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Resumen

Los sistemas de question answering biomédico actuales enfrentan limitaciones en ex-
plicabilidad, lo que obstaculiza su adopcién en entornos clinicos donde la interpretabilidad
es fundamental para la toma de decisiones médicas basadas en evidencia.

Se desarrollo MultimodalBioQA, un sistema multimodal que integra procesamiento
textual y visual con capacidades de explicabilidad (XAI). El modulo textual implementa
busqueda hibrida combinando bases de datos vectoriales locales (PubMed BERT 768D) con
consultas en tiempo real a PubMed API, utilizando GPT-40 para extraccion de evidencia
cientifica a nivel de oraciéon. El modulo visual emplea un modelo LLaVA-LLaMA 3 8B
con fine-tuning LoRA especializado para analisis de iméagenes médicas.

La contribucién principal es el sistema de explicabilidad integrado que combina cuatro
métodos complementarios: GradCAM, Attention Maps, Integrated Gradients y mapeo
concepto-region con bounding bores mediante técnicas de segmentacion automética. Esta
integracion permite generar respuestas fundamentadas con trazabilidad completa desde
la evidencia hasta la conclusion.

La arquitectura integra miultiples componentes: LLaVA-LLaMA 3 8B, GPT-40, Bio-
medNLP - PubMedBERT, Segment Anything Model (SAM), bases de datos vectoriales
RAG, y APIs UMLS/MeSH y PubMed. El sistema se implementa como una arquitectura
multiagente con Llamalndex, coordinada mediante un Writer Agent central que sintetiza
respuestas diferenciadas segtun el tipo de consulta biomédica.

La evaluacion en competencias internacionales demostr6 rendimiento competitivo: los
modulos textual y visual del sistema obtuvieron desempeno top 10 en BioAS(Q Tarea 13B
e ImageCLEFmed Caption 2025, confirmando su efectividad en comparacion con sistemas
de instituciones de investigacion consolidadas a nivel mundial.

Este trabajo contribuye al desarrollo de sistemas de A médica interpretable mediante
la integracion de explicabilidad multimodal desde el diseno, estableciendo una base técnica
para futuras herramientas de apoyo clinico que combinen precision con transparencia en
el anélisis de informacion biomédica.

Palabras clave: Question Answering Biomédico, IA Multimodal, XAI, TA Generativa,
IA Agéntica, PLN Biomédico, Visual Transformers, Multimodal Transformers, RAG, IA
Meédica



Abstract

Current biomedical question answering systems face limitations in explainability, which
hinders their adoption in clinical environments where interpretability is fundamental for
evidence-based medical decision-making.

We developed MultimodalBioQA , a multimodal system that integrates textual and
visual processing with explainability capabilities (XAI). The textual module implements
hybrid search combining local vector databases (PubMedBERT 768D) with real-time
PubMed API queries, utilizing GPT-40 for sentence-level scientific evidence extraction.
The visual module employs a LLaVA-LLaMA 3 8B model with specialized LoRA fine-
tuning for medical image analysis.

The primary contribution is an integrated explainability system that combines four
complementary methods: GradCAM, Attention Maps, Integrated Gradients, and concept-
region mapping with bounding boxes through automatic segmentation techniques. This
integration enables the generation of grounded responses with complete traceability from
evidence to conclusion.

The architecture integrates multiple components: LLaVA-LLaMA 3 8B, GPT-40, Bio-
medNLP - PubMedBERT, Segment Anything Model (SAM), RAG vector databases, and
UMLS/MeSH and PubMed APIs. The system is implemented as a multi-agent archi-
tecture with Llamalndex, coordinated through a central Writer Agent that synthesizes
differentiated responses according to biomedical query type.

Evaluation in international competitions demonstrated competitive performance: the
system’s textual and visual modules achieved Top 10 results in BioASQ Task 13B and
ImageCLEFmed Caption 2025, confirming their effectiveness compared to systems from
established research institutions worldwide.

This work contributes to the development of interpretable medical Al systems th-
rough the integration of multimodal explainability from design, establishing a technical
foundation for future clinical support tools that combine precision with transparency in
biomedical information analysis.

Keywords: Biomedical Question Answering, Multimodal AI, XAI, Generative Al,
Agentic Al, Biomedical NLP, LLM, Visual Transformers, Multimodal Transformers, RAG,
Health AI
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1. Introduccion

La integracion de sistemas de inteligencia artificial en el dominio biomédico ha expe-
rimentado un crecimiento exponencial en la tltima década, transformando fundamental-
mente la manera en que se accede, procesa y sintetiza el conocimiento médico (Warner et
al., 2024). En este contexto, los sistemas de question answering (Q&A) biomédico han
emergido como una tecnologia critica para democratizar el acceso a informacion cientifica
especializada, permitiendo que profesionales de la salud, investigadores y estudiantes for-
mulen consultas en lenguaje natural y obtengan respuestas precisas basadas en evidencia
cientifica actualizada (Kell et al., 2024).

La medicina moderna se caracteriza por su naturaleza inherentemente multimodal,
donde la toma de decisiones clinicas requiere la integracion de informacion textual (li-
teratura cientifica, historiales clinicos, guias de practica) e informacion visual (imégenes
radiologicas, histopatologicas, microscopicas) (Simon et al., 2024). Sin embargo, los sis-
temas de Q& A biomédico tradicionales han operado predominantemente en modalidades
aisladas, limitando su capacidad para proporcionar analisis integrales que reflejen la reali-
dad clinica multidimensional (Warner et al., 2024). Esta fragmentacion de modalidades
representa una limitacion significativa para la medicina de precision, donde la sintesis
de evidencia multimodal es fundamental para diagnosticos precisos y planificacion tera-
péutica personalizada. La necesidad de sistemas que puedan procesar simultaneamente
consultas textuales complejas y anéalisis de imégenes médicas especializadas es imperativa
para avanzar hacia herramientas de apoyo clinico verdaderamente integradas (Tariq et al.,
2025).

Paralelamente al desarrollo de capacidades multimodales, la comunidad médica y re-
gulatoria ha identificado la explicabilidad como un requisito fundamental para la adopcion
responsable de sistemas de TA en entornos clinicos (Calem et al., 2024). A diferencia de
otros dominios donde los modelos black-box pueden ser aceptables, la medicina exige
transparencia interpretativa que permita a los profesionales comprender, validar y con-
fiar en las recomendaciones generadas por sistemas automatizados (Guidotti et al., 2018;
Markus et al., 2021). La explicabilidad en IA médica trasciende la mera interpretacion de
resultados; constituye un imperativo ético y regulatorio que determina la viabilidad de
la implementacion clinica. En esta area los sistemas no solo deben proporcionar respues-
tas precisas, sino también articular el razonamiento subyacente, identificar las fuentes de
evidencia y permitir la verificacion independiente de las conclusiones generadas (Markus
et al., 2021). Esta exigencia se intensifica en el contexto multimodal, donde la integracion
de informacion textual y visual requiere mecanismos de explicabilidad sofisticados que
puedan elucidar las contribuciones relativas de cada modalidad al resultado final (Borys
et al., 2023).

Por lo tanto, el presente sistema pretende ser un aporte en el avance hacia la resolucion
de esta problemética.

2. Motivacidon

La convergencia entre inteligencia artificial y medicina representa uno de los desafios
més apremiantes y prometedores en la actualidad. Mi trabajo en MultimodalBioQA
emerge de una conviccion profunda: que las decisiones clinicas respaldadas por sistemas
interpretables pueden transformar radicalmente los resultados para los pacientes, espe-
cialmente en contextos donde el tiempo de diagnoéstico es critico.
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La medicina de precision asistida por IA no es meramente una innovacién tecnolo-
gica; es una oportunidad de democratizar el acceso a diagnoésticos de calidad y reducir
las disparidades en la atencién médica. Cada algoritmo que desarrollamos, cada modelo
que entrenamos, cada sistema de explicabilidad que implementamos, tiene el potencial
de traducirse en intervenciones mas tempranas, tratamientos méas efectivos y, en tultima
instancia, en preservar vidas.

Mi trayectoria académica y profesional ha sido, en retrospectiva, una preparacion de-
liberada hacia este momento de convergencia. Los fundamentos en ciencias de la compu-
tacion, la experiencia en procesamiento de lenguaje natural, el trabajo con datos biomédi-
cos masivos, y la investigacion independiente en explicabilidad de modelos, han confluido
en una vision clara: contribuir al desarrollo de sistemas de TA médica que no solo sean
precisos, sino también transparentes y confiables para los profesionales de la salud y los
pacientes.

El desarrollo de MultimodalBioQA representa méas que un logro técnico; encarna
una filosofia de investigaciéon centrada en el impacto humano. Creo profundamente que
la explicabilidad integrada no es solo un requisito técnico, sino un imperativo ético que
reconoce que, en medicina, entender el "por qué"detras de una recomendacién puede
ser tan crucial como la recomendaciéon misma. Esta investigacion me ha confirmado que
la interseccion entre TA y medicina biomédica es donde mi contribucién puede ser més
significativa. La complejidad inherente de los datos médicos multimodales, la necesidad
critica de interpretabilidad en decisiones clinicas, y el potencial transformador de estas
tecnologias, constituyen un espacio donde siento que la excelencia técnica a la que aspiro
se encuentra con el proposito social. Mi objetivo es consolidar una linea de investigacion
que no solo avance el estado del arte en TA médica, sino que también establezca nuevos
estandares para la responsabilidad y transparencia en el desarrollo de herramientas de
apoyo clinico. Sinceramente aspiro a que mi trabajo contribuya a un futuro donde la TA
médica no solo sea mas inteligente, sino también méas humana en su capacidad de explicar,
justificar y generar confianza tanto en los profesionales que dedican sus vidas a sanar como
en sus pacientes que, tarde o temprano, somos todos.

3. Justificacion de la investigacion

Los sistemas de Q&A biomédico existentes enfrentan limitaciones arquitectonicas y
metodologicas significativas que impiden su adopcion generalizada en entornos clinicos
(Jin et al., 2022). En primer lugar, la mayoria de los sistemas especializados operan en
modalidades tinicas, requiriendo que los usuarios consulten multiples herramientas para
obtener analisis completos. Esta fragmentacion no solo reduce la eficiencia del workflow
clinico, sino que también introduce inconsistencias en la interpretacion y sintesis de la
informacion multimodal.

En segundo lugar, los enfoques actuales de explicabilidad en TA médica tienden a
ser superficiales o limitados a técnicas individuales (por ejemplo, tnicamente attention
maps). Esta aproximacion fragmentada no logra proporcionar la comprension holistica
requerida para validacion clinica, donde los profesionales necesitan entender tanto las
contribuciones especificas de caracteristicas individuales como las interacciones complejas
entre modalidades.

Ademas, los sistemas existentes frecuentemente sacrifican interpretabilidad en favor de
rendimiento, o viceversa, creando un trade-off artificial que limita su utilidad practica. La
investigacion actual incluye marcos arquitecténicos que demuestran que la explicabilidad
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puede coexistir, e incluso potenciar, el rendimiento competitivo en tareas biomédicas
complejas.

Por otra parte, el advenimiento de los grandes modelos de lenguaje (LLMs) y los sis-
temas multimodales avanzados ha creado oportunidades sin precedentes para superar las
limitaciones historicas de los sistemas de Q&A biomédico (Thirunavukarasu et al., 2023).
Los LLMs modernos demuestran capacidades extraordinarias para comprension contex-
tual, sintesis de informacioén compleja y generacion de explicaciones articuladas, mientras
que los modelos multimodales emergentes pueden procesar simultdneamente informacion
textual y visual con un nivel de expertise especializado (Singhal et al., 2023).

Simultaneamente, las arquitecturas multiagente han emergido como un paradigma pro-
metedor para orquestar sistemas complejos que requieren especializacion especifica para
el dominio manteniendo coordinacion global (Pandey et al., 2024). Este enfoque permite
la construccion de sistemas donde agentes especializados manejan aspectos especificos del
procesamiento (busqueda de literatura, andlisis visual, sintesis de respuestas) mientras
un mecanismo de coordinaciéon central asegura coherencia y calidad en el output final
(Pandey et al., 2024).

La convergencia de estas tecnologias emergentes presenta una oportunidad tinica para
desarrollar sistemas de Q&A biomédico que no solo superen las limitaciones actuales en
términos de multimodalidad y explicabilidad, sino que establezcan nuevos estdndares de
transparencia, rendimiento y utilidad clinica en TA médica.

En este contexto, el desarrollo de sistemas de Q& A biomédico multimodal con explica-
bilidad integrada representa una frontera critica de investigacion que tiene el potencial de
transformar fundamentalmente la interaccion entre los profesionales de la salud y el cono-
cimiento médico digitalizado. Estos sistemas deben abordar simultaneamente los desafios
técnicos del procesamiento multimodal, los requisitos metodologicos de la explicabilidad
holistica y las exigencias practicas de la implementacion clinica (Simon et al., 2024).

El presente trabajo aborda esta convergencia de desafios mediante el desarrollo de
un sistema multiagente que integra capacidades avanzadas de procesamiento textual y
visual con mecanismos de explicabilidad multitécnica, estableciendo una base sélida para
la proxima generacion de herramientas de IA médica interpretable.

3.1. Objetivo ODS

Este trabajo de investigacion se enmarca dentro del Objetivo de Desarrollo Sostenible
(ODT) de Salud y Bienestar de la Union Europea, el que tiene como finalidad asegurar
una vida saludable y promover el bienestar para todas las personas, sin importar la edad.
Sus propositos incluyen disminuir la mortalidad materna e infantil, combatir tanto enfer-
medades transmisibles como no transmisibles, y garantizar el acceso universal a servicios
de salud esenciales y a medicamentos seguros (ONU, s.f.).

Una aplicacion de informacion biomédica puede contribuir de manera directa a este
objetivo mediante:

- El acceso sencillo a informacién médica actualizada y fiable.

- La promocioén de la prevencion y el autocuidado en temas de salud.

- El fortalecimiento de la educacién sanitaria en la sociedad.

- El apoyo a la vigilancia epidemiologica y al monitoreo de enfermedades.

Tanto la OMS como la ONU reconocen que la salud digital, incluidas las aplicaciones
biomédicas, desempena un papel fundamental como impulsora para alcanzar los objetivos
ODS. Esto se debe a que amplia la cobertura de servicios de salud, refuerza la respuesta
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ante emergencias sanitarias y contribuye al bienestar global (Organizacion Mundial de la
Salud, 2021).

4. Objetivos

4.1. Objetivo principal

Desarrollar un sistema multiagente de TA explicable para question answering biomé-
dico multimodal que integre capacidades avanzadas de procesamiento textual y visual,
combinando grandes modelos de lenguaje, transformers visuales multimodales y técnicas
de explicabilidad para aportar en el desarrollo de herramientas de apoyo clinico interpre-
tables.

4.2. Objetivos secundarios

= Objetivo secundario 1: Disenar e implementar una base de datos vectorial completa
con méas de 30 millones de articulos PubMed utilizando embeddings especializados
(BiomedNLP-PubMedBERT) con el fin de establecer una infraestructura RAG ro-
busta que permita biisqueda seméantica de alta precisiéon y recuperacion de evidencia
cientifica actualizada.

= Objetivo secundario 2: Implementar un sistema de explicabilidad que combine mul-
tiples técnicas, como GradCAM, Attention Maps e Integrated Gradients, con mapeo
concepto-region y generacion automética de bounding boxes con el objetivo de apor-
tar en el desarrollo de transparencia en IA médica multimodal.

= Objetivo secundario 3: Validar la efectividad del sistema mediante una evaluacion
modular diferenciada en los desafios BioASQ Task 13b (modulo textual) e Image-
CLEFmed Caption 2025 (m6dulo visual) para demostrar buen desempeno a nivel
internacional en ambas modalidades.
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5. Marco teodrico

El desarrollo de sistemas de question answering biomédico multimodal requiere la con-
vergencia de multiples disciplinas técnicas que han evolucionado significativamente en la
ultima década (Jin et al., 2022). El procesamiento de lenguaje natural biomédico enfren-
ta desafios tnicos derivados de la complejidad terminologica y la necesidad de precision
extrema en contextos clinicos. Paralelamente, los avances en grandes modelos de lenguaje
(Chen et al., 2025) han revolucionado las capacidades de comprension y generacion de
texto, mientras que las técnicas de recuperacion aumentada por generacion (RAG) han
emergido como soluciones fundamentales para mitigar alucinaciones y proporcionar acceso
a informacion actualizada (Gao et al., 2025).

En el dominio visual, la interpretacion automatica de imégenes médicas presenta de-
safios especificos relacionados con la variabilidad anatémica, los artefactos técnicos y la
necesidad critica de contextualizacion clinica. Los modelos multimodales recientes, parti-
cularmente los Large Vision-Language Models (LVLMs), han demostrado capacidades
prometedoras para integrar informacion textual y visual, aunque su aplicacién en medici-
na requiere consideraciones especiales de explicabilidad y transparencia. La explicabilidad
constituye un requisito fundamental en aplicaciones médicas, donde la interpretabilidad
de las decisiones automatizadas determina la viabilidad de adopcion clinica. Las técnicas
de visualizacion de activaciones neuronales, atribucion de caracteristicas y segmentacion
explicativa proporcionan mecanismos para entender el razonamiento de modelos comple-
jos. Finalmente, la evaluacion rigurosa mediante benchmarks especializados como BioASQ
(Nentidis et al., 2025) e ImageCLEFmedical (Damm & et al., 2025) establece estandares
de desempeno y comparabilidad que guian el desarrollo de sistemas clinicamente viables.

5.1. Procesamiento de lenguaje natural biomédico

El Procesamiento de Lenguaje Natural Biomédico (BioNLP) es un campo fundamental
que busca automatizar la extraccion, curacion y sintesis de conocimiento a partir de la
vasta y creciente literatura biomédica (Chen et al., 2025). Su importancia radica en la
necesidad de superar los desafios que impone el volumen masivo de publicaciones, como
los aproximadamente 5000 articulos que se anaden diariamente solo a PubMed (Chen
et al., 2025). A continuacion, se detallan los desafios especificos de este dominio, el papel
del Reconocimiento de Entidades Nombradas Biomédicas (BioNER) y la integracion del
Sistema Unificado de Lenguaje Médico (UMLS).

5.1.1. Desafios especificos del dominio médico
El dominio biomédico presenta obstaculos inherentes para el PLN, que van més alla
de los encontrados en campos generales:

Volumen y naturaleza dinadmica

La literatura biomédica es inmensamente voluminosa y se expande continuamente
con nuevos descubrimientos, lo que lleva a un problema constante de palabras fuera del
vocabulario (OOV) (Chen et al., 2025; Song et al., 2021). Por ejemplo, en marzo de
2024, PubMed ya contenia mas de 36 millones de articulos, con unas 10 mil publicaciones
adicionales al mes solo sobre COVID-19 (Chen et al., 2025).
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Terminologia compleja y ambigiiedad

» Las Entidades Nombradas Biomédicas (BioNEs) suelen estar compuestas por varias

palabras, como "hereditary nonpolyposis colorectal cancer syndrome"(Song et al.,
2021).

= Una misma entidad puede ser referida con multiples términos; por ejemplo, "Long
COVID"tiene hasta 763 términos diferentes (Chen et al., 2025).

= Un mismo término puede describir entidades distintas, como .*P2", que puede refe-
rirse a un gen, una sustancia quimica o una linea celular (Chen et al., 2025).

» Las abreviaturas también pueden tener miltiples significados, como "B"para "bacillus.°
"whole blood"(Song et al., 2021).

» Existen entidades en cascada, donde una entidad se incrusta dentro de otra, como
"HTLV-I"dentro de "HTLV-I-infected cord blood lymphocytes"(Song et al., 2021).

Necesidad de alta precisiéon

Dada la naturaleza critica de la informacion médica, cualquier inconsistencia, informa-
cion faltante o alucinacion en las salidas de los modelos de PLN puede tener implicaciones
significativas, requiriendo una validaciéon manual exhaustiva (Chen et al., 2025).

Datos etiquetados limitados

A diferencia de los dominios generales, la disponibilidad de conjuntos de datos bio-
médicos etiquetados es notablemente menor. Esto dificulta las estrategias de ajuste fino
(fine-tuning), ya que los modelos ajustados en datos limitados pueden carecer de gene-
ralizacion y el etiquetado manual requiere personal profesional altamente cualificado, lo
que es costoso y consume mucho tiempo (Chen et al., 2025; Zhuang et al., 2024).

Inconsistencias en la anotacion

Incluso en los "gold-standard corpora"(GSC), pueden existir diferencias significativas
en las anotaciones entre expertos, tanto en la tipificacion como en los limites de las
entidades, lo que afecta la precision del modelo (Song et al., 2021).

5.1.2. BioNER y entity linking

El Reconocimiento de Entidades Nombradas Biomédicas (BioNER) es una tarea fun-
damental en la extraccion de informacion, cuyo objetivo es identificar BioNEsb (como
genes, proteinas, enfermedades, sustancias quimicas y especies) en la literatura biomédica
no estructurada (Song et al., 2021).

El proceso de BioNER implica la preparacion de conjuntos de datos adecuados, la
extraccion de caracteristicas de la entidad y la clasificacion de las entidades candidatas.
Mientras que los enfoques tradicionales se basan en diccionarios y reglas, sufriendo del
problema OOV, las metodologias de aprendizaje profundo han logrado un rendimiento de
vanguardia en BioNER (Song et al., 2021).
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Modelos de deep learning

Incluyen redes neuronales simples (como CNN y LSTM para capturar caracteristicas
locales y globales), el aprendizaje multitarea (que comparte pardmetros entre diferentes
tareas de BioNER o combina BioNER con tareas relacionadas como la normalizaciéon de
entidades nombradas, NEN) y el aprendizaje por transferencia (Song et al., 2021).

Modelos preentrenados

Ejemplos como BioBERT, BioELMo y HunFlair, preentrenados en grandes corpus
biomédicos, han demostrado una mejora significativa en la extraccion de caracteristicas y
la convergencia del modelo para tareas especificas de BioNER (Song et al., 2021).

5.1.3. UMLS y su integracion

El Sistema Unificado de Lenguaje Médico (UMLS), desarrollado y mantenido por la
Biblioteca Nacional de Medicina (NIH), es una herramienta fundamental en la informatica
biomédica (Jing, 2021a). Fue disenado para integrar numerosos vocabularios y estanda-
res ampliamente utilizados en el campo biomédico, facilitando la interoperabilidad y la
comprension semantica entre diferentes sistemas (Jing, 2021a). UMLS se compone de tres
fuentes de conocimiento clave:

» Metatesauro: Contiene aproximadamente 4,4 millones de conceptos y 16 millones
de nombres de conceptos tnicos de 218 vocabularios de origen en 25 idiomas (Jing,
2021a).

= Red semantica: Proporciona una categorizaciéon consistente para todos los con-
ceptos del UMLS (Jing, 2021a).

» Léxico SPECIALIST y herramientas léxicas: Ofrecen herramientas sintacticas
para normalizar cadenas y variantes léxicas (Jing, 2021a).

La integracion de UMLS en el PLN ha sido un area muy activa, siendo uno de los
tres temas més frecuentes en las publicaciones revisadas (Jing, 2021a). Sus aplicaciones
incluyen:

Reconocimiento y extracciéon de conceptos

Permite la identificacion de eventos adversos a medicamentos, propiedades contextua-
les y trastornos (Jing, 2021a).

Reconocimiento de entidades nombradas (NER)

Crucial para identificar términos médicos en texto libre (Jing, 2021a).

Reconocimiento y extracciéon de relaciones

Fundamental para descubrir interacciones farmaco-farmaco, relaciones enfermedad-
tratamiento y asociaciones entre enfermedades (Jing, 2021a).
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Herramientas léxicas

El léxico SPECIALIST del UMLS actta como una base léxica para las aplicaciones de
PLN (Jing, 2021a).

Ademés, UMLS ha demostrado ser eficaz en la aumentacion de datos para modelos
de aprendizaje profundo en BioNLP. El método UMLS-EDA (UMLS-based Easy Data
Augmentation) incorpora el conocimiento de UMLS para mejorar significativamente el
rendimiento de modelos de aprendizaje profundo para BioNER y clasificacion, especial-
mente en escenarios de escasez de datos de entrenamiento (Kang et al., 2021). Este enfoque
ha permitido que modelos como LSTM-CRF superen a sus contrapartes basadas en BERT
en ciertas tareas (Kang et al., 2021).

En resumen, UMLS es un pilar que proporciona la base terminolégica y seméntica
necesaria para abordar la complejidad del lenguaje biomédico, impulsando el desarrollo
de soluciones de PLN mas precisas y robustas para la extraccion de conocimiento critico.

5.2. Fundamentos de los grandes modelos de lenguaje (LLMs)

La aplicacion de modelos avanzados en el ambito biomédico representa un avance
significativo.

5.2.1. Arquitectura Transformer

La arquitectura Transformer, propuesta en el articulo Attention is A11 you Need (Vas-
wani et al., 2017), revolucioné los modelos de transduccion de secuencias al basarse exclu-
sivamente en mecanismos de atencion, prescindiendo de la recurrencia y las convoluciones.
Su importancia radica en su capacidad para paralelizar significativamente la computacion
durante el entrenamiento, reduciendo drasticamente los tiempos necesarios. Ademas, per-
mite el modelado de dependencias a larga distancia con un niimero constante de operacio-
nes secuenciales, superando las limitaciones de los modelos recurrentes y convolucionales
en el aprendizaje de estas dependencias. Esto ha sido crucial para su éxito en tareas como
la traduccion automatica, donde logré resultados de vanguardia (Vaswani et al., 2017).

5.2.2. LLMs

Los Grandes Modelos de Lenguaje (LLMs), ejemplificados por modelos avanzados

como GPT-4o0, demuestran una inteligencia mas general a través de diversas capacidades
(Bubeck et al., 2023; Wei et al., 2022):

» Capacidades de razonamiento: GPT-4, por ejemplo, exhibe un dominio del len-
guaje y puede resolver tareas complejas en matematicas y codificacion. En el ambito
biomédico, GPT-4 super6 el 80 % de precision en las pruebas del US Medical Li-
censing Exam y puede generar codigo Python para evaluar el riesgo de diabetes
basdndose en datos del paciente.

= Generacion de texto: Estos modelos producen texto de alta calidad, a menudo
indistinguible del generado por humanos, y pueden adaptarlo a diferentes estilos y
contextos (Bubeck et al., 2023; Wei et al., 2022).

» Papel en Q&A (Preguntas y Respuestas): GPT-3 ya mostraba un fuerte ren-
dimiento en tareas de Q&A, siendo competitivo o incluso superando a modelos
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previamente ajustados en ciertos escenarios (Bubeck et al., 2023). GPT-4, ademas,
puede actuar como “juez”’ para determinar la similitud seméntica entre respuestas,
mejorando la evaluacion de la veracidad y el razonamiento (Bubeck et al., 2023). Su
habilidad para usar herramientas externas, como motores de busqueda, le permite
obtener informacion actual y responder preguntas complejas (Bubeck et al., 2023).

El sistema MultimodalBioQA utiliza LLMs como GPT-40 para responder a preguntas
biomédicas complejas, aprovechando su capacidad para comprender y generar texto en
contextos especializados.

5.2.3. LLMs en biomedicina

Los grandes modelos de lenguaje (LLMs) han demostrado un potencial significativo
en el dominio biomédico, donde la comprension del lenguaje natural y la extraccion de
informacion son cruciales. Sin embargo, generalmente, los LLMs de proposito general no
estdn optimizados para el lenguaje clinico y biomédico, que posee una terminologia y una
base de conocimientos muy especificas, lo que hace que los LLMs de propodsito general a
menudo requieran adaptacion para un rendimiento 6ptimo. Las estrategias de adaptacion
incluyen:

= Pre-entrenamiento continuado: Entrenar adicionalmente un LLM general sobre gran-
des corpus biomédicos (p. ej., PubMed, EHRs desidentificados). Ejemplos notables
incluyen BioBERT (basado en BERT, pre-entrenado en PubMed) (Lee et al., 2020),
Clinical BERT (pre-entrenado en notas clinicas MIMIC-IIT), PubMed BERT, BioMe-
gatron, GatorTronGPT (basado en GPT, entrenado en EHRs y texto general) y, mas
recientemente, BioMistral (basado en Mistral, pre-entrenado en PubMed Central).

» Fine-tuning especifico: Ajustar un LLM (general o biomédico) en conjuntos de datos
especificos de tareas clinicas (p. ej., para respuesta a preguntas médicas, extraccion
de entidades).

» Instruction tuning médico: Ajustar LLMs utilizando conjuntos de datos de ins-
trucciones y respuestas especificas del dominio médico. (Dettmers et al., 2023).

= Aplicaciones clinicas: Los LLMs adaptados se aplican a una amplia gama de tareas
en biomedicina, como respuesta a preguntas clinicas (Q&A), extraccion de informa-
cion (NER, extraccion de relaciones), resumen de textos médicos (literatura, notas
clinicas), generacion de didlogos médico-paciente, clasificacion de textos, apoyo a la
decision clinica y analisis de datos de EHR. Las tendencias recientes muestran una
adaptacion creciente de los LLMs generales potentes (como Llama, Mistral, GPT)
al dominio biomédico, aprovechando sus capacidades emergentes de razonamiento y
aprendizaje few-shot (Chen et al., 2025).

Desafios pendientes

Estas capacidades, si bien generales, tienen un inmenso potencial para transformar la
atencion médica y la investigacion biomédica, aunque es crucial abordar las limitaciones
como las “alucinaciones” y los sesgos inherentes en los datos de entrenamiento (Bubeck
et al., 2023).

El sistema MultimodalBioQA utiliza modelos adaptados al dominio biomédico, como
PubMedBERT, para mejorar la precision y la relevancia de las respuestas a preguntas
biomédicas complejas.
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5.3. Prompt engineering y Few-Shot learning

El aprendizaje basado en prompts representa un cambio de paradigma en NLP, donde,
a diferencia del aprendizaje supervisado tradicional, se reformulan las tareas para que se
parezcan mas a las que se resuelven durante el entrenamiento original del LLM, con la
ayuda de un prompt textual (P. Liu et al., 2023). Esto permite que el modelo de lenguaje,
pre-entrenado con grandes cantidades de texto sin procesar, realice aprendizaje con pocos
ejemplos (few-shot learning) o incluso sin ejemplos (zero-shot learning), adaptandose a
nuevos escenarios con poca o ninguna data etiquetada (P. Liu et al., 2023).

La ingenieria de prompts o prompt engineering es el proceso de disenar una funciéon de
prompting que modifique la entrada original en un prompt textual con espacios sin llenar,
para que el modelo de lenguaje los complete probabilisticamente (P. Liu et al., 2023). La
ingenieria de prompts se centra en la formulaciéon 6ptima de instrucciones textuales para
lograr que los modelos de lenguaje comprendan de manera precisa las tareas solicitadas.

Los componentes clave del prompt engineering incluyen: Ingenieria de Plantillas de
Prompts (Prompt Template Engineering) e Ingenieria de Respuestas de Prompts (Prompt
Answer Engineering).

5.3.1. Ingenieria de Plantillas de Prompts

Este enfoque se basa en el diseno de estructuras o plantillas de prompts que incorporan
espacios reservados especificos destinados a ser completados por el modelo. La literatura
especializada identifica dos modalidades principales:

» Prompts de tipo Cloze (completacion de espacios): Esta metodologia presenta
al modelo enunciados con espacios en blanco que deben ser rellenados. Por ejemplo:
“La capital de Japon es |Z].” Esta técnica resulta particularmente eficaz con modelos
de tipo BERT y arquitecturas similares basadas en codificadores bidireccionales (P.
Liu et al., 2023).

» Prompts de tipo Prefix (continuacion textual): En esta modalidad, se propor-
ciona al modelo un contexto inicial que debe completar de forma coherente. Por
ejemplo: “;Cudl es la capital de Japon? |Z]” Este enfoque se adapta mejor a mode-
los generativos autorregresivos como la familia GPT (P. Liu et al., 2023).

El diseno de estas plantillas puede realizarse mediante dos aproximaciones comple-
mentarias:

1. Diseno manual: Basado en la intuicién y experiencia humana para la formulacion
de prompts efectivos (P. Liu et al., 2023).

2. Diseno automatizado: Empleando algoritmos de optimizacion que identifican au-
toméaticamente las formulaciones més eficaces para cada tarea especifica (P. Liu et
al., 2023).

En aplicaciones multimodales que integran texto e imagenes —como sistemas de ana-
lisis de imagenes médicas— se incorporan embeddings visuales como componentes adi-
cionales del prompt, expandiendo asi las capacidades de representacion del contexto de
entrada.

El diseno de un prompt apropiado es crucial, ya que especifica la tarea que el modelo
debe realizar (P. Liu et al., 2023).
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5.3.2. Ingenieria de Respuestas de Prompts

La ingenieria de respuestas de prompts se enfoca en la definicién y estructuracion
de las salidas esperadas del modelo de lenguaje. Esta metodologia establece parametros
especificos para el formato y la naturaleza de las respuestas generadas (P. Liu et al., 2023).

Las respuestas pueden adoptar diferentes modalidades segtn los requerimientos de la
tarea (P. Liu et al., 2023):

» Respuestas de palabra tinica: Como clasificaciones binarias (p. ej., “positivo”,
“negativo”)

» Frases concisas: Para respuestas factuales especificas (p. ej., “capital de China”)

= Oraciones completas: Para tareas que requieren explicaciones detalladas

Adicionalmente, es posible establecer esquemas de mapeo que vinculen las respues-
tas textuales con categorias o valores numéricos especificos. Por ejemplo, la respuesta
“positivo” puede mapearse a la clase 1 en un sistema de clasificacion binaria.

El diseno de estas estructuras de respuesta puede implementarse mediante dos enfo-
ques:

1. Diseno manual: Elaboraciéon de taxonomias y listas de respuestas validas basadas
en conocimiento experto

2. Optimizaciéon automatizada: Evaluacion sistematica de diferentes formatos de
respuesta para identificar las configuraciones més efectivas

5.3.3. Aprendizaje Few-Shot mediante Prompts

El aprendizaje few-shot constituye una técnica de condicionamiento contextual donde
se proporciona un numero limitado de ejemplos demostrativos dentro del propio prompt,
permitiendo al modelo inferir patrones y generalizar a nuevas instancias (Gupta et al.,
2021; P. Liu et al., 2023).

Ejemplo ilustrativo:

“La capital de Francia es Paris. La capital de Alemania es Berlin. La capital
de Japon es [Z].”

A partir de estos ejemplos demostrativos (shots), el modelo puede deducir correcta-
mente que la respuesta apropiada es “Tokio”, aplicando el patrén identificado en los casos
precedentes (P. Liu et al., 2023).

Esta metodologia, también denominada demonstration learning o aprendizaje por de-
mostracion, ha demostrado particular eficacia en modelos de gran escala, donde la capa-
cidad de generalizacion a partir de contextos limitados resulta especialmente pronunciada
(Gupta et al., 2021; P. Liu et al., 2023).

El sistema MultimodalBioQA representa una aplicaciéon practica de las técnicas de
ingenieria de prompts en el dominio biomédico. Este sistema integra informacion textual
e imagenologica médica para resolver consultas complejas en un contexto biomédico.

La implementacion utiliza técnicas de prompt engineering, que incorporan metodolo-
gias de few-shot learning, cuidadosamente disenadas con ejemplos demostrativos especi-
ficos del dominio para orientar las respuestas del modelo. Esta aproximacion ilustra la
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aplicabilidad y efectividad de estas técnicas incluso en dominios altamente especializa-
dos y técnicamente exigentes como la biomedicina, donde la precision y la coherencia
contextual son requisitos criticos.

5.4. Recuperaciéon Aumentada por Generaciéon (RAG)

La Generacion Aumentada por Recuperacion (RAG) es un paradigma crucial que
combina las fortalezas de la recuperacion de informacion y los grandes modelos de len-
guaje (LLMs) generativos para abordar sus limitaciones intrinsecas (W. Zhang & Zhang,
2025). Los LLMs a menudo producen “alucinaciones”, es decir, respuestas inconsistentes
o sin sentido, debido a su dependencia de parametros fijos y datos de entrenamiento po-
tencialmente desactualizados (W. Zhang & Zhang, 2025). RAG mitiga esto al recuperar
informacion externa, actualizada y especifica del dominio (memoria no paramétrica) y
proporcionarla como contexto al LLM, fundamentando asi sus respuestas y haciéndolas
maés factuales, veraces y confiables (Amugongo et al., 2025; W. Zhang & Zhang, 2025).

Un componente técnico central de RAG implica el uso de embeddings y bases de datos
vectoriales (Amugongo et al., 2025). Tanto las consultas de usuario como los documentos
externos se transforman en representaciones numéricas densas llamadas embeddings me-
diante modelos codificadores pre-entrenados (W. Zhang & Zhang, 2025). Estas represen-
taciones vectoriales de alta dimension capturan el significado semantico. Los embeddings
de documentos se almacenan e indexan en bases de datos vectoriales (por ejemplo, uti-
lizando Qdrant) (W. Zhang & Zhang, 2025), lo que permite una busqueda eficiente del
Producto Interior Maximo (MIPS) para encontrar los documentos maés relevantes segin
su similitud con el embedding de la consulta (Lewis et al., 2020; W. Zhang & Zhang,
2025).

En un contexto clinico, RAG es particularmente impactante, ya que la atencion médica
es un dominio intensivo en conocimiento que exige informacion precisa y actual (Amu-
gongo et al., 2025). RAG aborda las limitaciones criticas de los LLMs en medicina, como
la generacion de contenido inexacto o el uso de conocimiento obsoleto (Amugongo et al.,
2025). Al recuperar informacion de bases de datos médicas externas, repositorios de litera-
tura o sistemas expertos, los LLMs basados en RAG pueden proporcionar respuestas més
precisas, completas, factuales y seguras a preguntas clinicas (Amugongo et al., 2025). Esto
mejora capacidades como la seleccion de pacientes para ensayos clinicos, la identificacion
de criterios de inclusion/exclusion, y el razonamiento diagnostico, especialmente cuando
se aumenta con grafos de conocimiento (Amugongo et al., 2025).

El sistema MultimodalBioQA utiliza una base vectorial local Qdrant (Oztiirk &
Mesut, 2024) alimentada con embedding de documentos de PubMed (Liang et al., 2021).
También se guarda la informacién recuperada de la ontologia y grafo de conocimiento
UMLS (Bodenreider, 2004) que se utiliza para enriquecer los prompts de preguntas bio-
médicas. Ademas, también se guardan los ejemplos de preguntas y respuestas "gold"que
se proporcionan al sistema con técnica de few-shot prompting. El sistema permite la re-
cuperacion de informacion relevante y actualizada, mejorando la precision y la relevancia
de las respuestas generadas por el modelo.
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5.5. Grafos de conocimiento (KG) y ontologias médicas en TA

Los Grafos de conocimiento (KGs) son representaciones estructuradas del conocimien-
to que modelan entidades (nodos) y las relaciones entre ellas (aristas). Las ontologias
proporcionan un vocabulario formal y una estructura taxonémica para un dominio es-
pecifico. En el ambito biomédico y sanitario, los KGs y las ontologias son herramientas
poderosas para (Chandak et al., 2023; Nicholson & Greene, 2020; Y. Zhang et al., 2025):

= Organizar informacién compleja: Integrar datos heterogéneos de diversas fuentes
(literatura, bases de datos clinicas, EHRs) en un modelo unificado.

» Habilitar el razonamiento: Permitir inferencias sobre las relaciones entre conceptos
médicos (p. €j., inferir interacciones medicamentosas, identificar factores de riesgo).

= Mejorar la comprension semantica: Proporcionar definiciones y relaciones estanda-
rizadas para términos médicos, facilitando la interoperabilidad y la interpretacion
consistente.

= Apoyar aplicaciones clinicas: Servir como base para sistemas de apoyo a la decision
clinica, descubrimiento de farmacos, fenotipado de enfermedades y analisis predic-
tivo.

Recursos biomédicos clave

» UMLS (Unified Medical Language System): Es un compendio masivo de vocabula-
rios y estandares biomédicos que actiia como un metatesauro, conectando conceptos
de mas de 200 fuentes, incluyendo SNOMED CT, MeSH, ICD, RxNorm, LOINC,
etc. Su objetivo es promover la interoperabilidad. Aunque su cobertura es extensa
(més de 3,7 millones de conceptos), puede que las vistas de los conceptos no sean
uniformes. Se utiliza ampliamente en NLP biomédico y como base para construir

HKGs (Healthcare Knowledge Graphs) (Bodenreider, 2004; Jing, 2021b).

» SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms): Es con-
siderada la ontologia clinica més completa, basada en logica formal, que cubre un
amplio espectro de conceptos clinicos (diagnosticos, procedimientos, sintomas, etc.).
Su adopcion en EHRs esta creciendo, impulsada por estandares como FHIR. SNO-
MED CT se utiliza para estandarizar la documentacion clinica, apoyar la extraccion
de informacion de texto libre (normalizacion de conceptos) y, cada vez mas, como
fuente de conocimiento para modelos de IA. A pesar de su potencial, se necesita
més evidencia sobre sus beneficios clinicos directos y persisten desafios en su imple-
mentacion. (Gaudet-Blavignac et al., 2021; Vuokko et al., 2023)

» Otras ontologias/KGs: Existen numerosas ontologias y KGs especificos de dominio
(p. €j., Gene Ontology, Human Phenotype Ontology, KGs de enfermedades como
SPOKE para esclerosis multiple, KGs construidos a partir de literatura, etc.) (Ash-
burner et al., 2000; Robinson et al., 2008).

Integracion de KGs con LLMs/RAG (Graph-RAG)
La combinacion de KGs y LLMs es un area de investigacion muy activa que busca
aprovechar las fortalezas complementarias de ambos.
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Los LLMs, aunque potentes en lenguaje, a menudo carecen de conocimiento factual
especifico, son propensos a alucinaciones y dificiles de interpretar. Los KGs ofrecen co-
nocimiento estructurado, verificable y explicito que puede anclar a los LLMs. Ademas,
la estructura del grafo permite modelar relaciones complejas que pueden ser dificiles de
capturar solo con texto (Matsumoto et al., 2024).

Paradigmas de integracion
La integracion de KGs y LLMs puede clasificarse en varias categorias (Gao et al., 2025;
Matsumoto et al., 2024; Soman et al., 2024; Zhao et al., 2025):

» KG-enhanced LLMs: Usar KGs para mejorar el pre-entrenamiento o el fine-tuning
de LLMs, o para proporcionar conocimiento durante la inferencia (p. €j., via RAG).

» LLM-augmented KGs: Utilizar LLMs para ayudar en la construcciéon, completitud
o validacion de KGs a partir de texto u otras fuentes.

» Synergized LLMs + KGs: Frameworks donde LLMs y KGs colaboran de forma mas
estrecha y bidireccional.

= GraphRAG: Este término se refiere especificamente al uso de KGs como la base de
conocimiento externa en un sistema RAG. El flujo de trabajo tipico implica:

» Construccion/Indexacion del Grafo: Crear o utilizar un KG relevante (p. €j., ex-
trayendo entidades y relaciones de documentos fuente, posiblemente con ayuda de
LLMs ) e indexarlo para la recuperacion.

= Recuperacion Guiada por Grafo: Dada una consulta, identificar entidades relevan-
tes en el KG y recuperar informacion estructuralmente conectada (nodos vecinos,
tripletas, subgrafos completos). Esto puede implicar atravesar el grafo.

= Generacion Aumentada por Grafo: Utilizar la informacion estructurada recuperada
del grafo (y potencialmente el texto asociado a nodos/aristas) para aumentar el
prompt del LLM y generar la respuesta final.

El sistema MultimodalBioQA utiliza un sistema Graph-RAG basado en UMLS
que aprovecha la estructura semantica del grafo de conocimiento médico para enriquecer
prompts biomédicos. El sistema navega por las relaciones conceptuales de UMLS mediante
su API, almacena la informacion recuperada en una base de datos vectorial para optimizar
futuras consultas y presenta los resultados al usuario con plena transparencia.

5.6. Inteligencia artificial multimodal en biomedicina

La IA Multimodal en el contexto biomédico se refiere a modelos de inteligencia artificial
que integran y procesan miultiples tipos de datos (p. €j., imagenes médicas, notas clinicas,
datos de EHR, genomica, datos tabulares, graficos) para mejorar el rendimiento en tareas
clinicas como el diagnostico, pronéstico o planificacion del tratamiento. El objetivo es
lograr una comprensiéon més holistica, similar a la practica clinica humana donde los
expertos integran informacién de diversas fuentes. Se distingue de la IA multicanal, que
utiliza multiples entradas del mismo tipo de datos (p. €j., diferentes secuencias de RM)
(Simon et al., 2024; Kumar et al., 2024).
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Los enfoques multimodales son beneficiosos porque diferentes modalidades pueden pro-
porcionar informacién complementaria, cooperativa o redundante, lo que potencialmente
conduce a predicciones mas robustas, precisas y generalizables en comparaciéon con los
enfoques unimodales. La propia naturaleza de los datos clinicos y la toma de decisiones
médicas es intrinsecamente multimodal.

Sin embargo, el aprendizaje multimodal presenta desafios fundamentales (Schouten
et al., 2025):

= Representacion: Como transformar datos de diferentes modalidades en formatos
legibles por méquina (p. €j., vectores) preservando las relaciones y el contexto entre
ellas.

s Fusion: Como combinar eficazmente las representaciones de miltiples modalidades
en un modelo predictivo.

= Alineacién: Como alinear automaticamente datos de diferentes modalidades, espa-
cial o temporalmente (p. ej., senales ECG y PPG, o modalidades de imagen).

» Traduccion: Cémo mapear datos de una modalidad a otra (p. €j., generar texto a
partir de una imagen médica).

s Co-aprendizaje: Como transferir conocimiento aprendido de una modalidad para
mejorar el aprendizaje en otra, especialmente 1til cuando una modalidad tiene datos
limitados o ruidosos.

Ademés de estos desafios tedricos, existen obstéculos practicos como la taxonomia in-
consistente en la literatura, la escasez de datos multimodales a gran escala, representativos
y bien anotados, el riesgo de sesgos en los datos existentes y la brecha entre las practicas
de recopilacion de datos clinicos y los formatos requeridos para el desarrollo en TA (Simon
et al., 2024).

5.6.1. Estrategias de fusiéon multimodal

La fusion multimodal se define como el proceso de combinar informacién o represen-
taciones derivadas de diferentes modalidades dentro de un modelo de TA. Las estrategias
de fusion se clasifican comtinmente segiin la etapa del procesamiento en la que ocurre la
integracion:

» Fusion temprana (Early Fusion): Combina datos en bruto o caracteristicas de bajo
nivel extraidas de cada modalidad cerca de la capa de entrada del modelo. Esta
estrategia puede requerir una alineaciéon cuidadosa de los datos y puede ser sensible
a informacion irrelevante para la tarea especifica (Boulahia et al., 2021; Stahlschmidt
et al., 2022).

» Fusién tardia (Late Fusion): Combina las predicciones o salidas generadas por mo-
delos unimodales separados y entrenados en cada modalidad (p. ej., mediante en-
samblaje de modelos). Aunque conceptualmente simple, puede tener limitaciones en
la explotacion de correlaciones complejas entre modalidades durante el proceso de
aprendizaje (Boulahia et al., 2021; Stahlschmidt et al., 2022).
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» Fusiéon intermedia/conjunta/hibrida (Intermediate/Joint/Hybrid Fusion): Integra
caracteristicas extraidas de diferentes modalidades en capas intermedias del modelo,
permitiendo una interacciéon mas profunda entre ellas durante el procesamiento. Los
mecanismos de atencion, especialmente la atencion cruzada (cross-attention) dentro
de los Transformers, son particularmente adecuados para facilitar este tipo de fu-
sion, permitiendo que las representaciones de diferentes modalidades interactien y
se influencien mutuamente. La fusién también puede clasificarse como basada en el
modelo (model-based), donde la arquitectura esta disenada especificamente para la
fusion, o agnostica al modelo (model-agnostic), donde la fusion ocurre antes o des-
pués del modelo principal (Boulahia et al., 2021; Guarrasi et al., 2025; Stahlschmidt
et al., 2022).

Las arquitecturas Transformer, gracias a mecanismos como la atencién cruzada y la
atencion multicabeza, facilitan naturalmente estrategias de fusion intermedia sofisticadas
que van mas alla de la simple concatenacion o el promedio en etapas tardias (Vaswani et
al., 2017; Zhou et al., 2023). La atencion cruzada, diseniada originalmente para relacionar
la salida del codificador con la entrada del decodificador, puede adaptarse para relacionar
secuencias derivadas de diferentes modalidades (p. €j., caracteristicas de imagen y embed-
dings de texto) (Bi et al., 2024). Esto permite una ponderacion e integracion dindmica y
dependiente del contexto de la informacion de diferentes fuentes dentro de las capas ocul-
tas del modelo, representando un enfoque de fusiéon maéas potente en comparacién con los
métodos estaticos tempranos o tardios (Xie et al., 2025). Esta ventaja arquitectonica es
probablemente un impulsor clave para la adopciéon de Transformers en tareas biomédicas
multimodales complejas (Al-hammuri et al., 2023).

La transicion hacia el procesamiento multimodal es una tendencia dominante en la TA
médica, reflejando la naturaleza multifacética de los datos clinicos (Xiao et al., 2025; Yin et
al., 2024). El éxito de estos sistemas depende criticamente de la eleccion de codificadores
especificos para cada modalidad (como ViT para imagenes) y de estrategias de fusion
sofisticadas que permitan una integracion significativa de la informacion heterogénea (Li
et al., 2024).

5.7. Grandes modelos de lenguaje y visiéon (LVLMs)

Los grandes modelos de lenguaje y vision (LVLMs, por sus siglas en inglés), como
LLaVA, aprovechan el poder de modelos de lenguaje como LLaMA para generar datos
multimodales de instrucciones a partir de pares imagen-texto, empleando representaciones
simbolicas como captions y bounding boxes (H. Liu et al., 2023). LLaVA conecta un
codificador visual (por ejemplo, CLIP) con un modelo de lenguaje (por ejemplo, Vicuna)
y los ajusta de manera conjunta de extremo a extremo, habilitando asi la comprension
visual y lingiifstica de proposito general. Esto facilita capacidades como chat multimodal
y clasificacion zero-shot mediante la similitud imagen-texto (Huang et al., 2021; H. Liu
et al., 2023).

5.7.1. Categorizacion de LLaVA-LLaMA segun estrategias de fusién

El modelo LLaVA-LLaMA utilizado en este proyecto se clasifica como un modelo de
fusion intermedia hibrida (H. Liu et al., 2023; Yin et al., 2024). Su arquitectura emplea
una estrategia de fusiéon intermedia donde:
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» Las caracteristicas visuales se extraen mediante un codificador de visiéon congelado
(CLIP ViT-L/14).

» Un proyector MLP de dos capas actiia como conector de modalidades (H. Liu et al.,
2023).

» El modelo de lenguaje (LLaMA /Vicuna) procesa las representaciones fusionadas
para generar salidas textuales.

» Esta arquitectura permite la interaccion profunda entre modalidades sin requerir
entrenamiento conjunto desde cero (H. Liu et al., 2023).

El sistema MultimodalBioQA utiliza LLaVA-LLaMA como modelo de lenguaje y
vision para responder preguntas visuales biomédicas complejas, aprovechando su capaci-
dad para integrar texto e imagenes de manera efectiva. La fusion intermedia permite al
modelo generar respuestas mas precisas y contextualizadas, combinando la informacion
visual de las imagenes médicas con el conocimiento textual de los documentos biomédicos.

5.8. Visiéon computacional médica

El captioning de imégenes médicas (MIC, por sus siglas en inglés) es un éarea en
evolucion dentro de la inteligencia artificial que integra la visién por computador y el pro-
cesamiento del lenguaje natural para comprender y describir automaticamente iméagenes
médicas, abordando asi la generacion manual de informes por parte de los radiélogos, un
proceso que resulta laborioso y propenso a errores (Beddiar et al., 2023).

El grounding visual médico es fundamental en este campo, especialmente para patolo-
gias sutiles que ocupan pequenas porciones de la imagen (Huang et al., 2021). Frameworks
como GLoRIA aprenden representaciones globales y locales al contrastar subregiones de
la imagen con palabras en los informes emparejados, enfatizando areas significativas me-
diante pesos de atencion, sin requerir detectores de objetos preentrenados (Huang et al.,
2021).

Un modelo relevante en esta area incluye el Segment Anything Model (SAM), un mode-
lo fundacional para la segmentacion de imagenes. SAM esta disenado para ser promptable,
lo que permite la transferencia zero-shot a diversas tareas como la deteccion de bordes,
la generacion de propuestas de objetos y la segmentacion de instancias, mediante el uso
de prompts flexibles (por ejemplo, puntos, cajas, texto) (Kirillov et al., 2023).

Por otra parte, Grad-CAM proporciona explicaciones visuales para redes neuronales
convolucionales (CNNs) al generar mapas de localizacion discriminativos por clase a partir
de gradientes, destacando las regiones importantes de la imagen para una prediccion
particular. Grad-CAM es aplicable a una amplia variedad de arquitecturas CNN, incluidas
aquellas empleadas en captioning de imagenes y visual question answering, sin requerir
cambios arquitectonicos (Huang et al., 2021; Selvaraju et al., 2020).

A pesar de estos avances, el captioning médico enfrenta desafios significativos. A di-
ferencia del captioning de imagenes genéricas, en el &mbito médico es necesario captar
relaciones complejas entre objetos de la imagen y hallazgos clinicos, requiriéndose alta
precision y el uso de terminologia médica estructurada y precisa, asi como la correc-
ta identificacion de hallazgos anémalos poco frecuentes (Beddiar et al., 2023). Entre las
principales limitaciones se encuentran la escasez, el tamano reducido, el desbalance de
clases y la heterogeneidad de los datasets médicos anotados de alta calidad, ademas de
las preocupaciones relativas a la privacidad. Los modelos también presentan dificultades
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para manejar oraciones largas, el orden de las palabras y la localizacion precisa de ano-
malias sutiles (Beddiar et al., 2023). Asimismo, las métricas automaticas actuales suelen
no captar matices seméanticos, y la obtencion de evaluaciones humanas costosas por parte
de expertos médicos sigue siendo una barrera.

El sistema MultimodalBioQA utiliza técnicas de captioning de imagenes médicas
para generar descripciones precisas y contextualizadas de las imagenes biomédicas. La
integracion de técnicas como SAM permiten al sistema identificar y resaltar areas rele-
vantes en las iméagenes médicas, facilitando una comprensién més profunda y precisa de
los hallazgos clinicos.

5.9. Question answering multimodal
5.9.1. Fundamentos de sistemas de Q& A multimodal

Los sistemas de Preguntas y Respuestas Visuales (VQA) surgieron como un problema
interdisciplinario que demanda conocimientos tanto de la Vision por Computadora (CV)
como del Procesamiento del Lenguaje Natural (NLP) (Gupta et al., 2021). En VQA, la
tarea consiste en responder preguntas formuladas sobre una imagen, donde el sistema debe
aprender y generar respuestas basandose en las caracteristicas extraidas de la imagen de
entrada (Gupta et al., 2021). A diferencia de las tareas tipicas de CV, que se centran en
problemas como la identificaciéon de acciones o la clasificacion de imégenes, las tareas de
VQA son inherentemente mas complejas, requiriendo una inteligencia superior que incluye
el reconocimiento de objetos, la extraccion de caracteristicas seménticas, el conocimiento
externo y el sentido comun (Gupta et al., 2021).

Tradicionalmente, en NLP, los sistemas de aprendizaje supervisado predicen una sali-
da y a partir de una entrada z utilizando un modelo P(y|z;6) (P. Liu et al., 2023). Sin
embargo, la disponibilidad insuficiente de datos anotados para muchas tareas ha impul-
sado el desarrollo de métodos de aprendizaje basados en prompts. Estos métodos utilizan
modelos de lenguaje (LM) que modelan directamente la probabilidad del texto P(x;6)
para predecir y, reduciendo o eliminando la necesidad de grandes conjuntos de datos
etiquetados (P. Liu et al., 2023).

El avance en CV y NLP durante la tltima década ha introducido técnicas de apren-
dizaje automético que han mejorado la eficiencia en la resolucion de problemas como la
detecciéon de objetos, la segmentacion y la clasificacion de iméagenes en CV, asi como la
traduccion automatica y los sistemas de preguntas y respuestas en NLP (Gupta et al.,
2021). La combinacion de estas éreas es fundamental para la VQA multimodal.

5.9.2. [Estado del arte en integraciéon texto 4 visiéon en medicina

El dominio médico es uno de los campos donde la VQA desempena un papel crucial
al proporcionar asistencia médica a los usuarios finales (Gupta et al., 2021). La VQA
en el dominio médico (VQA-Med) es una tarea compleja y de gran importancia, ya que
los usuarios pueden plantear preguntas sencillas con respuestas de “Si/No” o preguntas
desafiantes que requieren una respuesta detallada y descriptiva. Esta diversidad de tipos
de preguntas, provenientes de distintos usuarios como pacientes, estudiantes de medicina,
clinicos y expertos, exige enfoques especificos para cada tipo de consulta para evitar
confusion y proporcionar asistencia precisa (Gupta et al., 2021).

Para abordar esta complejidad, se han propuesto arquitecturas como la red jerarquica
profunda multimodal (Gupta et al., 2021) y la red pre-entrenada multinivel de fusion
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VB-MVQA (Cai et al., 2023). La red jerarquica, denominada HQS-VQA (Hierarchical
Question Segregation based Visual Question Answering), primero analiza y clasifica las
preguntas/consultas de los usuarios finales y luego incorpora un enfoque especifico para
cada tipo de consulta para la prediccion de respuestas (Gupta et al., 2021). Una técnica
clave dentro de HQS-VQA es la segregacion de preguntas (QS), que clasifica las preguntas
en dos tipos principales: ‘Si/No’ y ‘Otros’ (Gupta et al., 2021). Para esta segregacion, se
utiliza un modelo de aprendizaje automatico estadistico simple, como una Maquina de
Vectores de Soporte (SVM), basado en caracteristicas disenadas manualmente y en la
frecuencia de palabras. Esta técnica evita la necesidad de crear sistemas distintos para
diferentes tipos de preguntas, lo que podria generar confusion y malestar en el usuario
final (Gupta et al., 2021).

En el modelo HQS-VQA, las representaciones de las preguntas y las imégenes se gene-
ran utilizando Bidirectional Long Short Term Memory (Bi-LSTM) y Inception-Resnet-v2,
respectivamente. Estas representaciones se fusionan y se pasan a un modelo de prediccion
de respuestas especifico en los nodos hoja de la jerarquia. Los experimentos demuestran
que HQS-VQA supera a los modelos de referencia en conjuntos de datos como RAD y
CLEF18, lo que sugiere la efectividad de la segregacion de preguntas en VQA-Med (Gupta
et al., 2021).

Por otro lado, el modelo VB-MVQA aborda la limitacién de datos en VQA-Med explo-
tando el pre-entrenamiento. Incorpora Contrastive Language-Image Pre-training (CLIP) y
mecanismos de atencion para extraer caracteristicas de imagenes médicas de manera efec-
tiva. VB-MVQA utiliza multiples capas de atencion apiladas y Bilinear Attention Network
junto con Bidirectional Long Short-Term Memory (Bi-LSTM) (Cai et al., 2023). También
introduce el razonamiento condicionado por la vision (vision-conditioned reasoning) para
guiar la seleccion de importancia sobre caracteristicas fusionadas multimodales y mejorar
la informacion seméntica de la imagen, lo que ayuda a eliminar el sesgo lingiiistico. Este
modelo ha demostrado mejoras significativas en la precision sobre modelos de tltima ge-
neracion en conjuntos de datos de referencia como VQA-RAD, SLAKE y VQA-Med-2019,
especialmente en preguntas abiertas y datos con sesgo lingiiistico (Cai et al., 2023).

Los conjuntos de datos para VQA-Med incluyen preguntas en lenguaje natural sobre
imégenes radiograficas de diferentes modalidades como angiogramas, resonancias magné-
ticas, tomografias computarizadas y ultrasonidos, asi como diversas orientaciones como
sagital, axial, longitudinal y coronal (Gupta et al., 2021).

5.9.3. Estrategias de generacién de respuestas

Respuestas exactas vs. ideales: Reglas de formato y expectativas En el contexto
de desafios de Q&A como BioASQ, que se centran en el dominio biomédico, las respuestas
pueden clasificarse en “exactas” o “ideales”. Esta distinciéon es crucial para satisfacer las
diversas necesidades de informacion de los expertos biomédicos (Tsatsaronis et al., 2015).

» Preguntas “Yes/No”: Esperan una respuesta binaria de ‘si’ o ‘no’ como respuesta
“exacta”. Para estas, la evaluacion se realiza mediante precision (accuracy). Ademaés,

se espera una respuesta “ideal”, que es un resumen en forma de parrafo (Tsatsaronis
et al., 2015).

= Preguntas factoid: Buscan una entidad nombrada especifica como respuesta “exac-
ta”. La evaluacion de la respuesta exacta incluye la precision estricta (strict accu-
racy) y la precision indulgente (lenient accuracy), asi como el rango reciproco medio
(MRR). La respuesta “ideal” es un resumen (Tsatsaronis et al., 2015).
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= Preguntas de lista: Requieren una lista de entidades nombradas como respuesta
“exacta’. Los sistemas deben devolver una lista de nombres de entidades que, en
conjunto, constituyan una unica respuesta. La evaluaciéon de la respuesta exacta se
basa en precision (P), recall (R) y F-measure (F1), promediados sobre las preguntas
de lista. La respuesta “ideal” también es un resumen (Tsatsaronis et al., 2015).

= Preguntas de resumen: Solo esperan una respuesta “ideal” en forma de resumen
(Tsatsaronis et al., 2015).

Para las respuestas “ideales”, que son resumenes de parrafo, se establecen limites de
longitud (ej., 200 palabras en BioASQ). La evaluacion de estas respuestas se realiza ma-
nualmente por expertos biomédicos, considerando criterios como el recall de informacion,
la precision de informacion, la ausencia de repeticion y la legibilidad. También se utilizan
medidas automaticas como ROUGE para comparar el resumen generado con resiimenes
de referencia creados por humanos (Tsatsaronis et al., 2015).

5.9.4. Sintesis multimodal: Integraciéon visual + textual con explicabilidad

La sintesis de respuestas en sistemas VQA-Med implica la fusion de caracteristicas
extraidas tanto de iméagenes como de texto (Cai et al., 2023; Gupta et al., 2021). Modelos
como HQS-VQA utilizan Bi-LSTM para representaciones de preguntas e Inception-Resnet-
v2 para caracteristicas de imagen, fusionando ambas antes de la prediccion de la respuesta
(Gupta et al., 2021). VB-MVQA, por su parte, aplica multiples capas de atencion apiladas
y Bilinear Attention Network para fusionar la informacion multimodal, introduciendo un
razonamiento condicionado por la vision para guiar la selecciéon de importancia y mejorar
la informacion seméntica de la imagen, con el fin de eliminar el sesgo lingiiistico (Cai
et al., 2023). La explicabilidad es crucial en el dominio médico; el analisis de errores en los
sistemas VQA-Med es fundamental para descubrir las causas potenciales de los errores y
sus soluciones, guiando asi la investigacion futura (Gupta et al., 2021).

5.9.5. Insercion de citas y evidencia cientifica (PMID, snippets)

En el ambito biomédico, la provision de evidencia cientifica para las respuestas es de
suma importancia. Los desafios como BIOASQ requieren que los sistemas no solo generen
respuestas, sino que también recuperen y presenten documentos relevantes y snippets de
texto que las respalden (Tsatsaronis et al., 2015).

» Los identificadores de articulos PubMed (PMID) se utilizan en los conjuntos de
datos como referencia tinica para cada articulo (Tsatsaronis et al., 2015).

= Los snippets son fragmentos de texto relevantes de los articulos, identificados por
el articulo del que provienen y sus offsets (posiciones de inicio y fin de caracteres)
dentro del mismo. Estos snippets pueden ser utilizados por los expertos biomédicos
para formular respuestas ideales y se espera que los sistemas los recuperen como
parte de la evidencia (Tsatsaronis et al., 2015).

La capacidad de los sistemas para proporcionar snippets de texto precisos y relevantes,
junto con los documentos de origen, es evaluada rigurosamente, incluso considerando la
superposicion de snippets en lugar de una coincidencia exacta para la precision y el recall.
Un ejemplo de una respuesta ideal en BIOASQ incluso incluye los PMIDs de los articulos
de los que se extrajo la informacion (Tsatsaronis et al., 2015).
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5.9.6. Formato estructurado

Los datos utilizados en VQA-Med a menudo tienen un formato estructurado o semi-
estructurado.

= Metadata de imagenes: Las imagenes médicas se acompanan de preguntas en
lenguaje natural y se describen con diversas modalidades (ej., angiograma, resonan-
cia magnética, tomografia computarizada, ultrasonido) y orientaciones (ej., sagital,
axial, longitudinal, coronal) (Gupta et al., 2021). Esta metadata es esencial para el
procesamiento y entendimiento de las imégenes por parte del modelo.

= Formato de datos: Los conjuntos de datos de referencia, como los utilizados en
BIOASQ, suelen seguir un formato JSON para estructurar preguntas, conceptos,
documentos, respuestas exactas e ideales, snippets y triples. Esto permite una ma-
nipulacion programaética eficiente de los datos (Tsatsaronis et al., 2015).

» Texto argumentativo en respuestas ideales: Las respuestas “ideales” son re-
simenes en forma de parrafo que combinan informacién de multiples fuentes pa-
ra proporcionar una respuesta concisa y comprensible. Estas respuestas deben ser
coherentes, legibles y precisas, sintetizando la informacién recuperada de manera
argumentativa para satisfacer la necesidad de informaciéon del usuario. Por ejem-
plo, una respuesta a “; Cudl es el mecanismo de accién de la abiraterona?” seria un
parrafo que describe como funciona el farmaco (Tsatsaronis et al., 2015).

En resumen, los sistemas Q&A multimodales, especialmente en el dominio médico, se
benefician de la integraciéon profunda de la informaciéon visual y textual, estrategias de
prompting para el aprendizaje eficiente con pocos datos, y la generaciéon de respuestas
estructuradas que pueden ser tanto exactas como restimenes ideales, siempre respaldadas
por evidencia citada.

5.10. Explicabilidad y transparencia clinica

Segiin Barredo Arrieta et al., dada una cierta audiencia, la explicabilidad se refiere a los
detalles y razones que un modelo proporciona para hacer que su funcionamiento sea claro o
facil de entender ((Barredo Arrieta et al., 2020)). La explicabilidad y la transparencia son
imperativos fundamentales para el avance y la adopcion de la inteligencia artificial (IA)
y el aprendizaje automatico (ML) en el sector médico. Dada la alta responsabilidad y la
posible repercusion en vidas humanas, los sistemas de IA utilizados en la atencion sanitaria
deben justificar sus decisiones, proporcionar explicaciones claras y ser inherentemente
interpretables.

5.10.1. Sistemas de explicabilidad ante-hoc y post-hoc

Las técnicas de explicabilidad se clasifican segiin cuando se aplica la explicacion y si
son especificas del modelo.

» Métodos ante-hoc (inherentemente explicables): Son algoritmos disenados
desde cero para ser transparentes y comprensibles. Ejemplos incluyen modelos li-
neales, arboles de decision y sistemas basados en reglas. En el contexto médico, los
sistemas basados en reglas pueden proporcionar declaraciones logicas que los clini-
cos pueden interpretar directamente. Los Concept Bottleneck Models (CBMs) son
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un ejemplo de un enfoque ante-hoc, ya que estdn construidos para predecir con-
ceptos intermedios explicitamente antes de la salida final. Esto permite intervenir
directamente en los conceptos (p.ej., modificar el valor predicho de “espolon 6seo”
en una radiografia) y observar como esto afecta la prediccion final, facilitando una
interacciéon més rica entre el humano y el modelo.

» Métodos post-hoc: Se aplican a modelos de “caja negra” (como las redes neuro-
nales profundas) después de que han sido entrenados para proporcionar una expli-
cacion de sus decisiones. Estos métodos pueden ser agnosticos al modelo (aplicables
a cualquier algoritmo de ML, como LIME y SHAP) o especificos del modelo (como
Grad-CAM para CNNs). Proporcionan principalmente explicaciones locales para
decisiones individuales. Sin embargo, existe preocupacion sobre la fiabilidad de las
explicaciones post-hoc y su vulnerabilidad a ataques adversariales.

5.10.2. Activaciones neuronales: Grad-CAM y Attention Maps

La visualizacion de las activaciones neuronales es una técnica clave en la explicabilidad
visual, a menudo presentada como mapas de calor (heatmaps) que resaltan las regiones
de entrada importantes para la decisiéon de un modelo.

» Grad-CAM (Gradient-weighted Class Activation Map) es un método post-hoc de
uso extendido que genera mapas de saliencia utilizando los gradientes del resultado
de una clase con respecto a los mapas de activacion de la tltima capa convolucional.
Permite identificar las caracteristicas discriminatorias que el modelo utiliz6 para una
clasificacion especifica. Grad-CAM es aplicable a una amplia gama de arquitecturas
de Redes Neuronales Convolucionales (CNN) sin requisitos arquitectonicos especifi-
cos. Las visualizaciones producidas por Grad-CAM, por ejemplo, cuando se aplican
a radiografias, pueden ayudar a los sujetos humanos a identificar objetos con mayor
precision.

= Score-CAM es un método novedoso de explicaciéon visual post-hoc que elimina la
dependencia de los gradientes. En cambio, determina la importancia de cada mapa
de activacion utilizando su puntuacion de “Increase of Confidence” (aumento de
confianza) en la clase objetivo. Score-CAM busca mejorar el rendimiento visual y
la imparcialidad al interpretar los procesos de toma de decisiones del modelo, y ha
demostrado una mejor capacidad de discriminacion de clases en comparacién con
otros métodos basados en gradientes.

» Mecanismos de atencion (Attention Maps): Como se utilizan en la investiga-
cion, mejoran la interpretabilidad visual al permitir que la red se enfoque y adapte
a la escala correcta de un objeto dentro de una imagen. Esto es crucial para que los
observadores humanos comprendan si una red neuronal esta identificando correcta-
mente un objeto sin confundirlo con su entorno.

5.10.3. Atribucion de caracteristicas: Integrated Gradients y otros métodos

Los métodos de atribucién de caracteristicas cuantifican la contribucién de componen-
tes especificos de entrada a la decision de un modelo.

» LIME (Local Interpretable Model-agnostic Ezplanations) es un método post-hoc
que genera explicaciones al aproximar el comportamiento de un modelo de “caja
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negra” localmente con un modelo interpretable mas simple. Por ejemplo, para la
clasificacion de texto, LIME puede resaltar la importancia de los sintomas indivi-
duales para una prediccion de gripe. En imagenes, puede generar superpixeles que
indican las regiones cruciales para una clasificacion (p.ej., un gato).

= Integrated Gradients es un método de atribuciéon basado en gradientes que asigna
puntuaciones de importancia a las caracteristicas de entrada. Su aplicacion permite
visualizar como un conjunto de CNNs clasifica el estado del receptor de estrogeno a
partir de imégenes de resonancia magnética de mama.

» SHAP (SHapley Additive exPlanations) ofrece un enfoque unificado para interpre-
tar las predicciones del modelo al calcular los valores de Shapley para la contribu-
cion de cada caracteristica. Se ha utilizado para cuantificar el impacto a nivel de
caracteristicas individuales en los resultados de pacientes con influenza grave, pro-
porcionando una comprension clara de qué variables son més importantes para las
predicciones del modelo.

5.10.4. Segmentacién explicativa: integracion de SAM con bounding boxes y
conceptos médicos

La Segment Anything Model (SAM) representa un avance significativo como mode-
lo fundacional para la segmentacion de imégenes, disenado para realizar una segmenta-
cion “promptable”. SAM puede generar mascaras de segmentacion vélidas para cualquier
prompt dado, ya sean puntos, cajas, mascaras o incluso texto. Su arquitectura separa la
codificacion de la imagen de la codificacion del prompt y la decodificacion de la méasca-
ra, permitiendo una segmentaciéon rapida y la conciencia de la ambigiiedad al predecir
miultiples mascaras para un solo prompt.

= Integracion con bounding boxes y conceptos médicos: Aunque SAM es un
modelo de proposito general, su capacidad de segmentaciéon a partir de bounding
boxes es altamente relevante para aplicaciones médicas. En entornos clinicos, los
expertos a menudo identifican areas de interés (p.ej., tumores, lesiones, estructuras
anatomicas) con bounding bores. SAM podria transformar estas cajas en segmenta-
ciones precisas de alta calidad, que a su vez sirven como explicaciones visuales para
el diagnostico o prondstico, de manera similar a como las segmentaciones de U-Net
son consideradas explicaciones visuales. Esto permite que el resultado de SAM se
interprete en el contexto de conceptos médicos predefinidos por expertos, mejoran-
do la comprension y la confianza del médico. SAM ya ha demostrado su capacidad
de transferencia de conocimiento a dominios como las imagenes de rayos X, lo que
subraya su potencial en el campo médico.

5.10.5. Importancia para validaciéon clinica y aceptacion regulatoria

En el campo de la IA, se considera que, dada una audiencia, una Inteligencia Artificial
explicable es aquella que proporciona detalles o razones para hacer que su funcionamiento
sea claro o facil de entender (Barredo Arrieta et al., 2020). La explicabilidad en inteligencia
artificial (XAI) es indispensable para la validacion clinica y la aceptacion regulatoria de
los sistemas de IA en medicina, por varias razones criticas:
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» Confianza y rendicién de cuentas: Los modelos de ML, especialmente los de
“caja negra’, carecen de la transparencia necesaria para que los médicos los confien
plenamente, lo que impide su adopcion generalizada. La explicabilidad fomenta una
confianza adecuada al permitir que los profesionales entiendan el “porqué” detréas de
una decision, lo que es vital en escenarios de alto riesgo donde las vidas humanas
estan en juego.

= Deteccion de sesgos y errores: Las explicaciones ayudan a identificar sesgos la-
tentes o errores en el modelo, como en el caso de pacientes con asma y neumonia,
donde el modelo asoci6é erréneamente el asma con un menor riesgo de mortalidad
debido a sesgos en los datos de entrenamiento. La XAI permite exponer tales com-
portamientos indeseables y garantiza que las decisiones algoritmicas sean justas y
éticas.

= Validacion clinica y mejora de decisiones: Los clinicos necesitan informacion
detallada sobre las predicciones de los modelos, incluyendo el subconjunto de ca-
racteristicas que impulsan una prediccion, para compararlas con su juicio clinico y
calibrar su confianza en el sistema. Las explicaciones visuales y textuales, incluso si
son extranas, requieren métodos sisteméaticos para investigar y corregir el razona-
miento erréneo. La XAl puede mejorar la confianza del clinico, lo que es un factor
clave para la adopcion practica del modelo.

s Cumplimiento normativo: Regulaciones como el Reglamento General de Pro-
teccion de Datos (RGPD) de la UE exigen que las decisiones automatizadas sean
explicables y que los interesados tengan derecho a una intervenciéon humana y a una
explicacion de la decision. La explicabilidad se convierte en una necesidad para el
cumplimiento legal y la proteccion de los derechos del paciente.

s Colaboracion humano-IA: La XAI permite una colaboraciéon mas eficaz entre
médicos y sistemas de IA. Los sistemas que pueden explicar sus resultados ayudan
a los médicos a comprender la cadena de razonamiento, verificar la sugerencia del
sistema y hacer una evaluacion de la fiabilidad, lo que conduce a un mejor diagnostico
y resultados para los pacientes.

En resumen, la integracién de la explicabilidad en los sistemas de IA, a través de
visualizaciones, atribuciones de caracteristicas y segmentacion explicativa, es fundamental
para superar la opacidad de la “caja negra” y garantizar que la IA se convierta en una
herramienta de confianza y responsabilidad en la préactica médica.

El sistema MultimodalBioQA incorpora técnicas de explicabilidad para propor-
cionar justificaciones claras y comprensibles de las respuestas generadas, facilitando la
confianza y la comprobacion de las respuestas del sistema. La integracion de modelos
como SAM permite resaltar areas relevantes en las imagenes médicas, mejorando la inter-
pretabilidad y la transparencia del sistema.

5.11. Sistemas multiagente para procesamiento biomédico

El paradigma agéntico en Inteligencia Artificial (IA), a menudo denominado .Agentic
AI", se refiere a sistemas de IA diseniados para operar con un alto grado de autonomia,
capaces de percibir su entorno, tomar decisiones, planificar y ejecutar acciones complejas
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para alcanzar objetivos a largo plazo con minima intervenciéon humana continua (xiRise-
PotentialLarge2023a).

El paradigma agéntico se refiere al desarrollo de sistemas de IA (a menudo basados en
LLMs) que pueden actuar de forma autéonoma para alcanzar objetivos complejos. Estos
agentes pueden razonar, planificar, descomponer tareas, utilizar herramientas (como APIs,
bases de datos, buscadores web) y aprender de la interaccion (xiRisePotentialLarge2023a,
wangSurveyLargeLanguage2024).

Estado del arte del paradigma agéntico

Se estan desarrollando agentes que pueden interactuar con el mundo, realizar tareas
complejas y aprender de la experiencia. Estos agentes pueden ser simples (realizando
tareas especificas) o complejos (capaces de razonar y planificar) (Park et al., 2023). A
continuacion, se presentan algunos de los enfoques y desarrollos més destacados en este
campo:

e LLMs como controladores: Los LLMs se utilizan como el gerebro.® controlador
central de los agentes, aprovechando su capacidad de comprension del lenguaje natural y
razonamiento para interpretar objetivos, generar planes y seleccionar acciones (Xi et al.,
2023; Yao et al., 2023).

e Planificacién y uso de herramientas: Arquitecturas como ReAct (Reasoning
and Acting) (Yao et al., 2023) y marcos como LangChain o AutoGen (Wu et al., 2023)
facilitan la creacion de agentes que pueden interactuar con herramientas externas. Esto les
permite superar las limitaciones inherentes del conocimiento estatico del LLM y realizar
acciones en el mundo real (o digital).

e Memoria y aprendizaje: Se esté investigando como dotar a los agentes de memoria
a corto y largo plazo para mejorar su rendimiento en tareas extendidas y aprender de
experiencias pasadas (Xi et al., 2023). e Sistemas Multi-Agente: Hay un interés creciente
en sistemas donde miltiples agentes colaboran o compiten para resolver problemas mas
complejos, simulando dinamicas sociales o de equipo (Park et al., 2023; Wu et al., 2023).

e Aplicaciones potenciales: Aunque atin en desarrollo, los agentes de IA tienen po-
tencial en automatizacion de tareas complejas, asistencia personal, investigacion cientifica
(ej. formulacion de hipotesis, diseno de experimentos), y potencialmente en tareas clinicas
(ej. monitorizacion de pacientes, gestion de informacion) (Wang et al., 2023).

5.12. Benchmarks y evaluaciéon
5.12.1. BioASQ: Tareas y métricas de evaluaciéon

BioASQ es una serie de retos internacionales que promueven avances en la indexacion
semantica biomédica a gran escala y la respuesta a preguntas (Nentidis et al., 2023, 2025;
Tsatsaronis et al., 2015). El desafio BioASQ sirve como punto de referencia a largo plazo
para la respuesta a preguntas biomédicas, con ediciones recientes (2023-2024) que de-
muestran un notable progreso en el campo. Los sistemas que compiten abordan distintos
retos en varias fases. La fase A se centra en la recuperacion de informacién de articulos
de PubMed (Novoa et al., 2023) para identificar fragmentos relevantes para preguntas
concretas. En la fase A+, los participantes deben responder a varios tipos de preguntas
(si/no, factoide, lista, resumen) recuperando la bibliografia pertinente de PubMed y pro-
porcionando tanto respuestas exactas como respuestas ideales en forma de pérrafo. La
fase B requiere que los participantes proporcionen respuestas exactas e ideales utilizando
fragmentos de texto proporcionados.
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La disponibilidad del conjunto de datos BioASQ curado manualmente, que contiene
miles de pares pregunta-respuesta y fragmentos estandar de oro, sigue permitiendo estos
avances (Krithara et al., 2023a, 2023b).

"document": "https://www.ncbi.nlm.nih.gov/pubmed/39985914",

"text": "Unlocking the code: The role of molecular and genetic profiling in

revolutionizing glioblastoma treatment.",

"beginSection": "title",

"endSection": "title",

"offsetInBeginSection": ,

"offsetInEndSection": ,

"pmid": "39985914",

"relevance_score":

}

1,
"exact_answer": "yes",
"ideal answer": "Yes, PTEN loss in GBM does contribute to resistance against
immunotherapy. Glioblastoma (GBM) is recognized as the most aggressive primary
brain cancer, exhibiting significant molecular and cellular heterogeneity. This
heterogeneity, including genetic alterations such as PTEN loss, plays a crucial
role in the tumor's resistance mechanisms against various therapies, including
immunotherapy (PMID 39985914). Furthermore, the extensive metabolic reprogramming
observed in GBM, which is influenced by genetic changes like PTEN loss, further
drives the tumor's growth and its resistance to therapeutic interventions (PMID
39859381) . This metabolic reprogramming complicates the immune landscape, making
the tumor environment more hostile to immune system interventions and thereby
diminishing the effectiveness of immunotherapeutic strategies. Thus, PTEN loss not

Figura 1: Entregable de la tarea 13b Fase A+ de bioASQ: extracciéon de snippets y ran-
keo,respuesta exacta y respuesta ideal en formato JSON.

Fase A
El sistema recibe preguntas en inglés.
Debe devolver:

» Lista de hasta 10 articulos (por relevancia).
» Lista de hasta 10 snippets (fragmentos, con posicion).

Desde BioASQ12 hay una "Fase A-+.°" la que se pide a los sistemas responder con
respuestas exactas/ideales, usando solo los documentos recuperados (antes de recibir los
datos gold).

Fase B
El sistema recibe la pregunta y la lista gold de articulos y snippets.
Debe devolver:

» Respuesta exacta (solo yes/no, factoid, list).
» Respuesta ideal (todos los tipos de pregunta).

Puede participar solo en una fase o en ambas.

Tipos de pregunta

Yes/no: Respuesta zes.® "no". Se evalia con F1 macro.

Factoid: Respuesta con una entidad (nombre, ntimero). Lista de hasta 5 candidatos.
Evaluacion principal: MRR.

List: Lista de entidades (méx. 100). Se evalta con F1.

Summary: Solo respuesta ideal, parrafo resumen.
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Métricas de bioASQ
Estas son las métricas con las que se evalud el moédulo de Q&A textual del sistema:

Meétricas oficiales para respuestas exactas

» Yes/No: F1 macro-averaged (maF1): F1 para zesz F1 para "no", promediados.
Meétrica oficial desde BioASQ7. También se calcula accuracy para referencia, pero
no es oficial.

» Factoid: MRR (Mean Reciprocal Rank): Oficial. Premia respuestas correctas en
posiciones més altas de la lista (hasta 5 nombres). Strict Accuracy (correcta si
la respuesta gold es la primera) y Lenient Accuracy (correcta si esta en las cinco
primeras) se reportan, pero no son oficiales.

» List: Mean F-measure (F1): Oficial. Se calcula sobre la coincidencia entre la lis-
ta retornada y la lista gold (sin sinénimos repetidos). También se calculan mean
precision y mean recall como métricas de apoyo.

Meétricas oficiales para respuestas ideales
Las respuestas ideales son evaluadas tanto manual como automaticamente:

= Manual: Cuatro criterios, todos con escala 1-5:

1. Recuperacion de informacién: ;jIncluye toda la informacion relevante?
2. Precision de informacion: jEvita informacion irrelevante?

3. Repeticion: j Evita repetir la misma informaciéon?

4. Legibilidad: ;Es facil de leer y fluida?

La puntuacion oficial es la media de las valoraciones manuales de los expertos bio-
médicos.

» Automatica: ROUGE-2 y ROUGE-SU4 (superposicion de bigramas y skip-bigramas),
comparando la respuesta generada con las gold (o snippets).

5.12.2. ImageCLEFmedical: Tareas y métricas de evaluaciéon

El reto ImageCLEFmedical Caption 2025 se compone de tres tareas interconectadas:
Deteccion de Conceptos, Prediccion de Leyendas y Explicabilidad (Damm & et al., 2025;
Tonescu, 2025). En la tarea de deteccion de conceptos, los sistemas identifican la presencia
de conceptos médicos relevantes en una imagen, prediciendo eficazmente un conjunto de ID
de conceptos UMLS (Unified Medical Language System) (Bodenreider, 2004) o términos
que describen el contenido de la imagen.

Esto sirve de base para el caption, ya que proporciona los "bloques de construccion"de
la escena. En la tarea de prediccion de captions, los sistemas generan una descripcion
textual coherente de toda la imagen, que idealmente incorpora los conceptos detectados y
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describe su interaccion. La tarea de explicabilidad requiere que los participantes den una
explicaciéon del caption en un pequeno subconjunto de imagenes, por ejemplo, resaltando
regiones de la imagen y proporcionando una justificacion textual adicional. El componente
de explicabilidad pretende mejorar la interpretabilidad y la confianza, permitiendo a los
expertos médicos verificar por qué se predijo un caption o un concepto.

Tareas Las tareas del reto ImageCLEFmedical Caption 2025 son:

Figura 2: Ilustracion del formato esperado del entregable la tarea de Caption y Concept.
Entregable real incluia CUIs y captions de méas de 19 mil imagenes en formato .JSON.

Tarea de detecciéon de conceptos

El primer paso para el captioning automatico de imagenes y la comprension de escenas
es identificar la presencia y localizacion de conceptos relevantes en un gran corpus de ima-
genes médicas. Basandose en el contenido visual de la imagen, esta subtarea proporciona
los elementos fundamentales para la etapa de comprension de escenas, identificando los
componentes individuales a partir de los cuales se componen los captions. Ademaés, los
conceptos pueden aplicarse para la recuperacion de imagenes e informaciéon basada en el
contexto.

La evaluacion se realiza en términos de métricas de cobertura de conjuntos, tales como
precision, recall y combinaciones de ambas.

Tarea de prediccion de captions

Sobre la base del vocabulario de conceptos detectados en la primera subtarea, asi
como la informaciéon visual de su interacciéon en la imagen, los sistemas participantes
deben componer captions coherentes para la totalidad de una imagen. En este paso, mas
alla de la mera cobertura de conceptos visuales, la detecciéon de la interaccion entre los
elementos visibles es crucial para lograr un buen desempeno.

Este ano, el desafio utiliza BERTScore como métrica principal de evaluacion y ROU-
GE como métrica secundaria para la subtarea de prediccion de captions. También se
publicaran otras métricas, como MedBERTScore, MedBLEURT y BLEU.

Tarea de explicabilidad

Ademés, se solicita a los participantes que proporcionen explicaciones para los captions
de un pequeno subconjunto (que seré publicado junto con el dataset de prueba) de iméa-
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genes. No existen limitaciones técnicas para esta tarea. Las explicaciones seran evaluadas
manualmente por un radiélogo en cuanto a interpretabilidad, relevancia y creatividad.

Medical Image Analysis: ImageCLEFmedical_Caption_2025_test_1260

Detected Structures
== Blood

Blood (0.95)
=)

Figura 3: Entregable de la tarea de explicabilidad. Detecta los objetos en la imagen y los
localiza con bounding boxes.

Métricas de evaluacién Cada tarea del desafio ImageCLEF medical caption utiliza
métricas de evaluacion distintas (Damm & et al., 2025; Ionescu, 2025).
A. Deteccion de conceptos

La tarea de deteccion de conceptos emplea la metodologia de puntuaciéon F1 con el
siguiente enfoque (Damm & et al., 2025; Tonescu, 2025):

» Implementacion: Método de puntuacion F1 de scikit-learn de Python (v0.17.1-2)
con promedio binario.

» Proceso: Arreglos binarios que indican la presencia (1) o ausencia (0) del concepto,
tanto para las predicciones como para los valores de referencia (ground truth).

= Estructura de puntuacion: La puntuacion primaria considera todos los conceptos y
la secundaria filtra tinicamente aquellos conceptos anotados manualmente.

= Ground truth: Basado en un subconjunto reducido de la version AB 2022 de UMLS
utilizado en los datos de entrenamiento.
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B. Evaluaciéon de la predicciéon de captions

La evaluacion de la prediccion de captions combina seis métricas agrupadas en dos
aspectos: Métricas de relevancia (cuatro métricas) y métricas de factualidad (dos métricas)
(Damm & et al., 2025; Tonescu, 2025).

B1. Métricas de relevancia

Estas métricas incluyen la evaluacion de similitud entre imagen y caption, asi como
métricas de relevancia basadas en texto, como BERTScore (recall), ROUGE-1 (medida
F) y BLEURT.

» Similitud entre imagen y caption: utiliza un modelo de embeddings para imagenes
médicas que evaliia la relacion semantica entre los captions generados y sus imagenes
correspondientes. Este enfoque calcula los embeddings tanto del texto del caption
como de la imagen médica, y luego mide la similitud entre ellos para determinar
qué tan bien el caption representa el contenido visual.

» BERTScore (recall): utiliza el modelo Microsoft/deberta-xlarge-mnli con pondera-
cion por frecuencia inversa de documentos (IDF).

» ROUGE-1 (medida F): mide la superposicién de unigramas entre los captions gene-
rados y los de referencia.

» BLEURT: emplea el checkpoint BLEURT-20 para la evaluacién basada en juicio
humano.

B2. Métricas de factualidad
Las siguientes métricas se utilizan en el reto ImageCLEFmedical Caption para evaluar
la factualidad de los captions generados (Damm & et al., 2025; Tonescu, 2025):

» UMLS Concept F1: evalta la precision médica de los captions generados extrayendo
entidades médicas mediante la herramienta MedCAT y calculando la puntuacion F1
entre los conceptos UMLS predichos y los de referencia.

= AlignScore: proporciona una evaluacion de la consistencia factual mediante una
implementacion basada en RoBERTa, que evalta la alineacién de la informacion
entre los textos generados y los de referencia. El proceso implica dividir los contextos
largos en fragmentos manejables y hacer coincidir sistematicamente cada frase con
afirmaciones con el fragmento de contexto més relevante para determinar la precision
factual. El resultado final representa una puntuaciéon media de alineaciéon calculada
en todas las frases con afirmaciones, proporcionando una medida integral de cuan
bien el caption generado mantiene la consistencia factual respecto al material de
referencia.

C. Explicabilidad

En la tarea de explicabilidad, un radidlogo experto evalu6 la calidad de las expli-
caciones generadas por cada sistema utilizando una escala Likert de 5 puntos, donde 5
representaba la méxima puntuacion. La evaluacion incluyé tanto el caption generado co-
mo la visualizaciéon acompanante para cada imagen, considerando miltiples categorias
de evaluacion. El radidlogo valoré la calidad del caption a través de cuatro dimensiones:
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legibilidad, idoneidad clinica, nivel de detalle y enfoque, que se consolidaron en una pun-
tuacion media del caption. La calidad de la visualizacion se evalué de forma similar en
tres aspectos: coherencia visual-textual, exhaustividad de la visualizacion y enfoque de la
visualizacién, lo que result6é en una puntuacion media de visualizacién. Ademas, el experto
valoré la idoneidad de la metodologia y asigné una calificacién global, creando un marco
de evaluacion integral que recogia tanto la calidad de los componentes individuales como
el rendimiento holistico del sistema (Damm & et al., 2025; Tonescu, 2025).

6. Metodologia

La investigacion se enmarco en la estrategia de investigacion diseno y creacion (Oa-
tes, 2006), enfocada en el desarrollo de un artefacto tecnolégico innovador como principal
contribucion. Siguiendo esta metodologia, se disend e implemento iterativamente un siste-
ma multimodal basado en una arquitectura multiagente (con un agente central “escritor”)
que integra procesamiento textual y visual. El modulo textual implementa una biisqueda
hibrida combinando una base de datos vectorial con un modelo de lenguaje biomédico
(PubMedBERT) y consultas en tiempo real a PubMed, empleando ademés GPT-4 pa-
ra extraer fragmentos relevantes. El médulo visual emplea un modelo de vision-lenguaje
(LLaVA-LLaMA 8B) ajustado mediante un adaptador LoRA para analisis de imégenes
médicas. Como innovacion principal, el sistema integra un mecanismo de explicabilidad
que combina Grad-CAM, mapas de atencion e Integrated Gradients con el modelo
Segment Anything (SAM) para mapear conceptos médicos a regiones de las image-
nes.

Para evaluar el artefacto desarrollado, se sigui6 la recomendacion de Oates (Oates,
2006) de realizar una validacion rigurosa: primero se evalué cada modulo por separado,
y luego se llevaron a cabo pruebas experimentales con el sistema integrado, utilizando
benchmarks internacionales (BioASQ(Nentidis et al., 2025) e ImageCLEFmed (Damm &
et al., 2025)) para medir su desempenio en tareas de busqueda biomédica y analisis de
imégenes clinicas. El sistema logré buenos resultados en general, ya que esta dentro de
los top 10 en cinco de seis tareas, lo que evidencia la eficacia de la solucién propuesta
y demuestra la contribuciéon valida del artefacto, cumpliendo con los criterios de rigor y
relevancia de la metodologia de disenio y creacion.

6.1. Datos

Corpus de BioASQ

Se utilizaran los datasets y otros recursos proporcionados por BioASQ), pues se parti-
cip6 en desafios de NLP que permiten el acceso a datos curados por expertos biomédicos
(Krithara et al., 2023a). BioASQ es un proyecto de investigacion que busca avanzar en el
estado del arte de la recuperacion de informaciéon biomédica y la comprension del lenguaje
natural. Proporciona un corpus de datos anotados para evaluar sistemas de A en tareas
como la respuesta a preguntas biomédicas, la extraccion de informacion y la generacion
de resimenes. El corpus incluye preguntas formuladas por expertos, respuestas correctas
y documentos relevantes, lo que permite entrenar y evaluar modelos de IA en un contexto
biomédico realista (Nentidis et al., 2023, 2025).

El dataset de prueba consistia en un fichero .JSON que contenia 80 preguntas para
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responder por lote.

Corpus de CLEF

Se utiliz6 una versién ampliada del conjunto de datos Radiology Objects in Context
(ROCO) Version 2 en las tareas del reto ImageCLEFmedical Caption. Como en ediciones
anteriores, el conjunto de datos procede de articulos biomédicos del subconjunto PMC
OpenAccess (Damm & et al., 2025; Ionescu, 2025). También utilizamos el conjunto de
datos ROCOv2 del ano anterior para el fine-tuning (Riickert et al., 2024). El conjunto de
entrenamiento consta de 79.789 imagenes radiologicas (principalmente radiografias, tomo-
grafias computarizadas, resonancias magnéticas, etc.) recogidas de la literatura biomédica,
cada una emparejada con un caption y un conjunto de etiquetas de concepto UMLS. Los
conjuntos de datos del reto se describen con més detalle en el documento oficial del reto
(Damm & et al., 2025; Tonescu, 2025).

El dataset de prueba del reto ImageCLEFmedical Caption 2025 contiene 19.267 imége-
nes radiologicas, cada una con un caption y un conjunto de etiquetas de concepto UMLS,
ademaés del diccionario de CUIs que traduce los codigos CUIs a lenguaje natural.

Figura 4: Imagen de muestra del conjunto de pruebas del Desafio ImageCLEF. Fuente:
ImageCLEFmedical Caption 2025 test 1260, CC BY, Curcean et al., 2024.
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6.2. Meétricas de evaluacion

Para evaluar el rendimiento del sistema se utilizaran las métricas especificas de cada
tarea segun se explic6 anteriormente en secciones 5.12.1 y 5.12.2.

6.3. Configuracién experimental

Para la ejecucion de este diseno experimental se utilizé una combinaciéon de dos con-
figuraciones de hardware distintas:

= Una estacion de trabajo de escritorio equipada con un procesador Intel Core i9 y
una unidad de procesamiento grafico (GPU) NVIDIA GeForce RTX 5090 con 32
GB de memoria GDDRY7 dedicada. Este equipo se empled para todas las tareas
computacionales con altos requerimientos de GPU, como fine-tuning, carga en base
de datos Qdrant (por ser una base de datos local) y el desarrollo del sistema.

= Un ordenador portétil, también equipado con un procesador Intel Core 19, que in-
cluye una GPU NVIDIA GeForce RTX 4070 con 8 GB de memoria. Este portatil
se utilizd para andlisis y preprocesamiento de archivos, ademas de la redaccion del
trabajo.

La asignacion de estos recursos se baso en las demandas computacionales y la compa-
tibilidad del sistema.El grado exacto de utilizacion de cada GPU vari6 en funcién de las
demandas especificas de cada experimento.

6.4. Arquitectura agéntica del sistema
6.4.1. Fundamentos de sistemas multiagente en aplicaciones biomédicas

El sistema desarrollado se fundamenta en principios de arquitectura multiagente, defi-
nida como un paradigma computacional donde multiples entidades autonomas (agentes)
colaboran para resolver problemas complejos que exceden las capacidades de los siste-
mas monoliticos (Wooldridge, 2009). En el contexto biomédico, los sistemas multiagente
han demostrado particular efectividad para manejar la complejidad inherente del dominio
médico, donde los diferentes aspectos del procesamiento de informacién requieren de un
expertise especializado (Isern et al., 2010).

Segun la taxonomia de Ferber (Ferber, 1998), el sistema de Q& Aimplementado corres-
ponde a una arquitectura multiagente cooperativa donde los agentes comparten objetivos
comunes y colaboran para maximizar la utilidad global del sistema. Esta clasificacion se
alinea con los requisitos de coherencia y precisiéon necesarios en aplicaciones biomédicas

(Croatti et al., 2020).

6.4.2. Clasificacion y tipologia de agentes implementados

Siguiendo la taxonomia de Russell y Norvig (Stuart & Peter, 2021), los agentes im-
plementados pueden clasificarse como agentes basados en objetivos (goal-based agents)
que mantienen representaciones internas del estado del problema y utilizan conocimiento
especifico del dominio para tomar decisiones. Especificamente, el sistema Multimodal-
BioQA implementa cinco tipos de agentes especializados:
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Agente de Investigacion (Researcher Agent) Implementa un patréon de agente de
informacion segun la clasificacion de Genesereth y Nilsson (Genesereth & Nilsson, 2014),
especializado en recuperacion y sintesis de conocimiento cientifico. Este agente integra las
siguientes capacidades:

» Basqueda hibrida: Combinacion de busqueda vectorial local (Qdrant) con con-
sultas en tiempo real a APIs externas (PubMed).

» Extraccion automatica: Utilizacion de GPT-4o0 para extraccion de snippets a
nivel de oracion.

» Enriquecimiento contextual: Integraciéon de terminologia médica estandardizada

(UMLS,/MeSH).

Agente de Escritura (Writer Agent) Es agente funciona como un agente coordina-
dor segun la taxonomia de Durfee y Lesser (Durfee & Lesser, 1991) y es responsable de la
sintesis final de informacién proveniente de multiples fuentes especializadas. Implementa
estrategias de generacion diferenciadas basadas en el tipo de consulta (yes/no, factoid,
list, summary) y gestiona la integracion de evidencia multimodal.

Agente de Vision (Vision Agent) Constituye un agente perceptual especializado
(Murphy, 2019) que procesa informacién visual mediante modelos multimodales avanzados
(LLaVA-LLaMA 3 8B). Este agente encapsula funcionalidades de:

= Generacion de conceptos médicos a partir de imagenes.
= Produccion de captions descriptivos especializados.

= Integracion con sistemas de explicabilidad visual.

Agente de Explicabilidad (Explainability Agent) Implementa un agente de moni-
toreo y explicabilidad (Mueller et al., s.f.) que es responsable de generar interpretaciones
comprensibles de las decisiones del sistema. Integra multiples técnicas de explicabilidad
como GradCAM, Attention Maps e Integrated Gradients con mapeo concepto-region.

Agente de Chatbot interactivo (Chatbot Agent) Funciona como un agente de
interfaz (Bradshaw, 1997) que gestiona la interaccion con usuarios mediante validacion
interactiva de tipos de pregunta y confirmacion de parametros de consulta.

6.4.3. Arquitectura de comunicacién y coordinacién

Patréon de comunicaciéon El sistema MulmodalBioQA implementa un patréon de co-
municacion jerdrquico con coordinacion central segun la clasificacion de Stone y Veloso
(Stone & Veloso, 2000). La comunicacion inter-agente se realiza mediante estructuras
de datos estandarizadas que acttian como mensajes estructurados (Finin et al., 1994),
garantizando coherencia semantica y trazabilidad de informacion.

La arquitectura de comunicacion sigue el modelo Contract Net Protocol adaptado
(Smith, 1980), donde:

1. El Router de modalidad determina el tipo de procesamiento requerido.
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2. Los agentes especializados ejecutan tareas especificas de manera auténoma.

3. El Writer Agent / Agente de Escritura acttia como el coordinador central e
integra resultados.

Gestion de estados y persistencia Cada agente mantiene un estado interno inde-
pendiente segin el principio de autonomia local (Jennings, 1999).

6.4.4. Herramientas y frameworks de implementaciéon

Llamalndex como framework agéntico La implementacion utiliza Llamalndex co-
mo framework base para la construccién de agentes, aprovechando sus capacidades de:

= Gestion de embeddings: Configuracion centralizada mediante Settings.embed_model.

» Integracion de herramientas: Conexiéon continua con APIs externas y bases de
datos vectoriales.

= Orquestacion de flujos: Coordinacion de pipelines complejos de procesamiento.

Componentes tecnoldgicos especializados El sistema integra componentes tecno-
logicos especializados que actiian como herramientas agénticas segin el concepto de tool-
using agents definido por Schick et al. (Schick et al., 2023):

» Qdrant: Base de datos vectorial para busqueda semantica distribuida.

= BiomedNLP-PubMedBERT: Modelo de embedding especializado en dominio
biomédico.

= APIs externas: PubMed, UMLS, OpenAlI GPT-4o.

= Modelos multimodales: LLaVA-LLaMA 3 8B con adaptadores LoRA.

Esta aproximacion se alinea con el paradigma de augmented agents propuesto por
Mialon et al. (Mialon et al., 2023), donde los agentes extienden sus capacidades mediante
el uso sistematico de herramientas externas especializadas.

6.4.5. Caracteristicas de autonomia y especializacion

Autonomia operacional Segtn los criterios de Wooldridge y Jennings (Wooldridge &
Jennings, 1995), el sistema demuestra las cuatro caracteristicas fundamentales de agentes
inteligentes:

1. Autonomia: Cada agente opera independientemente sin control directo externo.
2. Reactividad: Los agentes responden a cambios en su entorno operativo.
3. Pro-actividad: Los agentes toman iniciativa para cumplir objetivos especificos.

4. Sociabilidad: Los agentes interacttian mediante protocolos de comunicaciéon estruc-
turados.
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Especializaciéon por dominio La arquitectura implementa especializacion funcional
(Tambe, 1997), donde cada agente se enfoca en aspectos especificos del problema:

= Separacion de responsabilidades: Cada agente maneja un aspecto tnico del
procesamiento.

» Expertise especifico: Agentes optimizados para tareas particulares (NLP, vision,
sintesis).

= Tolerancia a fallos: Degradacion elegante cuando agentes individuales fallan.

6.4.6. Validacion del paradigma agéntico

Cumplimiento de criterios arquitecténicos El sistema satisface los criterios esta-
blecidos por Ferber (Ferber, 1998) para sistemas multiagente efectivos:

1. Distribucién: Procesamiento distribuido entre agentes especializados
2. Interaccion: Comunicacion estructurada mediante protocolos definidos
3. Coordinaciéon: Mecanismo central de sintesis y coherencia

4. Organizaciéon: Jerarquia clara con roles y responsabilidades definidos

Ventajas de la aproximaciéon agéntica La implementacion agéntica proporciona be-
neficios especificos para aplicaciones biomédicas complejas (Isern et al., 2010):

Escalabilidad modular: Agentes pueden ser modificados independientemente.

Mantenibilidad: Separacion clara de responsabilidades facilita debugging.

Extensibilidad: Nuevos agentes pueden agregarse sin afectar funcionalidad exis-
tente.

Robustez: Tolerancia a fallos mediante redundancia y degradacion elegante.

6.5. Diseno de arquitectura de TA

Como se justifico en el apartado anterior, este sistema implementa una arquitectura
de agentes distribuidos que integra capacidades de procesamiento de texto e imagen para
responder consultas biomédicas complejas. La aplicacion principal (app.py) constituye el
ntucleo orquestador que coordina multiples agentes especializados mediante una interfaz
de usuario desarrollada en Streamlit.

La aplicacion principal implementa un Sistema de Explicabilidad Integrado que com-
bina LLaVA con técnicas de interpretabilidad visual (GradCAM, Attention Maps, Inte-
grated Gradients).

Arquitectura dual: El sistema maneja consultas de texto mediante busqueda en
PubMed y sintesis con GPT-40, mientras que las consultas de imagen emplean analisis
visual con mapeo concepto-region y generacion automatica de bounding boxes etiquetadas.
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Innovacién principal: La integracion de explicabilidad multi-nivel que correlaciona
conceptos médicos extraidos por LLaVA con regiones espaciales especificas de la imagen,
proporcionando interpretabilidad visual comprehensiva para analisis médico.

A continuacion, se presenta un diagrama de la arquitectura de alto nivel del sistema:
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Figura 5: Diseno de arquitectura de TA para el sistema multimodal de Question answering.
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6.5.1. Agentes de procesamiento especializados
Agente de Investigacion (researcher_agent.py)

El researcher_agent constituye el nicleo del sistema de recuperacion de informacion
biomédica, implementando una arquitectura hibrida que combina btisqueda en bases de
datos vectoriales locales con consultas en tiempo real a la API de PubMed.

Arquitectura de btisqueda hibrida
El agente implementa una estrategia de busqueda multicapa:
def run_researcher(question: str, question_data: Dict) -> Dict:

= Generacion de consultas optimizadas: Utiliza GPT-40 para extraer entidades
médicas significativas de la pregunta mediante un método especializado. Este en-
foque supera las limitaciones de los sistemas NER tradicionales al comprender el
contexto semantico.

= Busqueda primaria en PubMed API: Ejecuta biusquedas directas en la API
de PubMed con parametros optimizados (hasabstract[text]) para garantizar la
disponibilidad de contenido completo.

» Extraccién de Snippets a nivel de oracién: Implementa una funcién que utiliza
GPT-40 para extraer oraciones especificas que responden directamente a la pregun-
ta, en lugar de devolver abstracts completos. Esta técnica mejora significativamente
la precision de la evidencia.

Enriquecimiento Contextual

El sistema implementa multiples capas de enriquecimiento:

» Integracion UMLS/MeSH: La funcién _query_umls_for_context() consulta
las terminologias médicas estandarizadas para proporcionar definiciones contextua-
les de términos médicos identificados.

= Recuperacion Few-Shot: Implementa _retrieve_few_shot_example_from_file()
para obtener ejemplos similares que guian la generacion de respuestas, mejorando
la consistencia y calidad del output.

» Ranking y filtrado: _filter_and_rank_snippets() utiliza una combinacion de
scores de relevancia originales y matching de palabras clave para optimizar la selec-
cion de evidencia.

Optimizaciones de rendimiento

= Manejo de Tiempo de Respuesta: Implementa timeouts configurables y retry
logic con backoff exponencial

= Cache de Consultas UMLS: Mantiene cache a nivel de médulo para evitar con-
sultas repetitivas

= Gestion de Rate Limits: Implementa delays configurables para respetar las limi-
taciones de las APIs externas
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Agente de Escritura (writer_agent.py)

El writer_agent representa la capa de sintesis que transforma evidencia cientifica
cruda en respuestas coherentes y bien estructuradas.
Sistema de generacion diferenciada por tipo

El agente implementa estrategias de generacion especificas segin el tipo de pregunta:

def run_writer(question: str, qtype: str, snippets: List[Dict],
mesh_info: Optional[Dict], few_shot_example: Optional[Dict]) -> Dict:

» Prompts especializados: Cada tipo de pregunta (yesno, factoid, list, summary)
utiliza prompts optimizados con instrucciones especificas para el formato de res-
puesta esperado.

= Validaciéon de respuestas: _validate_exact_answer () implementa validation
logic especifica por tipo para asegurar conformidad con formatos esperados.

» Sintesis dual: Genera tanto exact_answer (respuesta directa) como ideal_answer
(explicacion detallada) para proporcionar informacion a multiples niveles de granu-

laridad.
Procesamiento de consultas de imagen

Para consultas multimodales, el agente implementa:

» Deteccién automatica de imagen Q&A: _is_image_qa_question() identifica
consultas relacionadas con anélisis de imagen basandose en patrones lingiiisticos y
metadatos.

» Prompts contextualizados para imagen: _build_image_qa_prompt () crea prompts
especificos que incorporan resultados del analisis visual, conceptos detectados y me-
tadatos de explicabilidad.

» Integracion de resultados multimodales: Combina informacién textual y visual
para generar explicaciones completas.
Mejores practicas de generacion

» Control de Temperatura: Utiliza diferentes valores de temperatura segtn el tipo
de tarea (0.0 para exact answers, 0.2-0.3 para ideal answers)

= Gestion de Tokens: Implementa limites adaptativos de tokens basados en la com-
plejidad de la consulta

= Citacion Automatica: Incluye referencias automaticas a PMIDs en las respuestas
generadas

Agente de Vision (vision_agent.py)

El vision_agent encapsula la funcionalidad de analisis de imagen médica utilizando
modelos LLaVA fine-tuned para el dominio biomédico.
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Arquitectura del modelo

class VisionAgent:
def __init__(self, base_model_path, adapter_repo, device="auto",
load_in_4bit=True, merge_adapters=False):

= Modelo base LLaVA: Utiliza xtuner/l1lava-1lama-3-8b-vl_1-transformers
como modelo base con adaptadores LoRA especializados en imaging médico.

= Optimizaciones de memoria: Implementa quantizaciéon 4-bit opcional y merge
de adaptadores para optimizar el uso de memoria GPU.

» Gestion de dispositivos: Deteccion automatica y configuracion de dispositivos
(CUDA/CPU) con fallbacks elegantes.
Funcionalidades especializadas

» Generacion de conceptos: generate_concepts() extrae conceptos médicos es-
tructurados de imégenes utilizando prompts especializados en espanol para el do-
minio médico.

» Generacion de captions: generate_captions () produce descripciones textuales
detalladas de imagenes médicas siguiendo convenciones radiolégicas.

= Procesamiento natch: Soporte para procesamiento eficiente de multiples imagenes
con gestion optimizada de memoria.
Caracteristicas Técnicas Avanzadas

= Manejo de inputs diversos: Soporte para miltiples formatos de entrada inclu-
yendo rutas de archivo, objetos PIL, y data URIs base64.

» Patch size management: Implementa correccién automatica del patch_size para
compatibilidad con diferentes versiones del procesador.

= Gestion de memoria: Implementa cleanup manual de tensores y cache CUDA
para prevenir memory leaks durante inferencia prolongada.

Prompts Especializados

El agente utiliza prompts cuidadosamente disenados:

CONCEPT_PROMPT = "USER: <image>

Enumera los conceptos médicos clave (CUIs) observados o inferidos
en esta imagen.

ASSISTANT:Los conceptos médicos clave son:"

CAPTION_PROMPT = "USER: <image>
;Cudl es la descripcidén o el caption de esta imagen médica?
ASSISTANT:"

Estos prompts estdn optimizados para el dominio médico y disenados para maximizar
la precision y relevancia de las respuestas generadas.
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6.5.2. Herramientas de analisis especializado

Sistema de validacién interactiva: El chatbot_agent implementa inferencia heu-
ristica de tipos de pregunta con confirmacion interactiva, utilizando patrones especializa-
dos y auto-confirmacion temporal para optimizar la clasificaciéon de consultas.

Analisis de explicabilidad: El explainability_agent orquesta pipelines complejos
combinando SAM para segmentacion, GPT-4o para etiquetado contextual, y VisionAgent
para extraccion de conceptos, generando visualizaciones integrales con heatmaps y ano-
taciones automaticas.

NER biomédica avanzada: El ner_tool integra modelos transformer especializados
con enriquecimiento UMLS /MeSH que implementa cache inteligente, filtrado de entidades
y mapeo selectivo para optimizar la extraccion de informacion médica.

Innovacioén técnica: La combinacion de segmentacion automatica (SAM) con eti-
quetado contextual (GPT-40) guiado por conceptos extraidos por LLaVA representa un
enfoque innovador para explicabilidad visual en imagenes médicas.

6.6. Sistema de base de datos vectorial y gestion de datos

Ingesta de PubMed: Sistema de procesamiento streaming que maneja archivos
XML.gz masivos mediante parsing incremental con 1xml.etree.iterparse. Implementa
batching multinivel para embeddings (BiomedNLP-PubMedBERT, 768D) y operaciones
Qdrant, con optimizaciones especificas para ingesta masiva y gestiéon de memoria.

Preparacion Few-Shot: Pipeline de optimizacion para GPT-40 que incluye detec-
cion automatica de idioma, normalizacion de tipos de pregunta, y optimizacion de JSON
para minimizar token usage. Implementa validaciéon comprehensiva de calidad con umbral
minimo del 80 % de ejemplos validos.

Base de datos vectorial: Utiliza Qdrant con colecciones especializadas para articulos
PubMed y ejemplos few-shot. Implementa busqueda seméntica integrada con Llamalndex
para recuperacion contextual en tiempo de ejecucion.

Batching multinivel: El procesamiento streaming con batching multinivel permite
manejar datasets de gran escala (millones de articulos) manteniendo uso de memoria
constante, mientras que la optimizacion especifica para GPT-40 mejora significativamente
la eficiencia de token usage en few-shot learning.

El sistema implementa una arquitectura hibrida que combina recuperaciéon de infor-
macién vectorial con técnicas de few-shot prompting para respuestas de consultas biomé-
dicas. La infraestructura se fundamenta en Qdrant como base de datos vectorial y utiliza
modelos de embeddings especializados en el dominio biomédico.

6.6.1. Componentes de ingesta de datos

Ingesta de literatura cientifica (ingest pubmed.py) Este componente constituye
el nicleo del pipeline de procesamiento de literatura biomédica. El proceso implementa
las siguientes etapas:

» Preprocesamiento de datos: Utiliza Ixml.etree.iterparse para procesamiento efi-
ciente de archivos XML.gz de PubMed, empleando anélisis incremental para opti-
mizar el uso de memoria.

» Extraccion de metadatos: Implementa un parser robusto que extrae titulo, re-
sumen, autores, fechas de publicacion, términos MeSH, palabras clave y DOI. El
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sistema maneja multiples formatos de fechas incluyendo MedlineDate con normali-
zacion automatica.

= Generacion de embeddings: Emplea el modelo BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext (768 dimensiones) optimizado para texto biomédico. Im-
plementa truncamiento a 510 tokens para mantener coherencia semantica.

» Optimizaciones de rendimiento:

Batching de embeddings (512 textos por lote)

Batching de upserts a Qdrant (512 puntos por lote)

Configuracion de optimizadores Qdrant para ingesta masiva

Deteccion automatica de GPU/CPU para aceleracion

Ingesta de ejemplos Few-Shot (ingest few shots.py) Este modulo gestiona la
creacion de una coleccion especializada para ejemplos de entrenamiento:

» Procesamiento de ejemplos: Carga ejemplos desde trainingl3b.json y genera
embeddings de las preguntas usando el mismo modelo biomédico.

» Almacenamiento estructurado: Mantiene el input (pregunta) y output (respues-
ta completa en JSON) para recuperacion posterior.

= Validacion de integridad: Implementa verificacién de estructura JSON y manejo
robusto de errores.

By Colecci ubmed_few_shot_examples
»Vectores totales ¢ count=85
» Dimension 1 768
» Tipo de distancia : Cosine
» Payloads habilitados : True
» Estado de la coleccién : green
» Ejemplo de vector:
ID: 06ddb5d7-33ad-462f-aeac-cba916dee273
Vector (dim=768): [-0.0072241677, -0.006124511, -0.0008701689, -0.01164917, -0.007213116] ...
Payload (resumen): {'few_shot_input': 'rVSV-ZEBOV-GP is used for which disease?', 'few_shot_output': '{"documents": ["http:/
/www.ncbi.nlm.nih.gov/pubmed/39693543", "http://www.ncbi.nlm.nih.gov/pubmed/36091016", "http://...

By Coleccidn: pubmed_articles_biomedbert
»Vectores totales : count=36831065
8

» Dimension
» Tipo de distancia : Cosine
»Payloads habilitados : True
» Estado de la coleccién : green
» Ejemplo de vector:
ID: 00000033-cd97-410b-aab2-dbf20a99bfeb
Vector (dim=768): [0.0049314974, 0.012879209, -0.002600642, -0.013466911, -0.012261888] ...
Payload (resumen): {'pmid': '7905900', 'title': '[The correlation between the therapeutic effects and the tumor growth fract
ion in cervical cancer and ovarian cancer].', 'abstract': 'The usefulness of PCNA staining in p...

® Uso de sistema:
»Memoria RAM usada : 6.71 GB / 62.66 GB
»Porcentaje de uso : 12.5%

# Informe detallado guardado en qdrant_report.log
B Informe Qdrant generado el 2025-06-25 18:37:35

Figura 6: Colecciones de Qdrant: pubmed articles biomebert con méas de 36 millones de
vectores totales y pubmed few shot examples con 85 vectores.

6.6.2. Preparacion y optimizaciéon de datos

Optimizacion Few-Shot para GPT-40 Implementa un pipeline de optimizacion es-
pecifico para modelos de lenguaje grandes:

» Normalizacion de tipos: Clasifica autométicamente preguntas en categorias (yesno,
factoid, list, summary) con mapeo consistente.
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= Optimizacion de tokens: Truncamiento automatico manteniendo coherencia se-
méantica, con limites especificos (500 chars input, 2000 chars output).

» Validacion de calidad: Métricas de validacion con umbral minimo del 80 % de
ejemplos validos.
6.6.3. Sistema de recuperacion

Utilidades de Base de Datos Vectorial (vector store utils.py) Proporciona la
interfaz de recuperacion en tiempo de ejecucion:

= Bisqueda semantica: Utiliza el embedding del query para encontrar ejemplos
similares en la coleccién few-shot.

= Integraciéon con Llamalndex: Se integra con Settings.embed model para con-
sistencia en la generacion de embeddings.

= Manejo de errores: Implementa degradacion elegante cuando los componentes no
estan disponibles.
6.6.4. Configuraciones de optimizacion

El sistema implementa multiples optimizaciones para rendimiento en produccion:
= Gestion de memoria: Batching adaptativo basado en recursos disponibles

» Persistencia de estado: Logging de archivos procesados para reinicios incremen-
tales

= Timeout configurations: Configuraciones de timeout optimizadas para operacio-
nes de red

= Retry logic: Implementacion de Tenacity para reintentos exponenciales

6.7. Metodologia de Fine-tuning
Arquitectura del Modelo y Estrategia de Adaptacion.

Utilizamos LLaVA-LLaMA-3-8B como modelo base, implementando adaptacion LoRA
con rank r = 16, a = 32 y dropout 0,05. Los médulos objetivo incluyen todas las proyec-
ciones de atencion (q_proj, k_proj, v_proj, o_proj), los componentes MLP (gate_proj,
up_proj, down_proj) a lo largo de 32 capas transformer, y las capas lineales del proyec-
tor multimodal. Esta seleccion permite una adaptacion eficiente tanto de las capacidades
lingiifsticas como de razonamiento cruzado entre modalidades.

Dataset e ingenieria de prompts.

El conjunto de datos ROCOv2 proporciona imégenes radioldgicas con sus correspon-
dientes captions y conceptos médicos codificados como CUIs (Concept Unique Identifiers).
Implementamos una estrategia diversificada de prompts que abarca cinco categorias de
plantillas: captioning basico, identificacion de conceptos, integracion multimodal, consul-
tas dirigidas sobre conceptos y descripciones condicionales. Cada muestra de entrena-
miento recibe una plantilla asignada aleatoriamente para mejorar la robustez del modelo
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y prevenir el sobreajuste. El formato de instruccion sigue un paradigma conversacional
estructurado:

USER: <image>\n[Consulta especifica de la tarea|
ASSISTANT: [Respuesta generadal

Configuracién de entrenamiento.

Hiperpardmetros: Learning rate de be—5 con cosine annealing, batch size efectivo de
32 (acumulacion de gradientes 4 x 8), longitud maxima de secuencia de 1024 tokens, en-
trenamiento de precision mixta (bfloat16/float16).
Optimizacion: Optimizador AdamW con ratio de warmup del 3%, gradient checkpointing
para eficiencia de memoria, evaluacién cada 250 iteraciones.
Procesamiento de Ftiquetas: El collator personalizado implementa instruction tuning me-
diante enmascaramiento selectivo, donde los tokens de entrada reciben la etiqueta —100
y solo las respuestas del asistente contribuyen al calculo de la pérdida.

[im] TensorBoard X @ TensorBoard carga logs x| +

B Windows PowerShell X & ubuntu-24.04 X & Ubuntu-2404 X & Ubuntu-2404

warnings.warn(
**xx% train metrics **x*x

epoch 2.9986
total_flos 37085092GF
train_loss 1.0301
train_runtime 0:23:24.60
train_samples_per_secon 2.451
train_steps_per_second = 0.077

Realizando evaluacién final en el conjunto de validacién...
100%| | 1238/1238 [21:34<00:00, 1.05s/it]
**%x% eval metrics *****
epoch = 2.9986
eval_loss = 1.0677
eval_runtime = 0:21:36.19
eval_samples_per_second = 7.641
eval_steps_per_second = 0.955
Guardando el modelo adaptador PEFT final...
Adaptador guardado en: ./models/llava_llama3_8b_rocov2_finetuned_full/final_lora_adapter_explicit

Guardando el procesador...
Procesador guardado en: ./models/1lava_llama3_8b_rocov2_finetuned_full/final_processor

iProceso completado!

Artefactos del modelo en: ./models/1lava_llama3_8b_rocov2_finetuned_full
Logs de TensorBoard en: ./logs_llava_rocov2_finetuned_full

(pytorch-env) 8 S

Figura 7: Conclusion del proceso de fine-tuning del modelo de visiéon y lenguaje LLaVA-
LLaMA 3 8B con una train loss de 1.03 y una eval loss de 1.06.

Gestion de memoria y escalabilidad.

Para abordar limitaciones computacionales, implementamos procesamiento por blo-
ques (chunked) del dataset, permitiendo entrenamiento a gran escala en hardware limita-
do. El pipeline incluye limpieza automatica de memoria y almacenamiento intermedio en
disco para los bloques de datos procesados.

Preprocesamiento de datos.

El pipeline de preprocesamiento integra anotaciones multimodales mediante la fusion
sistemética de captions y conceptos, mapeo semantico de CUIs a nombres canénicos y
validacion integral de los datos. Los conceptos médicos se traducen de codigos CUI a
términos legibles utilizando el diccionario de mapeo proporcionado.
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Proceso de entrenamiento.

El entrenamiento se realiza mediante fine-tuning eficiente en pardmetros durante una
época, con posibilidad de early stopping. El collator de datos personalizado asegura la
alineacion correcta de tensores multimodales e implementa la estrategia de enmascara-
miento para instruction tuning. Los checkpoints del modelo se conservan en funcién de la
optimizaciéon de la pérdida de validacion.

Instruction tuning multimodal.

Nuestro enfoque extiende el instruction tuning al dominio médico mediante la di-
versificacion estratégica de prompts y tareas dirigidas de identificacion de conceptos. La
metodologia permite al modelo realizar tareas tanto descriptivas como analiticas sobre
imagenes médicas.

Adaptacion eficiente en parametros

La configuracion de LoRA se dirige a los componentes criticos del modelo mientras pre-
serva la eficiencia computacional. Este enfoque reduce significativamente los parametros
entrenables, manteniendo la expresividad del modelo para tareas de anélisis de imagenes
médicas.

7. Descripcion técnica del sistema

A continuacién, se presenta un diagrama con el flujo de informacién y una descrip-
cién técnica detallada del sistema de Question Answering Biomédico Multimodal con
Explicabilidad Incorporada, llamado MultimodalBioQA, con fines de reproducibilidad
y extension del trabajo.
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Figura 8: Flujo de informacion detallado del sistema multimodal de Question answering.

El sistema implementa una arquitectura de agentes distribuidos que integra capacida-
des de procesamiento de texto e imagen para responder consultas biomédicas complejas.
La aplicacion principal (app.py) constituye el nicleo orquestador que coordina multiples
agentes especializados mediante una interfaz de usuario desarrollada en Streamlit.

o7



7.1. Aplicacion Principal (app.py)

La aplicacion principal implementa un sistema integrado de explicabilidad que combina
multiples técnicas de interpretabilidad para el analisis de imagenes médicas:

» IntegratedExplainabilitySystem: Clase principal que integra LLaVA (Large Lan-
guage and Vision Assistant) con técnicas de explicabilidad visual incluyendo GradCAM,
Attention Maps e Integrated Gradients. Esta integracion representa una innovacion sig-
nificativa al combinar modelos multimodales con técnicas de interpretabilidad tradicio-
nales.

= Pipeline de procesamiento dual: El sistema maneja dos flujos principales:

1. Flujo de Texto: Utiliza researcher_agent para btisqueda en PubMed y writer_agent
para sintesis

2. Flujo de Imagen: Fmplea vision_agent con sistema de explicabilidad integrado
para analisis visual

» Gestion de sesiones: Implementa un sistema robusto de gestion de sesiones con iden-
tificadores tinicos para rastrear analisis de explicabilidad y mantener coherencia en
procesamiento batch.

7.1.1. Procesamiento de Consultas Multimodales

La funcion process_full_query() implementa la logica central del sistema:

Listing 1: Funcién principal de procesamiento de consultas

def process_full_query(question_data: dict) -> dict:

Esta funcion orquesta el procesamiento completo mediante:

» Inferencia de tipo de pregunta: Utiliza heuristicas avanzadas y confirmacion inter-
activa para clasificar preguntas en categorias (yesno, factoid, list, summary, concepts,
caption, location)

= Enrutamiento condicional: Dirige el procesamiento segiin la presencia de datos de
imagen

= Sistema de explicabilidad integrado: Para consultas de imagen, aplica analisis de
explicabilidad completo que incluye:

e Extraccion de conceptos médicos mediante LLaVA

e Generacion de mapas de activacion (GradCAM)

Analisis de atencion (Attention Maps)

Calculo de gradientes integrados (Integrated Gradients)

e Mapeo automético concepto-region con bounding boxes
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7.1.2. Sistema de configuracion (config.py)

El moédulo de configuracion implementa un sistema centralizado de gestion de para-
metros que abarca:

» Configuracion de APIs: Gestion de claves para OpenAl, NCBI/PubMed, UMLS

» Configuracion de base de datos vectorial: Parametros para Qdrant incluyendo
URLS, colecciones y limites de busqueda

» Configuracion de modelos: Especificacion de modelos de embedding (BiomedNLP-
PubMedBERT), NER biomédico, y configuracion de LLaVA

» Optimizaciones de hardware: Configuracion automatica de dispositivos (CUDA /C-
PU), quantizacion 4-bit, y gestion de memoria

7.2. Innovaciones arquitecténicas
Sistema de explicabilidad integrado

La principal innovacién arquitectonica radica en la integracion continua de multiples
técnicas de explicabilidad:

» Explicabilidad multi-nivel: Combina explicabilidad a nivel de atencion (Attention
Maps), activacion (GradCAM) y gradientes (Integrated Gradients).

= Mapeo Concepto-Region: Implementa un método que mapea conceptos médicos
extraidos por LLaVA a regiones especificas de la imagen mediante anélisis especializado.

» Bounding boxes automaticas: Genera automaticamente bounding bozes etiquetadas
que correlacionan conceptos médicos con ubicaciones espaciales.
Arquitectura de agentes distribuidos

El sistema implementa un patrén de arquitectura de agentes donde cada agente tiene
responsabilidades especificas:

= Separation of concerns: Cada agente maneja un aspecto especifico del procesamiento.

= Comunicacién asincrona: Los agentes se comunican mediante estructuras de datos
estandarizadas.

= Tolerancia a fallos: Implementa fallbacks elegantes cuando los componentes indivi-
duales fallan.

7.3. Agentes de procesamiento
7.3.1. Agente de Investigacion (researcher_agent.py)

El researcher_agent constituye el niicleo del sistema de recuperacion de informacion
biomédica, implementando una arquitectura hibrida que combina busqueda en bases de
datos vectoriales locales con consultas en tiempo real a la API de PubMed.
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Arquitectura de btisqueda hibrida
El agente implementa una estrategia de busqueda multicapa:

Listing 2: Funcién principal del agente de investigacion

def run_researcher (question: str, question_data: Dict) -> Dict:

= Generacion de consultas mejoradas: Utiliza GPT-40 para extraer entidades médi-
cas significativas de la pregunta mediante el método _extract_medical_entities_with_gpt4o().
Este enfoque supera las limitaciones de los sistemas NER tradicionales al comprender
el contexto seméantico.

= Busqueda primaria en Qdrant: Ejecuta busquedas de tipo Qdrant-first donde busca
de preferencia en la base de datos vectorial y luego en la API de PubMed con parame-
tros optimizados (hasabstract [text]) para garantizar la disponibilidad de contenido
completo.

= Extraccion de snippets a nivel de oraciéon: Implementa una funcién que utiliza
GPT-40 para extraer oraciones especificas que responden directamente a la pregunta,
en lugar de devolver abstracts completos. Esta técnica mejora significativamente la
precision de la evidencia.

Enriquecimiento contextual

El sistema implementa multiples capas de enriquecimiento:

» Integracion UMLS/MeSH: La funciéon _query_umls_for_context() consulta las
terminologias médicas estandarizadas para proporcionar definiciones contextuales de
los términos médicos identificados.

= Recuperaciéon Few-Shot: Implementa _retrieve_few_shot_example_from_file()
para obtener ejemplos similares que guian la generaciéon de respuestas, mejorando la
consistencia y calidad del output.

» Ranking y filtrado: _filter_and_rank_snippets() utiliza una combinacion de sco-
res de relevancia originales y matching de palabras clave para optimizar la seleccion de
evidencia.

Optimizaciones de rendimiento

= Cache de consultas UMLS: Mantiene cache a nivel de médulo para evitar consultas
repetitivas.

s Gestion de rate limits: Implementa delays configurables para respetar las limita-
ciones de las APIs externas que bloquean las consultas cuando exceden el limite de
uso.

7.3.2. Agente de Escritura (writer_agent.py)

El writer_agent representa la capa de sintesis que transforma evidencia cientifica
cruda en respuestas coherentes y bien estructuradas.

60



Sistema de generacion diferenciada por tipo
El agente implementa estrategias de generacion especificas segin el tipo de pregunta:

Listing 3: Funcién principal del agente de escritura

def run_writer(question: str, qtype: str, snippets: List[Dict],
mesh_info: Optional[Dict], few_shot_example:
Optional [Dict]) -> Dict:

» Prompts especializados: Cada tipo de pregunta (yesno, factoid, list, summary) uti-
liza prompts optimizados con instrucciones especificas para el formato de respuesta
esperado.

= Validaciéon de respuestas: _validate_exact_answer () implementa logica de vali-
dacion especifica por tipo para asegurar conformidad con formatos esperados.

» Sintesis dual: Genera tanto exact_answer (respuesta directa) como ideal_answer
(explicacion detallada) para proporcionar informacion a multiples niveles de granulari-
dad.

Procesamiento de consultas de imagen

Para consultas multimodales, el agente implementa:

= Prompts contextualizados para imagen: usa una funciéon que crea prompts espe-
cificos que incorporan resultados del analisis visual, conceptos detectados y metadatos
de explicabilidad.

» Integracion de resultados multimodales: Combina informacion textual y visual
para generar explicaciones integrales.
Mejores practicas de generacion

= Control de temperatura: Utiliza diferentes valores de temperatura segun el tipo de
tarea (0.0 para ezact answers, 0.2-0.3 para ideal answers.)

= Gestion de tokens: Implementa limites adaptativos de tokens basados en la comple-
jidad de la consulta.

» Citacion automatica: Incluye referencias automaticas a PMIDs en las respuestas
generadas por el Agente de Escritura.

7.3.3. Agente de Visién (vision_agent.py)

El vision_agent encapsula la funcionalidad de analisis de imagen médica utilizando
modelos LLaVA fine-tuned para el dominio biomédico.
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Arquitectura del agente

Listing 4: Clase principal del agente de vision

class VisionAgent:
def __init__(self, base_model_path, adapter_repo, device="auto"

load_in_4bit=True, merge_adapters=False):
» Modelo base LLaVA: Utiliza xtuner/1lava-1lama-3-8b-v1_1-transformers como
modelo base con el adaptador LoRA ajustado con el dataset radiografico del reto visual.

» Optimizaciones de memoria: Implementa quantizaciéon 4-bit opcional y fusiéon de
adaptadores para optimizar el uso de memoria GPU.

» Gestion de dispositivos: Deteccion automética y configuracion de dispositivos (CU-
DA/CPU) con fallbacks.
Funcionalidades especializadas

= Generacion de conceptos: generate_concepts() extrae conceptos médicos estruc-
turados de imégenes utilizando prompts en espanol para el dominio médico.

» Generacion de captions: generate_captions() produce descripciones textuales de-
talladas de iméagenes médicas siguiendo convenciones radiologicas.

= Procesamiento en batch: Soporte para procesamiento eficiente de multiples imagenes
con gestion optimizada de memoria.
Caracteristicas técnicas avanzadas

» Manejo de diversos inputs: Soporte para miltiples formatos de entrada, lo que
incluye rutas de fichero, objetos PIL, y data URIs base64.

» Gestion de patch size: Implementa correccion automatica del patch_size para tener
compatibilidad con diferentes versiones del procesador.

= Gestion de memoria: Implementa cleanup manual de tensores y cache CUDA para
prevenir memory leaks durante inferencia prolongada.
Prompts especializados
El agente utiliza prompts cuidadosamente disenados:

Listing 5: Prompts especializados para el agente de vision

CONCEPT_PROMPT = "USER: <image>\\nEnumera los conceptos medicos
clave (CUIs) observados o inferidos en esta imagen.\\nASSISTANT:
Los conceptos medicos clave son:"

CAPTION_PROMPT = "USER: <image>\\nCual es la descripcion de esta
imagen medica?\\nASSISTANT:"

Estos prompts estan personalizados para el dominio médico y disenados para maximi-
zar la precision y relevancia de las respuestas generadas.
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7.3.4. Agente de chatbot interactivo (chatbot_agent.py)

El chatbot_agent implementa un sistema de validacién interactiva de tipos de pregun-
ta que utiliza inferencia heuristica combinada con confirmacion del usuario para optimizar
la precision en la clasificacion de consultas.

Sistema de inferencia de tipos
Listing 6: Funcion de inferencia de tipos de pregunta

def infer_question_type(question: str) -> str:

El sistema implementa una cascada de patrones heuristicos organizados jerarquica-
mente:

» Patrones de yes/no (Prioridad): Utiliza expresiones regulares para identificar pre-
guntas binarias:

Listing 7: Patrones para preguntas Yes/No

yesno_patterns = [
r’>~(is|are|do|does|did|can|could|will|would|should|has|have|
had)\s’,

r’\beffective\b.*\bfor\b’,
r’\bassociated\b.*\bwith\b’

= Deteccion de listas: Identifica preguntas que requieren respuestas enumerativas me-
diante patrones como ~(what|which)
St.*
s+(are|include).

» Clasificacibn summary: Reconoce solicitudes de sintesis mediante patrones como
" (summarize|describe|explain).

» Factoid por defecto: Utiliza factoid como categoria de fallback para preguntas espe-
cificas no clasificadas.

Interfaz de confirmacion interactiva

La funcién interactive_type_confirmation() implementa un sistema de Ul avan-
zado:

» Visualizacion contextual: Presenta la pregunta original y el tipo inferido en un
contenedor estilizado con HTML/CSS personalizado.

= Confirmacion de seleccion: Permite al usuario confirmar o modificar el tipo inferido
con todas las opciones disponibles (yesno, factoid, list, summary).

= Auto-confirmacién temporal: Implementa un countdown de 5 segundos que auto-
confirma la seleccién para optimizar la experiencia de usuario en casos de alta confianza.

= Gestion de estado: Utiliza st.session_state para mantener persistencia del tipo
confirmado a través de la sesion.
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7.3.5. Agente de Explicabilidad (explainability_agent.py)

El explainability_agent constituye un wrapper de alto nivel que orquesta el pipeline
completo de analisis de explicabilidad para imagenes médicas.
Arquitectura de Gestion de Archivos

El agente implementa un sistema robusto de gestion de archivos:

» Directorio de uploads seguro: Implementa save_uploaded_image() que maneja
multiples tipos de objetos de archivo (Flask, FastAPI, BytesIO) con validacion de ex-
tensiones y nombres 1inicos.

= Estructura organizada de directorios: Crea automéaticamente subdirectorios para
imagenes, heatmaps y metadatos, facilitando la organizacién y recuperacion de resul-
tados.

= Gestion de sesiones: Genera identificadores tinicos de sesion combinando timestamps
y hashes para garantizar trazabilidad sin colisiones.
Pipeline de analisis integrado

La funcion central analyze_image () orquesta:

» Invocacién de herramientas especializadas: Llama a analyze_medical_image_tool()
de explainability_tool.py para el analisis técnico.

» Enriquecimiento de metadatos: Agrega informacion temporal, rutas de archivos y
URLs web-ready para integraciéon con interfaces de usuario.

= Gestion elegante de errores: Implementa manejo completo de errores con logging
detallado y fallbacks apropiados.
Sistema de recuperacion y limpieza

» Recuperaciéon de resultados: get_analysis_results() permite recuperar anéli-
sis previos mediante session_id, facilitando la persistencia de resultados a través de
sesiones.

= Limpieza automatica: cleanup_old_files() implementa garbage collection tempo-
ral para mantener el sistema limpio, con configuracién de retenciéon personalizable.

» Endpoint factory: create_explainability_endpoint () genera funciones endpoint

ready-to-use para integracion con frameworks web.

7.4. Herramientas de analisis especializado
7.4.1. Herramienta de NER biomédica (ner_tool.py)

El ner_tool implementa un sistema avanzado de extraccion de entidades biomédicas
con integracion UMLS/MeSH para enriquecimiento semantico.
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Gestion de tickets UMLS
Listing 8: Funcién de gestion de tickets UMLS
def _get_umls_ticket() -> Optional[str]:

Implementa un sistema robusto de autenticaciéon con UMLS:

= Caché de tickets: Mantiene tickets de sesion con gestion automatica de expiracion y
margen de seguridad de 5 minutos.

= Renovacion automatica: Detecta expiraciones de tickets y renueva automaéaticamente
sin interrumpir el flujo de trabajo.

» Retry lgic con backoff: _query_umls_with_retry() implementa reintentos auto-
méaticos con manejo de errores 401 (unauthorized).

Pipeline de NER Optimizado

El sistema de NER implementa multiples optimizaciones:

» Caché de pipelines: _get_ner_pipeline() mantiene cache a nivel de moédulo para
evitar recargas costosas de modelos.

» Filtrado avanzado: _filter_ner_entities() elimina:

e Tokens subword de BERT.
e Entidades con scores de confianza <0.5.
e Palabras comunes (stopwords).
e Tokens sin caracteres alfabéticos.
» Agregacion de estrategias: Utiliza aggregation_strategy="simple" para agrupar

automaticamente word pieces en entidades coherentes.

Enriquecimiento avanzado con UMLS

La funcién principal implementa:

» Clasificacion de entidades clinicas: Categoriza automaticamente entidades en tipos
clinicos vs. no-clinicos basédndose en labels especializados:

Listing 9: Labels clinicos para clasificacion

clinical_labels = {
’DISEASE’, °’DRUG’, °’CHEMICAL’, °’GENE’, ’PROTEIN?’,
>TREATMENT?>, ’PROCEDURE’, ’>SYMPTOM’, °’>ANATOMY’

}

= Mapeo UMLS selectivo: Aplica enriquecimiento UMLS solo a entidades clinicas
identificadas, optimizando eficiencia y relevancia.

= Estructura de resultados: Retorna un diccionario estructurado con entidades pro-
cesadas, clasificaciones clinicas, mapeos UMLS y manejo de errores.
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7.4.2. Herramientas especializadas adicionales
Herramienta de Explicabilidad (explainability_tool.py)
Implementa el analisis técnico de explicabilidad combinando miltiples tecnologias:

= Integracion SAM + GPT-40: Combina Segment Anything Model para segmentacion
con GPT-40 para etiquetado de regiones.

= Pipeline de analisis completo:

Listing 10: Funciéon de analisis de imagen médica
def analyze_medical_image (self, image_path: str, session_id: str
= None) -> dict:

Carga y valida imagen

Obtiene contexto con VisionAgent (caption + conceptos)

Genera mascaras con SAM

Etiqueta regiones con GPT-40

Crea visualizaciones (imagen anotada + heatmap)

Guarda resultados estructurados

» Etiquetado contextual: _label_region_with_gpt4o() utiliza los conceptos extrai-
dos por LLaVA como contexto para mejorar la precision del etiquetado de regiones.
Detector de elementos graficos (arrow_detector_tool.py)

Implementa técnicas de vision por computadora como analisis geométrico para detectar
elementos direccionales:

» Deteccion de contornos: Utiliza OpenCV para identificar formas de flecha mediante
analisis de contornos y aproximaciéon poligonal.

= Analisis direccional: advanced_arrow_detection() implementa:

e Deteccion de lineas con Hough Transform
e Extrapolacion direccional para predecir targets

e Generacion de bounding boxres en ubicaciones predichas

Procesador de ficheros (file_preprocessing_tool.py)

Proporciona capacidades de ingesta de documentos:
= Soporte Multi-formato: Maneja PDF, DOCX, PPTX, XLSX, TXT.
= Procesamiento de URLs: process_url() implementa:

e Deteccion automatica de tipo de contenido (HTML vs PDF)
e Extraccion de texto de PDFs con PyMuPDF

e Parsing automatico de HTML con BeautifulSoup

e Limitacion de contenido (15,000 caracteres) para prevenir overload
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7.4.3. Sistema de base de datos vectorial y gestion de datos

Se implementd una base de datos vectorial local utilizando Qdrant para mejorar la
capacidad de busqueda y recuperacion de snippets. Luego ya se le encontraron otros usos
como crear una coleccion para almacenar los ejemplos de preguntas y respuestas para few
shot.

Sistema de ingesta de articulos biomédicos (ingest_pubmed.py)

El sistema de ingesta constituye el componente de mayor complejidad técnica junto
con el fine tuning del modelo de visién y lenguaje, implementando un pipeline optimizado
para procesamiento masivo de mas de 30 millones de articulos cientificos de PubMed.

Arquitectura de procesamiento Streaming

Listing 11: Funcién de procesamiento de articulos PubMed

def process_pubmed_article_node(article_node, source_file_name):

El sistema implementa procesamiento streaming mediante 1lxml.etree.iterparse
para manejar archivos XML.gz de gran tamano sin cargar el documento completo en
memoria:

» Parsing incremental: Utiliza iterparse con eventos (’end’,) para procesar no-
dos PubmedArticle individualmente, liberando memoria inmediatamente después del
procesamiento.

= Gestion de memoria: Implementa elem. clear () y eliminaciéon de nodos previos para
prevenir memory leaks durante procesamiento prolongado:

Listing 12: Gestion de memoria durante parsing

elem.clear ()
while elem.getprevious() is not None:
del elem.getparent () [0]

» Batching multinivel: Utiliza dos niveles de batching:

e EMBEDDING_BATCH_SIZE (512): Para generacion de embeddings en GPU.
e UPSERT_BATCH_SIZE (512): Para operaciones de insercion en Qdrant.

Extraccion de metadatos

El sistema implementa una extracciéon completa de metadatos con manejo robusto de
formatos inconsistentes:

» Parsing de fechas avanzado: parse_date_from_node () maneja miltiples formatos:

Listing 13: Funcién de parsing de fechas

def parse_date_from_node (date_node):
# Prioridad: Year/Month/Day -> MedlineDate -> fallbacks
year = safe_find_text(date_node, ".//Year")
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month_str = safe_find_text(date_node, ".//Month")

# Mapeo inteligente de meses (numericos y textuales)

month = MONTH_MAP.get(month_str.lower ().strip(), month_str.
strip ()

» Extraccion de abstracts estructurados: Maneja abstracts con etiquetas (BACKGROUND,
METHODS, RESULTS, CONCLUSIONS) mediante itertext() para capturar contenido ani-
dado.

= Gestion de autores: Procesa listas de autores con fallbacks para nombres incompletos
y manejo de iniciales.

= Metadatos enriquecidos: Extrae términos MeSH, palabras clave, DOIs, titulos de
journals y URLs de documentos.

Optimizaciones de rendimiento para produccién
= Configuraciéon de Optimizador Qdrant: Ajusta pardmetros para ingesta masiva:

Listing 14: Configuracion del optimizador Qdrant

gdrant_client.update_collection (
collection_name=COLLECTION_NAME,
optimizers_config=models.OptimizersConfigDiff (
indexing_threshold=100000, # Optimizar menos
frecuentemente
flush_interval_sec=60 # Flushear menos
frecuentemente

» Truncamiento de tokens: truncate_text_to_tokens () utiliza el tokenizer de Biomed NLP-
PubMedBERT para truncar a 510 tokens manteniendo coherencia semantica.

= Retry Logic con Tenacity: Implementa reintentos exponenciales para operaciones

de red:

Listing 15: Implementacion de retry logic

@retry (stop=stop_after_attempt (5), wait=wait_exponential (
multiplier=1, min=4, max=30))
def upsert_points_to_qdrant(points_to_upsert):

» Procesamiento Incremental: Mantiene log de archivos procesados (processed_files.log)
para permitir reinicios sin reprocesamiento.
Gestion de dispositivos y embeddings

» Deteccion automatica de hardware: Configura automaticamente GPU/CPU ba-
sdndose en disponibilidad de CUDA.

» Modelo especializado: Utiliza microsoft/BiomedNLP-PubMedBERT (768 dimensio-
nes) optimizado para texto biomédico.
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= Batching eficiente: Procesa embeddings en lotes para maximizar utilizacion de GPU
mientras controla uso de VRAM.

7.5. Sistema de ingesta Few-Shot (ingest_few_shots.py)

El sistema maneja la creacién de una coleccion especializada para ejemplos de entre-
namiento que guian la generacion de respuestas.

Carga y validacién de datos
Listing 16: Funcion de carga de datos de entrenamiento
def load_training_data(filepath: str) -> list:

Implementa carga robusta con miltiples validaciones:

= Deteccion de Estructura: Maneja tanto listas directas como objetos con clave "questions".

» Validacion de Integridad: Verifica la presencia de campos requeridos ("body") antes
del procesamiento.

= Manejo de Errores JSON: Implementa logging detallado para errores de decodifi-
cacion y estructura.
Procesamiento de ejemplos

El sistema procesa ejemplos manteniendo la estructura completa para una recupera-
ciébn posterior:

» Input para embedding: Utiliza el texto de la pregunta ("body") para generar em-
beddings de bisqueda.

= Output completo: Almacena el registro completo como JSON string para preservar
toda la informacion contextual.

» Consistencia de modelos: Utiliza el mismo modelo de embedding (BiomedNLP-
PubMedBERT) que el sistema principal para garantizar coherencia semantica.

7.5.1. Preparacion de Few-Shot
Este componente implementa un sistema sofisticado de optimizacion de ejemplos few-
shot especificamente disenado para GPT-4o.

Pipeline de optimizacion GPT-40

Listing 17: Funcién de creacion de dataset optimizado para GPT-40

def create_gptd4o_optimized_dataset(questions_data: List[Dict],
golden_answers_data: List[Dict]) -> List[Dict]:

Implementa optimizaciones especificas para modelos de tltima generaciéon como GPT-
4o:
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= Deteccién de Idioma: determine_language () utiliza analisis heuristico basado en
palabras clave para clasificacion espafiol /inglés.

» Normalizacién de Tipos: extract_question_type() implementa mapeo consistente
de tipos de pregunta con fallbacks inteligentes.

» Optimizacion de Longitud: Truncamiento automatico con limites especificos (500
chars input, 2000 chars output) optimizados para la ventana de contexto de GPT-4o.

Limpieza y estructuraciéon de datos

Listing 18: Funcion de limpieza y validaciéon de texto

def clean_and_validate_text(text: str, max_length: int = None) ->
str:

= Normalizaciéon de espacios: Elimina espacios extra y caracteres probleméaticos me-
diante regex.

» Truncamiento preservando palabras: Corta en limites de palabras para mantener
coherencia semantica.

» Validacion de entrada: Maneja casos edge como texto vacio, None, o tipos incorrec-
tos.

Optimizacién JSON

El desafio bioASQ solicita entregables en formato JSON por lo que se tuvo que trabajar
en el formato de salida (Nentidis et al., 2025).

Listing 19: Funcién de optimizacion de salida JSON
def optimize_json_output(data: Dict[str, Anyl) -> str:

Implementa optimizacion especifica para reducir usage de tokens:

= Serializaciéon compacta: Utiliza separadores minimos y ensure_ascii=False.

» Truncamiento automatico: Reduce campos especificos (como ideal_answer) si el
output excede limites.

= Preservacion de estructura: Mantiene la estructura requerida mientras optimiza el
contenido.

Validacién de Calidad

Listing 20: Funcién de validacién de calidad de ejemplos

def validate_examples_quality(examples: List[Dict]) -> Dictl[str,
Any]:

Sistema completo de quality assurance:
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» Validacion de estructura: Verifica presencia de campos requeridos (input, output,
metadata).

» Validacién JSON: Confirma que el campo output contiene JSON valido.

= Meétricas de longitud: Valida que inputs y outputs tienen longitudes minimas apro-
piadas.

= Reporting detallado: Genera reportes con estadisticas e identificacion especifica de

problemas.

7.6. Utilidades de base de datos vectorial (vector_store_utils.py)

Proporciona la interfaz de alto nivel para bisqueda semantica en tiempo de ejecucion.
7.6.1. Integraciéon con Llamalndex

Listing 21: Funcién de recuperacion de ejemplos similares

def retrieve_similar_few_shot_examples (query_text: str, language:
str, top_k: int = 3) -> List[Dict]:

» Embedding consistente: Utiliza Settings.embed_model de Llamalndex para garan-
tizar coherencia con el sistema de embeddings principal.

= Bisqueda seméantica: Ejecuta busqueda vectorial en la coleccion few-shot utilizando
cosine similarity.

= Manejo elegante de errores: Implementa fallbacks apropiados cuando componentes
no estan disponibles.
Gestion de dependencias

» Imports condicionales: Maneja de forma elegante la ausencia de bibliotecas opcio-
nales.

= Logging informativo: Proporciona mensajes claros sobre disponibilidad de compo-
nentes.

= Configuracion de timeout: Implementa timeouts apropiados para operaciones de

red.

7.6.2. Sistema de conversion de datos (convert_jsonl_to_json.py)

Herramienta especializada para conversion eficiente de formatos de datos con minimi-
zacion de uso de memoria.
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Procesamiento streaming

Listing 22: Funciéon de conversion JSONL a JSON con wrapper

def convert_jsonl_to_json_with_wrapper (input_jsonl_path: str,
output_json_path: str, chunk_size: int = 100) -> bool:

s Archivo Temporal: Utiliza tempfile.NamedTemporaryFile para construir el JSON
final de manera incremental.

= Procesamiento linea por linea: Evita cargar el archivo completo en memoria pro-
cesando cada linea individualmente.

= Wrapping Automatico: Agrega automaticamente la estructura {"questions": [...]}
requerida por el formato BioASQ.
Optimizaciones de rendimiento

= Chunked processing: Procesa archivos en chunks configurables para balancear me-
moria y rendimiento.

= Progress reporting: Implementa logging periédico para monitorear progreso en ar-
chivos grandes.

= Error recovery: Contintia procesamiento incluso cuando lineas individuales fallan,
reportando errores sin interrumpir el proceso completo.

7.7. Integracion final y analisis arquitectéonico global

El sistema implementa una arquitectura de microservicios distribuidos que integra
multiples paradigmas de IA para crear una plataforma integral de question answering
biomédico multimodal.

La arquitectura tiene un patréon arquitectéonico hibrido y combina elementos de:

= Event-Driven architecture: Los agentes se comunican mediante estructuras de datos
estandarizadas que actiian como eventos entre componentes.

= Pipeline architecture: El procesamiento sigue flujos estructurados con etapas bien
definidas.

= Microservices pattern: Cada agente encapsula funcionalidad especifica con interfaces
claramente definidas.

= Repository pattern: La base de datos vectorial actiia como repositorio centralizado
de conocimiento cientifico.

7.7.1. Innovaciones técnicas

A continuacién, menciono los elementos arquitecténicos mas innovadores del sistema
o que ayudan a diferenciarlo de otros sistemas:
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Sistema de explicabilidad integrado

A mi parecer, la principal contribucién técnica del sistema radica en la integracion de

miltiples técnicas de explicabilidad visual:

Explicabilidad multimodal: Combina explicabilidad basada en atencion (LLaVA),
activacion (GradCAM), y gradientes (Integrated Gradients) en un pipeline unificado.

Mapeo Concepto-Region: método que correlaciona conceptos médicos extraidos por
LLaVA con regiones espaciales especificas mediante analisis de mapas de activacion:

Bounding Boxes contextualizadas: Genera automaticamente bounding bozes eti-
quetadas que no solo identifican regiones, sino que las contextualiza dentro del dominio
médico especifico.

Extraccion de snippets a nivel de oracién

Innovacion en la forma de recuperacion de informacién biomédica:

Mejor precision: Mejor que métodos tradicionales de recuperacion que devuelven
abstracts completos, extrayendo tinicamente oraciones que responden directamente a la
pregunta.

Contextualizacion GPT-40: Utiliza capacidades de comprension avanzada para iden-
tificar relevancia semantica mas alla del matching de keywords.

Preservacion de Fuentes: Mantiene trazabilidad completa con PMIDs y scores de
relevancia para verificacion cientifica.

Pipeline de procesamiento hibrido

Busqueda dual: Combina base de datos vectorial local (Qdrant) con consultas en
tiempo real a PubMed API para maximizar cobertura y actualidad.

Few-Shot Learning contextual: Implementa recuperacion semantica de ejemplos
few-shot que guian la generacion de respuestas, lo que mejora la coherencia y la calidad
del sistema.

Enriquecimiento UMLS: Aplica terminologia médica estandarizada selectivamente
solo a entidades clinicas identificadas, de modo de optimizar la eficiencia.

7.7.2. Flujos de procesamiento especializados

Se puede consultar el diagrama de la arquitectura para contextualizar este apartado.

Flujo de consultas de texto

1. Ingesta y clasificacion: chatbot_agent clasifica tipo de pregunta con confirma-
cion interactiva del usuario.

2. Investigacion dual: researcher_agent ejecuta busqueda hibrida (Qdrant + Pub-
Med API).
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3. Extracciéon automatica: GPT-40 extrae snippets relevantes a nivel de oracion.
4. Enriquecimiento contextual: NER biomédica + mapeo UMLS/MeSH.

5. Sintesis especializada: writer_agent genera respuestas diferenciadas por tipo.

Flujo de consultas de imagen

1. Analisis visual primario: vision_agent (LLaVA) extrae conceptos y genera cap-
tions.

2. Explicabilidad multitécnica:

s GradCAM para mapas de activacion.
s Attention Maps para analisis de atencion.

s Integrated Gradients para atribucion.
3. Segmentacion: SAM genera mascaras + GPT-4o etiqueta regiones.
4. Mapeo concepto-region: Método propio correlaciona conceptos con ubicaciones.

5. Visualizacién integrada: Genera imagen anotada + heatmaps + bounding boxes.

7.7.3. Optimizaciones de rendimiento y escalabilidad
Para concluir la descripcion de la arquitectura del sistema MultimodalBioQA se
mencionan las optimizaciones utilizadas en cuanto a memoria y tolerancia a fallos.
Gestion de memoria y recursos
» Quantizacién 4-bit: Reduce uso de VRAM en modelos de visiéon manteniendo preci-
sion.

» Batching adaptativo: Optimiza throughput de embeddings y operaciones de base de
datos.

» Cache multinivel: Pipelines NER, tickets UMLS, y embeddings con TTL configura-
bles.

= Limpieza automatica: Limpieza automatica de archivos temporales y caché.

Tolerancia a fallos

» Fallbacks elegantes: Cada componente implementa degradacion elegante cuando al-
guna dependencia falla.

= Procesamiento incremental: Capacidad de reanudar procesos interrumpidos sin pér-
dida de progreso. Esto es especialmente 1til en los componentes que toman muchas horas
o dias para ejecutarse como el fine-tuning del modelo de visiéon y lenguaje o la ingesta
de articulos médicos en la base de datos vectorial local.
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Cronograma general

La duracion total estimada del proyecto es de aproximadamente 16 semanas, comen-
zando el 10 de marzo de 2025 y finalizando el 25 de junio de 2025.

8. Cronograma del Proyecto

Fase Tareas Semanas
Fase 1: Configuracién y re- SetUp Inicial 1-4
vision de literatura

Fase 2: Corpus y métricas Corpus + Métricas 5-6
Fase 3: Implementacion de Prototipos (para retos)  6-9
sistemas baselines

Fase 4: Evaluacion de re- Evaluar resultados de 9-10
sultados desafios

Fase 4: Desarrollo de sis- Adaptar sistema inte- 10-12
tema integrado grado

Fase 5: Experimentaciéon Testeo Modelos Finales  12-15
Fase 6: Analisis y redac- Redacciéon Informe Fi- 10-16

cién

nal

Cuadro 1: Cronograma de actividades del proyecto (marzo-junio 2025).
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9. Resultados esperados

9.1. Resultado esperado 1

Lograr precision de recuperaciéon de informacion biomédica mediante arquitectura RAG hi-
brida.

Se espera demostrar que se logra precision de recuperacion de informacion cientifica para
responder preguntas exactas (exact answers) mediante la implementacion de un sistema RAG
hibrido que combine base de datos vectorial local (Qdrant) y consultas en tiempo real a PubMed
API.

Meétricas de validacion:

= Performance competitivo en BioASQ Task 13b: posicionamiento entre los 10 primeros
lugares a nivel internacional.

= Latencia optimizada: < 30 segundos para consultas textuales complejas.

= Cobertura de literatura: acceso a > 30 millones de articulos PubMed con busqueda seméan-
tica.

9.2. Resultado esperado 2

Demostraciéon de capacidad de procesamiento multimodal con explicabilidad integrada para
analisis de imagenes médicas.

Se espera validar la capacidad del sistema para procesar consultas multimodales (texto +
imagen) con explicabilidad integral, integrando analisis visual avanzado (LLaVA-LLaMA 3) con
técnicas de explicabilidad multitécnica (GradCAM, Attention Maps, Integrated Gradients) y
mapeo concepto-region.

Meétricas de validacion:

= Performance en ImageCLEFmed Caption: posicionamiento destacado en el top 10 en tareas
de analisis visual médico.

= Integracion técnica: funcionamiento estable del pipeline completo de explicabilidad.

= Mapeo concepto-regiéon: generaciéon automética de bounding boxes contextualizadas.

9.3. Resultado esperado 3

Implementacion satisfactoria de sistema unificado multiagente para procesamiento biomédico
textual y visual.

Se espera demostrar la viabilidad de una arquitectura multiagente unificada que maneje
sin problemas consultas biomédicas textuales y visuales dentro de un framework coherente, con
agentes especializados convergiendo en un Writer Agent central para sintesis de respuestas con-
sistentes.

Meétricas de validacién:

= Integracion arquitecténica: funcionamiento estable de pipelines duales convergentes.

= Escalabilidad operacional: manejo eficiente de cargas de trabajo mixtas.
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10. Aportes

A continuacion, se presentan los principales aportes del sistema desarrollado:

10.1. Aportes metodolégicos
10.1.1. Integracién de técnicas de explicabilidad multimodal

Esta investigacion contribuye metodolégicamente mediante la integracion sistemética de mil-
tiples técnicas de explicabilidad visual en un framework unificado para anélisis de imagenes médi-
cas. La combinacion de GradCAM, Attention Maps e Integrated Gradients con mapeo concepto-
region representa un avance en la aplicacion de métodos de interpretabilidad complementarios
en el dominio biomédico. Esta aproximaciéon permite obtener perspectivas explicativas multidi-
mensionales que abordan diferentes aspectos del proceso de toma de decisiones del modelo.

10.1.2. Arquitectura multiagente para procesamiento biomédico hibrido

El disefio arquitecténico propuesto constituye un aporte en el desarrollo de sistemas dis-
tribuidos para aplicaciones biomédicas complejas. La implementacion de agentes especializados
con convergencia en un componente central de sintesis permite mantener especializacién técnica
mientras se garantiza coherencia en los resultados. Esta aproximaciéon demuestra la viabilidad
de manejar multiples modalidades de entrada (texto e imagen) dentro de un framework arqui-
tectonico unificado.

10.1.3. Extracciéon de evidencia cientifica guiada por LLM

La investigaciéon aporta una metodologia para extracciéon de snippets a nivel de oracién
utilizando capacidades de comprension avanzada de large language models. Este enfoque supera
las limitaciones de métodos tradicionales basados en similarity scoring, permitiendo identificar
evidencia cientifica especifica que responde directamente a consultas formuladas, mejorando la
precision y relevancia de la informacién recuperada.

10.2. Aportes técnicos
10.2.1. Sistema RAG hibrido para area biomédica

Se desarrolld una infraestructura de recuperacién augmentada que combina busqueda vec-
torial local con consultas en tiempo real a bases de datos especializadas. La implementacion
proces6 exitosamente més de 30 millones de articulos PubMed utilizando embeddings especiali-
zados (BiomedNLP-PubMedBERT), estableciendo una base técnica para busqueda semantica a
gran escala en literatura cientifica biomédica.

10.2.2. Mapeo Concepto-Regiéon en imagenes médicas

La investigacion desarrollé un método que correlaciona autométicamente conceptos médicos
extraidos por modelos multimodales con regiones espaciales especificas en imagenes médicas. Esta
funcionalidad permite generar bounding boxes contextualizadas con etiquetado seméanticamente
coherente, contribuyendo al desarrollo de herramientas de analisis visual mas interpretables para
aplicaciones clinicas.

10.2.3. Pipeline de explicabilidad integrado para modelos multimodales

Se implement6 un sistema que procesa simultdneamente miltiples tipos de mapas de expli-
cabilidad (activacion, atencion, gradientes) y los integra en visualizaciones comprehensivas. Esta
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implementacién técnica demuestra la factibilidad de combinar diferentes enfoques de interpreta-
bilidad en un pipeline operacional para analisis de imagenes médicas en tiempo real.

10.3. Aportes empiricos
10.3.1. Validacion en benchmarks internacionales

Los resultados obtenidos en competencias internacionales especializadas proporcionan evi-
dencia empirica sobre la efectividad de los métodos propuestos. El posicionamiento competitivo
en BioASQ Task 13b (2° y 3° lugar) valida la efectividad del modulo textual, mientras que
los resultados en ImageCLEFmed Caption 2025, particularmente el 2° lugar en explicabilidad,
confirman la contribuciéon en interpretabilidad visual.

10.3.2. Demostracion de coexistencia entre performance y explicabilidad

La investigacion proporciona evidencia empirica de que la integraciéon de explicabilidad com-
prehensiva no compromete el performance competitivo en tareas especializadas. Los resultados
demuestran que sistemas con miltiples técnicas de interpretabilidad pueden mantener efectividad
comparable a sistemas optimizados Unicamente para performance.

10.3.3. Escalabilidad de procesamiento multimodal

Los experimentos realizados confirman la viabilidad técnica de procesar volimenes indus-
triales de literatura cientifica (30M+ articulos) manteniendo tiempos de respuesta operacionales
(< 30 segundos para consultas textuales y < 60 segundos para consultas visuales). Esta validacion
empirica es relevante para la implementacion de sistemas similares en entornos de produccioén.

10.4. Aportes al conocimiento disciplinar
10.4.1. Caracterizaciéon de arquitecturas agénticas en biomedicina

Esta investigacién contribuye al entendimiento de cémo arquitecturas multiagente pueden
ser aplicadas efectivamente en dominios especializados que requieren procesamiento de miltiples
modalidades de informacion. Los resultados proporcionan insights sobre patrones de coordinacion
entre agentes especializados y mecanismos de convergencia para sintesis de informacién compleja.

10.4.2. Evaluaciéon de few-shot learning contextual en area biomédica

La implementaciéon y evaluacion de recuperacion few-shot contextual mediante busqueda
semantica aporta conocimiento sobre la efectividad de este enfoque en dominios técnicos es-
pecializados. Los resultados sugieren que la recuperacién de ejemplos contextuales mejora la
consistencia de respuestas en tipos de pregunta especificos del dominio biomédico.

10.4.3. Analisis de integraciéon modal en sistemas de question answering

Los resultados proporcionan evidencia sobre la viabilidad de integrar procesamiento textual
y de imagen en sistemas de Q&A biomédico manteniendo coherencia arquitecténica. Esta con-
tribucién es relevante para el desarrollo de sistemas similares que requieran manejo simultaneo
de maultiples modalidades de informacioén cientifica.

78



11. Resultados

Los resultados del sistema de question answering biomédico multimodal con explicabilidad
incorporada se presentan en tres secciones principales: resultados de modulo de question ans-
wering textual, resultados de médulo de question answering visual y resultados de rendimiento
operacional.

11.1. Resultados del médulo de question answering textual

El médulo de question answering textual ha sido evaluado utilizando un conjunto de datos
de preguntas biomédicas conforme a los requisitos del desafio Task 13b de bioASQ (Nentidis
et al., 2025). Cada set de prueba consistia en alrededor de 80 preguntas de distinto tipo para
responder.

Para ese desafio se desarrollaron dos aplicaciones, una para concursar en la Fase A y A+
y otra para la Fase B. A continuacion, se presentan los resultados obtenidos, los que fueron
obtenidos y validados por bioASQ (Nentidis et al., 2025).

Las aplicaciones fueron evaluadas en los conjuntos de pruebas oficiales BioASQ 13B. Se
informa el rendimiento en todos los lotes de las fases en las que participaron los sistemas: Lotes
3y 4 de las Fases A, A+ y B. Los resultados incluyen métricas para respuestas exactas (con
desglose por tipo de pregunta) y respuestas ideales (puntuaciones ROUGE). Las tablas 1, 2 y 3
resumen las métricas de evaluaciéon de los sistemas, tal y como las proporciona la herramienta
de evaluacion de los organizadores de BioASQ (Nentidis et al., 2025).

11.1.1. Resultados de la Fase A

Cuadro 2: Fase A: Snippetss

Lote Mean Prec. Recall F Measure MAP GMAP

Lote 3 0.0254 0.1097 0.0392 0.0000  0.0000
Lote 4 0.0177 0.1318 0.0292 0.0000  0.0000

Rendimiento de la Fase A

En la Fase A (Tabla 1), los resultados no fueron 6ptimos debido a dos factores principales:
una base de datos vectorial incompleta y las limitaciones de la API de PubMed. La base de datos
de PubMed contiene més de 30 millones de registros y, lamentablemente, no se pudo completar
el proceso de indexacion a tiempo para este desafio. Ademas, evaluaciones recientes e informes de
competiciones destacan varios retos a la hora de utilizar la API de PubMed para la extraccion de
fragmentos y las métricas asociadas, especialmente en tareas de respuesta a preguntas biomédicas
y recuperacion de informacion. Los principales problemas identificados son:

= Baja recuperacion y resultados incompletos: La API de PubMed a menudo devuelve
documentos insuficientes o inexistentes para las consultas tipo pregunta, lo que provoca una
baja recuperacién en las tareas de recuperacion. Esta limitacion afecta significativamente
a la eficacia de la extraccion de fragmentos, ya que el conjunto de resimenes candidatos
es inadecuado.

= Rendimiento de la extraccion de fragmentos: Cuando los fragmentos se extraen
utilizando métodos basados en modelos lingiiisticos amplios (por ejemplo, el método de la
cadena de pensamiento GPT-3.5), la recuperacion y la precision media de los fragmentos
suelen estar por debajo de la media en comparacién con otros sistemas.
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Esto representa un area de mejora, ya que la limitacién de la API podria solucionarse man-
teniendo una base de datos vectorial completa de PubMed. Producto de esta experiencia se
desarroll6 un sistema de ingesta de literatura biomédica que permite la indexacién completa de
los articulos de PubMed, lo que se detalla en la seccién de Metodologia.

11.1.2. Resultados de la Fase A+

En la Fase A+, evaluamos el rendimiento del sistema en la respuesta a preguntas biomédicas
a través de miiltiples tipos de respuesta. Esta fase evaluia tanto la capacidad del sistema para
proporcionar respuestas cortas precisas (si/no, factoides y preguntas de lista) como su capacidad
para generar respuestas ideales basadas en pruebas. En las tablas siguientes se presentan los
resultados del lote 3, con métricas estandar como la precision, la puntuacion F1 macromediada,
el rango reciproco medio (MRR), la precision, la recuperacion y la medida F de las respuestas
exactas, asi como las puntuaciones ROUGE de las respuestas ideales. Estos resultados ofrecen
una vision completa de la eficacia del sistema en el manejo de diversas tareas biomédicas de
aseguramiento de la calidad.

Cuadro 3: Fase A+: Lote 3: Respuesta exacta

Yes/No ‘ Factoid ‘ List
Q\’ o
& <© © & & & @ N
o & N2 3 < N
System ¥ <> <> » =3 r Q\Q’V ~» ¥ Q/Q\

AQAMS 0.8182 0.8750 0.6667  0.7708 ‘0.1500 0.2000 0.1750‘ 0.3394 0.3586 0.3478

Cuadro 4: Fase A+: Lote 3: Respuesta ideal (Puntuacion Rouge)

R-2 (Rec) R-2 (F1) R-SU4 R-SU4 (F1)
0.2135 0.0600 0.2516  0.0778

Para la Fase A+ (Tabla 2), el sistema de Q&A textual alcanzé una precision si/no del 92,31 %,
con una puntuacion F1 del 94,74 % para las respuestas “si” y del 85,71 % para las respuestas
“no” (media macro F1 = 90,23 %). Esto indica que nuestro sistema manejo las preguntas si/no
con eficacia, probablemente debido a que la plantilla de preguntas guiaba al modelo GPT para

proporcionar respuestas directas si/no apoyadas en pruebas.

Cuadro 5: Fase A+: Lote 4: Respuesta exacta

Yes/No ‘ Factoid ‘ List
N .
B R S T N
System b <> <> » < % » ~» F <7

AQAMS 0.9231 0.9474 0.8571  0.9023 ‘0.4091 0.4091 0.4091 ‘ 0.2807  0.2897 0.2778

Las puntuaciones factoides para el sistema de Q&A textual en el Lote 4 fueron de aproxi-
madamente 0,41 para la precisién estricta, la precisiéon indulgente y el rango reciproco medio
(MRR). Esto indica que aproximadamente el 41 % de las preguntas factoides tenian la cadena
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Cuadro 6: Fase A+: Lote 4: Respuesta ideal (Puntuacion Rouge)

R-2 (Rec) R-2 (F1) R-SU4 (Rec) R-SU4 (F1)
0.1840 0.0616 0.2273 0.0763

de respuesta correcta presente (aunque fuera parcialmente) en las respuestas exactas. El rendi-
miento de las preguntas factoides, aunque moderado, refleja la dificultad de localizar entidades
exactas en un entorno de recuperacion abierto: los errores se debian a que el sistema proporcio-
naba respuestas correctas que no coincidian exactamente con el formato de referencia o a que
faltaba una de las miltiples respuestas correctas.

Las preguntas con listas resultaron mas dificiles para el sistema de Q&A textual en la fase
A+: se obtuvo una puntuaciéon F1 de 0,2778, con una precision de ~0,28 y una recuperacion de
~0,29. La baja precision de las listas sugiere que mi sistema a veces no era capaz de responder con
precision. La baja precision en preguntas de tipo lista sugiere que el sistema a veces pronostico en
exceso elementos que no estaban en la lista gold (incluidos elementos plausibles, pero incorrectos),
mientras que la magnitud similar de la recuperacién indica que tampoco acerté6 muchos elementos
gold. Esto no es sorprendente, ya que las preguntas de tipo lista suelen requerir la recuperaciéon
exhaustiva de muchos datos relevantes; si no se recuperaran documentos relevantes debido al
indice vectorial parcial, el sistema no incluirfa esos elementos en la lista.

Las puntuaciones ROUGE de respuesta ideal para el sistema de Q& A textual fueron ROUGE-
2 F1 = 0,0616 y ROUGE-SU4 F1 = 0,0763. Estas puntuaciones, aunque aparentemente bajas,
son tipicas en la evaluaciéon de respuestas ideales de BioASQ), ya que incluso las respuestas ideales
escritas por humanos pueden diferir en su redaccion (Nentidis et al., 2025). Nuestro ROUGE-2
recall de 0,1840 muestra que aproximadamente el 18 % de los bigramas de las respuestas ideales
de referencia estaban presentes en nuestras respuestas, lo que representa una cobertura razonable,
pero deja margen de mejora en la seleccidén de contenidos.

11.1.3. Resultados de la fase B

En la fase B, del sistema de Q&A textual demostré un buen rendimiento. Las preguntas
si/no se respondieron con un 95,45 % de precision (macro F1 = 93,94 %), lo que indica un anico
error en todas las preguntas si/no del lote 3. La estrategia del sistema de comprobacion del
contenido de los fragmentos para ver si son afirmativos o negativos fue muy eficaz. La estrategia
del sistema de comprobar el contenido del fragmento en busca de pruebas afirmativas o negativas
demostro su eficacia. La puntuacion F1 de las respuestas “si” fue del 96,97 %, ligeramente superior
a la de las respuestas “no” (90,91 %), lo que sugiere que quiz& una pregunta “no” se respondid
incorrectamente o con menos confianza.

Cuadro 7: Fase B: Lote 3: Respuestas exactas

Yes/No | Factoid | List
<& s
_ A& o & & & > Q@ N
© 3 \od ¢
System ¥ N > v Y & &

AQAMS2 0.9545 0.9697 0.9091 0.9394 ‘0.3000 0.3500 0.3250‘ 0.6333 0.6456 0.6310

Los resultados en preguntas de tipo factoide del sistema de Q&A textual fueron un 30,00 %
de precision estricta y un 35,00 % de precision indulgente, con una MRR de 0,3250. Estas pun-
tuaciones son algo inferiores a las obtenidas por el sistema de Q& A textual en la fase A+, lo que
parece contraintuitivo dado que la fase B proporciona fragmentos relevantes. Tras un analisis

81



Cuadro 8: Fase B: Lote 3: Respuestas ideales (puntuaciones Rouge)

R-2 (Rec) R-2 (F1) R-SU4 (Rec) R-SU4 (F1)
0.3567 0.1888 0.3643 0.1795

més detallado, esto puede deberse a que algunas preguntas factoides del Lote 3 requerfan una
sintesis a partir de varios fragmentos o implicaban formatos de respuesta dificiles (por ejemplo,
un nombre de gen especifico entre muchos). En varios casos, la respuesta exacta de mi siste-
ma era parcialmente correcta, pero no una coincidencia exacta, lo que afectaba a la precision
estricta. El hecho de que la precision indulgente fuera un 5% superior implica que, en algunos
casos, la respuesta contenia un elemento correcto, pero omitia otros para factoides con multiples
respuestas aceptables.

Cuadro 9: Fase B: Lote 4: Respuestas exactas

Yes/No | Factoid | List
o
Q\' Q&Q)
& o o NG NG N
System ?’00 QN& QN% @Q’é ‘5'?& ’\»'?& @Q& @@9 Q»‘Z’@ Q/@

AQAMS2 0.9231 0.9500 0.8333  0.8917 ‘0.5455 0.5455 0.5455‘ 0.5904 0.4934 0.5277

Cuadro 10: Fase B: Lote 4: Respuestas ideales (Puntuaciones Rouge)

R-2 (Rec) R-2(F1) R-SU4 (Rec) R-SU4 (F1)
0.3077 0.1787 0.3274 0.1837

El rendimiento de las preguntas de tipo lista en la fase B fue especialmente notable: el sistema
de Q&A textual obtuvo un F1 de 0,6310, con una precisiéon de ~0,633 y una recuperaciéon de
~0,646. Esto representa una mejora sustancial con respecto al rendimiento de la lista de la fase
A+. Con los snippets gold disponibles, el sistema pudo identificar la mayoria o la totalidad de
los elementos de la lista mencionados, lo que dio lugar a una alta recuperacién, manteniendo
la precision. Lo atribuimos al enfoque basado en NER: al extraer entidades de los snippets
(fragmentos de articulos), el sistema de Q&A textual pudo enumerar los elementos directamente
a partir del texto, minimizando las respuestas perdidas y las adiciones irrelevantes.

Las puntuaciones ROUGE de la respuesta ideal en la fase B también fueron mas altas:
ROUGE-2 F1 = 0,1888 (aproximadamente 3 veces la del sistema de Q&A textual de la Fase A)
vy ROUGE-SU4 F1 = 0,1795, con una recuperacion de alrededor de 0,36 para ambas métricas. Esto
indica que las respuestas ideales generadas por el sistema de Q& A textual tenian un solapamiento
sustancialmente mayor con las respuestas de referencia. La recuperacion de ROUGE-2 de ~0,3567
sugiere que nuestras respuestas capturaron aproximadamente el 35% del contenido de bigramas
de las respuestas ideales gold, lo que representa una cobertura significativa.

La mejora en el rendimiento de las respuestas ideales puede explicarse por el contexto sim-
plificado: con snippets limitados centrados en la pregunta, el agente Writer podia incluir mas
facilmente hechos relevantes y frases presentes en los snippets, que a menudo se alinean con las
respuestas de referencia (ya que esas referencias a menudo se derivan de los mismos snippets).
Esencialmente, las respuestas ideales de la Fase B constituyen restimenes guiados por fragmentos
de articulos (snippets) que el sistema gestion6 eficazmente utilizando las pruebas proporcionadas.
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11.2. Resultados del médulo de question answering visual

Las tres tareas fueron evaluadas en los conjuntos de test oficiales de ImageCLEFmedical
(Damm & et al., 2025). Se reporta el rendimiento en todas las tareas en las que participo el
sistema: Deteccién de conceptos, Prediccion de captions y Explicabilidad. Los resultados incluyen
diferentes métricas para cada tarea, como se explic6 anteriormente en la Secciéon 5.12.2. Las
Tablas 1, 2 y 3 resumen las métricas de evaluacién para nuestro sistema, segtin lo proporcionado
por la herramienta oficial de evaluacion de los organizadores de ImageCLEF (Damm & et al.,
2025).

11.2.1. Resultados en Detecciéon de conceptos

Para consultar los resultados de Deteccién de conceptos, véase la Tabla correspondiente.

Cuadro 11: Resultados de la deteccion de conceptos

Método F1 F1 secundario
Sistema 0.3982 0.8329

s F1: Puntuacion F1 primaria. Media armoénica entre precision y exhaustividad para la tarea
principal de deteccion de conceptos, indicando el equilibrio entre falsos positivos y falsos
negativos.

= F1 secundario: Puntuaciéon F1 secundaria. Puntuaciéon F1 para una tarea auxiliar o secun-
daria de deteccion de conceptos (por ejemplo, conceptos manuales).

11.2.2. Resultados en Predicciéon de captions

Para consultar los resultados de Prediccion de captions, véase la Tabla correspondiente.

Cuadro 12: Resultados de la prediccion de captions

Simil. BERT ROUGE-1 BLEURT P.Rel. UMLS F1 AlignS P.Fact. Global
0.8251 0.5953 0.2389 0.3094  0.4922 0.1366 0.0964 0.1165 0.3043

» Similitud: Similitud de texto entre el caption predicho y el de referencia (por ejemplo,
coseno o Levenshtein).

» BERTScore (Recall): Similitud semantica basada en embeddings contextuales de BERT,
centrada en el recall.

» ROUGE-1: Superposicién de unigramas (palabras individuales) entre la prediccion y la
referencia; comun en tareas de resumen.

= BLEURT: Métrica aprendida para evaluar generacién de texto, combinando distintos as-
pectos de calidad.

= Promedio de relevancia: Promedio de la puntuaciéon de relevancia entre el caption generado
y la imagen.

» UMLS Concept F1: Puntuaciéon F1 que mide la coincidencia de conceptos UMLS (Unified
Medical Language System) entre prediccion y referencia.
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= AlignScore: Indica qué tan bien el contenido semantico del caption generado se alinea con
la imagen o el caption de referencia.

= Promedio de factualidad: Media de la correcciéon factual de los captions generados, evaluada
automatica o manualmente.

» Global: Puntuacion global agregada/resumida que sintetiza el rendimiento del modelo en
varias métricas.

11.2.3. Resultados en explicabilidad

Para consultar los resultados de la tarea de Explicabilidad, véase la Tabla correspondiente.

Cuadro 13: Tarea de explicabilidad - Resultados de evaluacion humana

L.C. AClin. N.D.C. F.C. PM.C. Coh.V-T Comp.V F.V. PMV. AM. Global

3.4 24 2.8 4.1 3.2 1.9 1.9 1.9 1.9 2.0 2.6

» Legibilidad del caption (L.C.): Facilidad de lectura y comprension del caption.

» Adecuacion clinica del caption (A.Clin.): Relevancia y adecuacién médica o clinica.
» Nivel de detalle del caption (N.D.C.): Cantidad de detalle relevante en el caption.
= Foco del caption (F.C.): Si el caption se centra en el hallazgo o sujeto principal.

» Puntuacion media del caption (P.M.C.): Media de la evaluaciéon humana en todos los
criterios del caption.

= Coherencia visual-textual (Coh. V-T): Consistencia y claridad entre la visualizacion y el
caption.

» Completitud de la visualizacion (Comp.V): Si la visualizacion es suficientemente completa
para la tarea.

» Foco de la visualizacion (F.V.): Enfoque de la visualizacion sobre la region o hallazgo clave.
» Puntuacion media de la visualizacion (P.M.V.): Media en los criterios de visualizacion.

» Adecuacion de la metodologia (A.M.): Idoneidad de la metodologia segin expertos huma-
nos.

= Global: Evaluacion global humana.

11.3. Resultados operacionales
Meétricas de latencias del sistema

Estas métricas se obtuvieron a partir de la ejecuciéon del sistema en un entorno de produccién
simulado, utilizando un conjunto de datos de prueba representativo del 10 % de los test set. Las
métricas se calcularon durante un periodo de 48 horas con cargas de trabajo tipicas.
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11.3.1. Latencias del sistema

Componente Latencia Media (s) Desviacion Estandar (s)
Busqueda Qdrant 3 0.5
Flujo visual 56 9
Flujo textual 17 3

Cuadro 14: Analisis de latencias por componente del sistema multimodal.

Capacidad de respuesta: >99 % para preguntas de tipo textual y visual.
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12. Analisis y Discusion

La evaluacion de sistemas de Question Answering (Q&A) biomédico multimodal presenta
desafios metodoldgicos importantes debido a la ausencia de estandares consolidados que aborden
la complejidad inherente de la integraciéon multimodal en dominios especializados. Esta limitacion
metodologica estd muy acentuada en el contexto biomédico, donde la evaluacién debe considerar
no solo la precisién técnica sino también la relevancia y la interpretabilidad clinica.

Ante esta ausencia de marcos de evaluaciéon estandarizados para sistemas multimodales in-
tegrados, recurriré a un enfoque de evaluacion modular que permitird la validacion sistemaética
de componentes individuales antes de proceder a la evaluaciéon del sistema completo.

Considerando la necesidad de obtener retroalimentacién de primer nivel en desafios globales
de inteligencia artificial médica, el presente estudio adopta una metodologia de evaluacién
tripartita que descompone el anélisis en componentes especializados:

12.1. Estructura de evaluacion modular
12.1.1. Evaluaciéon cuantitativa del médulo de Question Answering Textual

El componente textual del sistema se sometera a evaluacion siguiendo los protocolos esta-
blecidos en el Task 13b de BioASQ (Nentidis et al., 2025), el cual representa el estandar de
facto para la evaluacion de sistemas de Q&A biomédico. El detalle de las métricas utilizadas
se encuentra en la secciéon 5.12.1 y proporcionan un baseline comparable con el estado del arte
internacional.

La seleccion del Task 13b de BioASQ se justifica por su adopcion generalizada en la comuni-
dad de investigaciéon biomédica y su metodologia de evaluacién rigurosa que considera tanto la
precision factual como la coherencia clinica de las respuestas generadas.

12.1.2. Evaluacién cuantitativa del médulo de Question Answering Visual

El componente visual se evaluara conforme a los criterios establecidos en el ImageCLEF-
medical Caption Task (Damm & et al., 2025), el cual constituye la competencia internacional
mas reconocida para la generaciéon de captions médicos automatizados. El detalle de las métricas
utilizadas se encuentra en la seccién 5.12.2.

La utilizacién del reto ImageCLEFmedical permite la comparaciéon directa con sistemas espe-
cializados en analisis de imagenes médicas, proporcionando contexto para evaluar el rendimiento
del componente visual en relacién con el estado del arte especifico del dominio.

12.1.3. Analisis cualitativo de la integraciéon multimodal

Dado que atn no son comunes los sistemas multimodales aplicados al area médica y a que
existe una ausencia de benchmarks especificos, se realizara un anélisis cualitativo completo que
examine los siguientes puntos:

= Flujo de Q& A textual: Evaluacion de la capacidad del sistema para generar respuestas
coherentes y relevantes a partir de la informacién textual.

= Flujo de Q&A visual: Evaluaciéon de la capacidad del sistema para generar respuestas
coherentes y relevantes a partir de la informacién visual y textual integrada.

= Coherencia inter-modal: Evaluacién de la coherencia textual-visual y fusién semantica.

= Arquitectura agéntica: Evaluacion del aporte de la arquitectura agéntica en sistemas
biomédicos multimodales.
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Benchmarking disciplinarios

La utilizacion de competencias internacionales establecidas como BioASQ (Nentidis et al.,
2025) y ImageCLEFmedical (Damm & et al., 2025) asegura la comparabilidad con trabajos
previos y proporciona contexto para la evaluacién del rendimiento relativo. Esta aproximacion
permite situar el rendimiento del sistema desarrollado dentro del panorama competitivo interna-
cional, lo que facilita la identificacién de areas de mejora y fortalezas comparativas.

Contribuciéon a la validacion de sistemas multimodales

Esta metodologia contribuye al corpus de conocimiento en evaluaciéon de sistemas multimo-
dales al proporcionar un framework replicable para la validacion sistemaética de sistemas Q&A
biomédicos complejos. La adopcion de estandares internacionales establecidos para componen-
tes individuales, combinada con anélisis cualitativo riguroso para la integracién, constituye un
aporte metodolégico que puede ser adoptado por futuros trabajos en el dominio.

Limitaciones y consideraciones metodolégicas

Es importante reconocer las limitaciones inherentes a esta aproximacién metodologica. La
evaluacion modular, aunque rigurosa para componentes individuales, puede no capturar comple-
tamente los efectos sinérgicos o antagdnicos que emergen de la integraciéon multimodal.

Asimismo, la dependencia de estandares establecidos para componentes individuales puede
introducir sesgos hacia arquitecturas y enfoques especificos que han sido optimizados para esas
tareas particulares. El anélisis cualitativo de la integracion busca identificar y documentar estos
posibles sesgos para informar futuras iteraciones del sistema.

Cronograma de evaluaciéon

La implementacién de esta metodologia tripartita seguird un cronograma estructurado que
permite la optimizacion iterativa del sistema:

1. Fase 1: Evaluacion cuantitativa del modulo textual (Task 13b BioASQ)
2. Fase 2: Evaluacion cuantitativa del modulo visual (ImageCLEFmedical Caption)

3. Fase 3: Analisis cualitativo de la integracion multimodal (Flujo multimodal, coherencia
textual-visual, arquitectura agéntica)

Esta secuencia permite la identificaciéon temprana de problemas en componentes individuales
antes de proceder al analisis mas complejo de la integracion, lo que optimiza el uso de recursos
y facilita la interpretaciéon de resultados.

12.2. Analisis de rendimiento del médulo de question answering
textual

12.2.1. Rendimiento en la Fase A y A+

El rendimiento comparativo en la Fase A y A+ con el de la Fase B pone de relieve el impacto
significativo de las condiciones de recuperacion en la eficacia de la respuesta a las preguntas.
Los puntos fuertes del sistema de Q&A textual residen en su enfoque hibrido de recuperacién
y en la generacion basada en preguntas. La alta precision de si/no (més del 92%) en la Fase
A+ sugiere que cuando se recuperan pruebas relevantes, el Agente Escritor basado en GPT
puede inferir correctamente respuestas de si/no, una tarea que esencialmente requiere identificar
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la presencia o ausencia de una afirmacién. La plantilla de preguntas probablemente ayudé al
solicitar explicitamente una respuesta de “si” o “no”, abordando uno de los retos senalados por
otros equipos de que los modelos generativos a veces producen respuestas inciertas o verbales a
preguntas de si/no.

Otro resultado positivo del sistema de Q&A textual fue su precisién indulgente con los fac-
toides (~0,41), lo que indica que en aproximadamente el 41 % de las preguntas, la respuesta
correcta estaba presente en algun lugar del resultado. La inspecciéon manual revelé que muchos
errores de factoides no se debian a fallos completos, sino a problemas de formato y coincidencias
parciales. Se trata de problemas comunes en BioASQ que podrian mitigarse mediante un pro-
cesamiento posterior (por ejemplo, reconociendo cuando una respuesta contiene una forma mas
larga y proporcionando también la forma maéas corta).

La menor precisién y recuperacion de las preguntas de lista en el sistema de Q&A textual pone
de manifiesto el reto que supone una recuperaciéon exhaustiva: dado que la base de datos vectorial
solo estaba completa en un 15 %, es probable que algunos elementos de la lista simplemente no se
encontraran. Ademas, la decision de utilizar sélo los fragmentos recuperados para la generacion
de respuestas (para evitar la sobrecarga de informacion en la pregunta) significa que, si los
elementos de la lista estuvieran dispersos en muchos documentos, algunos se omitirian. En futuras
iteraciones, una posible mejora es incorporar un método de recuperacion iterativo o utilizar el
propio modelo de lenguaje para sugerir elementos adicionales (por ejemplo, utilizar GPT en una
funcién de lluvia de ideas para predecir otras entidades probables de la lista y, a continuacion,
verificarlas mediante la recuperacion).

12.2.2. Rendimiento en la Fase B

Para el sistema de Q&A textual, el escenario de la Fase B nos permitié centrarnos en la
sintesis y justificacion de las respuestas. El alto rendimiento en las preguntas de lista puede
atribuirse a la estrategia basada en NER. Al extraer todas las entidades de determinados tipos
de fragmentos, redujimos la posibilidad de omitir un elemento.

Otra observacion de la fase B fue la mejora de las puntuaciones ROUGE en las respuestas
ideales. Las respuestas ideales del sistema de Q& A textual se beneficiaron de estar estrechamente
ligadas al fraseo del fragmento, realizando de forma efectiva un resumen extractivo. De este
modo, se conseguia un alto grado de recall de las frases de referencia, pero a veces se producia
una falta de originalidad o una redundancia menor. Por ejemplo, si dos fragmentos de texto se
solapaban, la respuesta ideal a veces repetia un hecho. Por lo general, ROUGE lo detectaba (ya
que la repeticion no mejora el recall mas alla de un punto), pero se podia conseguir un resumen
maés elegante fusionando la informacién. En esencia, nuestras respuestas ideales en la fase B eran
seguras y se ajustaban al tema (lo que se refleja en el buen recall), pero hay margen para hacerlas
més concisas e integradas.

12.2.3. Analisis global del médulo de question answering textual

Estos resultados demuestran que ambos sistemas son eficaces en sus respectivos escenarios.
Mas alla del problema de la métrica en la Fase A debido a la API de Pubmed, el pipeline de
recuperacion del sistema de Q&A textual (Fase A-+) permiti6 una fuerte respuesta si/no y un
rendimiento factoide aceptable en un entorno de dominio abierto, pero tuvo problemas con la
amplitud de las preguntas de la lista y tuvo una menor superposiciéon en las respuestas ideales
(probablemente debido a diferencias en el estilo de escritura o contenido faltante).

Por otra parte, el sistema de Q&A textual de la Fase B, que funcionaba con los snippets
proporcionados, tuvo un desempeno sobresaliente a la hora de proporcionar respuestas completas
a las listas y resimenes ideales con mayor solapamiento, a pesar de una precisiéon ligeramente
inferior en los factoides (un area de mejora para futuras investigaciones).
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Es importante senalar que las puntuaciones de BioASQ pueden variar significativamente de
un lote a otro y que los resultados publicados son preliminares; sin embargo, los resultados de
los sistemas probados fueron coherentes con los de los sistemas de mayor rendimiento en algunos
lotes. Por ejemplo, las puntuaciones F1 en preguntas dicotomicas (si/no) en la Fase A+ y las
preguntas tipo lista en la Fase B se encontraban entre las mas altas del lote 4 y 3, respectivamente,
segun la clasificacion oficial como se puede consultar en el Anexo C.

A nivel general, el sistema participante es un sistema competitivo de rango medio-alto que
demuestra estabilidad. Por tltimo, es importante senalar que he recibido notificacién de la acep-
tacion del paper de las working notes para esta Tarea 13b de bioASQ.

12.3. Analisis de rendimiento del médulo de question answering
visual

12.3.1. Detecciéon de conceptos

El sistema desarrollado alcanzé una puntuacién F1 de 0.3982 en la tarea de deteccién de
conceptos, lo que indica un éxito moderado en la identificacion de las etiquetas correctas de las
imégenes. Este valor es inferior al F1 del mejor equipo (0.5888), lo que sugiere que, aunque mi mé-
todo identifica muchos conceptos relevantes, omite algunos en comparacion con el enfoque lider.
Es importante sefialar que el sistema tuvo un rendimiento mucho mejor en la métrica secundaria
F1 (0.8329 frente a 0.9484 del mejor equipo), la cual se calcula sobre un subconjunto curado
de conceptos clave. Estos resultados demuestran una buena cobertura de las caracteristicas im-
portantes de las imagenes y, con un mayor refinamiento (como una mejor desambiguacion de
conceptos similares o un mejor recall para hallazgos menos comunes) la F1 primaria del modelo
podria acercarse al mejor resultado reportado.

12.3.2. Predicciéon de captions

El modelo de generacion de captions (captions) alcanzé una puntuacion global de 0.3043 en
la tarea de prediccién de captions. Esta métrica, que agrega varios aspectos de la evaluacion,
representa una brecha de aproximadamente el 10% de la puntuacion global del equipo lider
(0.3432). El resultado sugiere que los captions generados por el modelo son en general efectivos,
aunque existe una pequena brecha respecto al mejor desempeno en este reto. El anélisis de las
métricas individuales proporciona mayor claridad sobre las fortalezas del sistema. El modelo
logré una puntuacion alta en similitud textual (0.8251) y un BERTScore (Recall) de 0.5953,
casi igualando el BERTScore del mejor equipo (0.5977). Estas cifras indican que, en cuanto a
solapamiento de contenido y redaccion, nuestros captions se asemejan mucho a los informes de
referencia y capturan eficazmente las observaciones descritas.

El sistema también obtuvo puntuaciones moderadas en ROUGE-1 (0.2389) y BLEURT
(0.3094), lo que refleja un solapamiento razonable con el texto de referencia y una calidad ge-
neral aceptable de los captions, segiin estas métricas. Ademaés, con una puntuaciéon promedio de
relevancia de 0.4922; los captions generados capturaron una parte sustancial de la informacion
clave de los informes de referencia. En conjunto, estos resultados destacan la fortaleza del sistema
para producir descripciones coherentes y relevantes que se alinean con el contenido esperado del
dataset.

A pesar de estas fortalezas, nuestro sistema de generacién de captions muestra ciertas li-
mitaciones en cuanto a precision especifica de dominio y alineacién factual. La puntuacion F1
de conceptos UMLS fue 0.1366, notablemente inferior al 0.1816 del mejor equipo, lo que indica
que nuestros captions a menudo omiten o identifican erréneamente algunos términos médicos
especializados o hallazgos especificos presentes en la referencia.

De forma similar, el AlignScore de 0.0964 (frente a 0.1375 de la mejor solucion) sugiere que
la alineacién entre el contenido de la imagen y el caption podria mejorar; por ejemplo, algunas
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descripciones generadas pueden incluir detalles que no estéan suficientemente respaldados por la
evidencia visual.

El promedio de factualidad de 0.1165 también queda por detras del resultado lider (0.1596),
reflejando inconsistencias factuales ocasionales o pequenas alucinaciones en el texto generado.
Estas diferencias seialan oportunidades de mejora: integrar bases de conocimiento médico, refinar
la extraccion de caracteristicas visuales o incorporar mecanismos explicitos de verificacion factual
podrian ayudar al modelo a captar detalles clinicos con mayor precisién y aumentar la veracidad
de los captions.

En general, nuestros resultados en la predicciéon de captions son competitivos en calidad
lingiifstica y relevancia, pero ponen de manifiesto la necesidad de mejoras especificas en la captura
de informaciéon médica y la garantia de exactitud factual.

12.3.3. Explicabilidad

En la tarea de explicabilidad, un experto humano evalué la calidad de las explicaciones
generadas por cada sistema, considerando tanto el caption textual como la visualizacién asociada
para cada imagen. Las explicaciones de mi sistema lograron una puntuaciéon global de 2.6 sobre
5, en comparaciéon con el 3.2 del mejor equipo. Esto indica un desempeno respetable del método,
aunque por debajo del enfoque mejor valorado. Analizando los componentes de la evaluacion
de explicabilidad, mi enfoque muestra una fortaleza particular en la explicacién textual. La
puntuaciéon media de calidad del caption fue de 3.2, lo que sugiere que la claridad y utilidad
clinica de los captions generados fueron bien valoradas, practicamente al mismo nivel que el
sistema lider en este aspecto.

De forma atin mas destacada, mi método obtuvo una puntuacién de enfoque del caption
de 4.1, mucho mas alta que la del mejor equipo (3.3). Esta puntuaciéon excepcionalmente alta
indica que los evaluadores humanos consideraron que mis captions se centraron eficazmente en
los hallazgos relevantes de la imagen, enfocando de manera precisa el contenido clinico clave
a explicar. En otras palabras, el sistema destacd por dirigir la explicaciéon hacia los detalles
importantes, lo que constituye una fortaleza critica en el contexto médico.

Por otro lado, la componente visual de las explicaciones recibié una evaluacion relativamente
baja. La puntuacion media de visualizacion fue de 1.9, considerablemente inferior a la del mejor
equipo (2.8). Esto sugiere que mi estrategia durante el reto para las explicaciones visuales no
fue tan clara o informativa como se esperaba. En términos précticos, lo que sucedi6é fue que
utilicé un método experimental que mezclaba técnicas de PLN biomédico con técnicas de vision
computacional y, como usaba méas de un modelo, no respondia a explicar el black-box del modelo.

El no haber proporcionado en el reto los resultados de Grad-CAM gener6 que la metodologia
del mejor equipo fue valorada en 4.0, mientras que mi enfoque obtuvo una puntuacion inferior en
este aspecto. Al mejorar la sinergia entre el caption y su justificacion visual las futuras versiones
del sistema podrian ofrecer una experiencia de explicabilidad méas completa y convincente.

Esto me llevo a incorporar Grad-CAM directamente del modelo LLaVA-LLaMA en la versiéon
unificada del sistema que se presenta en este trabajo; es decir, incorporé de forma proactiva el
feedback recibido para mejorar el sistema.

En resumen, los resultados de explicabilidad subrayan un fuerte enfoque y relevancia en los
captions textuales, lo que representa un punto destacado del sistema, y al mismo tiempo revelan
oportunidades claras de mejora en la componente visual de la explicaciéon. Aprovechar estas
fortalezas y abordar los problemas de claridad visual en trabajos futuros permitira proporcionar
explicaciones para imagenes médicas mas equilibradas y efectivas.

12.3.4. Analisis global de médulo de Q& A visual

En general los resultados del médulo de Q&A visual muestran un rendimiento competitivo
en las tareas de detecciéon de conceptos y generaciéon de captions. Aunque con margen de mejora
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en la alineacién seméntica y la precision factual, el sistema ha sido evaluado en séptimo y sexto
lugar entre 75 y 77 participantes (Anexo D), quienes han enviado 107 y 156 submissions para
las tareas de concepts y caption, respectivamente («Al4MediaBenchy, s.f.). Por otra parte, la
puntuaciéon de explicabilidad indica que el sistema es capaz de generar explicaciones textuales
relevantes y centradas en los hallazgos, pero necesita mejorar la claridad visual para proporcionar
explicaciones mas completas, lo que se ha abordado en la version unificada del sistema.

Ademas, es importante destacar que he sido notificada de la aceptacién del paper de las
working notes del reto ImageCLEFmedical 2025 (Damm & et al., 2025), donde se presentan
los resultados de este mdédulo de Q&A visual. Esto valida la calidad del trabajo realizado y la
relevancia de los resultados obtenidos, los que seran presentados en el congreso CLEF 2025 que
se llevard a cabo en Madrid en septiembre de 2025.

12.4. AndAlisis de latencias del sistema

Para evaluar la efectividad de la integraciéon multimodal, se realizaron pruebas durante 48
horas como se especifica en la secciéon de Resultados.

El analisis de rendimiento temporal del sistema multimodal revela diferencias sustanciales
en las latencias de procesamiento que reflejan la complejidad arquitectonica inherente a cada
componente. La busqueda vectorial mediante Qdrant presenta una latencia media de 3 segundos
con una desviacion estandar de 0.5 segundos, indicando un rendimiento relativamente estable con
baja variabilidad (coeficiente de variacion del 17 %). Esta latencia considerable sugiere el proce-
samiento de un espacio vectorial de alta dimensionalidad con millones de embeddings biomédicos,
donde la precisién seméantica se prioriza sobre la velocidad de respuesta.

El flujo visual exhibe expectablemente la mayor latencia del sistema con 56 segundos en
promedio y una desviacién estdndar de 9 segundos. Esta latencia sustancial es arquitecténica-
mente justificada por la ejecuciéon coordinada y secuencial de cuatro métodos de explicabilidad
computacionalmente intensivos: Grad-CAM, mapas de atencion, descenso de gradiente y gene-
racion de bounding boxes. La variabilidad moderada (coeficiente de variaciéon del 16 %) indica
un comportamiento predecible del sistema, donde las diferencias en latencia se correlacionan
principalmente con la complejidad de las imagenes médicas procesadas y la especificidad de las
consultas visuales.

El flujo textual demuestra una eficiencia operacional significativamente superior con una la-
tencia media de 17 segundos y una desviacion estandar de 3 segundos (coeficiente de variacion
del 18 %). Aunque esta latencia es considerablemente mayor que el procesamiento textual con-
vencional, refleja la complejidad del pipeline agéntico que incluye extraccion de entidades NER,
enriquecimiento semantico UMLS, evaluacién contextual para retrieval de literatura PubMed, y
fusion inteligente con la base vectorial Qdrant.

Desde una perspectiva de arquitectura distribuida, estos resultados validan el diseno agéntico
al evidenciar una diferenciacion clara entre modalidades: el flujo visual requiere 3.3x mas tiempo
que el textual, justificando la implementacién de decisiones contextuales para activacion selectiva
de componentes. La consistencia en las desviaciones estandar (todas entre 16-18 % de coeficiente
de variacion) indica un sistema robusto con comportamiento predecible, crucial para aplicaciones
biomédicas donde la confiabilidad temporal es fundamental para la experiencia del usuario clinico.

Capacidad de respuesta: >99% para preguntas de tipo textual y visual. La aplicacion
practicamente no falla en las pruebas de sistema, pues tiene mecanismos de recuperacion ante
errores de API u otros.
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12.5. Analisis cualitativo de la integracién Multimodal

12.5.1. Experiencia de usuario (UX)

La aplicacion desarrollada presenta una interfaz unificada que permite al usuario interactuar
con contenido multimodal de manera intuitiva y eficiente. El sistema soporta dos modalidades
principales de entrada: consultas textuales tradicionales sobre literatura biomédica y analisis de
imagenes médicas con preguntas especificas.

En las consultas textuales, el usuario puede formular preguntas médicas complejas de tipo
yes/no, list, factoid y summary que son procesadas por un pipeline de recuperacion hibrido,
combinando una base de datos vectorial local (Qdrant) con la API de PubMed como respaldo.
Esta estrategia asegura una alta precisiéon y exhaustividad en la recuperacién de informacion
relevante, optimizando la latencia y mejorando la experiencia del usuario.

La experiencia de usuario se caracteriza por un flujo de trabajo simplificado donde este
puede seleccionar entre tres tipos de anélisis visual: (1) deteccion de conceptos médicos, (2)
generacion de descripciones radiologicas, y (3) localizacion espacial de estructuras anatémicas.
Esta taxonomia de tareas refleja las necesidades reales de los profesionales médicos en diferentes
contextos clinicos.

La interfaz implementa un sistema de retroalimentacién progresiva que informa al usuario so-
bre el estado del procesamiento, especialmente relevante dado que el analisis multimodal requiere
miltiples etapas computacionales. El sistema proporciona estimaciones de tiempo e indicadores
de progreso especificos para cada modalidad, mejorando significativamente la experiencia de
usuario en comparacioéon con sistemas de procesamiento tradicionales.

B £) Multimodal Biomedical Question
Answering

O Single Query
Batch Processing

Sistema integrado con explicabilidad avanzada: PubMed research + LLaVA + GradCAM + Bounding Boxes inteligentes

Select Q&A Type

O TextQ&A
Image Q&A

Question Type [©)

Auto-detect v

? Ask a Text Question

System Status

Enter your question:
[ Test Explainability System

How many primary genetic associations were identified through pQTL mapping within the Pharma Proteomics Project?

Figura 9: Interfaz principal del Sistema Multimodal de Q& A Biomédico. Permite seleccion
entre preguntas de texto y preguntas de imégenes.

12.5.2. Caso de uso de Q&A textual

A continuacion, se presenta un caso de uso representativo del sistema de Question Answering
textual, ilustrando su capacidad para responder preguntas complejas sobre literatura biomédica:

El sistema tiene incorporado un chatbot en el flujo de Q&A textual. Cuando el usuario olvida
ingresar el tipo de pregunta aparece un chatbot integrado con Streamlit que evalta qué tipo de
pregunta es (yes/no, list, factoid o summary) y le presenta al usuario su opcion. Si el usuario no
estd de acuerdo puede cambiarla.
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¢ Controls ? Ask a Text Question

Select Operation Mode Enter your question:

O single Query
Batch Processing

Does PTEN loss in GBM contribute to resistance againstimmunotherapy?

Select Q&A Type
z
O Text Q&A
Image Q&A Or upload a batch file:
Question Type ® Upload JSON file with questions:
Yes/No v Drag and drop file here
B P Browse files
Limit 100MB per file « JSON
System Status

) Processing with advanced explainability...
[E) Test Explainability System

(a) Paso 1 de flujo textual: El sistema procesa la pregunta realizada.

|=. Answer Summary
% Controls
Question Type: Processing Time:
Select Operation Mode
O single Query yesno 18.50 seconds
Batch Processing
Select Q&A Type Exact Answer: Status:
Text QA
° Q YES
Image Q&A {4 Complete
Question Type @
Yes/No v & Detailed Answer
The loss of PTEN in glioblastoma (GBM) contributes to an i ive tumor which is associated
with therapeutic resistance and poor prognosis (PMID 40514071). This suggests that PTEN deficiency may play a role in
resistance to i h asani i i can hinder the effectiveness of treatments designed to
System Status stimulate the immune response against tumor cells. However, the provided evidence does not explicitly link PTEN loss directly
to resistance against immunotherapy in GBM. While the immunosuppressive nature of PTEN-deficient GBM implies potential
] Test Explainability System resistance, the evidence does not conclusively establish this connection. Therefore, while there is an indication that PTEN loss

could contribute to immunotherapy resistance, the evidence is not sufficient to definitively answer the question. Further
research is needed to clarify the relationship between PTEN loss and immunotherapy resistance in GBM.

(b) Paso 2 de flujo textual: Entrega respuesta exacta segun tipo de pregunta (Yes/No) y la
respuesta ideal (Detailed Answer) con los ntmeros de PMID.

Figura 10: Flujo textual del sistema - Parte I: Procesamiento de pregunta y generaciéon
de respuesta.
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% Controls @, Supporting Evidence

Select Operation Mode Wy Scientific Snippets Entities & Concepts
O Ssingle Query
Batch Processing Found 1 relevant scientific snippets:

Select Q&A Type

Snippet 1 - PMID: 40514071 (Score: 1.500) ~
O TextQ&A
Image Q&A PTEN-deficient glioblastoma (GBM) is characterized by an i ive tumor mic i (TME), P!
resistance, and poor prognosis.
Question Type ®
Section: abstract
Yes/No v

M Download Results

Download JSON & Download Text
System Status

[ Test Explainability System

(a) Paso 3 de flujo textual: Se pueden ver los snippets con el PMID del articulo en el que se basa
la respuesta.

% Controls Q@ Supporting Evidence
Select Operation Mode I Scientific Snippets Entities & Concepts
O single Query —_—
Batch Processing Named Entities (NER): UMLS/MeSH Concepts:
Select Q&A Type L PTEN
PTEN ~
O Text QA
|mage Q8A +GBM Alipid phosphatase that contains a C2 DOMAIN and acts
. on phosphatidylinositol-3,4,5-tri: to regulate
= ® «immunotherapy
Question Type various SIGNAL TRANSDUCTION PATHWAYS. It modulates
Yes/No v CELL GROWTH PROCESSES; CELL MIGRATION; and

APOPTOSIS. Mutations in PTEN are associated with
COWDEN DISEASE and PROTEUS SYNDROME as well as...

System Status

Test Explainability System * immunotherapy e

(b) Paso 4 de flujo textual: Se pueden ver las NER extraidas y los conceptos UMLS/MeSH.

Figura 11: Flujo textual del sistema - Parte II: Visualizaciéon de evidencia y anélisis
conceptual.

94



J RUNNING Stop  Deploy

% Controls

Select Operation Mode (| Processing with advanced explainability... ~

O Single Query
*) Batch Processing

Question Type Assistant

Select Q&A Type A . . - . e L
Detected Question: How many primary genetic associations were identified through pQTL mapping within the
9 R Pharma Proteomics Project?
) Image Q&A
@ Based on internal analysis, this is likely a FACTOID type question.
Question Type ®
Auto-detect v Please confirm or change the question type:
yesno
O factoid
list
System Status summary

Type auto-confirmed: factoid
[ Test Explainability System

Figura 12: Chatbot: aparece de forma contextual en la interfaz de usuario del sistema.
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12.5.3. Caso de uso de Q&A visual

En el flujo de Q& A visual, el usuario puede seleccionar entre tres tipos de anélisis: deteccion de
conceptos, generaciéon de captions y localizacién espacial de estructuras anatémicas. El sistema
proporciona una interfaz intuitiva que permite al usuario cargar imagenes médicas y recibir
respuestas detalladas sobre los hallazgos presentes en las mismas. Por lo tanto, a continuacion,
se presenta un caso de uso representativo del sistema de Question Answering visual, ilustrando
su capacidad para analizar imégenes médicas:

12.5.4. Explicabilidad de imagenes médicas

En el flujo de Q& A visual también se pueden ver los mapas de calor generados por el sistema,
lo que permite contextualizar las respuestas del modelo. Esto puede ser muy ttil a nivel clinico,
ya que los profesionales de la salud pueden verificar visualmente las areas de interés en la imagen
médica y comprender mejor como el modelo llegd a sus conclusiones.

12.5.5. Fusiéon de modalidades y coordinaciéon

Un aspecto interesante para analizar es que el sistema MultimodalBioQA implementa una
arquitectura hibrida de fusiéon que opera en miiltiples niveles jerarquicos, representando una
aproximacion novedosa en sistemas de Question Answering biomédico:

Fusién a nivel de modelo individual

El modelo LLaVA-LLaMA implementa fusién temprana/intermedia dentro de su arqui-
tectura interna las caracteristicas visuales extraidas por el vision encoder (Vision Transformer),
las que se proyectan al espacio de embeddings del modelo de lenguaje mediante una capa de
proyeccion lineal. Esta integracion ocurre en las capas intermedias del transformer, permitien-
do que el modelo de lenguaje procese simultdneamente informaciéon visual y textual durante la
generacién autorregresiva.

Formalmente, dado un conjunto de tokens visuales V. = {vq,v9,...,v,} v tokens textuales
T = {t1,t2, ..., t;m }, €l modelo realiza:

Hiysea = LLM([V, T]) (1)

donde [-;-] denota concatenacion en la dimension de secuencia.

Fusién a nivel de arquitectura del sistema

El sistema completo emplea una estrategia de fusién tardia entre pipelines especializados,
donde las modalidades textuales y visuales se procesan mediante rutas independientes antes de
la integracion final de resultados. Esta decision arquitectonica permite:

= Optimizacion independiente de cada pipeline especializado

Escalabilidad modular del sistema

Trazabilidad diferenciada por modalidad

Flexibilidad en la gestiéon de recursos computacionales

Para consultas textuales, el sistema emplea una estrategia de btisqueda hibrida que prioriza
la base de datos vectorial local Qdrant antes de recurrir a la API de PubMed como mecanismo de
respaldo. Este enfoque optimiza la latencia mientras se mantiene la exhaustividad de la bisqueda.
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—

4 Ask an Image Question
1 Controls

Select Operation Mode @ Enhanced with Advanced Explainability:

O single Query
Batch Processing Selctyourquesion: .

Select Qe Type
Text QA
© Image QA 4 &
Image Question Type. o]
Upload medicalimage:
Auto-detect v
@ Dreganddropfilehere Browse files

x

[ ImageCLEFmedical_Caption_2025_test_32.peg
System Status

) Test Explainability System

il Configuration
Device: NVIDIA GeForce RTX 5090
CUDA Available: True

OpenaiClient:

(a) Paso 1 de flujo visual: Se selecciona la pregunta y se carga la imagen.

Answer Summary

. Controls
Select Operation Mode Question Type: Processing Time:
© Ssingle Query
() Batch Processing concepts 32.02 seconds
Select Q&A Type

i QEATYP Exact Answer: Status:
() Text QA
O Image QA « Plain x-ray « Chest « Postero-Anterior

Complete
« Structure of parenchyma of lung «
Image Question Type ® Bilateral lungs
Auto-detect v

(b) Paso 2 de flujo visual: Se detectan los conceptos presentes en la imagen.

Deploy

|=) Answer Summary

% Controls

Question Type: Processing Time:
Select Operation Mode
O single Query caption 45.70 seconds
Batch Processing
Exact Answer: Status:
Select Q&A Type
Text Q&A Chest radiograph showing bilateral pleural effusions.
O Image Q&A Complete
— Detailed Answer
L Controls
Radiological Report: Chest Radiograph
Select Operation Mode
O Single Query Imaging Technique:
L Aposteroanterior (PA) and lateral chest radiograph was obtained.
Select Q&A Type Findings:
Text QEA Lungs and Pleura:
© Image QeA There is evidence of bilateral pleural effusions, characterized by blunting of the ic angles. The effusions appear more on the right
image Question Type ® side, with a meniscus sign visible. No pneumothorax s observed. The lung fields show no focal consolidation, masses, or nodules. Vascular markings are
within normal limits.
Auto-detect v
Mediastinum and Heart:
The cardiac silhouette is within normal size parameters, with no evidence of cardiomegaly. The mediastinum is central, and the trachea is midline. No
widening of the mediastinum is noted.
GEEDEHIE Bones and Soft Tissues:
The bony thorax is intact with no rib fractures or lytic lesions. Soft tissues appear withno
Test Explainability System .
Conclusion:

The chest radiograph demonstrates bilateral pleural effusions, more prominent on the right. Further clinical correlation and possibly additional imaging,
1l Configuration such as ultrasound or CT, may be warranted to assess the underlying cause of the effusions.

(d) Paso 4 de flujo visual: Se entrega una respuesta detallada (ideal).

Figura 13: Flujo visual del sistema: interaccién paso a paso con la imagen.
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@ Mapas de Explicabilidad

% Controls

Select Operation Mode Andlisis de explicabilidad usando GradCAM, Attention Maps e Integrated Gradients:

© single Query
() Batch Processing

Medical Image Explainability Analysis

Select QeA Type . . i
B Original Medical Image Attention Maps v
O TextQ&A 10
© Image Q2A Max: 1,000 | Mean: 0,621
Image Question Type ® 08
Auto-detect v
2z
06§
£
<
s
04 §
System Status 1
<
[E) Test Explainability System
02
Ll Configuration
0.0

Device: NVIDIA GeForce RTX 5090

(a) Mapas de calor: Se selecciona la pregunta y se carga la imagen.

GradCAM v

: 1.000 | Mean: 0.370

- 0.8

T
o
o

o
=
Activation Intensity

(b) Mapas de calor: Grad-CAM.

Figura 14: Visualizaciéon de mapas de calor para explicabilidad visual en el sistema.
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En el procesamiento visual, el sistema integra multiples técnicas de explicabilidad (GradCAM,
Attention Maps, Integrated Gradients) con generacion de bounding boxes utilizando GPT-40
Vision API y Segment Anything (SAM). La coordinaciéon entre estos componentes se gestiona
mediante un sistema de metadatos o productos intermedios de datos que permite la trazabilidad
completa del proceso de inferencia.

12.5.6. Coherencia textual-visual y fusién semantica

En cuanto a la coherencia textual-visual, esta se gestiona mediante un sistema de meta-
datos estructurados que permite la trazabilidad completa del proceso de inferencia. Son varios
archivos .JSON que el sistema produce para ir dejando registro del paso a paso e incluso algunos
de ellos son descargables en la interfaz de usuario.

La fusidon semantica final se realiza a nivel del Writer Agent, que sintetiza informacién
procedente de ambas modalidades utilizando prompts estructurados que preservan la coherencia
interdisciplinaria.

El sistema mantiene la separacion clara entre respuestas exactas (exact_answer) e ideales
(ideal_answer), facilitando la evaluacion automatizada segun estandares de benchmarks biomé-
dicos como BioASQ (Tsatsaronis et al., 2015).

Para comprobar la coherencia inter-modelo podemos comparar si la respuesta ideal o detalla-
da del sistema de Q& A visual, que fue generada por el Writer Agent utilizando la API de GTP-40
se condice con el caption generado por el modelo LLaVA-LLaMA. En este caso de ejemplo que
la radiografia de térax que estamos utilizando podemos ver que la respuesta ideal del sistema de
Q&A visual es:

“Radiological Report: Chest Radiograph

Imaging Technique:
A posteroanterior (PA) and lateral chest radiograph was obtained.

Findings:

Lungs and Pleura:

There is evidence of bilateral pleural effusions, characterized by blunting of the cos-
tophrenic angles. The effusions appear more pronounced on the right side, with a
meniscus sign visible. No pneumothorax is observed. The lung fields show no focal
consolidation, masses, or nodules. Vascular markings are within normal limits.”

Esto coincide con la caption generada por el modelo LLaVA-LLaMA, que es:
“Fxact Answer (Caption): Chest radiograph showing bilateral pleural effusions.”

Con este ejemplo se puede apreciar que al existir esta coherencia entre la respuesta ideal del
sistema de Q&A visual y el caption generado por LLaVA-LLaMA nos demuestra la efectividad
de la fusién seméntica y la integracion de modalidades en el sistema. Esto es muy importante
porque nos asegura que las respuestas generadas sean consistentes y relevantes para el contexto
clinico.

Flujo de procesamiento multimodal

Para ilustrar la integraciéon completa del sistema, consideremos una consulta representativa
de cada modalidad y observemos los diagramas de flujo correspondientes.
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User Query Input

I

Interactive Type Classification

Modality Router

Image Queries

Text Queries

If

Image Processing Pipeline

}

Vision + Explainability Pipeline

! }

Text Processing Pipeline

Enhanced Query Generation
) GPT-4o Entity Extraction

v

Dual Knowledge Retrieval
4 Qdrant Local + PubMed API

:

Medical Vision Analysis
i LLaVA Concept + Caption
Generation

}

Multi-Technique Explainability
“ GradCAM + Attention +
Integrated Gradients

}

Evidence Processing
Sentence-Level Extraction
+NER +UMLS

Intelligent Segmentation
@ SAM + GPT-40 Region
Labeling

!

I

Contextual Enrichment
@ Few-Shot Retrieval + MeSH

Spatial Correlation
¢ Concept-Region Mapping +

Mapping Smart Bboxes

Writer Agent

Response Synthesis Engine

l

Type-Specific Response
Generation

’ Differentiated Prompting
Strategies

!
‘”\f

Exact Answer

Ideal Answer Scientific Evidence Visual Explanations Processing Metadata

Figura 15: Arquitectura general del sistema multimodal de Q& A biomédica. Flujo de datos
bidireccional mostrando: (a) Pipeline textual con busqueda hibrida Qdrant-PubMed, (b)

Pipeline visual con LLaVA y explicabilidad, (c¢) Fusion tardia en Writer Agent para sintesis
final.
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Flujo Textual

Pregunta: “List primary sclerosing cholangitis effector genes and biological mechanisms”
El procesamiento sigue la siguiente secuencia:

1.

3.
4.

YN

Extraccion de entidades: GPT-40 identifica “primary sclerosing cholangitis”, “effector
genes”, “biological mechanisms”

. Buaisqueda hibrida: Qdrant local (n = 10 snippets, scores: 0.259-0.240) + PubMed API

fallback (n = 4 nuevos articulos)
Enriquecimiento seméantico: Consulta UMLS/MeSH para contexto terminologico

Sintesis: Writer Agent genera respuesta estructurada con citas PMID

Como se muestra en las figuras, el pipeline de procesamiento textual sigue una secuencia de
cuatro etapas principales.
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/" Text Query:
‘List primary sclerosing
cholangitis
effector genes and biological
mechanisms'

I

Interactive Type Classification

!

1| Question Type: 'list'

!

Enhanced Query Generation
@ GPT-4o Entity Extraction

!

, Extracted Entities:
- primary sclerosing cholangitis
« effector genes
+ biological mechanisms

I

Dual Search Strategy

Priority 1 Fallback
Qdrant Vector Search PubMed API| Search
% Local Knowledge Base € Real-time Literature
£ Qdrant Results: L./ PubMed Results:
n=10 snippets n=4 new articles
scores: 0.259-0.240 hasabstract filter

L

Result Quality Assessment

!

(=] Combined Results:
8 unique snippets
Deduplicated by PMID

I

Sentence-Level Snippet
Extraction
@ GPT-40 Guided Analysis

Figura 16: Diagrama detallado del procesamiento textual, Parte 1. El flujo ilustra las
primeras dos de cuatro etapas secuenciales: (a) extraccion de entidades biomédicas utili-

zando GPT-4o, (b) busqueda hibrida que combina bases de datos vectoriales Qdrant con
PubMed.
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'

Biomedical NER Processing
¢ Clinical Entity Recognition

)

UMLS/MeSH Enrichment
= Terminological Context

I

+ UMLS Context Found:
* primary sclerosing
cholangitis: 'Chronic

inflammatory disease...'

+ biological mechanisms:
'Colorless, endogenous
pigment precursors..."

!

Few-Shot Example Retrieval
@ Contextual Guidance

!

['] Retrieved Example:
'List signaling molecules
(ligands)
that interact with EGFR?'

I

Writer Agent - Response
Synthesis

I

Scientific Evidence Synthesis

PMID Citation Integration

)

Exact Answer Generation
" Type-Specific Formatting

!

Ideal Answer Generation

& Comprehensive Explanation

!

Final Output;
+ exact_answer: [gene1,
genez, ..]

- ideal_answer: 'Detailed
explanation with (PMID
citations)'

+ supporting_evidence: PMID-
linked snippets

Figura 17: Diagrama detallado del procesamiento textual, Parte 2. El flujo ilustra las
segundas dos de cuatro etapas secuenciales: (c¢) enriquecimiento seméntico mediante con-
ceptos UMLS, y (d) sintesis final de respuestas con citas bibliograficas.

Flujo visual

Pregunta: “Where are the key structures or findings located in this medical image?”
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El procesamiento visual integra miltiples componentes especializados:

1.

Analisis conceptual: LLaVA-LLaMA identifica conceptos médicos mediante fusion tem-
prana visién-lenguaje.

Explicabilidad avanzada: Generacion simultanea de GradCAM, Attention Maps e In-
tegrated Gradients.

Localizacién espacial: GPT-40 Vision API + SAM generan bounding boxes autométicas
con fallback a modelo fine-tuneado para dar coordenadas y que se encuentra a nivel local.

Sintesis radiolégica: Writer Agent genera reporte clinico estructurado como informe
radiolégico.
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5] Medical Image Query:
"Where are the key structures
located in this medical image?"

!

Interactive Type Classification

|

1| Question Type: 'location’

(triggers bbox generation)

!

Image Processing Pipeline
Multimodal Analysis
Initialization

!

LLaVA Vision Analysis
@ Fusion Temprana Vision-
Lenguaje

!

4 LLaVA Results:
Concepts: ['anatomia’,

Caption: 'Radiografia de térax

PA.
Question Type Check
/ location
Integrated Explainabilty System GPT-40+ SAM
“ Multi-Method Analysis € Intelligent Bbox Generation
Falloack
Attention Maps Generation GradCAM Computation Integrated Gradients concepts/icaption Local LLaVA Model
® Model Focus Analysis @, Neural Activation Maps Feature Attribution pisicap! % Backup Bbox Generation
? GPT-4o Bbox Resuls: 9 Local Bbox Results:
@ Attention Results: # GradCAM Results: 1G Resuls: T e
Patch-based focus regions Layer-wise activations Pixel-wise attributions A(ETAT 20
. - Confidence: 0.9 Confidence: 0.8
Normalized activation maps Resized to image dimensions Baseline-corrected gradients
Source: 'gpt-40 Source: local'

- I ]
v
Explainability Visualization Skip Bbox Generation ‘Spatial Annotation
[ Not Required

Combined Heatmaps

i I 1

—

s Smart Bounding Boxes

5] Explainabilty Output:
Bl Explanebilty Outpu @ Annotated Image:
4-panel visualization Vision Analysis Complete P
(Original + Attention + No Spatial Annotation J
concept-coordinate mapping
GradCAM + 1)
-
v

Writer Agent - Visual Synthesis | 4

 Radiological Report
Generation

v

Multimodal Explanation
Integration
(2] Visual + Textual Fusion

Structured Radiological Report

[] Clinical Format Output

v

Final Visual Output:

+ exact_answer: [detected
concepts]
«ideal_answer: ‘Professional

radiological analysis.
« explainability_image:
Combined heatmaps
« annotated_image: Spatial
annotations (if location)
« bbox_pairs: Coordinate
mappings ((f location)

Figura 18: Flujo completo de procesamiento visual: (a) imagen de entrada, (b) extraccion
de conceptos con LLaVA, (c) explicabilidad multimethod, (d) localizacion con GPT-40 +

SAM, (e) sintesis radiologica final.
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12.5.7. Explicabilidad y trazabilidad

El sistema implementa mecanismos de interpretabilidad diferenciados segtin la modalidad de
entrada, representando uno de los aspectos mas innovadores de la integracién desarrollada.

Interpretabilidad textual

Un aspecto en el que fui més alla de los requisitos del reto de bioASQ fue en la implementacion
de un sistema de trazabilidad textual que permite al usuario verificar la fuente de cada afirmacion
generada. Esto se logra mediante la inclusion de identificadores PMID en la respuesta ideal (que
es un resumen). Los PMID referencian a articulos cientificos especificos dependiendo de los
snippets obtenidos. Es por este motivo que cada respuesta ideal generada por el Writer Agent
en el flujo de Q&A textual incluye citas inline que permiten al usuario rastrear la evidencia
cientifica subyacente. Esto es sumamente importante en el drea médica porque cada afirmacion
en la respuesta ideal estd respaldada por fragmentos cientificos identificables, permitiendo la
verificacion independiente de las fuentes.

Ademas, el sistema integra contexto UMLS/MeSH para la desambiguacion terminologica,
proporcionando definiciones contextuales de conceptos médicos complejos. Esta integracion se-
méantica aparte de ser util como contexto en los prompts para generar las respuestas, también
facilita la interpretacién clinica al proporcionar el conocimiento ontolégico necesario para la
comprensiéon de términos especializados.

Interpretabilidad visual

La explicabilidad visual representa una contribucién técnica importante de este sistema,
ya que integra miltiples técnicas complementarias que proporcionan diferentes perspectivas del
proceso de inferencia:

= Attention maps: Visualizacién de patrones de atencion del modelo LLaVA fine-tuned,
mostrando regiones de la imagen que contribuyen mas significativamente a la generacion
de conceptos.

= GradCAM: Implementacién optimizada con selecciéon de capas objetivo y manejo robusto
de gradientes para modelos multimodales.

= Integrated gradients: Célculo de atribuciones pixel-wise con linea base optimizada y
manejo de artefactos de integracion numérica.

= Bounding boxes: Generacion condicional de regiones de interés utilizando GPT-40 API
+ SAM con modelo LLaVA local como respaldo.

La integracion de estos métodos proporciona una perspectiva multifacética del proceso de in-
ferencia visual, permitiendo la validacién cruzada de interpretaciones y aumentando la confianza
clinica en los resultados.

12.5.8. Evaluacién cualitativa de arquitectura agéntica

Los pipelines de procesamiento de lenguaje natural tradicionales son estaticos y monoliti-
cos: aplican la misma secuencia de procesamiento independientemente de las caracteristicas de
entrada. En cambio, la arquitectura agéntica que he utilizado implementa una orquestacion dina-
mica del flujo de trabajo, donde agentes especializados toman decisiones contextuales sobre qué
estrategias de procesamiento aplicar basandose en las propiedades del texto. Esto es fundamen-
talmente diferente de los enfoques tradicionales, por ejemplo, en la integracién de herramientas
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@ Advanced Explainability Analysis

Conceptos Detectados Regiones Mapeadas Métodos Disponibles

0 5 3/3

@& BoundingBoxes @ Mapas de Explicabilidad

Regiones identificadas con mapeo inteligente concepto-regién:

Posterc—Anterior

(a) Bounding boxes para la imagen médica seleccionada.

Detalles de regiones:
¢ Plain x-ray - Posicion: (208, 135) - Tamafio: 21x14 - Color: [EiEfEL]
¢ Chest - Posicidn: (42, 69) - Tamafio: 253x267 - Color: | =iiiit:]

¢ Postero-Anterior - Posicién: (176, 44) - Tamafio: 16x26 - Color:
#3838ff

@ Structure of parenchyma of lung - Posicién: (296, 86) - Tamafio:
25x176 - Color:

* Bilateral lungs - Posicidn: (18, 86) - Tamafio: 31x221 - Color:

M Download Results

= Download = Download Text @ Download
JSON Explainability

(b) Regiones identificadas en la imagen con sus posiciones y etiquetas.

Figura 19: Anélisis de bounding boxes en imagenes médicas.
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heterogéneas, ya que el marco agéntico permite la integracién fluida de herramientas comple-
mentarias (NER, grafos de conocimiento, métodos de explicabilidad, etc.) en un flujo de trabajo
coordinado, en lugar de hacerlo como pasos de post-procesamiento independientes.

La diferenciacion arquitecténica del sistema MultimodalBioQA se puede enmarcar en los
siguientes elementos:

Orquestacion adaptativa de modalidades

Los sistemas tradicionales procesan modalidades de forma secuencial y predeterminada. En
cambio, la arquitectura agéntica del sistema MultimodalBioQA implementa decisién contex-
tual inteligente:

Diferencia clave: La decision de qué pathway activar (textual o visual) y como coordinar
las explicaciones emerge del analisis contextual, no de reglas estaticas.

Explicabilidad multimodal coordinada

Para preguntas visuales - Agente de Explicabilidad: Aplica 4 métodos complemen-
tarios de forma orquestada:

» Grad-CAM: Localizaciéon de atenciéon neuronal

Attention Maps: Patrones de atencion del transformer

Gradient Descent: Optimizaciéon de caracteristicas relevantes

Bounding Boxes: Mapeo concepto-region anatéomica

La coordinacién sincronizada de estos 4 métodos y su integraciéon coherente en la respuesta
final requiere orquestacion inteligente que no puede ser predeterminada.

Para preguntas textuales - Agente Writer (Grounding): Proporciona evidencia
estructurada:

= PMIDs de articulos fuente

= Entidades NER extraidas

s Términos UMLS recuperados y enriquecidos

Enriquecimiento dinamico de contexto

El pipeline textual implementa cascada de decisiones inteligentes: El sistema implementa un
flujo de decisién inteligente que comienza con la extraccion de entidades biomédicas de la pregun-
ta mediante el uso de GTPT-40 por parte del Agente Researcher. Estas entidades extraidas son
posteriormente enriquecidas con términos UMLS por parte del agente Researcher, que consulta
la API para obtener informacion contextual adicional. A continuacion, el agente Researcher re-
cupera articulos recientes relevantes mediante la API de Pubmed y fusiona esta informacién con
la base de datos vectorial Qdrant existente para crear un contexto hibrido. Una vez establecido
el contexto apropiado, se aplica few-shot seleccionando los ejemplos contextualmente relevantes
que mejor se alineen con la pregunta y el contexto disponible. Finalmente, el agente Writer sin-
tetiza la respuesta final incorporando tanto el contexto hibrido como los ejemplos seleccionados,
asegurando que la respuesta esté fundamentada en evidencia verificable. Este flujo demuestra la
toma de decisiones distribuida y contextual que caracteriza la arquitectura agéntica, donde cada
agente especializado contribuye de manera coordinada al resultado final.
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Ventajas arquitectdnicas especificas

1. Coherencia multimodal: Coordinacion inteligente entre explicabilidad visual (4 méto-
dos) y grounding textual (PMIDs + NER + UMLS)

2. Adaptabilidad contextual: El sistema ajusta su estrategia de procesamiento basado en
caracteristicas especificas de cada pregunta biomédica

3. Integracidon herramientas heterogéneas: NER — UMLS — PubMed — Qdrant —
Few-shot funciona como workflow coordinado, no como pasos independientes

4. Grounding robusto: Proporciona evidencia verificable (PMIDs, entidades NER, térmi-
nos UMLS) de forma contextualmente relevante

El sistema MultimodalBioQA demuestra que la coordinacién agéntica es arquitectéonica-
mente necesaria para Q&A biomédico multimodal porque:

= Complejidad irreducible: La interaccién entre modalidades, explicabilidad y grounding
no puede ser predeterminada

= Decisiones contextuales: Cada consulta biomédica requiere decisiones especificas sobre
enriquecimiento, retrieval, y explicabilidad

s Optimizacion dindmica: La eficiencia computacional requiere activacién inteligente de
componentes segiin necesidad

12.6. Conclusiones de analisis cualitativo

La integracion multimodal desarrollada representa un avance hacia sistemas de Question
Answering biomédico més explicables, demostrando la viabilidad técnica de combinar analisis
textual y visual en una plataforma unificada que opera efectivamente tanto a nivel de modelo
individual como de arquitectura de sistema.

Por lo tanto, mi conclusién es que la arquitectura agéntica no es una mejora incremental,
sino una solucién arquitecténica necesaria para la complejidad inherente de sistemas biomédicos
multimodales con explicabilidad robusta y grounding verificable. La orquestacién inteligente de
agentes especializados permite abordar problemas que son arquitecténicamente irresolubles con
enfoques tradicionales monoliticos.

12.6.1. Contribuciones principales

= Busqueda hibrida: Estrategia Qdrant-first que optimiza latencia manteniendo exhausti-
vidad.

» Arquitectura hibrida de fusion: Sistema con fusién multinivel (temprana en LLaVA
+ tardia en sistema) para Q&A biomédico.

= Explicabilidad multimodal integrada: Integracién de 4 métodos complementarios de
explicabilidad visual con trazabilidad textual completa.

= Arquitectura agéntica: Permite coherencia multimodal, adaptabilidad contextual, inte-
gracién de herramientas heterogéneas y grounding robusto.
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13. Desafios y trabajo futuro

El anélisis cualitativo revela varias categorias de limitaciones que caracterizan el estado actual
de la integracién multimodal:

13.1. Limitaciones de modalidad visual

= Alucinaciones conceptuales: El modelo LLaVA ocasionalmente genera conceptos mé-
dicos plausibles, pero no presentes en la imagen analizada, particularmente en imagenes
con artefactos o calidad subdéptima.

» Inconsistencias en bounding boxes: La generaciéon de coordenadas espaciales mediante
GPT-40 muestra variabilidad en la precision, especialmente para estructuras anatoémicas
con limites difusos.

= Limitaciones de resoluciéon: El procesamiento de imagenes de alta resolucion requiere
redimensionamiento que puede resultar en pérdida de detalles diagnésticos criticos.

13.2. Limitaciones de integracién cross-modal

= Conflictos semanticos: En casos donde la informacién visual sugiere hallazgos que con-
tradicen el conocimiento textual previo, el sistema carece de mecanismos sofisticados de
resolucion de conflictos. Este es un aspecto para mejorar en futuras versiones del sistema.

s Coherencia temporal: Para casos clinicos evolutivos, el sistema no mantiene coherencia
temporal entre andlisis secuenciales de la misma patologia. Esta es un area de mejora
importante, ya que la evolucién de una patologia es clave para el diagnodstico y tratamiento
médico.

= Calibraciéon de incertidumbre: Las métricas de confianza entre modalidades no estan
calibradas, dificultando la interpretaciéon de inconsistencias intermodales.

13.3. Limitaciones de escalabilidad

= Dependencia de APIs externas: La integraciéon con GPT-40 introduce latencia variable
y dependencia de servicios terceros. Por este motivo se implement6 un modelo LLaVA local
que permite al sistema funcionar sin depender de la API de OpenAl, pero aiin esté a nivel
experimental.

s Gestion de memoria: El procesamiento simultdneo de multiples modalidades puede
resultar en limitaciones de memoria GPU para anélisis batch.

= Paralelizaciéon limitada: La arquitectura actual no optimiza completamente el procesa-
miento paralelo de componentes independientes.

13.4. Mejoras técnicas propuestas

Se podrian realizar multiples mejoras al sistema MultimodalBioQA, ya que es un area de
investigacion activa. Sin embargo, las que propongo son de mi interés personal y profesional, ya
que creo constituyen un aporte en el area de la IA biomédica.

1. Explicabilidad temporal: Extender anélisis de explicabilidad a imagenes médicas tem-
porales (videos o series de imédgenes) para capturar dindmicas evolutivas.

2. Multimodalidad avanzada: Integraciéon de datos gendémicos y protedémicos.
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3.

Knowledge-Graph: Construccion de un grafo de conocimiento (knowledge-graph) propio
alimentado con ontologias médicas especializadas. Comencé a trabajar en este aspecto
durante el reto de BioASQ con una base de grafos en neo4j que alimenté con datos de
UMLS, pero no pude mantener el sistema debido a falta de recursos. Sin embargo, creo
que es un aspecto clave para mejorar tanto la interpretabilidad del sistema como la calidad
de los resultados.

Personalizacioén clinica: Adaptacion de respuestas basada en contexto clinico especifico.
Seria interesante personalizar el sistema como apoyo radioldgico en un hospital o clinica, ya
que muy motivante a nivel técnico la adopciéon de protocolos clinicos especificos en forma
de guardrails que guien al sistema a responder de forma més contextualizada y precisa
para el contexto clinico en el que se esté utilizando.

13.5. Investigacion futura

En concordancia con lo expresado en la seccién anterior, propongo las siguientes lineas de
investigacion futura para abordar las limitaciones identificadas y potenciar el sistema:

1.

14.

Ayuda al diagnéstico con explicabilidad temporal: Desarrollo de modelos que in-
tegren analisis temporal de imégenes médicas para capturar dindmicas evolutivas de pa-
tologias, mejorando la capacidad diagnostica del sistema. Es algo que ya he comenzado a
investigar y que creo puede ser un aporte significativo al area de la IA biomédica. También
puede servir como validacion del diagnostico médico, ya que permite al profesional de la
salud verificar la evoluciéon de una patologia a través del tiempo.

Validacion clinica: Estudios con profesionales médicos para validar utilidad clinica.

Multimodalidad extendida: Esta es mi mayor linea de investigaciéon futura, ya que creo
que la integracion de datos genémicos y proteémicos con imégenes médicas y texto clinico
puede revolucionar el campo de la IA biomédica. Esto permitiria que el sistema realizara
un analisis mas completo y preciso de los pacientes, lo que a su vez mejoraria la capacidad
diagnostica y pronostica del sistema. En esta misma linea de investigacion pienso integrar
los grafos para mantener las relaciones entre los datos y mejorar la interpretabilidad del
sistema.

Conclusiones

En sintesis, se ha presentado MultimodalBioQA , un sistema de question answering bio-
médico multimodal con explicabilidad incorporada, que representa un avance en la capacidad
de acceder y comprender la informacion biomédica. Entre sus contribuciones més relevantes se
incluyen las siguientes:

14.1. Contribuciones académicas y metodologicas

He resumido las contribuciones académicas y metodologicas del sistema de Q&A Biomédico
Multimodal con Explicabilidad en las siguientes categorias:

1.

2.

Integracion de explicabilidad multimodal: Implementaciéon que combina LLaVA,
GradCAM, Attention Maps e Integrated Gradients en un pipeline unificado para anali-
sis y explicabilidad a nivel médico.

Mapeo Concepto-Region: Método que correlaciona automaticamente conceptos médi-
cos extraidos por LLMs con regiones espaciales especificas de imégenes.

111



3. Extraccion de snippets guiada por LLM: Metodologia innovadora que utiliza GPT-40
para extraer evidencia cientifica a nivel de oracion, lo que constituye una alternativa a las
limitaciones de métodos basados en similarity scoring.

14.2. Contribuciones tecnolbgicas

También considero que el sistema MultimodalBioQA ha realizado contribuciones tecnolo-
gicas que pueden ser de utilidad para la comunidad cientifica y profesional en el area de la TA
biomédica:

1. Arquitectura hibrida de basqueda: Combinacién efectiva de busqueda vectorial local
con APIs en tiempo real para maximizar cobertura y actualidad de la informacion.

2. Pipeline de ingesta masiva: Sistema capaz de procesar millones de articulos PubMed
con uso de memoria constante mediante sistema de batching.

3. Sistema de Few-Shot Learning contextual: Implementacién de recuperacion semén-
tica de ejemplos para few-shot learning que mejora significativamente la consistencia de
respuestas en dominios especializados.

Desde mi punto de vista, este sistema de Q&A Biomédico Multimodal con Explicabilidad
representa una contribucién al campo de TA médica al integrar con éxito multiples modalidades
de informacion (texto e imagen) y proporcionar explicabilidad a través de un enfoque unificado
que combina:

1. Procesamiento multimodal con analisis de texto e imagen especializado.

2. Explicabilidad multitécnica que combina diversos métodos complementarios de inter-
pretabilidad.

3. Recuperacion de informacién con IA generativa mediante extraccion guiada por
LLM.

4. Arquitectura multiagente escalable con optimizaciones especificas para datos biomé-
dicos masivos.

La combinacién de estas innovaciones crea un sistema que no solo proporciona respuestas
precisas, sino que también ofrece explicabilidad integrada, estableciendo un modelo para herra-
mientas de TA en medicina que equilibren rendimiento, interpretabilidad y utilidad clinica.

En mi opinién se han cumplido los resultados esperados, ya que se logré precision en la recupe-
racion de informacion biomédica mediante arquitectura RAG hibrida. Ademas, se ha demostrado
la capacidad de procesamiento multimodal de flujos textuales y visuales con explicabilidad in-
tegrada para analisis de imégenes médicas mediante la implementacién de un sistema unificado
multiagente para procesamiento biomédico textual y visual.

Por lo tanto, puedo decir que he quedado conforme con este trabajo, ya que cumplié con los
objetivos planteados inicialmente demostrando que es posible desarrollar un sistema de question
answering biomédico multimodal con explicabilidad incorporada, lo que representa un avance en
la capacidad de acceder y comprender la informacién biomédica.
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Acrénimos

A continuacion, se presentan los acrénimos utilizados en este documento. La lista fue elabo-
rada por la autora a partir de los términos maéas relevantes del proyecto y su contexto.

AT Artificial Intelligence (Inteligencia Artificial)

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

BioBERT Biomedical BERT

BioNER Biomedical Named Entity Recognition
BioNEs Biomedical Named Entities

BioNLP Biomedical Natural Language Processing
CLIP Contrastive Language-Image Pre-training

CNN Convolutional Neural Network

CSS Cascading Style Sheets

CUDA Compute Unified Device Architecture

CUI Concept Unique Identifier

CV Computer Vision (Vision por Computadora)
DICOM Digital Imaging and Communications in Medicine
DOI Digital Object Identifier

EHR Electronic Health Record

F1 F1 Score (Medida F1)

GPU Graphics Processing Unit

GPT Generative Pre-trained Transformer

GradCAM Gradient-weighted Class Activation Mapping
GSC Gold-Standard Corpora

HKG Healthcare Knowledge Graphs (Grafos de Conocimiento Sanitario)

HQS-VQA Hierarchical Question Segregation based Visual Question Answering

HTML HyperText Markup Language

TA Inteligencia Artificial

ICD International Classification of Diseases (Clasificacion Internacional de Enfermedades)

IDF Inverse Document Frequency (Frecuencia Inversa de Documentos)

JSON JavaScript Object Notation

JSONL JavaScript Object Notation Lines
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KG Knowledge Graph

LIME Local Interpretable Model-agnostic Explanations
LLaVA Large Language and Vision Assistant

LLM Large Language Model

LoRA Low-Rank Adaptation

LSTM Long Short-Term Memory

LVLM Large Vision-Language Model

maF1 Macro-averaged F1

MeSH Medical Subject Headings

MIC Medical Image Captioning

ML Machine Learning

MLP Multi-Layer Perceptron (Perceptron Multicapa)
MRR Mean Reciprocal Rank (Rango Reciproco Medio)
NCBI National Center for Biotechnology Information
NEN Named Entity Normalization

NER Named Entity Recognition

NIH National Institutes of Health

NLP Natural Language Processing

OOV Out-of-Vocabulary

PDF Portable Document Format

PIL Python Imaging Library

PLN Procesamiento de Lenguaje Natural

PMID PubMed Identifier

Q& A Question and Answer

QA Question Answering

RAG Retrieval-Augmented Generation

RGPD Reglamento General de Protecciéon de Datos
ROCO Radiology Objects in Context

ROUGE Recall-Oriented Understudy for Gisting Evaluation
RxNorm Prescription Drug Nomenclature

SAM Segment Anything Model

SHAP SHapley Additive exPlanations
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SNOMED CT Systematized Nomenclature of Medicine - Clinical Terms
SVM Support Vector Machine (Maquina de Vectores de Soporte)

UI User Interface

UMLS Unified Medical Language System

URL Uniform Resource Locator

VB-MVQA Vision-Bilinear Multi-level Visual Question Answering

ViT Vision Transformer

VQA Visual Question Answering (Preguntas y Respuestas Visuales)
VQA-Med Visual Question Answering Medical

VRAM Video Random Access Memory

X AT Explainable Artificial Intelligence (Inteligencia Artificial Explicable)

XML eXtensible Markup Language
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Anexos

A. Recursos en linea
El producto de este trabajo esta disponible en Github para su evaluacion.

= Repositorio de GitHub
s Modelo fine-tunado LLaVA-LLaMA 3 8B

= Modelo fine-tunado LLaVA-Mistral 7B (fallback)
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L Controls

Select Operation Mode

© Ssingle Query
Batch Processing

Select Q&A Type

O Text QA
Image Q&A

Question Type

Auto-detect

System Status

[ Test Explainability System

. Controls

Select Operation Mode

© Single Query
Batch Processing

Select Q&A Type

O TextQ&A
Image Q&A

Question Type

Auto-detect

System Status

[ Test Explainability System

B. Ejemplo de pregunta de tipo lista

? Ask a Text Question
@ Improved Research: Now searches Qdrant local database first, then PubMed API as fallback!

Enter your question:

List primary sclerosing cholangitis effector genes and biological mechanisms

Or upload a batch file:

Upload JSON file with questions:

Drag and drop file here
Limit 100MB per file « JSON

# Process Query

Browse files

Figura 20: Paso 1 de flujo textual (Pregunta tipo "Lista"): Se introduce la pregunta.

# Process Query

) @ searching Qdrant + PubMed... ~

i® Question Type Assistant
Detected Question: List primary sclerosing cholangitis effector genes and biological mechanisms

@ Based on internal analysis, this is likely a LIST type question.

Please confirm or change the question type:

yesno
factoid
O list

summary

2 Type auto-confirmed: vist

Figura 21: Paso 2 de flujo textual (Pregunta tipo "Lista"): Como no se seleccioné el tipo
de pregunta aparece el chatbot para decir que segiin su anélisis es una pregunta de tipo
lista y solicitar confirmacion.
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. Controls

Select Operation Mode
© Single Query
Batch Processing
Select Q%A Type
O TextQ&A
Image Q&A
Question Type

Auto-detect

list 15.75 seconds

Exact Answer: Status:

«IL-2 receptor alpha chain « HLA-B « MHC class Il « Bile

acid metabolism « Immune-mediated liver injury « Sdlcoppicte
Fibrosis « Cholangiocyte apoptosis « Inflammatory
cytokine production « T-cell activation « Genetic
susceptibility « Autoimmune response « Cholestasis «
Biliary epithelial cell damage « HLA-DRB1 « HLA-DQB1
(15 items found)

Figura 22: Paso 3 de flujo textual (Pregunta tipo "Lista"): Respuesta exacta
Answer) con el listado de elementos identificados en respuesta a la pregunta.

L Controls

Select Operation Mode
© Single Query
Batch Processing
Select Q&A Type
O TextQ&A
Image Q&A
Question Type

Auto-detect

- Detailed Answer

The primary effector genes and biological mechanisms associated with primary sclerosing cholangitis (PSC) are not
comprehensively detailed in the provided scientific evidence. However, some insights can be gleaned from the
available sources. Source 1 discusses the fine-mapping and molecular characterization of genetic risk loci for PSC,
suggesting that genetic factors play a significant role in the disease's pathogenesis (PMID 39505854). Although
specific genes are not listed, this indicates that genetic predispositions are crucial in understanding PSC. Source 4
mentions PSC in the context of autoimmune hepatitis, implying that immune-mediated mechanisms might be
involved in its development (PMID 37945166). Unfortunately, the evidence provided does not specify particular
effector genes or detailed biological mechanisms. Therefore, while genetic and immune factors are implicated, the
precise effector genes and mechanisms remain unspecified based on the current evidence. Further research and
detailed studies are necessary to elucidate these aspects comprehensively.

(Exact

Figura 23: Paso 4 de flujo textual (Pregunta tipo "Lista"): Respuesta ideal (Detailed
Answer) con un resumen en respuesta a la pregunta y con los PMID en los que se basa la

respuesta.

% Controls

Select Operation Mode

© Single Query
Batch Processing

Select Q&A Type

O TextQ&A
Image Q&A

Question Type

Auto-detect

System Status

Test Explainability System

Q@ Supporting Evidence
I Scientific Snippets ~ ¢* Entities & Concepts
Found 8 relevant scientific snippets:

Snippet 1 - PMID: 39505854 (Score: 1.380) ~
Fine-mapping and molecular characterisation of primary sclerosing cholangitis genetic risk loci.

Section: title

Snippet 2 - PMID: 33116744 (Score: 1.020) ~

Identification of Novel Therapeutic Molecular Targets in Inflammatory Bowel Disease by Using Genetic
Databases.

Section: title

Snippet 3 - PMID: 28025879 (Score: 0.971) v

Figura 24: Paso 5 de flujo textual (Pregunta tipo "Lista"): Snippets identificados con el
PMID del articulo en el que se basa la respuesta y su puntuacion.
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@ Supporting Evidence <

L Controls
I Scientific Snippets  ¢* Entities & Concepts

Select Operation Mode
O single Query Named Entities (NER): UMLS/MeSH Concepts:

Batch Processing

« Primary sclerosing cholangitis N (erosing cholangiti N
Select Q&AType Primary sclerosing cholangitis
O TextQ&A « effector genes Chronic inflammatory disease of the BILIARY
TRACT. Itis ch. i i i hi i
Image Q&A  biological mechanisms RACT. It is characterized by fibrosis and hardening
of the intrahepatic and extrahepatic biliary ductal
Question Type ® systems leading to bile duct strictures,
Auto-detect v CHOLESTASIS, and eventual BILIARY CIRRHOSIS.
* biological mechanisms v
System Status y
M Download Results

[ Test Explainability System
Download JSON » Download Text

Figura 25: Paso 6 de flujo textual (Pregunta tipo "Lista"): NER biomédicas y términos
UMLS/MeSH identificados por el sistema.

Descargas B a - £ Deploy

Enter your question: . result_1750850878 json
Abrir archivo
% EAIEND
Controls List primary sclerosing cholangitis effi
Select Operation Mode Ver mas
O Ssingle Query y

Batch Processing
Or upload a batch file:

Select Q&A Type
O TextQ8A Upload JSON file with questions:
Image Q&A
Drag and drop file here "
8 P Browse files
Question Type ® Limit 100MB per file + JSON

Auto-detect v

System Status

) Test Explainability System

Figura 26: Paso 7 de flujo textual (Pregunta tipo "Lista"): Descarga del archivo .JSON
con los metadatos.
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C. Resultados preliminares de bioASQ Task 13b 2025

o Achallenge in large-scale
|0A Q biomedical semantic indexing

and question answering

Home | Logged in: JohannaUE (Log out | Edit Profile)

Guidelines Submitting Oracle Datasets m FAQ Forum Contact Us

BioASQ Participants Area
Task 13b: Test Results of Phase A+

The test results are presented in separate tables for each type of annotation. The "System Description" of each system is used.
The evaluation measures that are used in Task A+ are presented here .
Warning: For ideal answers, good ROUGE results do not always imply good manual scores.

Test batch 1
Test batch 2
Test batch 3
Test batch 4

Exact Answers

Yes/No Factoid List

System ~ Accuracyv  FlYes~ FINo~ MacroFlv StrictAcc.v  LenientAcc. v MRR ~  Mean Prec.~ Recall v F-Measure~
Main pipeline 0.9231 0.9474 0.8571 0.9023 0.3636 0.4545 0.3902 0.1912 0.3656 0.2286

I AQAMS 0.9231 0.9474 0.8571 0.9023 0.4091 0.4091 0.4091 0.2807 0.2897 0.2778 I
dmiip2024_1 0.9231 0.9444 0.8750 0.9097 0.4545 0.4545 0.4545 0.2316 0.2704 0.2453
UR-IW-2 0.9231 09444 0.8750 0.9097 0.4545 0.4545 0.4545 0.1846 0.3349 0.2172
extractive 0.9231 0.9444 0.8750 0.9097 0.4091 0.4545 0.4318 0.1820 0.2838 0.1879
abstractive 0.9231 0.9444 0.8750 0.9097 0.4091 0.4545 0.4318 0.1408 0.2707 0.1762
deepseek-r1:32b 0.9231 0.9474 0.8571 0.9023 0.2727 0.3636 0.3182 0.2395 0.2480 0.2264
deepseek-r1:14b 0.9231 0.9474 0.8571 0.9023 0.3182 0.3182 0.3182 0.2476 0.2401 0.2420
Fleming-5 0.9231 0.9474 0.8571 0.9023 0.2273 0.4091 0.2780 0.2158 0.3364 0.2433
phaseB-4 0.9231 0.9474 0.8571 0.9023 0.3636 0.3636 0.3636 0.2549 0.2911 0.2652

Figura 27: Resultados preliminares de Fase A+ (Batch 4): El sistema participante obtuvo
buenos resultados en este batch.

o Achallenge in large-scale
10A Hamecicalsemande ndoing

and question answering

Home | Logged in: JohannaUE (Log out | Edit Profile)

Guidelines Submitting Oracle Datasets m FAQ Forum Contact Us

BioASQ Participants Area
Task 13b: Test Results of Phase B

The test results are presented in separate tables for each type of annotation. The "System Description" of each system is used.
The evaluation measures that are used in Task B are presented here
Warning: For ideal answers, good ROUGE results do not always imply good manual scores.

Test batch 1
Test batch 2
Test batch 3

Exact Answers

Yes/No Factoid List

System ~v Accuracyr FlYesv FINo~ MacroFlv StrictAcc.v  Lenient Acc. v MRR v MeanPrec.v Recall v F-Measure~
RMC_append_snippets 0.9545 0.9697 0.9091 0.9394 - - - 0.3832 0.4581 0.4001
TISR first submit 0.9545 0.9697 0.9091 0.9394 0.3500 0.4000 0.3750 0.6048 0.5896 0.5781
IISR 3rd submit 0.9545 0.9697 0.9091 0.9394 0.4000 0.4500 0.4250 0.6465 0.6037 0.6069
TISR 5th submit 0.9545 0.9697  0.9091 0.9394 0.2500 0.3000 0.2750 0.6357 0.6429 0.6261

I AQAMS2 0.9545 09697  0.9091 0.9394 0.3000 0.3500 0.3250 0.6333 0.6456 0.6310 I

mistral 0.9545 0.9697 0.9091 0.9394 0.3000 0.5000 0.4000 0.5852 0.6214 0.5844
Fleming-4 0.9545 0.9697 0.9091 0.9394 0.2000 0.5500 0.3225 0.3927 0.6356 0.4595
Fleming-1 0.9545 0.9697 0.9091 0.9394 0.1000 0.5500 0.2717 0.5268 0.6708 0.5638
2025-DMIS-KU-1 0.9545 0.9697 0.9091 0.9394 0.3500 0.6000 0.4392 0.6021 0.5999 0.5912
simple truncation 0.9545 0.9697 0.9091 0.9394 0.4500 0.6000 0.5042 0.4335 0.4300 0.4259

Figura 28: Resultados preliminares de Task B (Batch 3): Puntaje alto en preguntas de
tipo List.
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D. Resultados de ImageCLEF medical 2025

Results

The tables below contain only the best runs of each owner on aidmediabench, for a complete list of all runs please see the Google Sheets files for Concept Detection
and for Caption Prediction
Concept Detection

D Owner Submission Name F1 F1 secondary
1980 AUEB NLP Group ensemble_dual_thr_3_5Smonte_eff_eff_.zip 0.5888 0.9484
1725 Deeplens submission 0.5766 0.9299
1505 mapan submission 0.5660 0.9208
1892 UIT-Oggy submission 0.5613 0.9104
1508 DS4DH submission.csv 0.5225 0.8672
1774 sakthiii submission 0.4003 0.9082
| 1903 JJ-VMed submission 0.3982 0.8329 |
1807 UMUTeam submission_with_unknown_clean 0.2398 0.5377
1942 LekshmiscopeVIT submission.csv 0.1494 0.2298

Caption Prediction

UMLS
L o BERTScore ROUGE- Relevance _ Factuality
D owner Submission Name Overall Similarity BLEURT Concept AlignScore
(Recall) 1 Average - Average
1681 UMUTeam  submission.zip 0.3432 0.9271 0.5977 0.2594  0.3230 0.5268 0.1816 0.1375 0.1596
1520 DS4DH submission.csv.zip 0.3362 0.9016 0.6067 0.2516  0.3096 0.5174 0.1682 0.1417 0.1549
AI Stat
1900 Lab submission.zip 0.3229 0.8919 0.5823 0.2440 0.3173 0.5089 0.1524 0.1213 0.1369
1914 UIT-Oggy submission_ep2_cleaned.zip 0.3211 0.8798 0.5951 0.2535  0.3020 0.5076 0.1672 0.1021 0.1346
AUEB NLP
1403 G 2-instruct-blip-ft.zip 0.3068 0.7947 0.5884 0.2176  0.3030 0.4759 0.1429 0.1325 0.1377
roup
I 1896 11-VMed submission.zip 0.3043 0.8251 0.5953 0.2389  0.3094 0.4922 0.1366 0.0964 0.1165 I
1890 sakthiii submission 0.2746 0.7957 0.5553 0.1607 0.2806 0.4481 0.1094 0.0928 0.1011
1815 csmorgan Qwen_2B_Submission_1.zip  0.2315 0.5704 0.5180 0.1598  0.2385 0.3717 0.0741 0.1087 0.0914
Explainability Task - Human Evaluation Results
. Clinical Caption . Mean Visual- Completeness . Mean .
Caption ~ Caption . Visualization o Appropriateness
Team . appropriateness level of caption text of visualization Overall
readability . N focus . . o focus N of Methodology
of caption detail rating coherence visualization rating
4.5 2.7 2.6 3.3 3.3 3.1 2.8 2.6 2.8 4.0 3.2
3.4 2.4 2.8 4.1 3.2 1.9 1.9 1.9 1.9 2.0 2.6|

Figura 29: Resultados del sistema participante en ImageCLEF medical Caption 2025.
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