación de áreas de mejora y fortalezas comparativas.

Contribución a la validación de sistemas multimodales
Esta metodología contribuye al corpus de conocimiento en evaluación de sistemas multimo-

dales al proporcionar un framework replicable para la validación sistemática de sistemas Q&A
biomédicos complejos. La adopción de estándares internacionales establecidos para componen-
tes individuales, combinada con análisis cualitativo riguroso para la integración, constituye un
aporte metodológico que puede ser adoptado por futuros trabajos en el dominio.

Limitaciones y consideraciones metodológicas
Es importante reconocer las limitaciones inherentes a esta aproximación metodológica. La

evaluación modular, aunque rigurosa para componentes individuales, puede no capturar comple-
tamente los efectos sinérgicos o antagónicos que emergen de la integración multimodal.

Asimismo, la dependencia de estándares establecidos para componentes individuales puede
introducir sesgos hacia arquitecturas y enfoques específicos que han sido optimizados para esas
tareas particulares. El análisis cualitativo de la integración busca identificar y documentar estos
posibles sesgos para informar futuras iteraciones del sistema.

Cronograma de evaluación
La implementación de esta metodología tripartita seguirá un cronograma estructurado que

permite la optimización iterativa del sistema:

1. Fase 1: Evaluación cuantitativa del módulo textual (Task 13b BioASQ)

2. Fase 2: Evaluación cuantitativa del módulo visual (ImageCLEFmedical Caption)

3. Fase 3: Análisis cualitativo de la integración multimodal (Flujo multimodal, coherencia
textual-visual, arquitectura agéntica)

Esta secuencia permite la identificación temprana de problemas en componentes individuales
antes de proceder al análisis más complejo de la integración, lo que optimiza el uso de recursos
y facilita la interpretación de resultados.

12.2. Análisis de rendimiento del módulo de question answering
textual

12.2.1. Rendimiento en la Fase A y A+

El rendimiento comparativo en la Fase A y A+ con el de la Fase B pone de relieve el impacto
significativo de las condiciones de recuperación en la eficacia de la respuesta a las preguntas.
Los puntos fuertes del sistema de Q&A textual residen en su enfoque híbrido de recuperación
y en la generación basada en preguntas. La alta precisión de sí/no (más del 92 %) en la Fase
A+ sugiere que cuando se recuperan pruebas relevantes, el Agente Escritor basado en GPT
puede inferir correctamente respuestas de sí/no, una tarea que esencialmente requiere identificar
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la presencia o ausencia de una afirmación. La plantilla de preguntas probablemente ayudó al
solicitar explícitamente una respuesta de “sí” o “no”, abordando uno de los retos señalados por
otros equipos de que los modelos generativos a veces producen respuestas inciertas o verbales a
preguntas de sí/no.

Otro resultado positivo del sistema de Q&A textual fue su precisión indulgente con los fac-
toides (∼0,41), lo que indica que en aproximadamente el 41 % de las preguntas, la respuesta
correcta estaba presente en algún lugar del resultado. La inspección manual reveló que muchos
errores de factoides no se debían a fallos completos, sino a problemas de formato y coincidencias
parciales. Se trata de problemas comunes en BioASQ que podrían mitigarse mediante un pro-
cesamiento posterior (por ejemplo, reconociendo cuándo una respuesta contiene una forma más
larga y proporcionando también la forma más corta).

La menor precisión y recuperación de las preguntas de lista en el sistema de Q&A textual pone
de manifiesto el reto que supone una recuperación exhaustiva: dado que la base de datos vectorial
sólo estaba completa en un 15 %, es probable que algunos elementos de la lista simplemente no se
encontraran. Además, la decisión de utilizar sólo los fragmentos recuperados para la generación
de respuestas (para evitar la sobrecarga de información en la pregunta) significa que, si los
elementos de la lista estuvieran dispersos en muchos documentos, algunos se omitirían. En futuras
iteraciones, una posible mejora es incorporar un método de recuperación iterativo o utilizar el
propio modelo de lenguaje para sugerir elementos adicionales (por ejemplo, utilizar GPT en una
función de lluvia de ideas para predecir otras entidades probables de la lista y, a continuación,
verificarlas mediante la recuperación).

12.2.2. Rendimiento en la Fase B

Para el sistema de Q&A textual, el escenario de la Fase B nos permitió centrarnos en la
síntesis y justificación de las respuestas. El alto rendimiento en las preguntas de lista puede
atribuirse a la estrategia basada en NER. Al extraer todas las entidades de determinados tipos
de fragmentos, redujimos la posibilidad de omitir un elemento.

Otra observación de la fase B fue la mejora de las puntuaciones ROUGE en las respuestas
ideales. Las respuestas ideales del sistema de Q&A textual se beneficiaron de estar estrechamente
ligadas al fraseo del fragmento, realizando de forma efectiva un resumen extractivo. De este
modo, se conseguía un alto grado de recall de las frases de referencia, pero a veces se producía
una falta de originalidad o una redundancia menor. Por ejemplo, si dos fragmentos de texto se
solapaban, la respuesta ideal a veces repetía un hecho. Por lo general, ROUGE lo detectaba (ya
que la repetición no mejora el recall más allá de un punto), pero se podía conseguir un resumen
más elegante fusionando la información. En esencia, nuestras respuestas ideales en la fase B eran
seguras y se ajustaban al tema (lo que se refleja en el buen recall), pero hay margen para hacerlas
más concisas e integradas.

12.2.3. Análisis global del módulo de question answering textual

Estos resultados demuestran que ambos sistemas son eficaces en sus respectivos escenarios.
Más allá del problema de la métrica en la Fase A debido a la API de Pubmed, el pipeline de
recuperación del sistema de Q&A textual (Fase A+) permitió una fuerte respuesta sí/no y un
rendimiento factoide aceptable en un entorno de dominio abierto, pero tuvo problemas con la
amplitud de las preguntas de la lista y tuvo una menor superposición en las respuestas ideales
(probablemente debido a diferencias en el estilo de escritura o contenido faltante).

Por otra parte, el sistema de Q&A textual de la Fase B, que funcionaba con los snippets
proporcionados, tuvo un desempeño sobresaliente a la hora de proporcionar respuestas completas
a las listas y resúmenes ideales con mayor solapamiento, a pesar de una precisión ligeramente
inferior en los factoides (un área de mejora para futuras investigaciones).
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Es importante señalar que las puntuaciones de BioASQ pueden variar significativamente de
un lote a otro y que los resultados publicados son preliminares; sin embargo, los resultados de
los sistemas probados fueron coherentes con los de los sistemas de mayor rendimiento en algunos
lotes. Por ejemplo, las puntuaciones F1 en preguntas dicotómicas (sí/no) en la Fase A+ y las
preguntas tipo lista en la Fase B se encontraban entre las más altas del lote 4 y 3, respectivamente,
según la clasificación oficial como se puede consultar en el Anexo C.

A nivel general, el sistema participante es un sistema competitivo de rango medio-alto que
demuestra estabilidad. Por último, es importante señalar que he recibido notificación de la acep-
tación del paper de las working notes para esta Tarea 13b de bioASQ.

12.3. Análisis de rendimiento del módulo de question answering
visual

12.3.1. Detección de conceptos

El sistema desarrollado alcanzó una puntuación F1 de 0.3982 en la tarea de detección de
conceptos, lo que indica un éxito moderado en la identificación de las etiquetas correctas de las
imágenes. Este valor es inferior al F1 del mejor equipo (0.5888), lo que sugiere que, aunque mi mé-
todo identifica muchos conceptos relevantes, omite algunos en comparación con el enfoque líder.
Es importante señalar que el sistema tuvo un rendimiento mucho mejor en la métrica secundaria
F1 (0.8329 frente a 0.9484 del mejor equipo), la cual se calcula sobre un subconjunto curado
de conceptos clave. Estos resultados demuestran una buena cobertura de las características im-
portantes de las imágenes y, con un mayor refinamiento (como una mejor desambiguación de
conceptos similares o un mejor recall para hallazgos menos comunes) la F1 primaria del modelo
podría acercarse al mejor resultado reportado.

12.3.2. Predicción de captions

El modelo de generación de captions (captions) alcanzó una puntuación global de 0.3043 en
la tarea de predicción de captions. Esta métrica, que agrega varios aspectos de la evaluación,
representa una brecha de aproximadamente el 10 % de la puntuación global del equipo líder
(0.3432). El resultado sugiere que los captions generados por el modelo son en general efectivos,
aunque existe una pequeña brecha respecto al mejor desempeño en este reto. El análisis de las
métricas individuales proporciona mayor claridad sobre las fortalezas del sistema. El modelo
logró una puntuación alta en similitud textual (0.8251) y un BERTScore (Recall) de 0.5953,
casi igualando el BERTScore del mejor equipo (0.5977). Estas cifras indican que, en cuanto a
solapamiento de contenido y redacción, nuestros captions se asemejan mucho a los informes de
referencia y capturan eficazmente las observaciones descritas.

El sistema también obtuvo puntuaciones moderadas en ROUGE-1 (0.2389) y BLEURT
(0.3094), lo que refleja un solapamiento razonable con el texto de referencia y una calidad ge-
neral aceptable de los captions, según estas métricas. Además, con una puntuación promedio de
relevancia de 0.4922, los captions generados capturaron una parte sustancial de la información
clave de los informes de referencia. En conjunto, estos resultados destacan la fortaleza del sistema
para producir descripciones coherentes y relevantes que se alinean con el contenido esperado del
dataset.

A pesar de estas fortalezas, nuestro sistema de generación de captions muestra ciertas li-
mitaciones en cuanto a precisión específica de dominio y alineación factual. La puntuación F1
de conceptos UMLS fue 0.1366, notablemente inferior al 0.1816 del mejor equipo, lo que indica
que nuestros captions a menudo omiten o identifican erróneamente algunos términos médicos
especializados o hallazgos específicos presentes en la referencia.

De forma similar, el AlignScore de 0.0964 (frente a 0.1375 de la mejor solución) sugiere que
la alineación entre el contenido de la imagen y el caption podría mejorar; por ejemplo, algunas
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descripciones generadas pueden incluir detalles que no están suficientemente respaldados por la
evidencia visual.

El promedio de factualidad de 0.1165 también queda por detrás del resultado líder (0.1596),
reflejando inconsistencias factuales ocasionales o pequeñas alucinaciones en el texto generado.
Estas diferencias señalan oportunidades de mejora: integrar bases de conocimiento médico, refinar
la extracción de características visuales o incorporar mecanismos explícitos de verificación factual
podrían ayudar al modelo a captar detalles clínicos con mayor precisión y aumentar la veracidad
de los captions.

En general, nuestros resultados en la predicción de captions son competitivos en calidad
lingüística y relevancia, pero ponen de manifiesto la necesidad de mejoras específicas en la captura
de información médica y la garantía de exactitud factual.

12.3.3. Explicabilidad

En la tarea de explicabilidad, un experto humano evaluó la calidad de las explicaciones
generadas por cada sistema, considerando tanto el caption textual como la visualización asociada
para cada imagen. Las explicaciones de mi sistema lograron una puntuación global de 2.6 sobre
5, en comparación con el 3.2 del mejor equipo. Esto indica un desempeño respetable del método,
aunque por debajo del enfoque mejor valorado. Analizando los componentes de la evaluación
de explicabilidad, mi enfoque muestra una fortaleza particular en la explicación textual. La
puntuación media de calidad del caption fue de 3.2, lo que sugiere que la claridad y utilidad
clínica de los captions generados fueron bien valoradas, prácticamente al mismo nivel que el
sistema líder en este aspecto.

De forma aún más destacada, mi método obtuvo una puntuación de enfoque del caption
de 4.1, mucho más alta que la del mejor equipo (3.3). Esta puntuación excepcionalmente alta
indica que los evaluadores humanos consideraron que mis captions se centraron eficazmente en
los hallazgos relevantes de la imagen, enfocando de manera precisa el contenido clínico clave
a explicar. En otras palabras, el sistema destacó por dirigir la explicación hacia los detalles
importantes, lo que constituye una fortaleza crítica en el contexto médico.

Por otro lado, la componente visual de las explicaciones recibió una evaluación relativamente
baja. La puntuación media de visualización fue de 1.9, considerablemente inferior a la del mejor
equipo (2.8). Esto sugiere que mi estrategia durante el reto para las explicaciones visuales no
fue tan clara o informativa como se esperaba. En términos prácticos, lo que sucedió fue que
utilicé un método experimental que mezclaba técnicas de PLN biomédico con técnicas de visión
computacional y, como usaba más de un modelo, no respondía a explicar el black-box del modelo.

El no haber proporcionado en el reto los resultados de Grad-CAM generó que la metodología
del mejor equipo fue valorada en 4.0, mientras que mi enfoque obtuvo una puntuación inferior en
este aspecto. Al mejorar la sinergia entre el caption y su justificación visual las futuras versiones
del sistema podrían ofrecer una experiencia de explicabilidad más completa y convincente.

Esto me llevó a incorporar Grad-CAM directamente del modelo LLaVA-LLaMA en la versión
unificada del sistema que se presenta en este trabajo; es decir, incorporé de forma proactiva el
feedback recibido para mejorar el sistema.

En resumen, los resultados de explicabilidad subrayan un fuerte enfoque y relevancia en los
captions textuales, lo que representa un punto destacado del sistema, y al mismo tiempo revelan
oportunidades claras de mejora en la componente visual de la explicación. Aprovechar estas
fortalezas y abordar los problemas de claridad visual en trabajos futuros permitirá proporcionar
explicaciones para imágenes médicas más equilibradas y efectivas.

12.3.4. Análisis global de módulo de Q&A visual

En general los resultados del módulo de Q&A visual muestran un rendimiento competitivo
en las tareas de detección de conceptos y generación de captions. Aunque con margen de mejora
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en la alineación semántica y la precisión factual, el sistema ha sido evaluado en séptimo y sexto
lugar entre 75 y 77 participantes (Anexo D), quienes han enviado 107 y 156 submissions para
las tareas de concepts y caption, respectivamente («AI4MediaBench», s.f.). Por otra parte, la
puntuación de explicabilidad indica que el sistema es capaz de generar explicaciones textuales
relevantes y centradas en los hallazgos, pero necesita mejorar la claridad visual para proporcionar
explicaciones más completas, lo que se ha abordado en la versión unificada del sistema.

Además, es importante destacar que he sido notificada de la aceptación del paper de las
working notes del reto ImageCLEFmedical 2025 (Damm & et al., 2025), donde se presentan
los resultados de este módulo de Q&A visual. Esto valida la calidad del trabajo realizado y la
relevancia de los resultados obtenidos, los que serán presentados en el congreso CLEF 2025 que
se llevará a cabo en Madrid en septiembre de 2025.

12.4. Análisis de latencias del sistema
Para evaluar la efectividad de la integración multimodal, se realizaron pruebas durante 48

horas como se especifica en la sección de Resultados.
El análisis de rendimiento temporal del sistema multimodal revela diferencias sustanciales

en las latencias de procesamiento que reflejan la complejidad arquitectónica inherente a cada
componente. La búsqueda vectorial mediante Qdrant presenta una latencia media de 3 segundos
con una desviación estándar de 0.5 segundos, indicando un rendimiento relativamente estable con
baja variabilidad (coeficiente de variación del 17 %). Esta latencia considerable sugiere el proce-
samiento de un espacio vectorial de alta dimensionalidad con millones de embeddings biomédicos,
donde la precisión semántica se prioriza sobre la velocidad de respuesta.

El flujo visual exhibe expectablemente la mayor latencia del sistema con 56 segundos en
promedio y una desviación estándar de 9 segundos. Esta latencia sustancial es arquitectónica-
mente justificada por la ejecución coordinada y secuencial de cuatro métodos de explicabilidad
computacionalmente intensivos: Grad-CAM, mapas de atención, descenso de gradiente y gene-
ración de bounding boxes. La variabilidad moderada (coeficiente de variación del 16 %) indica
un comportamiento predecible del sistema, donde las diferencias en latencia se correlacionan
principalmente con la complejidad de las imágenes médicas procesadas y la especificidad de las
consultas visuales.

El flujo textual demuestra una eficiencia operacional significativamente superior con una la-
tencia media de 17 segundos y una desviación estándar de 3 segundos (coeficiente de variación
del 18 %). Aunque esta latencia es considerablemente mayor que el procesamiento textual con-
vencional, refleja la complejidad del pipeline agéntico que incluye extracción de entidades NER,
enriquecimiento semántico UMLS, evaluación contextual para retrieval de literatura PubMed, y
fusión inteligente con la base vectorial Qdrant.

Desde una perspectiva de arquitectura distribuida, estos resultados validan el diseño agéntico
al evidenciar una diferenciación clara entre modalidades: el flujo visual requiere 3.3x más tiempo
que el textual, justificando la implementación de decisiones contextuales para activación selectiva
de componentes. La consistencia en las desviaciones estándar (todas entre 16-18 % de coeficiente
de variación) indica un sistema robusto con comportamiento predecible, crucial para aplicaciones
biomédicas donde la confiabilidad temporal es fundamental para la experiencia del usuario clínico.

Capacidad de respuesta: >99 % para preguntas de tipo textual y visual. La aplicación
prácticamente no falla en las pruebas de sistema, pues tiene mecanismos de recuperación ante
errores de API u otros.
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12.5. Análisis cualitativo de la integración Multimodal
12.5.1. Experiencia de usuario (UX)

La aplicación desarrollada presenta una interfaz unificada que permite al usuario interactuar
con contenido multimodal de manera intuitiva y eficiente. El sistema soporta dos modalidades
principales de entrada: consultas textuales tradicionales sobre literatura biomédica y análisis de
imágenes médicas con preguntas específicas.

En las consultas textuales, el usuario puede formular preguntas médicas complejas de tipo
yes/no, list, factoid y summary que son procesadas por un pipeline de recuperación híbrido,
combinando una base de datos vectorial local (Qdrant) con la API de PubMed como respaldo.
Esta estrategia asegura una alta precisión y exhaustividad en la recuperación de información
relevante, optimizando la latencia y mejorando la experiencia del usuario.

La experiencia de usuario se caracteriza por un flujo de trabajo simplificado donde este
puede seleccionar entre tres tipos de análisis visual: (1) detección de conceptos médicos, (2)
generación de descripciones radiológicas, y (3) localización espacial de estructuras anatómicas.
Esta taxonomía de tareas refleja las necesidades reales de los profesionales médicos en diferentes
contextos clínicos.

La interfaz implementa un sistema de retroalimentación progresiva que informa al usuario so-
bre el estado del procesamiento, especialmente relevante dado que el análisis multimodal requiere
múltiples etapas computacionales. El sistema proporciona estimaciones de tiempo e indicadores
de progreso específicos para cada modalidad, mejorando significativamente la experiencia de
usuario en comparación con sistemas de procesamiento tradicionales.

Figura 9: Interfaz principal del Sistema Multimodal de Q&A Biomédico. Permite selección
entre preguntas de texto y preguntas de imágenes.

12.5.2. Caso de uso de Q&A textual

A continuación, se presenta un caso de uso representativo del sistema de Question Answering
textual, ilustrando su capacidad para responder preguntas complejas sobre literatura biomédica:

El sistema tiene incorporado un chatbot en el flujo de Q&A textual. Cuando el usuario olvida
ingresar el tipo de pregunta aparece un chatbot integrado con Streamlit que evalúa qué tipo de
pregunta es (yes/no, list, factoid o summary) y le presenta al usuario su opción. Si el usuario no
está de acuerdo puede cambiarla.
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(a) Paso 1 de flujo textual: El sistema procesa la pregunta realizada.

(b) Paso 2 de flujo textual: Entrega respuesta exacta según tipo de pregunta (Yes/No) y la
respuesta ideal (Detailed Answer) con los números de PMID.

Figura 10: Flujo textual del sistema - Parte I: Procesamiento de pregunta y generación
de respuesta.
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(a) Paso 3 de flujo textual: Se pueden ver los snippets con el PMID del artículo en el que se basa
la respuesta.

(b) Paso 4 de flujo textual: Se pueden ver las NER extraídas y los conceptos UMLS/MeSH.

Figura 11: Flujo textual del sistema - Parte II: Visualización de evidencia y análisis
conceptual.
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Figura 12: Chatbot: aparece de forma contextual en la interfaz de usuario del sistema.
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12.5.3. Caso de uso de Q&A visual

En el flujo de Q&A visual, el usuario puede seleccionar entre tres tipos de análisis: detección de
conceptos, generación de captions y localización espacial de estructuras anatómicas. El sistema
proporciona una interfaz intuitiva que permite al usuario cargar imágenes médicas y recibir
respuestas detalladas sobre los hallazgos presentes en las mismas. Por lo tanto, a continuación,
se presenta un caso de uso representativo del sistema de Question Answering visual, ilustrando
su capacidad para analizar imágenes médicas:

12.5.4. Explicabilidad de imágenes médicas

En el flujo de Q&A visual también se pueden ver los mapas de calor generados por el sistema,
lo que permite contextualizar las respuestas del modelo. Esto puede ser muy útil a nivel clínico,
ya que los profesionales de la salud pueden verificar visualmente las áreas de interés en la imagen
médica y comprender mejor cómo el modelo llegó a sus conclusiones.

12.5.5. Fusión de modalidades y coordinación

Un aspecto interesante para analizar es que el sistema MultimodalBioQA implementa una
arquitectura híbrida de fusión que opera en múltiples niveles jerárquicos, representando una
aproximación novedosa en sistemas de Question Answering biomédico:

Fusión a nivel de modelo individual

El modelo LLaVA-LLaMA implementa fusión temprana/intermedia dentro de su arqui-
tectura interna las características visuales extraídas por el vision encoder (Vision Transformer),
las que se proyectan al espacio de embeddings del modelo de lenguaje mediante una capa de
proyección lineal. Esta integración ocurre en las capas intermedias del transformer, permitien-
do que el modelo de lenguaje procese simultáneamente información visual y textual durante la
generación autorregresiva.

Formalmente, dado un conjunto de tokens visuales V = {v1, v2, ..., vn} y tokens textuales
T = {t1, t2, ..., tm}, el modelo realiza:

Hfused = LLM([V;T]) (1)

donde [·; ·] denota concatenación en la dimensión de secuencia.

Fusión a nivel de arquitectura del sistema

El sistema completo emplea una estrategia de fusión tardía entre pipelines especializados,
donde las modalidades textuales y visuales se procesan mediante rutas independientes antes de
la integración final de resultados. Esta decisión arquitectónica permite:

Optimización independiente de cada pipeline especializado

Escalabilidad modular del sistema

Trazabilidad diferenciada por modalidad

Flexibilidad en la gestión de recursos computacionales

Para consultas textuales, el sistema emplea una estrategia de búsqueda híbrida que prioriza
la base de datos vectorial local Qdrant antes de recurrir a la API de PubMed como mecanismo de
respaldo. Este enfoque optimiza la latencia mientras se mantiene la exhaustividad de la búsqueda.
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(a) Paso 1 de flujo visual: Se selecciona la pregunta y se carga la imagen.

(b) Paso 2 de flujo visual: Se detectan los conceptos presentes en la imagen.

(c) Paso 3 de flujo visual: Se predice la caption de la imagen.

(d) Paso 4 de flujo visual: Se entrega una respuesta detallada (ideal).

Figura 13: Flujo visual del sistema: interacción paso a paso con la imagen.
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(a) Mapas de calor: Se selecciona la pregunta y se carga la imagen.

(b) Mapas de calor: Grad-CAM.

Figura 14: Visualización de mapas de calor para explicabilidad visual en el sistema.

98



En el procesamiento visual, el sistema integra múltiples técnicas de explicabilidad (GradCAM,
Attention Maps, Integrated Gradients) con generación de bounding boxes utilizando GPT-4o
Vision API y Segment Anything (SAM). La coordinación entre estos componentes se gestiona
mediante un sistema de metadatos o productos intermedios de datos que permite la trazabilidad
completa del proceso de inferencia.

12.5.6. Coherencia textual-visual y fusión semántica

En cuanto a la coherencia textual-visual, esta se gestiona mediante un sistema de meta-
datos estructurados que permite la trazabilidad completa del proceso de inferencia. Son varios
archivos .JSON que el sistema produce para ir dejando registro del paso a paso e incluso algunos
de ellos son descargables en la interfaz de usuario.

La fusión semántica final se realiza a nivel del Writer Agent, que sintetiza información
procedente de ambas modalidades utilizando prompts estructurados que preservan la coherencia
interdisciplinaria.

El sistema mantiene la separación clara entre respuestas exactas (exact_answer) e ideales
(ideal_answer), facilitando la evaluación automatizada según estándares de benchmarks biomé-
dicos como BioASQ (Tsatsaronis et al., 2015).

Para comprobar la coherencia inter-modelo podemos comparar si la respuesta ideal o detalla-
da del sistema de Q&A visual, que fue generada por el Writer Agent utilizando la API de GTP-4o
se condice con el caption generado por el modelo LLaVA-LLaMA. En este caso de ejemplo que
la radiografía de tórax que estamos utilizando podemos ver que la respuesta ideal del sistema de
Q&A visual es:

“Radiological Report: Chest Radiograph

Imaging Technique:
A posteroanterior (PA) and lateral chest radiograph was obtained.

Findings:
Lungs and Pleura:
There is evidence of bilateral pleural effusions, characterized by blunting of the cos-
tophrenic angles. The effusions appear more pronounced on the right side, with a
meniscus sign visible. No pneumothorax is observed. The lung fields show no focal
consolidation, masses, or nodules. Vascular markings are within normal limits.”

Esto coincide con la caption generada por el modelo LLaVA-LLaMA, que es:

“Exact Answer (Caption): Chest radiograph showing bilateral pleural effusions.”

Con este ejemplo se puede apreciar que al existir esta coherencia entre la respuesta ideal del
sistema de Q&A visual y el caption generado por LLaVA-LLaMA nos demuestra la efectividad
de la fusión semántica y la integración de modalidades en el sistema. Esto es muy importante
porque nos asegura que las respuestas generadas sean consistentes y relevantes para el contexto
clínico.

Flujo de procesamiento multimodal

Para ilustrar la integración completa del sistema, consideremos una consulta representativa
de cada modalidad y observemos los diagramas de flujo correspondientes.
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Figura 15: Arquitectura general del sistema multimodal de Q&A biomédica. Flujo de datos
bidireccional mostrando: (a) Pipeline textual con búsqueda híbrida Qdrant-PubMed, (b)
Pipeline visual con LLaVA y explicabilidad, (c) Fusión tardía en Writer Agent para síntesis
final.
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Flujo Textual

Pregunta: “List primary sclerosing cholangitis effector genes and biological mechanisms”
El procesamiento sigue la siguiente secuencia:

1. Extracción de entidades: GPT-4o identifica “primary sclerosing cholangitis”, “effector
genes”, “biological mechanisms”

2. Búsqueda híbrida: Qdrant local (n = 10 snippets, scores: 0.259-0.240) + PubMed API
fallback (n = 4 nuevos artículos)

3. Enriquecimiento semántico: Consulta UMLS/MeSH para contexto terminológico

4. Síntesis: Writer Agent genera respuesta estructurada con citas PMID

Como se muestra en las figuras, el pipeline de procesamiento textual sigue una secuencia de
cuatro etapas principales.
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Figura 16: Diagrama detallado del procesamiento textual, Parte 1. El flujo ilustra las
primeras dos de cuatro etapas secuenciales: (a) extracción de entidades biomédicas utili-
zando GPT-4o, (b) búsqueda híbrida que combina bases de datos vectoriales Qdrant con
PubMed.
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Figura 17: Diagrama detallado del procesamiento textual, Parte 2. El flujo ilustra las
segundas dos de cuatro etapas secuenciales: (c) enriquecimiento semántico mediante con-
ceptos UMLS, y (d) síntesis final de respuestas con citas bibliográficas.

Flujo visual

Pregunta: “Where are the key structures or findings located in this medical image?”
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El procesamiento visual integra múltiples componentes especializados:

1. Análisis conceptual: LLaVA-LLaMA identifica conceptos médicos mediante fusión tem-
prana visión-lenguaje.

2. Explicabilidad avanzada: Generación simultánea de GradCAM, Attention Maps e In-
tegrated Gradients.

3. Localización espacial: GPT-4o Vision API + SAM generan bounding boxes automáticas
con fallback a modelo fine-tuneado para dar coordenadas y que se encuentra a nivel local.

4. Síntesis radiológica: Writer Agent genera reporte clínico estructurado como informe
radiológico.
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Figura 18: Flujo completo de procesamiento visual: (a) imagen de entrada, (b) extracción
de conceptos con LLaVA, (c) explicabilidad multimethod, (d) localización con GPT-4o +
SAM, (e) síntesis radiológica final.
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12.5.7. Explicabilidad y trazabilidad

El sistema implementa mecanismos de interpretabilidad diferenciados según la modalidad de
entrada, representando uno de los aspectos más innovadores de la integración desarrollada.

Interpretabilidad textual

Un aspecto en el que fui más allá de los requisitos del reto de bioASQ fue en la implementación
de un sistema de trazabilidad textual que permite al usuario verificar la fuente de cada afirmación
generada. Esto se logra mediante la inclusión de identificadores PMID en la respuesta ideal (que
es un resumen). Los PMID referencian a artículos científicos específicos dependiendo de los
snippets obtenidos. Es por este motivo que cada respuesta ideal generada por el Writer Agent
en el flujo de Q&A textual incluye citas inline que permiten al usuario rastrear la evidencia
científica subyacente. Esto es sumamente importante en el área médica porque cada afirmación
en la respuesta ideal está respaldada por fragmentos científicos identificables, permitiendo la
verificación independiente de las fuentes.

Además, el sistema integra contexto UMLS/MeSH para la desambiguación terminológica,
proporcionando definiciones contextuales de conceptos médicos complejos. Esta integración se-
mántica aparte de ser útil como contexto en los prompts para generar las respuestas, también
facilita la interpretación clínica al proporcionar el conocimiento ontológico necesario para la
comprensión de términos especializados.

Interpretabilidad visual

La explicabilidad visual representa una contribución técnica importante de este sistema,
ya que integra múltiples técnicas complementarias que proporcionan diferentes perspectivas del
proceso de inferencia:

Attention maps: Visualización de patrones de atención del modelo LLaVA fine-tuned,
mostrando regiones de la imagen que contribuyen más significativamente a la generación
de conceptos.

GradCAM: Implementación optimizada con selección de capas objetivo y manejo robusto
de gradientes para modelos multimodales.

Integrated gradients: Cálculo de atribuciones pixel-wise con línea base optimizada y
manejo de artefactos de integración numérica.

Bounding boxes: Generación condicional de regiones de interés utilizando GPT-4o API
+ SAM con modelo LLaVA local como respaldo.

La integración de estos métodos proporciona una perspectiva multifacética del proceso de in-
ferencia visual, permitiendo la validación cruzada de interpretaciones y aumentando la confianza
clínica en los resultados.

12.5.8. Evaluación cualitativa de arquitectura agéntica

Los pipelines de procesamiento de lenguaje natural tradicionales son estáticos y monolíti-
cos: aplican la misma secuencia de procesamiento independientemente de las características de
entrada. En cambio, la arquitectura agéntica que he utilizado implementa una orquestación diná-
mica del flujo de trabajo, donde agentes especializados toman decisiones contextuales sobre qué
estrategias de procesamiento aplicar basándose en las propiedades del texto. Esto es fundamen-
talmente diferente de los enfoques tradicionales, por ejemplo, en la integración de herramientas

106



(a) Bounding boxes para la imagen médica seleccionada.

(b) Regiones identificadas en la imagen con sus posiciones y etiquetas.

Figura 19: Análisis de bounding boxes en imágenes médicas.
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heterogéneas, ya que el marco agéntico permite la integración fluida de herramientas comple-
mentarias (NER, grafos de conocimiento, métodos de explicabilidad, etc.) en un flujo de trabajo
coordinado, en lugar de hacerlo como pasos de post-procesamiento independientes.

La diferenciación arquitectónica del sistema MultimodalBioQA se puede enmarcar en los
siguientes elementos:

Orquestación adaptativa de modalidades

Los sistemas tradicionales procesan modalidades de forma secuencial y predeterminada. En
cambio, la arquitectura agéntica del sistema MultimodalBioQA implementa decisión contex-
tual inteligente:

Diferencia clave: La decisión de qué pathway activar (textual o visual) y cómo coordinar
las explicaciones emerge del análisis contextual, no de reglas estáticas.

Explicabilidad multimodal coordinada

Para preguntas visuales - Agente de Explicabilidad: Aplica 4 métodos complemen-
tarios de forma orquestada:

Grad-CAM: Localización de atención neuronal

Attention Maps: Patrones de atención del transformer

Gradient Descent: Optimización de características relevantes

Bounding Boxes: Mapeo concepto-región anatómica

La coordinación sincronizada de estos 4 métodos y su integración coherente en la respuesta
final requiere orquestación inteligente que no puede ser predeterminada.

Para preguntas textuales - Agente Writer (Grounding): Proporciona evidencia
estructurada:

PMIDs de artículos fuente

Entidades NER extraídas

Términos UMLS recuperados y enriquecidos

Enriquecimiento dinámico de contexto

El pipeline textual implementa cascada de decisiones inteligentes: El sistema implementa un
flujo de decisión inteligente que comienza con la extracción de entidades biomédicas de la pregun-
ta mediante el uso de GTPT-4o por parte del Agente Researcher. Estas entidades extraídas son
posteriormente enriquecidas con términos UMLS por parte del agente Researcher, que consulta
la API para obtener información contextual adicional. A continuación, el agente Researcher re-
cupera artículos recientes relevantes mediante la API de Pubmed y fusiona esta información con
la base de datos vectorial Qdrant existente para crear un contexto híbrido. Una vez establecido
el contexto apropiado, se aplica few-shot seleccionando los ejemplos contextualmente relevantes
que mejor se alineen con la pregunta y el contexto disponible. Finalmente, el agente Writer sin-
tetiza la respuesta final incorporando tanto el contexto híbrido como los ejemplos seleccionados,
asegurando que la respuesta esté fundamentada en evidencia verificable. Este flujo demuestra la
toma de decisiones distribuida y contextual que caracteriza la arquitectura agéntica, donde cada
agente especializado contribuye de manera coordinada al resultado final.
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Ventajas arquitectónicas específicas

1. Coherencia multimodal: Coordinación inteligente entre explicabilidad visual (4 méto-
dos) y grounding textual (PMIDs + NER + UMLS)

2. Adaptabilidad contextual: El sistema ajusta su estrategia de procesamiento basado en
características específicas de cada pregunta biomédica

3. Integración herramientas heterogéneas: NER → UMLS → PubMed → Qdrant →
Few-shot funciona como workflow coordinado, no como pasos independientes

4. Grounding robusto: Proporciona evidencia verificable (PMIDs, entidades NER, térmi-
nos UMLS) de forma contextualmente relevante

El sistema MultimodalBioQA demuestra que la coordinación agéntica es arquitectónica-
mente necesaria para Q&A biomédico multimodal porque:

Complejidad irreducible: La interacción entre modalidades, explicabilidad y grounding
no puede ser predeterminada

Decisiones contextuales: Cada consulta biomédica requiere decisiones específicas sobre
enriquecimiento, retrieval, y explicabilidad

Optimización dinámica: La eficiencia computacional requiere activación inteligente de
componentes según necesidad

12.6. Conclusiones de análisis cualitativo
La integración multimodal desarrollada representa un avance hacia sistemas de Question

Answering biomédico más explicables, demostrando la viabilidad técnica de combinar análisis
textual y visual en una plataforma unificada que opera efectivamente tanto a nivel de modelo
individual como de arquitectura de sistema.

Por lo tanto, mi conclusión es que la arquitectura agéntica no es una mejora incremental,
sino una solución arquitectónica necesaria para la complejidad inherente de sistemas biomédicos
multimodales con explicabilidad robusta y grounding verificable. La orquestación inteligente de
agentes especializados permite abordar problemas que son arquitectónicamente irresolubles con
enfoques tradicionales monolíticos.

12.6.1. Contribuciones principales

Búsqueda híbrida: Estrategia Qdrant-first que optimiza latencia manteniendo exhausti-
vidad.

Arquitectura híbrida de fusión: Sistema con fusión multinivel (temprana en LLaVA
+ tardía en sistema) para Q&A biomédico.

Explicabilidad multimodal integrada: Integración de 4 métodos complementarios de
explicabilidad visual con trazabilidad textual completa.

Arquitectura agéntica: Permite coherencia multimodal, adaptabilidad contextual, inte-
gración de herramientas heterogéneas y grounding robusto.
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13. Desafíos y trabajo futuro
El análisis cualitativo revela varias categorías de limitaciones que caracterizan el estado actual

de la integración multimodal:

13.1. Limitaciones de modalidad visual
Alucinaciones conceptuales: El modelo LLaVA ocasionalmente genera conceptos mé-
dicos plausibles, pero no presentes en la imagen analizada, particularmente en imágenes
con artefactos o calidad subóptima.

Inconsistencias en bounding boxes: La generación de coordenadas espaciales mediante
GPT-4o muestra variabilidad en la precisión, especialmente para estructuras anatómicas
con límites difusos.

Limitaciones de resolución: El procesamiento de imágenes de alta resolución requiere
redimensionamiento que puede resultar en pérdida de detalles diagnósticos críticos.

13.2. Limitaciones de integración cross-modal
Conflictos semánticos: En casos donde la información visual sugiere hallazgos que con-
tradicen el conocimiento textual previo, el sistema carece de mecanismos sofisticados de
resolución de conflictos. Este es un aspecto para mejorar en futuras versiones del sistema.

Coherencia temporal: Para casos clínicos evolutivos, el sistema no mantiene coherencia
temporal entre análisis secuenciales de la misma patología. Esta es un área de mejora
importante, ya que la evolución de una patología es clave para el diagnóstico y tratamiento
médico.

Calibración de incertidumbre: Las métricas de confianza entre modalidades no están
calibradas, dificultando la interpretación de inconsistencias intermodales.

13.3. Limitaciones de escalabilidad
Dependencia de APIs externas: La integración con GPT-4o introduce latencia variable
y dependencia de servicios terceros. Por este motivo se implementó un modelo LLaVA local
que permite al sistema funcionar sin depender de la API de OpenAI, pero aún está a nivel
experimental.

Gestión de memoria: El procesamiento simultáneo de múltiples modalidades puede
resultar en limitaciones de memoria GPU para análisis batch.

Paralelización limitada: La arquitectura actual no optimiza completamente el procesa-
miento paralelo de componentes independientes.

13.4. Mejoras técnicas propuestas
Se podrían realizar múltiples mejoras al sistema MultimodalBioQA, ya que es un área de

investigación activa. Sin embargo, las que propongo son de mi interés personal y profesional, ya
que creo constituyen un aporte en el área de la IA biomédica.

1. Explicabilidad temporal: Extender análisis de explicabilidad a imágenes médicas tem-
porales (videos o series de imágenes) para capturar dinámicas evolutivas.

2. Multimodalidad avanzada: Integración de datos genómicos y proteómicos.
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3. Knowledge-Graph: Construcción de un grafo de conocimiento (knowledge-graph) propio
alimentado con ontologías médicas especializadas. Comencé a trabajar en este aspecto
durante el reto de BioASQ con una base de grafos en neo4j que alimenté con datos de
UMLS, pero no pude mantener el sistema debido a falta de recursos. Sin embargo, creo
que es un aspecto clave para mejorar tanto la interpretabilidad del sistema como la calidad
de los resultados.

4. Personalización clínica: Adaptación de respuestas basada en contexto clínico específico.
Sería interesante personalizar el sistema como apoyo radiológico en un hospital o clínica, ya
que muy motivante a nivel técnico la adopción de protocolos clínicos específicos en forma
de guardrails que guíen al sistema a responder de forma más contextualizada y precisa
para el contexto clínico en el que se esté utilizando.

13.5. Investigación futura
En concordancia con lo expresado en la sección anterior, propongo las siguientes líneas de

investigación futura para abordar las limitaciones identificadas y potenciar el sistema:

1. Ayuda al diagnóstico con explicabilidad temporal: Desarrollo de modelos que in-
tegren análisis temporal de imágenes médicas para capturar dinámicas evolutivas de pa-
tologías, mejorando la capacidad diagnóstica del sistema. Es algo que ya he comenzado a
investigar y que creo puede ser un aporte significativo al área de la IA biomédica. También
puede servir como validación del diagnóstico médico, ya que permite al profesional de la
salud verificar la evolución de una patología a través del tiempo.

2. Validación clínica: Estudios con profesionales médicos para validar utilidad clínica.

3. Multimodalidad extendida: Esta es mi mayor línea de investigación futura, ya que creo
que la integración de datos genómicos y proteómicos con imágenes médicas y texto clínico
puede revolucionar el campo de la IA biomédica. Esto permitiría que el sistema realizara
un análisis más completo y preciso de los pacientes, lo que a su vez mejoraría la capacidad
diagnóstica y pronóstica del sistema. En esta misma línea de investigación pienso integrar
los grafos para mantener las relaciones entre los datos y mejorar la interpretabilidad del
sistema.

14. Conclusiones
En síntesis, se ha presentado MultimodalBioQA, un sistema de question answering bio-

médico multimodal con explicabilidad incorporada, que representa un avance en la capacidad
de acceder y comprender la información biomédica. Entre sus contribuciones más relevantes se
incluyen las siguientes:

14.1. Contribuciones académicas y metodológicas
He resumido las contribuciones académicas y metodológicas del sistema de Q&A Biomédico

Multimodal con Explicabilidad en las siguientes categorías:

1. Integración de explicabilidad multimodal: Implementación que combina LLaVA,
GradCAM, Attention Maps e Integrated Gradients en un pipeline unificado para análi-
sis y explicabilidad a nivel médico.

2. Mapeo Concepto-Región: Método que correlaciona automáticamente conceptos médi-
cos extraídos por LLMs con regiones espaciales específicas de imágenes.
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3. Extracción de snippets guiada por LLM: Metodología innovadora que utiliza GPT-4o
para extraer evidencia científica a nivel de oración, lo que constituye una alternativa a las
limitaciones de métodos basados en similarity scoring.

14.2. Contribuciones tecnológicas
También considero que el sistema MultimodalBioQA ha realizado contribuciones tecnoló-

gicas que pueden ser de utilidad para la comunidad científica y profesional en el área de la IA
biomédica:

1. Arquitectura híbrida de búsqueda: Combinación efectiva de búsqueda vectorial local
con APIs en tiempo real para maximizar cobertura y actualidad de la información.

2. Pipeline de ingesta masiva: Sistema capaz de procesar millones de artículos PubMed
con uso de memoria constante mediante sistema de batching.

3. Sistema de Few-Shot Learning contextual: Implementación de recuperación semán-
tica de ejemplos para few-shot learning que mejora significativamente la consistencia de
respuestas en dominios especializados.

Desde mi punto de vista, este sistema de Q&A Biomédico Multimodal con Explicabilidad
representa una contribución al campo de IA médica al integrar con éxito múltiples modalidades
de información (texto e imagen) y proporcionar explicabilidad a través de un enfoque unificado
que combina:

1. Procesamiento multimodal con análisis de texto e imagen especializado.

2. Explicabilidad multitécnica que combina diversos métodos complementarios de inter-
pretabilidad.

3. Recuperación de información con IA generativa mediante extracción guiada por
LLM.

4. Arquitectura multiagente escalable con optimizaciones específicas para datos biomé-
dicos masivos.

La combinación de estas innovaciones crea un sistema que no solo proporciona respuestas
precisas, sino que también ofrece explicabilidad integrada, estableciendo un modelo para herra-
mientas de IA en medicina que equilibren rendimiento, interpretabilidad y utilidad clínica.

En mi opinión se han cumplido los resultados esperados, ya que se logró precisión en la recupe-
ración de información biomédica mediante arquitectura RAG híbrida. Además, se ha demostrado
la capacidad de procesamiento multimodal de flujos textuales y visuales con explicabilidad in-
tegrada para análisis de imágenes médicas mediante la implementación de un sistema unificado
multiagente para procesamiento biomédico textual y visual.

Por lo tanto, puedo decir que he quedado conforme con este trabajo, ya que cumplió con los
objetivos planteados inicialmente demostrando que es posible desarrollar un sistema de question
answering biomédico multimodal con explicabilidad incorporada, lo que representa un avance en
la capacidad de acceder y comprender la información biomédica.
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Acrónimos
A continuación, se presentan los acrónimos utilizados en este documento. La lista fue elabo-

rada por la autora a partir de los términos más relevantes del proyecto y su contexto.

AI Artificial Intelligence (Inteligencia Artificial)

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

BioBERT Biomedical BERT

BioNER Biomedical Named Entity Recognition

BioNEs Biomedical Named Entities

BioNLP Biomedical Natural Language Processing

CLIP Contrastive Language-Image Pre-training

CNN Convolutional Neural Network

CSS Cascading Style Sheets

CUDA Compute Unified Device Architecture

CUI Concept Unique Identifier

CV Computer Vision (Visión por Computadora)

DICOM Digital Imaging and Communications in Medicine

DOI Digital Object Identifier

EHR Electronic Health Record

F1 F1 Score (Medida F1)

GPU Graphics Processing Unit

GPT Generative Pre-trained Transformer

GradCAM Gradient-weighted Class Activation Mapping

GSC Gold-Standard Corpora

HKG Healthcare Knowledge Graphs (Grafos de Conocimiento Sanitario)

HQS-VQA Hierarchical Question Segregation based Visual Question Answering

HTML HyperText Markup Language

IA Inteligencia Artificial

ICD International Classification of Diseases (Clasificación Internacional de Enfermedades)

IDF Inverse Document Frequency (Frecuencia Inversa de Documentos)

JSON JavaScript Object Notation

JSONL JavaScript Object Notation Lines
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KG Knowledge Graph

LIME Local Interpretable Model-agnostic Explanations

LLaVA Large Language and Vision Assistant

LLM Large Language Model

LoRA Low-Rank Adaptation

LSTM Long Short-Term Memory

LVLM Large Vision-Language Model

maF1 Macro-averaged F1

MeSH Medical Subject Headings

MIC Medical Image Captioning

ML Machine Learning

MLP Multi-Layer Perceptron (Perceptrón Multicapa)

MRR Mean Reciprocal Rank (Rango Recíproco Medio)

NCBI National Center for Biotechnology Information

NEN Named Entity Normalization

NER Named Entity Recognition

NIH National Institutes of Health

NLP Natural Language Processing

OOV Out-of-Vocabulary

PDF Portable Document Format

PIL Python Imaging Library

PLN Procesamiento de Lenguaje Natural

PMID PubMed Identifier

Q&A Question and Answer

QA Question Answering

RAG Retrieval-Augmented Generation

RGPD Reglamento General de Protección de Datos

ROCO Radiology Objects in Context

ROUGE Recall-Oriented Understudy for Gisting Evaluation

RxNorm Prescription Drug Nomenclature

SAM Segment Anything Model

SHAP SHapley Additive exPlanations

122



SNOMED CT Systematized Nomenclature of Medicine - Clinical Terms

SVM Support Vector Machine (Máquina de Vectores de Soporte)

UI User Interface

UMLS Unified Medical Language System

URL Uniform Resource Locator

VB-MVQA Vision-Bilinear Multi-level Visual Question Answering

ViT Vision Transformer

VQA Visual Question Answering (Preguntas y Respuestas Visuales)

VQA-Med Visual Question Answering Medical

VRAM Video Random Access Memory

XAI Explainable Artificial Intelligence (Inteligencia Artificial Explicable)

XML eXtensible Markup Language
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Anexos

A. Recursos en línea
El producto de este trabajo está disponible en Github para su evaluación.

Repositorio de GitHub

Modelo fine-tunado LLaVA-LLaMA 3 8B

Modelo fine-tunado LLaVA-Mistral 7B (fallback)
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B. Ejemplo de pregunta de tipo lista

Figura 20: Paso 1 de flujo textual (Pregunta tipo "Lista"): Se introduce la pregunta.

Figura 21: Paso 2 de flujo textual (Pregunta tipo "Lista"): Como no se seleccionó el tipo
de pregunta aparece el chatbot para decir que según su análisis es una pregunta de tipo
lista y solicitar confirmación.
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Figura 22: Paso 3 de flujo textual (Pregunta tipo "Lista"): Respuesta exacta (Exact
Answer) con el listado de elementos identificados en respuesta a la pregunta.

Figura 23: Paso 4 de flujo textual (Pregunta tipo "Lista"): Respuesta ideal (Detailed
Answer) con un resumen en respuesta a la pregunta y con los PMID en los que se basa la
respuesta.

Figura 24: Paso 5 de flujo textual (Pregunta tipo "Lista"): Snippets identificados con el
PMID del artículo en el que se basa la respuesta y su puntuación.
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Figura 25: Paso 6 de flujo textual (Pregunta tipo "Lista"): NER biomédicas y términos
UMLS/MeSH identificados por el sistema.

Figura 26: Paso 7 de flujo textual (Pregunta tipo "Lista"): Descarga del archivo .JSON
con los metadatos.
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C. Resultados preliminares de bioASQ Task 13b 2025

Figura 27: Resultados preliminares de Fase A+ (Batch 4): El sistema participante obtuvo
buenos resultados en este batch.

Figura 28: Resultados preliminares de Task B (Batch 3): Puntaje alto en preguntas de
tipo List.
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D. Resultados de ImageCLEF medical 2025

Figura 29: Resultados del sistema participante en ImageCLEF medical Caption 2025.
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