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Resumen

En el contexto actual del avance acelerado de las tecnologias basadas en inteligencia
artificial, ante la creciente presion por alcanzar una posicién competitiva a nivel interna-
cional, la adopciéon de modelos de aprendizaje automético ha crecido exponencialmente
en los sectores publicos y privados, en dreas tan criticas como el sector salud, seguridad
y defensa nacional. Estos sectores exigen cada vez mas el uso de modelos de inteligen-
cia artificial que sean explicables, como los drboles de decision, debido a la necesidad
de garantizar la trazabilidad, interpretabilidad y rendicion de cuentas en los procesos que
han sido automatizados. Sin embargo, esta misma caracteristica, que los hace valiosos,
también los convierte en objetivos vulnerables para ataques como el envenenamiento de
datos, capaces de alterar su funcionamiento desde la etapa de entrenamiento sin generar
indicadores detectables inicialmente.

El objetivo de este trabajo es demostrar como, pese a sus ventajas, estos modelos pue-
den deteriorarse de manera significativa ante ataques dirigidos o indiscriminados, com-
prometiendo no solo su precision, sino también su légica interna. Para ello, se llevard a
cabo un experimento en dos fases: una primera con entrenamiento con datos sin enve-
nenar para establecer métricas de referencia, y una segunda con datos envenenados que
permitird observar el impacto adverso en su rendimiento y estructura.

A través de este andlisis, se pretende alertar sobre la necesidad de implementar es-
trategias de defensa para modelos explicables en contextos criticos, subrayando que la
transparencia que proporcionan no garantiza por si sola la seguridad. Esta linea de inves-
tigacion se alinea con los Objetivos de Desarrollo Sostenible, al contribuir al desarrollo de
sistemas confiables, éticos y tecnolégicamente responsables en servicios esenciales para

la sociedad.

Palabras clave: Aprendizaje automdtico, Explicabilidad, Ciberseguridad, Arboles de

decision, Envenenamiento de datos, Evaluacion de modelos



Abstract

In the current context of the rapid advancement of technologies based on artificial
intelligence, and under growing pressure to achieve a competitive international position,
the adoption of machine learning models has increased exponentially in both public and
private sectors, particularly in critical areas such as health, security, and national defense.
These sectors increasingly demand the use of explainable artificial intelligence models,
such as decision trees, due to the need to ensure traceability, interpretability, and accoun-
tability in automated processes. However, this very characteristic, which makes them va-
luable, also renders them vulnerable targets for attacks such as data poisoning, capable of
altering their functioning from the training stage without generating initially detectable
indicators.

The aim of this work is to demonstrate how, despite their advantages, these models
can significantly deteriorate under targeted or indiscriminate attacks, compromising not
only their accuracy but also their internal logic. To this end, the study will carry out a
two-phase experiment: the first with training on clean data to establish baseline metrics,
and the second with poisoned data to observe the adverse impact on performance and
structure.

Through this analysis, the intention is to highlight the urgent need for defense strate-
gies in explainable models within critical contexts, emphasizing that transparency alone
does not guarantee security. This line of research aligns with the Sustainable Development
Goals by contributing to the development of trustworthy, ethical, and technologically res-

ponsible systems in essential services for society.

Keywords: Machine Learning, Explainability, Cybersecurity, Decision Trees, Data

Poisoning, Model Evaluation
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1. Introduccion

1.1. Justificacion

La creciente adopcion de sistemas de inteligencia artificial (IA) en sectores criticos co-
mo la salud, la seguridad y la defensa nacional, ha sido motivada por multiples factores.
Las politicas ptiblicas como la aprobacion de la Estrategia de Inteligencia Artificial 2024
(Ministerio para la Transformacion Digital y de la Funcion Publica, 2024) han supuesto
un impulso institucional. Sin embargo, también han puesto de manifiesto la necesidad de
abordar los desafios éticos fundamentales de la IA, que la Unién Europea (UE) resume
en cuatro: la justicia, respeto por la autonomia humana, la prevision del dafo y la explica-
bilidad (Ortiz de Zarate Alcarazo, 2022). Por tanto, en este contexto, el presente Trabajo
Fin de Master (TFM), se justifica desde una triple perspectiva: institucional, cientifica y
ética.

Desde el punto de vista legal e institucional, la Agenda Espaiia Digital 2026 (Minis-
terio de Asuntos Econdmicos y Transformacion Digital, 2022) establece una hoja de ruta
para la transformacion digital del pais. Segtn esta hoja de ruta, la ciberseguridad y la TA
son pilares fundamentales para el desarrollo econémico y social. Esta agenda enfatiza la
necesidad de garantizar la seguridad y la confianza en los sistemas digitales, especial-
mente en sectores estratégicos. Ademds, el Reglamento de Inteligencia Artificial de la
Unién Europea (Unidén Europea, 2024) establece normas armonizadas en materia de 1A
y subraya la importancia de la trazabilidad y la explicabilidad de los sistemas. Esto re-
sulta especialmente critico para modelos aplicados a &mbitos sensibles como la salud, la
seguridad o la defensa.

Desde una perspectiva cientifica, el envenenamiento de datos se reconoce como una
amenaza silenciosa y progresiva en los entornos de aprendizaje automdtico (Biggio &
Roli, 2018). Este tipo de ataque compromete la integridad del modelo puesto que intro-
duce ejemplos maliciosos en el conjunto de entrenamiento, sin generar alertas inmediatas
en su funcionamiento. Estudios recientes en el dmbito de la ciberseguridad y la IA, co-
mo los realizados por organizaciones internacionales (OWASP, 2024) e investigadores

(Calzavara et al., 2025) estudian el modo en que este tipo de amenazas puede modificar
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significativamente el comportamiento de los sistemas. Estas amenazas plantean un de-
safio particular en modelos explicables como los arboles de decision, cuya facilidad de
interpretacion y transparencia puede inducir a una falsa sensacion de seguridad. Es posi-
ble, por tanto, que esta aparente sensacion de seguridad dé lugar a la errénea percepcion
de que las medidas de proteccion pueden ser postergadas o completamente mitigadas si se
introducen métodos para mejorar la robustez como los Random Forest, no obstante, estos
enfoques son equivocados como exponen estudios previos (Drews et al., 2020; Chang &
Im, 2020; Chen et al., 2019).

Este TFM contribuird a visibilizar los riesgos asociados al envenenamiento de datos
en modelos explicables, con un enfoque particular en los drboles de decision, por ser uno
de los modelos mds extendidos gracias a su simplicidad, transparencia y capacidad de
explicacién (Mienye & Jere, 2024).

Desde una perspectiva €tica, se pretende impulsar una labor continua y comprometida
tanto en el disefio de estrategias de defensa para los modelos de IA, como en el desarrollo
de lineas de investigacion orientadas a una IA coherente con una visién explicativa, ética
y profundamente responsable. Esta labor no solo busca resguardar la integridad técnica
de los modelos, sino también reconocer su verdadero propdsito, mas alld de las métri-
cas, entendiendo que la motivacién subyacente de este trabajo es proteger a las personas
cuyas realidades pueden verse profundamente afectadas por decisiones automatizadas en

sectores criticos que impactan directamente en sus vidas y su dignidad.

1.1.1. Objetivos de Desarrollo Sostenible (Agenda 2030).

Este trabajo aspira a contribuir a los Objetivos de Desarrollo Sostenible (ODS) de la
Agenda 2030, propuestos por la Organizacién de las Naciones Unidas. En particular, se

relaciona directamente con los siguientes objetivos:

= ODS 3 - Salud y Bienestar: Al centrarse en la confiabilidad de modelos de 1A
en el &mbito sanitario, este trabajo promueve un uso mas seguro y efectivo de las

tecnologias en la salud publica.

= ODS 9 - Industria, Innovacion e Infraestructura: Aporta al desarrollo de infra-

estructuras digitales resilientes mediante el analisis y fortalecimiento de modelos

11



de aprendizaje automético ante posibles ataques de envenenamiento de datos.

= ODS 16 - Paz, Justicia e Instituciones Sélidas: Al estudiar algoritmos explicables
y la degradacion de modelos utilizados en seguridad y defensa, se contribuye a una

toma de decisiones mds transparente y confiable en instituciones publicas.

Estos objetivos proporcionan un marco de referencia adicional que guia el propdsito

social y ético de esta investigacion.

1.1.2. Motivacion personal

El presente trabajo se enmarca en una inquietud que ha acompafiado mi desarrollo
profesional a lo largo de mds de 20 afios de experiencia laboral en sectores estratégicos
como la seguridad ciudadana, la defensa de la nacidn y la gestidn de instituciones de salud.
Mi paso por instituciones como la Defensa Civil, Escuela de Investigaciones Policiales
y el Ejército de Chile, asi como mi experiencia dirigiendo organizaciones vinculadas a
servicios sanitarios y tecnolégicos, han reforzado mi conviccién sobre la importancia de
construir sistemas confiables, auditables y éticamente responsables. En los tltimos afios,
esta preocupacion se ha profundizado en mi rol como ingeniera en 1A, desde donde he
podido observar los desafios reales que enfrenta la adopciéon de modelos de aprendizaje
automadtico en contextos sensibles.

La eleccion de esta temdtica responde, por tanto, a una motivacion ética, profesional
y técnica. Abordar el estudio de cdmo los ataques de envenenamiento de datos afectan a
modelos explicables, como los drboles de decisidn, no solo representa una oportunidad
académica, sino una contribucién prictica a concienciar sobre el problema, lo cual es un
paso fundamental para plantearse cualquier posible via de solucién en aras de disefiar sis-
temas seguros y transparentes. Este trabajo constituye también el punto de partida para
una linea de investigacion en el d&mbito de la ciberseguridad aplicada a la IA, con un enfo-
que compartido entre las crecientes necesidades en esta drea desde el sector de la empresa
privada, y también desde el sector publico. Frente al interés comtin que representa este
ultimo, se busca aportar en dreas como la defensa de infraestructuras criticas, la mejora
de servicios esenciales y la contribucion a la credibilidad y fortalecimiento institucional

dado su alto impacto social.
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1.1.3. Metodologia para el desarrollo del TFM

El desarrollo de este trabajo se estructura siguiendo el modelo Cross Industry Standard
Process for Data Mining (CRISP-DM), ampliamente utilizado en proyectos de ciencia de
datos y aprendizaje automaético. Esta metodologia contempla seis fases interdependientes:
comprension del negocio, comprension de los datos, preparacion de los datos, modelado,
evaluacion y despliegue. En el contexto del presente TFM, se adaptardn estas etapas de la

siguiente manera:

= La fase de comprension del negocio se centra en la identificacion de las vulnerabili-
dades en modelos que utilizan algoritmos explicables como los arboles de decision,

aplicados en sectores criticos como en salud, seguridad y defensa.

= [a comprension y preparacion de los datos se llevard a cabo mediante la seleccion
y andlisis de datasets apropiados para el entrenamiento y la generacion de datos

envenenados.

= El modelado incluird la implementacién de modelos con drboles de decision en

ambos contextos (entrenados con datos sin y con envenenamiento).

= La evaluacion considerard métricas cldsicas para problemas de regresion y clasifi-

cacion, asi como para el anélisis de la estructura explicativa de los arboles.

= Finalmente, los hallazgos serdn analizados en funcién del comportamiento observa-
do de los modelos bajo condiciones adversariales, con el objetivo de evaluar cam-
bios en la estructura y en el rendimiento ante manipulaciones en los datos de entre-
namiento. No se contempla una fase de despliegue en produccion, ya que el alcance

del trabajo se limita a la experimentacién controlada.

Este enfoque estructurado garantiza la coherencia metodoldgica del trabajo y permi-
te una trazabilidad clara de cada una de las decisiones tomadas a lo largo del desarrollo
del TFM. Ademds, este marco de gestion se complementa con la perspectiva epistemo-
l6gica y experimental desarrollada en la seccidn 3, en coherencia con el paradigma que
busca objetividad, medicidon, comprobacién y prediccion, es decir, el paradigma positi-

vista adoptado, tal como se explica en esa seccion. De forma transversal, las fases de
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CRISP-DM se han articulado de manera que cada una contribuya al cumplimiento de los
objetivos especificos planteados en el TFM, asegurando la alineacién entre metodologia

y resultados esperados.

1.2. Problema y finalidad

Tal como se expuso en el apartado anterior, en sectores criticos como la salud, la
seguridad y la defensa nacional, la adopcién de IA ha sido especialmente promovida por
politicas publicas nacionales y normativas internacionales recientes.

No obstante, esta busqueda de una hiperautomatizacion de procesos y la adopcién
de modelos de IA en areas criticas, ha generado también un creciente interés por parte
de los reguladores y la sociedad civil (Preece et al., 2018) en torno a la explicabilidad y
gobernanza en el uso de estos sistemas (Grimmelikhuijsen & Meijer, 2022).

En estos contextos, donde las decisiones automatizadas pueden tener consecuencias
criticas en la vida de las personas o en la confianza hacia nuestras estructuras organizacio-
nales, la explicabilidad de los modelos no son una opcién, sino un requisito ético cada vez
mas exigible, ya que se pretende garantizar la trazabilidad, auditar decisiones y facilitar la
rendicién de cuentas por parte de las instituciones que las implementan (Ortiz de Zarate
Alcarazo, 2022). Este requisito de transparencia ha favorecido la difusién de los modelos
explicables, como los drboles de decision, para la resolucion de diversas probleméticas en
areas criticas tanto en seguridad (Gémez et al., 2023; Cuesta Calvo et al., 2018) y defensa
(Lewis et al., 2016), como en salud (Cordero et al., 2024; Ministerio de Sanidad, s.f.),
puesto que ofrecen una representacion clara y comprensible de las decisiones tomadas
por el modelo, lo que los convierte en piezas clave para la legitimacion del uso de la IA
en dominios de alto impacto social (Bishop, 2009; Russell & Norvig, 2004).

Pero la real problemadtica surge de esta misma caracteristica de transparencia y faci-
lidad de interpretacion, ya que se expone como una de las principales causas de vulne-
rabilidad de estos algoritmos (Barredo Arrieta et al., 2020). Al ser modelos cuyas reglas
de decision pueden anticiparse con relativa facilidad, los algoritmos explicables como los
arboles de decision, se exponen a manipulaciones dirigidas desde la fase de entrenamien-
to. Asi sucede con el envenenamiento de datos, que puede alterar la estructura interna del

algoritmo sin generar alertas evidentes.
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Una vez expuesto el contexto, el problema adquiere mayor relevancia: si bien los ata-
ques de envenenamiento de datos han sido ampliamente estudiados en el &mbito de redes
neuronales y otros modelos complejos, los drboles de decision han recibido una atencién
comparativamente menor, a pesar de su uso extensivo en el andlisis de datos tabulares
debido a su eficacia (Calzavara et al., 2025). Esta brecha en la literatura pone de relieve la
necesidad de examinar el impacto de estas amenazas en dicho algoritmo, especialmente
en entornos sensibles, donde la trazabilidad y la rendicién de cuentas resultan fundamen-
tales (Ramirez et al., 2022).

Al considerar que los arboles de decision, asi como otros modelos explicables, segui-
rdn siendo utilizados como una herramienta ttil en sectores criticos, este trabajo busca
analizar empiricamente el comportamiento de drboles de decision entrenados con datos
manipulados, compardndolos con modelos entrenados con datos no alterados. La fina-
lidad es evidenciar el deterioro potencial de su rendimiento, proporcionar métricas que
permitan demostrar su degradacidn y generar conciencia sobre los riesgos asociados, con

el fin de promover futuras estrategias de defensa adaptadas a entornos de alta sensibilidad.
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1.3.

Objetivos del TFM

Objetivo principal

Analizar y documentar el impacto y la degradacion de los ataques de envenenamiento

de datos sobre modelos de ML explicables de regresion y clasificacidn, utilizando 4rboles

de decision para el caso de estudio, con el fin de evidenciar su vulnerabilidad ante ataques

adversariales de envenenamiento, obtener criterios de evaluacién técnica y evaluar las

implicaciones de su implementacion en sectores criticos como salud, seguridad y defensa.

Objetivos especificos

a)

b)

d)

Vulnerabilidad asociada a la explicabilidad: Evidenciar la vulnerabilidad ante
ataques adversariales de envenenamiento, asociada a la explicabilidad de los drboles

de decision.

Modos de envenenamiento de datos: Identificar tipos de ataque de envenenamien-

to de datos aplicables a arboles de decision.

Deterioro por envenenamiento de datos: Obtener métricas para medir el poten-
cial deterioro de un modelo explicable basado en arbol de decisién, sometido a

envenenamiento de datos.

Riesgos en contextos criticos: Evaluar el impacto, en forma de riesgos operativos y
de gobernanza, del uso de este modelo en contextos criticos como salud, seguridad

y defensa nacional.

Recomendaciones para prevenir y mitigar los riesgos: Recopilar y recomendar
medidas de prevencién y mitigacion del riesgo de envenenamiento de datos en mo-

delos explicables, particularmente sobre arboles de decision.
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1.4. Planificacion

Fase 1: Estado del arte y preparacion de datos
= Revision de la literatura.
= Bisqueda y seleccidn de la bibliografia y referencias.
= Busqueda y seleccion de los dataset.

= Preparacion de los dataset, preprocesamiento y limpieza de datos.

Fase 2: Disefio e implementacion de los experimentos
= Disefio de los experimentos y seleccion de métricas.
= Desarrollo del mecanismo de generacion de datos envenenados.
= Definicién de criterios de evaluacién

= Entrenamiento de modelos con datos no alterados y envenenados.

Fase 3: Andlisis de resultados y conclusiones
= Evaluacién de métricas de rendimiento por experimento.
= Andlisis comparativo de resultados entre experimentos.
= Conclusiones.

= Ajustes finales.
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2. Marco teorico

2.1. Aprendizaje supervisado: fundamentos, clasificacion y regresion

El aprendizaje supervisado es una de las ramas fundamentales del aprendizaje auto-
matico (Machine Learning o ML), y se caracteriza por la existencia de un conjunto de
entrenamiento conformado por pares de datos del tipo entrada-salida, donde el objetivo es
aprender una funcién que pueda predecir la salida correspondiente a nuevas entradas no
vistas durante el entrenamiento del modelo (Russell & Norvig, 2004). Este paradigma se
utiliza principalmente para realizar dos tareas: clasificacion, cuando las salidas pertenecen
a un conjunto discreto de clases, y regresion, cuando las salidas son valores continuos.

En la clasificacion, el modelo intenta asignar cada observacion de entrada a una de
varias categorias predefinidas. Por ejemplo, en el dmbito médico, esto puede traducirse
en determinar si un paciente padece o no una enfermedad especifica, o clasificar el nivel
de riesgo de hospitalizacion segtn factores de morbilidad. Por su parte, en la regresion,
el objetivo es predecir una variable cuantitativa, como lo seria en el &mbito de la segu-
ridad y defensa nacional, predecir la tasa de criminalidad en una regioén determinada, la
probabilidad de éxito de una operacion de inteligencia, o el tiempo de respuesta ante una
emergencia.

Ambos enfoques comparten técnicas y modelos base, entre ellos los arboles de deci-
sién, redes neuronales, maquinas de vectores de soporte, y modelos basados en inferencia

bayesiana.

2.1.1. Meétricas de evaluacion de rendimiento para modelos supervisados

En el aprendizaje automaético supervisado, las métricas de evaluacién permiten cuan-
tificar el rendimiento de un modelo respecto a su capacidad de generalizar sobre datos
no vistos durante el entrenamiento. Estas métricas externas son independientes del algo-
ritmo utilizado, y se aplican tras el entrenamiento para comparar resultados en tareas de
clasificacion o regresion.

A continuacion, se describen solo algunas métricas comtiinmente usadas para medir

el desempefio de los modelos, enfocdndose en aquellas que serdn utilizadas en la fase
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experimental de este TFM, diferenciadas segin el tipo de experimento (regresion o cla-
sificacion). La implementacion de estas métricas, sobre drboles de decision, se detalla la

seccion 2.3.2.

2.1.1.a Evaluacion de rendimiento de modelos de clasificacion

Los modelos de clasificacién predicen una etiqueta discreta. Para evaluar su rendi-

miento, una herramienta ampliamente utilizada es la Matriz de confusion.

Prediccion Positiva Prediccion Negativa

Real Positivo | Verdaderos Positivos (TP) Falsos Negativos (FN)

Real Negativo Falsos Positivos (FP) Verdaderos Negativos (TN)

Cuadro 1: Matriz de confusion

De esta matriz se desprenden las métricas mas comunes como:

= Accuracy (Exactitud): proporcién de instancias correctamente clasificadas entre

el total de predicciones. Es sensible a clases desbalanceadas. Formula:

P TP+TN 0
ccuracy =
Y T TPYTN+FP+FN

= Precision (Precisiéon): proporcion de verdaderos positivos entre todos los elemen-

tos clasificados como positivos.

TP
Precision = ———— )
TP+FP

= Recall (Sensibilidad o Tasa de verdaderos positivos): proporcién de verdaderos

positivos entre todos los elementos que realmente pertenecen a la clase positiva.

TP
Recall = ——— (3)
TP+FN

= F1-Score: media arménica entre precision y recall, ttil cuando se requiere equili-
brio entre ambas.

Fl—>2 Precision - Recall

“4)

" Precision + Recall
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= Average Precision - AP (Precision Promedio): métrica que resume el drea bajo
la curva de precision-recall (PR), calculada como el promedio de las precisiones
obtenidas para cada nivel de recall. Es especialmente util en contextos con clases

desbalanceadas.

n
donde P, es la precision en el umbral n, y R, es el recall correspondiente.

= Receiver Operating Characteristic - ROC (Curva de Caracteristica operativa
del receptor): es la representacion grafica de la capacidad del modelo para distin-
guir entre clases, representando la tasa de verdaderos positivos frente a la tasa de

falsos positivos.
2.1.1.b Evaluacion de rendimiento de modelos de regresion

Los modelos de regresion predicen un valor continuo. Sus métricas mds comunes

incluyen:

= MAE (Mean Absolute Error): error absoluto medio entre las predicciones y los

valores reales. Formula:

1 & R
MAE = p Y [vi—9il (6)
i=1

Interpretacion de resultados: valores mds bajos indican mejor ajuste del modelo,

pero no penaliza errores grandes.

= MSE (Mean Squared Error): error cuadratico medio entre las predicciones y los
valores reales. Formula :
1 & R
MSE =~} (vi—5i)? @)
i=1
Interpretacion de resultados: valores mds bajos indican mejor ajuste del modelo.

Penaliza mas los errores grandes debido al cuadrado de las diferencias.

» R’ Score (Coeficiente de determinacion): mide la proporcién de varianza explica-

da por el modelo, independientemente de la escala de la variable objetivo. Férmula:

n 02
R — 1_M (8)
"L i—79)?
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Interpretacion de resultados: valores cercanos a 1 indican un buen ajuste del mode-

lo, mientras que valores negativos sugieren un mal desempeiio.

2.2. Modelos explicables de IA: principios y taxonomia

Como ya se ha justificado inicialmente en este trabajo, la explicabilidad de los mo-
delos de IA es un requisito fundamental en sectores criticos, donde la transparencia y
la rendicién de cuentas son esenciales. Atender a este requisito se ha vuelto relevante,
especialmente en dichos sectores, puesto que las decisiones automatizadas pueden tener
un impacto significativo en la vida de las personas. Ante estos desafios de transparencia
surge el campo de la inteligencia artificial explicable (eXplainable Al - XAI) (Barredo
Arrieta et al., 2020), cuyo objetivo es garantizar que los sistemas de IA puedan justificar
sus decisiones de forma inteligible para los humanos.

La XALI se enfrenta a la tension cldsica entre precision predictiva y comprension del
modelo, y se la entiende como el conjunto de métodos que “aportan evidencia o razones

comprensibles que justifican cada salida del sistema” (Phillips et al., 2021)

2.2.1. Principios fundamentales

El Instituto Nacional de Estdndares y Tecnologia (NIST, por sus siglas en inglés) de
EE.UU. ha propuesto cuatro principios clave que toda IA explicable debe cumplir para

ser considerada confiable y transparente (Phillips et al., 2021):

» Explicabilidad (Explainability) La IA debe ofrecer explicaciones claras sobre como

genera sus resultados.

» Justificabilidad (Meaningful) Las explicaciones deben ser comprensibles y relevan-

tes para el usuario final.

= Exactitud (Accuracy) Las explicaciones deben reflejar fielmente el comportamiento

real del sistema.

= Limites del conocimiento (Knowledge Limits) La 1A debe identificar cudndo no

tiene suficiente confianza para emitir una respuesta.
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El hecho de que en la literatura se ha tendido a confundir explicabilidad con inter-
pretabilidad, haciendo uso indistinto de esta y otras terminologias similares, se reconoce
como el primer obsticulo para la comprension de la XAl (Barredo Arrieta et al., 2020).

Sin embargo, investigaciones recientes, como las recogidas por Ortiz de Zarate (Ortiz
de Zarate Alcarazo, 2022), enfatizan la necesidad de diferenciarlas. Este trabajo recoge
las definiciones del NIST, diferenciando que mientras la interpretabilidad se refiere a la
transparencia intrinseca del modelo (comprender directamente su estructura y funciona-
miento), la explicabilidad abarca también aquellas técnicas externas que permiten hacer
comprensibles los modelos complejos mediante mecanismos de post andlisis (Phillips et
al., 2021).

Por esta razén, se habla no sélo de algoritmos explicables, sino de modelos explica-
bles (Barredo Arrieta et al., 2020), incluyendo tanto los algoritmos como las herramientas
externas que permiten dotarlos de significado. Esta distincion es relevante, ya que permite
abordar la explicabilidad con una perspectiva mds amplia, considerando la naturaleza del

modelo y las técnicas utilizadas para interpretarlo.

2.2.2. Clasificacion de modelos explicables

Desde un punto de vista conceptual, la literatura distingue dos perspectivas diferentes

(Barredo Arrieta et al., 2020):

2.2.2.a Modelos de ML transparentes

Estos modelos son comprensibles por si mismos, es decir, son interpretables por dise-

no sin necesidad de aplicar técnicas adicionales, por ejemplo:

Arboles de decision (Decision Trees)

Aprendizaje basados en reglas (Ruled-based Learning)

Regresion lineal o logistica

Naive Bayes (en ciertos contextos simples)

Los arboles de decision pertenecen a esta categoria. Ofrecen una estructura jerarquica

de decisiones, donde cada nodo representa una condicidén de decisiones que puede se-
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guirse de forma légica, visual y textual. Cada nodo representa una condicion claramente

interpretable, y cada rama un camino de decision verificable por humanos.
2.2.2.b Modelos de ML con técnicas de explicabilidad post-hocs

Estos modelos no son interpretables por si mismos, se consideran de “caja negra”,
esto quiere decir que su funcionamiento interno no es comprensible por si mismo. Sin

embargo, pueden ser analizados mediante herramientas externas que generan explicacio-

nes aproximadas de su comportamiento. Ejemplos de algoritmos complejos incluyen:

= Redes neuronales profundas o Deep Neural Networks (DNN)

Redes Neuronales Convolucionales o Convolutional Neural Networks (CNN)

Redes Neuronales Recurrentes o Recurrent Neural Networks (RNN)

Miquina de Soporte Vectorial o Support Vector Machines (SVM)

Métodos ensembled (como Random Forest 0 XGBoost)

Herramientas de explicabilidad comunes:

= Explicaciones locales e independientes del Modelo (Local Interpretable Model-

Agnostic Explanations, LIME)
= Explicaciones Aditivas de Shapley (Shapley Additive Explanations, SHAP)
= Explicaciones Contrafactuales (Counterfactual Explanations)

= Mapas de Saliencia (Saliency Maps, aplicados principalmente a imagenes)

2.2.2.c Otros modelos emergentes

Cabe mencionar que, actualmente y en forma incipiente, comienzan a desarrollarse
técnicas que podrian constituir una nueva clasificacién como modelos hibridos o modelos
que integran explicabilidad mediante el uso de arquitecturas tipo Transformers, conocidas
por sus mecanismos de atencidn, que permiten identificar qué partes de la entrada han
influido més en la prediccion del modelo pero como estdn en un estado de desarrollo
inicial, no se incluyen como una clasificacion aceptada ain. Ejemplos de estas técnicas

emergentes incluyen:
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= Modelos de atencién interpretativa con Procesamiento de Lenguaje Natural (como

Transformers con visualizacion de atencién) (Fantozzi & Naldi, 2024)
= Modelos destilados + reglas simbdlicas (Tan et al., 2018)

= Sistemas de Reglas Inducidas a partir de Redes Neuronales (Distill & Match) (Sun
et al., 2025)

= Frameworks como AUTOLYCOUS, que usan XAl para extraer modelos interpre-

tables desde un modelo original bajo “acceso de caja negra”. (Oksuz et al., 2024)

A pesar de que existen investigaciones que promueven los beneficios de los modelos
transparentes por sobre modelos de caja negra que deban ser explicados (Rudin, 2019), los
usos de ambos enfoques son ya tangibles en dominios donde la trazabilidad de la decision
es un requisito legal o ético. En salud, los arboles clinicos y modelos de riesgo basados
en reglas facilitan la auditoria médica y la comunicacién con el paciente. En finanzas
se emplean explicaciones de tipo SHAP o LIME para justificar concesiones de crédito
y detectar sesgos sistémicos. En seguridad se han utilizado 4rboles de decision para la
prediccion de delitos (Cuesta Calvo et al., 2018).

No obstante lo anterior, recientes trabajos demuestran que muchas explicaciones tam-
bién pueden ser vector de diversos ataques o hacer mds efectivos los ataques (Barredo
Aurrieta et al., 2020; Ramirez et al., 2022), como la extraccién de modelos o el envenena-
miento de datos, subrayando la necesidad de salvaguardas adicionales (Oksuz et al., 2024;
Alruwaili & Moulahi, 2025). En el sector publico europeo, la explicabilidad figura ya co-
mo uno de los cuatro principios éticos imprescindibles para una IA “digna de confianza”
como se expuso en la justificacion de este TFM.

En suma, las investigaciones actuales convergen en que la explicabilidad no es un
accesorio, sino un requerimiento funcional que condiciona la adopcion segura de IA en
ambitos regulados.

Finalmente, se puede evidenciar que esta taxonomia permite posicionar los arboles de
decisién como una de las pocas técnicas que son explicables por disefio, lo cual justifica su
uso como modelo base en este trabajo, ya que no solo permiten una evaluacién directa del

impacto del envenenamiento de datos sobre las predicciones, sino también sobre la 16gica
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interna de las decisiones, lo cual no es posible en modelos opacos sin aplicar técnicas

externas.

2.3. Arboles de decision

2.3.1. Introduccion a los arboles de decision

Los arboles de decision son algoritmos de aprendizaje supervisado ampliamente uti-
lizados, tanto en tareas de clasificacion como de regresion. Su estructura jerdrquica per-
mite representar decisiones mediante divisiones sucesivas del espacio de caracteristicas y
sus posibles consecuencias se observan de manera gréfica, facilitando la interpretacion y
comprension de los resultados por parte de los humanos (Duda et al., 2001).

Un édrbol comienza con un nodo raiz que representa todo el conjunto de datos. Luego,
en cada nodo interno, se selecciona una caracteristica y un umbral de decisién que maxi-
miza la medida de pureza que evalua la homogeneidad (como la entropia, la ganancia de
informacion o el indice de Gini) para dividir los datos en subconjuntos. Este proceso se
repite recursivamente hasta que se cumplen ciertos criterios de parada, como alcanzar un
ndmero minimo de ejemplos en un nodo o una profundidad maxima del 4rbol. Al final del
proceso recursivo, cuando este alcanza el nodo hoja, se asigna una clase (en clasificacion)
o un valor promedio (en regresion). La poda es una técnica utilizada para evitar el sobre-
ajuste, eliminando ramas que aportan poca informacién y mejorando la generalizacién del
modelo (Duda et al., 2001).

La naturaleza binaria de la toma de decisiones en los drboles y su representacion
explicita mediante reglas del tipo “si-entonces” (Russell & Norvig, 2004) convierten a

estos modelos en herramientas de alta explicabilidad.

«A key property of tree-based models, which makes them popular in fields
such as medical diagnosis, for example, is that they are readily interpretable
by humans because they correspond to a sequence of binary decision applied

to the individual input variables.» (Bishop, 2009, p. 664).

“Una propiedad clave de los modelos basados en drboles, que los hace popu-
lares en campos como el diagndstico médico, por ejemplo, es que son facil-

mente interpretables por los humanos porque corresponden a una secuencia
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de decisiones binarias aplicadas a las variables de entrada individuales.” (tra-

duccién propia).

No obstante, esta misma estructura explicable puede ser también una fuente de fragi-
lidad. Estudios han demostrado que pequeiias alteraciones en los datos de entrenamiento,
como las introducidas en ataques de envenenamiento de datos, pueden afectar las divisio-
nes, alterar la estructura del drbol, degradar el accuracy del clasificador o forzar ciertas
predicciones (Cina et al., 2024; Drews et al., 2020). Esta susceptibilidad es atin més cri-
tica en contextos donde se espera que el modelo mantenga la consistencia y justificacion
l6gica en su comportamiento.

Por ello, aunque los arboles de decision ofrecen ventajas claras en términos de inter-
pretabilidad y transparencia, su uso en entornos criticos requiere una evaluacién cuidadosa
de su robustez frente a ataques adversariales. Este trabajo utilizard arboles como modelo
base precisamente por su valor explicativo, lo que permite no solo medir la degradacién
de rendimiento, sino también evidenciar directamente cémo los ataques comprometen su
l6gica interna. Adicionalmente, su uso en dreas como la salud, la seguridad y la defensa
nacional, los convierte en un caso de estudio relevante para explorar las implicaciones de

los ataques de envenenamiento de datos en sistemas criticos.

2.3.2. Meétricas de evaluacion de los arboles de decision

En el contexto de los drboles de decision, se distinguen dos tipos de métricas: las mé-
tricas internas, utilizadas durante la construccion del arbol para seleccionar las divisiones
Optimas en cada nodo, como el error cuadratico medio, la entropia o el indice de Gini
que han sido detalladas en el Anexo A, y las métricas externas, empleadas para evaluar el
rendimiento general del modelo una vez entrenado y que detallaron en la seccion 2.1.1

Las métricas internas permiten guiar el crecimiento del arbol optimizando la separa-
cion de clase, de esta forma el arbol aprende seleccionando la particiéon que mejor separa
los datos, guiado por criterios de pureza (Duda et al., 2001, p. 398) o por la reduccion del
error en cada particién o nodo. Por su parte, las métricas externas, como Accuracy, F1-
score o el error cuadratico medio (MSE), entre otras, son fundamentales para cuantificar
la capacidad de generalizacién del modelo, compararlo con otros enfoques y validar su

desempeiio en datos no vistos.
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Ambos tipos de métricas son esenciales: las internas definen la estructura del modelo
y las externas permiten evaluar su comportamiento global, tanto en tareas de clasifica-
cién como en aquellas de regresion. Esta distincion serd especialmente relevante cuando
se desarrolle la metodologia de este trabajo, donde se empleardn métricas externas para

analizar los efectos del envenenamiento de datos sobre el rendimiento de los modelos.

2.3.3. Variantes en arboles de decision

Hasta ahora se ha descrito el funcionamiento general de los arboles de decisién bina-
rios clasicos. Existen, sin embargo, multiples variantes desarrolladas con el objetivo de
mejorar su eficiencia, precision o adaptabilidad a contextos especificos.

Una revision ampliada de estas variantes, incluyendo los algoritmos ID3, C4.5, CART
y sus desarrollos posteriores como los Optimal Classification Trees (OCT), se presenta en
el Anexo B. Alli se analizan sus fundamentos, diferencias clave y &mbitos de aplicacion.

En sintesis, la evolucioén desde los modelos pioneros hasta enfoques contemporaneos
como los OCT refleja una linea de investigacion orientada a maximizar la precisién sin

comprometer la interpretabilidad.

2.3.4. Ventajasy desventajas de los arboles de decision

La documentacién consultada menciona multiples ejemplos de ventajas y desventajas
del uso de los arboles de decision. A continuacion se compilan algunas de las encontradas
en el marco de este trabajo:

Ventajas:
= Interpretabilidad: Son ficiles de interpretar por los humanos (Bishop, 2009)

= Enfoque similar al humano: La estructura de los drboles de decision se asemeja al
proceso de toma de decisiones humano, lo que facilita su comprension y aceptacion

en aplicaciones practicas.(James et al., 2013)

= Visualizacion grafica: La representacion grafica de los drboles de decisién permite
una visualizacion clara de las decisiones facilitando la interpretacién y comunica-

cién de los resultados a audiencias no técnicas.(James et al., 2013)
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= Multitarea: Los drboles de decision pueden utilizarse tanto para clasificacién como

para regresion. (Murphy, 2022)

= Robustez ante outliers: Son relativamente menos sensibles a los valores atipicos

(Murphy, 2022)

= Son rapidos de entrenar y escalan bien: Los drboles de decision son eficientes en
términos de tiempo de entrenamiento y pueden manejar grandes conjuntos de datos

sin problemas significativos de escalabilidad (Murphy, 2022).

= Manejo de datos faltantes: Pueden manejar valores faltantes de manera efectiva,
ya sea ignorandolos o asignando probabilidades basadas en el resto de los datos

(Murphy, 2022).
Desventajas:

= Inestabilidad: Los drboles de decision tienen una alta varianza, lo que puede ser
su mayor desventaja, ya que pequefias variaciones en los datos de entrenamiento
pueden resultar en drboles muy diferentes, lo que afecta la consistencia del modelo

debido a su naturaleza jerarquica (Hastie et al., 2009; Bishop, 2009)

= Subédptimos: Aunque los drboles de decision son féciles de interpretar, pueden no
ser tan Optimos como otros modelos mds complejos, dado que las divisiones estdn
alineadas a los ejes y no pueden capturar relaciones més complejas entre las carac-
teristicas (Bishop, 2009). Por otra parte, el 6ptimo global de un 4rbol de decisién
no es necesariamente el optimo local, lo que puede llevar a soluciones subdptimas

en la practica (Duda et al., 2001).

= Complejidad computacional: La construccion de arboles de decisién puede ser
computacionalmente costosa, especialmente en conjuntos de datos grandes o con

muchas caracteristicas (Duda et al., 2001).

= Poca precision: Aunque son faciles de interpretar, los drboles de decisién pueden

no ser tan precisos como otros modelos mas complejos (Murphy, 2022).
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2.4. Envenenamiento de datos: definicion y tipologias

Al revisar algunas de las investigaciones mds actuales, se encuentra que una influyente
fundacion estadounidense en el campo de la ciberseguridad, Open Worldwide Application
Security Project (OWASP), en una de sus publicaciones mds recientes, presenta una cla-
sificacion de los diez riesgos de seguridad més criticos actuales relacionados con el uso
de modelos de IA Generativa y LLM (OWASP, 2024).

A continuacion, se enumeran estos riesgos, con su nombre original y una traduccién

adaptada (traduccién propia):
= Inyeccién de instrucciones (Prompt Injection)
= Divulgacién de informacidén sensible (Sensitive information Disclosure).
= Vulnerabilidades de la cadena de suministro (Supply Chain Vulnerability)
= Envenenamiento de modelos y datos (Data and Model Poisoning)
= Manejo inadecuado de salidas (Improper output Handling)
= Autonomia excesiva (Excessive Agency)
= Filtracién de instrucciones del sistema (System Prompt Leakage)
= Debilidades en vectores y embeddings (Vector and Embedding Weaknesses)
= Desinformacién (Misinformation)

= Consumo descontrolado de recursos (Unbounded Consumption)

Entre todos los mencionados en esta lista de riesgos, los més relevantes a profundizar
en el marco del presente trabajo son los mencionados en el cuarto item: Envenenamiento
de modelos y datos, que buscan comprometer la integridad del modelo desde su fase de
entrenamiento.

Con la finalidad de dar un marco contextual a este tipo de ataque, es importante desta-
car que en dmbito de la ciberseguridad y la ciberinteligencia, el envenenamiento de datos

es uno de los muchos tipos de ataques que pueden enmarcarse dentro de lo que se conoce
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como ataques adversariales (adversarial attacks). Estos ataques buscan explotar vulne-
rabilidades en los modelos de aprendizaje automatico para manipular sus predicciones o
comportamientos, y pueden clasificarse en varias categorias segin su objetivo y metodo-
logia.

El NIST de Estados Unidos, nos proporciona un exhaustivo marco tedrico sobre la
taxonomia de los diversos tipos de ataques adversariales (Vassilev, 2025), haciendo una
primera distincion entre ataques a modelos de 1A predictivos y ataques a modelos de
IA generativos. Como los drboles de decisiéon son modelos predictivos, este trabajo se
centrard en los ataques adversariales que afectan a estos modelos.

De este modo, en el contexto de los modelos predictivos, se define los ataques adver-
sariales como aquellos que buscan comprometer la integridad, confidencialidad o dispo-
nibilidad de un modelo de IA, afectando su capacidad para realizar predicciones precisas
y confiables.

Otros criterios que se tienen en cuenta para clasificar los ataques adversariales son los
objetivos, capacidades y conocimientos del atacante, lo que permite agrupar las variantes
de los ataques para una mejor comprension de sus caracteristicas y potenciales impactos.

Finalmente, se identifica que los modelos de ML predictivos diferencian un estado
de entrenamiento donde el modelo aprende y un segundo estado, el estado de despliegue
también llamado de inferencia (Papernot et al., 2018), donde el modelo realiza prediccio-
nes sobre datos no vistos en la fase de entrenamiento.

Los ataques por envenenamiento, en el contexto de sistemas de 1A, se refiere a ataques
adversariales disefiados para interferir con el proceso de entrenamiento de un modelo
de ML, introduciendo datos maliciosos en el conjunto de entrenamiento o manipulando
directamente los pardmetros del modelo (Vassilev, 2025).

Dependiendo del objetivo del atacante, se pueden encontrar ataques aleatorios o diri-
gidos, y los dltimos son por lo general més efectivos y dificiles ya que tienen un objetivo
especifico (Lyu et al., 2020).

También es posible diferenciar dos categorias mas, mencionadas en la literatura, segin
hacia dénde son dirigidos los ataques, a los datos o al modelo (Wan et al., 2023; Vassilev,

2025):
= Envenenamiento de datos (Data poisoning): el objetivo de este ataque son los
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datos de entrenamiento, y corresponde a la manipulacién de ejemplos dentro del
conjunto de entrenamiento, para alterar el modelo y producir salidas influenciadas

por el atacante. Esta es la categoria en la que se enfoca el presente trabajo.

= Envenenamiento del modelo (Model poisoning): el objetivo de este ataque es el
modelo e implica manipular directamente los parametros del modelo durante su
entrenamiento. Se suele asociar a modelos de aprendizaje distribuido (como ocurre
en federated learning), generalmente por parte de un cliente comprometido. Aunque
igualmente riesgoso, este tipo de ataque se considera fuera del alcance del presente

estudio.

2.4.1. Definicion de envenenamiento de datos

El ataque de envenenamiento de datos, también conocido como data poisoning, es
una técnica de ataque adversarial que busca comprometer la integridad de un modelo
de aprendizaje automatico. Su naturaleza rompe la suposicion implicita de que los datos
de entrenamiento son representativos de los datos de prueba reales, logrando su objetivo
final que es determinar una forma efectiva de contaminar los datos de entrenamiento para
forzar predicciones erroneas del modelo en el momento de la prueba. (Calzavara et al.,
2025).

La metodologia de este ataque implica la introduccién de ejemplos, disefiados cuida-
dosamente, en el conjunto de datos de entrenamiento, con el fin de alterar el comporta-
miento del modelo final.

Estos ataques son particularmente problemdticos en modelos de alta sensibilidad a
los datos de entrenamiento, como es el caso de los arboles de decision, ya que incluso
pequeios cambios pueden alterar la estructura del drbol y modificar por completo las

reglas de decision aprendidas (Bishop, 2009).

2.4.2. Clasificacion del envenenamiento de datos

Existen multiples variantes de este ataque, que pueden clasificarse segtin el objetivo
del atacante y la forma en que se construyen los datos contaminados:

Segtn el objetivo del atacante, se identifican tres categorias principales (Cina et al.,
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2024):

= Indiscriminado (Indiscriminate): El atacante manipula una fraccién del conjunto

de entrenamiento para maximizar el error de clasificacion del modelo.

= Dirigido (Targeted) : El atacante manipula de nuevo un subconjunto de los datos
de entrenamiento, pero esta vez con el objetivo de provocar la clasificacion errénea

de un conjunto especifico de muestras (limpias).

= Puerta trasera (Backdoor): El atacante manipula los datos de entrenamiento para
que el modelo aprenda a clasificar correctamente las muestras limpias, pero al mis-
mo tiempo introduce una serie de muestras envenenadas con un patrén especifico
(detonador de puerta trasera) que activan un comportamiento especifico del modelo

que se presenta durante la fase de inferencia.

Segtn la forma en que se construyen los datos contaminados, se pueden distinguir dos

tipos de ataques (Lyu et al., 2020):

= Ataques de etiqueta limpia (Clean label attacks): El atacante no puede modificar
las etiquetas de los datos, pero puede introducir ejemplos que alteren el compor-
tamiento del modelo. Estos ataques son més dificiles de detectar, ya que los datos
envenenados pueden parecer legitimos a simple vista y el rendimiento del modelo

no se ve afectado .

= Ataques de etiqueta sucia (Dirty label attacks): El atacante puede modificar las
etiquetas de los datos, introduciendo ejemplos que desea etiquetar erréneamente
con una etiqueta objetivo. Estos ataques son mads ficiles de detectar, ya que los
datos envenenados pueden ser identificados por su inconsistencia con el resto del

conjunto de entrenamiento.

Complementariamente, el trabajo de Ramirez (Ramirez et al., 2022) nos proporciona
un listado de variantes de ataques de envenenamiento de datos que se ha incluido en el
Anexo. No obstante, es relevante incluir en esta seccion dos de los ataques incluidos en el
listado ya que son representativos de las amenazas que enfrentan los drboles de decision

y son utilizados en la fase experimental de este TFM:
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= Ataque de manipulacion de etiquetas (Label-Flipping Attacks): Consiste en la
alteracion maliciosa de las etiquetas en los datos de entrenamiento, lo que puede
realizarse de forma aleatoria o especifica para reducir la precision general o causar

una clasificacién errénea de una clase especifica, respectivamente.

= Ataques de Envenenamiento basados en caracteristicas (Feature-Based Poiso-
ning Attacks): Crean muestras de entrenamiento envenenadas que son indistingui-
bles de las muestras originales para la inspeccién visual humana, preservando asi la

privacidad y mostrando una alta resistencia a los métodos de defensa existentes.

Esta seccion permite comprender la variedad de vectores de ataque, objetivos y meto-
dologias que pueden emplearse en el envenenamiento de datos, lo que es crucial para el
desarrollo de defensas efectivas y la evaluacién de la robustez de los modelos de machine

learning, especialmente aquellos basados en arboles de decision.

2.4.3. Vulnerabilidad de los arboles de decision frente al envenenamiento de datos

Los arboles de decisiodn, si bien destacan por su interpretabilidad y simplicidad, tam-
bién presentan una elevada sensibilidad a pequefias modificaciones en el conjunto de en-
trenamiento, lo que es una desventaja de su uso como se sefial en la seccion 2.3.4. Esto
los convierte en objetivos especialmente vulnerables a ataques de envenenamiento de da-
tos, dado que su estructura se basa en divisiones secuenciales guiadas por métricas de
pureza, incluso unos pocos ejemplos maliciosos pueden alterar drasticamente las deci-
siones tomadas en los nodos superiores del drbol, propagando su efecto hacia todo el
modelo.

Esta problematica ha sido abordada por diversos autores. Por ejemplo, Antidote, es un
sistema para verificar la robustez de arboles de decision ante este tipo de ataques. En su
estudio demuestran que es posible construir ejemplos adversarios que cambian significa-
tivamente las divisiones del drbol con un nimero sorprendentemente bajo de instancias
envenenadas(Drews et al., 2020).

Por su parte, investigaciones mds actuales dan paso al estudio de ataques especifica-
mente disefiado para darboles de decisién, como es el caso de Timber (Calzavara et al.,

2025). Esta técnica utiliza un enfoque de conocimiento completo del modelo para selec-
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cionar ejemplos de entrenamiento cuya modificacién maximice el cambio estructural y el
deterioro del rendimiento global del clasificador. Su investigacion confirma que incluso
modelos entrenados sobre grandes conjuntos de datos pueden ser profundamente afecta-
dos mediante perturbaciones dirigidas a puntos criticos del espacio de entrada.

Estos estudios coinciden en sefialar que los arboles de decisién, son susceptibles a
degradaciones significativas ante la insercion de ejemplos maliciosos. Esta vulnerabili-
dad no solo afecta el rendimiento, sino también la coherencia l6gica y la trazabilidad de
las decisiones, elementos fundamentales en aplicaciones donde la explicabilidad es un

requisito.

2.4.4. Métodos de ensamble basados en arboles de decision: su aparente robustez y

vulnerabilidad ante ataques

Los métodos de ensamble constituyen una estrategia de aprendizaje supervisado para
mejorar el rendimiento, la estabilidad y la generalizacion de los modelos. Su fundamento
se basa en la combinacién de miltiples clasificadores individuales, por ejemplo drboles
de decision, para formar un modelo compuesto que supere las limitaciones de sus com-
ponentes.

Desde la perspectiva de los arboles de decision, estos métodos permiten mitigar pro-
blemas como reducir la alta varianza (Murphy, 2022), al combinar las predicciones de
varios arboles entrenados sobre diferentes subconjuntos del conjunto de datos original.

Estas técnicas no solo mejoran el desempefio, sino que también proporcionan una
mayor robustez frente a variaciones en los datos.

Entre los métodos de ensamble mads utilizados para arboles de decisién encuentran

(James et al., 2013):

= Bagging (Bootstrap Aggregation): Es un procedimiento de propdsito general di-
seflado para reducir la varianza de un método de aprendizaje estadistico. Es parti-
cularmente util y frecuente en el contexto de los arboles de decision. Esta técnica
consiste en que en vez de entrenar el modelo una sola vez con el conjunto de datos
completo, se generan multiples subconjuntos de entrenamiento mediante muestreo
con reemplazo (bootstrap sampling). Esto se logra tomando repetidas muestras del

conjunto de datos de entrenamiento original, con reemplazo. Cada uno de estos
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subconjuntos se utiliza para entrenar un modelo base (por ejemplo, un drbol de de-
cision), y luego las predicciones de todos los modelos se combinan, generalmente

mediante votacion mayoritaria (en clasificacion) o promediado (en regresion).

= Random Forests: Es una mejora sobre los arboles bagged, que busca reducir la
correlacion entre los drboles individuales. Funciona muy similar al bagging, pero
la diferencia clave es que cada vez que se considera una divisién en un arbol, se
selecciona un subconjunto aleatorio de caracteristicas en lugar de considerar todas
las caracteristicas disponibles. Esto introduce una mayor diversidad entre los arbo-
les y reduce la varianza del modelo final. Los Random Forests son conocidos por
su robustez y capacidad para manejar grandes conjuntos de datos con muchas ca-
racteristicas, ademds de ser menos propensos al sobreajuste en comparacion con un

dnico arbol de decision.

= Boosting: Es otra técnica para mejorar las predicciones de los drboles de decision.
En este caso los drboles se construyen de manera secuencial, donde cada nuevo
arbol se entrena para corregir los errores del arbol anterior. En lugar de entrenar
todos los arboles de forma independiente, el boosting ajusta el modelo en funcién
de los errores cometidos por los drboles anteriores. Los modelos més conocidos
son AdaBoost y Gradient Boosting, que ajustan iterativamente los pesos de las ins-
tancias mal clasificadas para mejorar la precision del modelo final. La literatura
también menciona variantes como Forward Stagewise Additive Modeling (FSAM)
y Gradient Boosting Machines (GBM), que se centran en minimizar una funcioén
de pérdida especifica durante el entrenamiento. Logit Boosting es una variante que
se utiliza para problemas de clasificacién binaria(Murphy, 2022). Uno que merece
mencion especial es XGBoost (Extreme Gradient Boosting), que ha ganado popula-
ridad por su eficiencia y rendimiento. XGBoost implementa técnicas avanzadas de
regularizacion y optimizacion, lo que lo hace especialmente efectivo para conjuntos

de datos grandes y complejos.

Complementariamente, el Stacking, que es un enfoque de ensamble que combina
multiples modelos base (que pueden ser arboles de decisién) y utiliza un modelo meta

para hacer la prediccion final. En este caso, los modelos base se entrenan por separado
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y sus predicciones se utilizan como caracteristicas de entrada para el modelo meta, que
aprende a combinar las salidas de los modelos base para mejorar la precision general
(Hastie et al., 2009). Si bien este modelo no es sefialado como un método de ensamble
basado en drboles segin la referencia sefalada, es importante mencionarlo ya que puede
incluir arboles de decisién como modelos base y si lo consideran como tal otros autores
(Murphy, 2022).

Finalmente, y en contexto con este TFM, se destaca que esta aparente robustez de los
modelos ensamble no implica inmunidad al enfrentar ataques adversariales. Como sefia-
lan (Chang & Im, 2020), incluso modelos de tipo Random Forest pueden ser vulnerables
a estrategias de envenenamiento de datos. El impacto del envenenamiento puede intensi-
ficarse cuando las instancias maliciosas son disefiadas con caracteristicas que tienden a
distribuirse de forma uniforme, afectando de manera consistente los patrones de decision
del modelo. Aunque el estudio no menciona directamente su propagacion en multiples
arboles, la manipulacion deliberada de atributos con baja desviacion estandar sugiere un

efecto acumulativo en el conjunto del Random Forest.

2.5. Aplicacion de la IA en sectores criticos: Defensa, Seguridad y

Salud

En esta seccion se explora la aplicacion de la IA en proyectos de Espaiia dentro de los
sectores criticos de la defensa, de la seguridad y de la salud. Estos tres sectores, tienen en
comuin que generan un impacto directo sobre la vida de las personas con implicaciones

significativas y, en algunos casos, irreversibles.

2.5.1. IA en Defensa

No es nuevo que los avances tecnoldgicos, quizds mas importantes para la sociedad,
se producen en el &mbito militar y en un entorno bélico. En el trabajo de (Roldan Tudela,
2017) un conjunto de autores, recogen un andlisis holistico de la IA aplicada, justamente
al ambito militar.

Se destaca el valor de aplicar IA, junto a otras técnicas relacionadas, como una exi-

gencia de transformacién de las capacidades militares en orden de mantener la ventaja
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militar. Esta necesidad se refuerza con el creciente volumen de datos que para ser tratados
requieren de técnicas de IA. El tratamiento de los datos es un factor clave en el dmbito
militar, ya que la informacidn es un recurso estratégico y su correcta interpretacion pue-
de marcar la diferencia en la toma de decisiones ticticas y estratégicas. Por otra parte,
la necesidad de inteligencia en el dmbito militar sobre los medios del adversario, la an-
ticipacion de sus movimientos y la identificacion de patrones de comportamiento es un
factor valioso del que ningtn sector militar puede prescindir, y la IA se presenta como
una herramienta clave para potenciarla.

La incorporacién del combatiente como un elemento clave en las funciones del com-
bate, resalta la necesidad de mantenerlos preparados, por lo que se incentiva la incorpo-
racion de herramientas de IA para mejorar la instruccién avanzada, considerando ade-
mds que la IA puede ayudar a reducir la carga cognitiva del combatiente, permitiéndole
centrarse en tareas mas criticas y estratégicas, pudiendo anticiparse a las decisiones del
adversario.

La delegacién de la toma de decisiones a sistemas automatizados, sin embargo, no
es tomado a la ligera y en el mencionado trabajo, se destina un capitulo completo a la
ética en el uso de la IA en el dmbito militar. En este sentido, se destaca la importancia
de la trazabilidad y la explicabilidad de las decisiones automatizadas, especialmente en
contextos donde las decisiones pueden tener consecuencias humanas significativas (Lewis
etal., 2016). La ética militar exige que las decisiones tomadas por sistemas automatizados
sean auditables y comprensibles, lo que implica que los modelos utilizados deben ser
transparentes y sus decisiones justificables.

Por otra parte, el trabajo de (Alcantara Sudrez, 2023) que analiza la aplicacién de ma-
chine learning en sistemas de defensa, complementa esta mirada con ejemplos concretos
de proyectos de defensa que aplican ML. Parece apropiado, entonces, incorporar al menos
dos de estos ejemplos ya que ilustran la aplicabilidad de estas técnicas en proyectos reales
del dmbito militar en Espafa, y adicionalmente resaltar lo valioso del aporte debido a la
escasa informacién que estd disponible en espafiol sobre estos temas. Ambos proyectos

se incluyen en el anexo F.
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2.5.2. IA en Seguridad

En el ambito de la seguridad, la IA se ha convertido en una herramientas util para la
deteccion de amenazas, la prevencion del delito y la mejora de la seguridad publica, en
muchos paises.

En Espafia, se puede encontrar la publicacion realizada en la XVIII Conferencia de la
Asociacion Espanola de Inteligencia Artificial, donde se presenta un trabajo que analiza
el uso de técnicas de ML con algoritmos como los drboles de decision MSP, M5Rules,
Regresion lineal, k-NN, Random Forest y varios mds en la prediccion del delito (Cuesta
Calvo et al., 2018). Se destaca el uso de variantes del algoritmo arboles de decision ya
que refuerza el enfoque de este trabajo.

El trabajo de (Ocafia, 2024) presenta una vision de investigador independiente sobre
la contribucién de la IA en la seguridad, destacando las implicaciones juridicas del uso
de la IA para la prevencion y disminucion de los riesgos de seguridad. Se menciona el
desarrollo de aplicaciones de IA para la prediccion del delito, los cuales tienen vias multi-
modales de ejecucion y por tanto, el analisis también requiere una perspectiva multimodal,
que permita integrar datos de diferentes fuentes, como imdgenes, texto y audio.

Por otra parte, (Monforte, 2023) nos propone una clasificacion de tres categorias, para
agrupar las herramientas que usan IA y que podrian ser aplicadas para investigar delitos;
las Herramientas de prediccion y evaluacion de riesgos, las Herramientas de investigacion
de delitos y las Herramientas de tramitacion.

Presentando técnicas utilizadas como reconocimiento facial y de voz para verificar
identidad, reconocimiento de emociones para detectar veracidad en las declaraciones,
procesamiento de lenguaje natural (PLN) para anélisis documental, reconocimiento de
imagenes para identificar objetos y personas en contextos de investigacion, etc.

El trabajo de (Cuenca & Medina, 2023) proporciona ejemplos de proyectos imple-
mentados en Espafia y que se han realizado para seguridad de la poblacién. De ellos, dos

proyectos se incluyen en el anexo F.
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2.5.3. IA en Salud

La relacion entre la ciencias de la computacién y el ambito de la salud tiene una
larga trayectoria que dio lugar al surgimiento de términos especificos como la informatica
médica, la bioinformética, procesamiento electronico de datos médicos, etc. Hoy en dia,
la IA, estd apoyando a los médicos en tareas que son esenciales y limitadas, dejando la
responsabilidad de manejar a los pacientes a los médicos humanos. No obstante, se valora
su apoyo en la optimizacién de los procesos de prevencion, diagndstico y tratamiento de
enfermedades (Molina, 2024)

El Reglamento Europeo (Unién Europea, 2025) que regula el espacio europeo de da-
tos de salud, busca establecer un marco normativo que garantice la protecciéon de los
datos personales de salud y promueva su uso para fines de investigacion y mejora de la
atencion médica. Esta regulacion complementa el Reglamento General de Proteccion de
Datos (RGPD), proporcionando un marco especifico para el tratamiento de datos de salud
en la Unién Europea y en él, se regula también el uso de la IA en el dmbito sanitario,
estableciendo requisitos especificos para garantizar la seguridad, la privacidad y la ética
en el tratamiento de estos datos.

Como ejemplos de proyectos de A en el &mbito de la salud, desarrollados en Espaia,

se incluyen dos en el anexo F.

2.6. Técnicas de defensa ante ataques y escenarios de riesgo

Uno de los principales desafios en materia de seguridad, ya sea desde un enfoque
técnico o estratégico, es la ausencia de soluciones universales capaces de garantizar una
proteccion total de los sistemas. En consecuencia, se requiere adoptar medidas de seguri-
dad en capas, que aborden en profundidad distintos vectores de ataque y vulnerabilidades.
Esta l6gica aplica también a los escenarios adversariales del aprendizaje automético, don-
de deben considerarse tanto las caracteristicas del modelo como el contexto de aplicacion
y los posibles objetivos del atacante.

Este trabajo no pretende abordar de forma exhaustiva todas las técnicas defensivas
existentes, sino ofrecer una vision general de las estrategias recogidas en la literatura,

especialmente aquellas relacionadas con los ataques de envenenamiento de datos en mo-
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delos predictivos explicables, como los drboles de decision.

2.6.1. Estrategias y modelos de amenazas

Siguiendo la estructura planteada por (Vassilev, 2025), una primera recomendacion
estratégica es modelar al adversario y proyectar diferentes escenarios de ataque. Esta an-
ticipacion resulta clave para implementar medidas defensivas acordes al tipo de amenaza.
En este sentido, el trabajo de (Muiioz-Gonzdlez et al., 2017) propone un marco sistema-
tico para entender los ataques de envenenamiento de datos en modelos de aprendizaje
profundo, que puede adaptarse a otros algoritmos.

Dicho marco considera tres dimensiones principales:

= Objetivo del ataque: ;Busca degradar el rendimiento global del modelo o alterar

especificamente una clase?

= Nivel de conocimiento del atacante: ;Posee acceso completo al modelo, o su co-

nocimiento es parcial o nulo?

= Capacidad para manipular los datos: ;Puede alterar el conjunto de entrenamien-

to, 0 solo intervenir en la fase de inferencia?

De forma complementaria, (Biggio & Roli, 2018) introduce tres “reglas de oro” apli-

cables a la narrativa de seguridad en el aprendizaje automatico:

= Conoce a tu adversario (Know your adversary): modelar las amenazas contra el

sistema que se disefia.

= Sé proactivo (Be proactive): simular ataques y disefiar contramedidas antes del

despliegue.

= Protégete (Protect yourself): implementar medidas de defensa tanto reactivas co-

mo proactivas.

Esta vision estratégica es crucial, dado que muchas técnicas defensivas actuales pre-
sentan limitaciones importantes: algunas reducen la precisiéon del modelo, otras no son
aplicables a todos los algoritmos, y algunas son vulnerables a ataques mas sofisticados,

como los llamados clean-label.
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2.6.2. Escenario de riesgo en modelos explicables

Un aspecto particular en el caso de los modelos explicables, como los arboles de
decision, es que su logica interna puede ser facilmente inferida mediante herramientas
de XAl, facilitando asi la ingenieria inversa de su comportamiento lo que representa un
riesgo. Esta facilidad para inferir su l6gica interna es una vulnerabilidad que es explotada
por el sistema AUTOLY CUSE (Oksuz et al., 2024), que emplea explicaciones generadas
por el propio modelo para reconstruir su estructura incluso con acceso limitado, lo cual
facilita la generacion de ataques dirigidos.

Por tanto, los modelos explicables enfrentan amenazas particulares que, aunque au-

mentan la transparencia, también pueden incrementar la superficie de ataque.

2.6.3. Técnicas de defensa documentadas

Frente a los riesgos mencionados, diversos estudios han propuesto mecanismos de
defensa para mitigar el impacto de los ataques de envenenamiento en modelos de apren-
dizaje automdtico. Estas estrategias pueden clasificarse en tres grandes enfoques (Ramirez

et al., 2022; Drews et al., 2020):

= Filtrado previo al entrenamiento: aplicacion de técnicas estadisticas o de apren-
dizaje no supervisado para detectar y eliminar instancias sospechosas o inconsis-

tentes.

= Modificacion del proceso de aprendizaje: adaptacién de algoritmos para limitar la
influencia de datos individuales (por ejemplo, mediante regularizacién adversarial

o modificacion de criterios de particion en arboles).

= Auditoria posterior al entrenamiento: andlisis del comportamiento del modelo
para detectar reglas de decision inesperadas o ejemplos con influencia despropor-

cionada.

En cuanto a herramientas especificas, se destaca Antidote (Drews et al., 2020), disefia-
da para evaluar y mejorar la robustez de modelos frente al envenenamiento, en particular

en arboles de decision.
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De forma inversa, la investigacion de (Calzavara et al., 2025) describe el ataque Tim-
ber, un método de envenenamiento de tipo caja blanca que aplica label-flipping para
deteriorar el rendimiento de clasificadores basados en drboles. Aunque no existen atn de-
fensas especificamente robustas para arboles de decision, se han explorado mecanismos
como saneamientos basados en k-Nearest Neighbors (KNN) y estrategias como Baggins,
que si bien no eliminan el ataque, permiten reducir su efecto.

Este dltimo trabajo es especialmente relevante para el presente TFM, ya que demues-
tra tanto las vulnerabilidades especificas de los arboles de decision como la necesidad
urgente de disefiar defensas mds adecuadas, méas alld de las soluciones agndsticas al mo-
delo actualmente disponibles.

La revision realizada presenta un espectro relativamente acotado de técnicas de defen-
sa ante ataques adversariales en general, y de envenenamiento de datos en particular. Estas
estrategias abarcan diferentes enfoques como la deteccion y filtrado de instancias sospe-
chosas usando diversas técnicas de sanitizacion de datos, la modificacion del proceso de
aprendizaje con técnicas como regularizacion, métodos de agregacion y ensembled, datos
aumentados, privacidad diferenciada y entrenamiento adversarial, todas ellas para incre-
mentar la robustez del entrenamiento del modelo (Carnerero-Cano, 2023). Sin embargo,
también se identifican limitaciones importantes, como su escasa efectividad frente a ata-
ques sofisticados, su reducida capacidad de generalizacién a distintos tipos de modelos y,
especialmente, su enfoque reactivo mds que preventivo.

Este enfoque toma especial importancia ademds dada las investigaciones que demues-
tran el concepto de que los ejemplos de entrenamiento adversarial pueden transferirse
entre algoritmos, lo que implica que un ataque disefiado para un modelo especifico podria
ser efectivo contra otros modelos, incluso si estos no comparten la misma arquitectura o
metodologia de entrenamiento (Mufioz-Gonzalez et al., 2017). Esto sugiere que las defen-
sas deben ser disefiadas con una perspectiva mas amplia, considerando no solo el modelo
especifico en cuestion, sino también el ecosistema mds amplio de modelos y técnicas de
aprendizaje automatico.

En este contexto, se observa que la mayoria de las propuestas revisadas en este trabajo
se centran en detectar y mitigar los efectos del envenenamiento una vez que el ataque

ha ocurrido, dejando relativamente inexplorado el desarrollo de medidas preventivas que
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dificulten el uso de estos datos en el entrenamiento. Esta observacion abre, por una parte,
una oportunidad para que el presente TFM, sin ser ese su foco principal, pueda aportar
algunas reflexiones iniciales sobre posibles recomendaciones orientadas a la prevencion,
las cuales serdn abordadas en las conclusiones. Y, por otra parte, refuerza la necesidad
de continuar investigando en este campo emergente, dindmico y de alto impacto, que atn

presenta importantes desafios abiertos.

2.7. Cierre del marco teorico

La literatura reciente sobre ataques a modelos y riesgos derivados del uso de XAl
se ha centrado en escenarios con redes neuronales y explicaciones ricas en gradientes,
o en marcos de extraccion de modelo que explotan LIME/SHAP para aproximar fron-
teras de decision (p. ej., AUTOLYCUS). Aunque estos trabajos avanzan la comprension
de la superficie de ataque, persiste una brecha aplicada: hay poca evidencia en modelos
explicables desplegados en sectores criticos con datos publicos espaiioles y andlisis fino
del cambio estructural del clasificador (raices, reglas, profundidad) bajo envenenamiento
leve. Este TFM contribuye en esa interseccion: (i) operacionaliza ataques simples pero re-
producibles sobre drboles de decision, (ii) evalda el deterioro métrico y estructural, y (ii1)
contextualiza su impacto en salud, seguridad y defensa, sentando bases empiricas para

trabajos futuros con ensembles y ataques mds sofisticados.

43



3. Metodologia

Esta investigacion adopta un enfoque metodolégico fundamentado en los supuestos
filoséficos que subyacen a toda actividad investigativa, especificamente en términos de
ontologia (la naturaleza de la realidad) y epistemologia (cémo puede conocerse dicha
realidad). Siguiendo la clasificacién propuesta por Oates (2006), se reconocen tres pa-
radigmas principales en el dmbito de los sistemas de informacién y la computacion: el
positivista, el interpretativo y el critico.

El paradigma positivista, adoptado en este trabajo, asume que la realidad es objetiva,
unica y medible. Desde esta perspectiva, el investigador actia como un observador inde-
pendiente, cuyo propdsito es descubrir relaciones causales y leyes generales a través de
métodos cuantitativos rigurosos. Este paradigma es consistente con la estrategia seleccio-
nada para la investigacion: el experimento, una técnica tipicamente positivista que per-
mite manipular variables independientes en entornos controlados para evaluar su efecto
sobre variables dependientes (Oates, 2006). En este sentido, el paradigma interpretativo,
orientado a la subjetividad y la comprension, se presenta como una via més idénea para
explorar significados y experiencias sociales, mientras que el paradigma critico, enfocado
en la emancipacion y la transformacidn, se centra en cuestionar las estructuras de poder y
en impulsar cambios sociales.

En este trabajo, el marco de referencia de CRISP-DM, descrito en la seccién 1.1.3,
se emplea como guia operativa para la gestiéon y desarrollo del TFM, mientras que el
enfoque positivista de Oates orienta el disefio experimental. De esta forma, las fases de
comprension, preparacion, modelado y evaluacidn propias de CRISP-DM se alinean con
el objetivo experimental de establecer relaciones causales entre el tipo de envenenamiento
de datos y el desempeiio de los modelos de aprendizaje automatico. Asi, CRISP-DM
proporciona la estructura secuencial y trazable del proceso, y el enfoque experimental
positivista garantiza el rigor cientifico en la contrastacion de hipotesis.

En particular, se disefiaron dos escenarios experimentales. El primer escenario se cen-
tr6 en un dataset de criminalidad por comunidad auténoma en Espafia, incluyendo un
baseline y cuatro experimentos de envenenamiento de datos. En todos los casos, se apli-

caron modelos de regresién basados en drboles de decision para evaluar el impacto de
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las alteraciones. El segundo escenario trabajé con un dataset del dmbito de la salud re-
lacionado con la COVID-19, con un baseline y tres experimentos de envenenamiento de
datos, aplicando modelos de clasificacion también basados en drboles de decision. Esta
configuracion experimental permite establecer relaciones causales entre el tipo de enve-
nenamiento de datos y el desempefio de los modelos de aprendizaje automatico, en linea
con el enfoque positivista adoptado.

En sintesis, la metodologia combina dos niveles complementarios: el nivel filoséfico-
epistemoldgico, sustentado en el paradigma positivista y en el uso del experimento co-
mo estrategia investigativa; y el nivel practico-operativo, sustentado en CRISP-DM como
marco de gestion y desarrollo. De forma transversal, ambos niveles convergen en el cum-
plimiento de los objetivos especificos del TFM, garantizando la coherencia entre el disefio

metodoldgico, las tareas realizadas y los resultados esperados.

3.1. Objetivos y tareas

Esta seccion define las tareas que guian el disefio experimental del presente trabajo,
seglin la metodologia descrita previamente. Para cada objetivo, descritos en la seccion

1.3, se detallan las tareas principales, los indicadores de éxito y los entregables esperados.

Objetivo: a) Vulnerabilidad asociada a la explicabilidad

= Tareas: Analizar los puntos criticos de la estructura interna del modelo, mediante
la identificacion de los nodos mds relevantes y las caracteristicas que influyen en
las decisiones del modelo, asi como problemas para que pueda tener el modelo para
generalizar, o como le afectan los sesgos en los datos. Esto permite determinar las

vulnerabilidades de los modelos entrenados con datos no alterados.

= Indicadores: Variacion en las caracteristicas del arbol entre réplicas (predicciones,
reglas de decision, estructura en ramas y nodos) dentro de un umbral definido; es-
tabilidad de métricas de rendimiento (Accuracy/F1 en clasificacion, MAE/MSE en

regresion) durante la validacion.

= Entregables: Figuras de los arboles de referencia; cuadros con indicadores de es-

tabilidad de la estructura y métricas.
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Objetivo: b) Modos de envenenamiento de datos

= Tareas: Implementar las técnicas de envenenamiento de datos feature-based 'y label-

flipping, sobre los datos usados para entrenar los modelos de arboles de decision.

» Indicadores: Reproducibilidad de los ataques (scripts parametrizados); verifica-

cién de que la tasa de envenenamiento aplicada coincide con la nominal (1 %, 3 %,

5%).

= Entregables: Scripts, bloques o notebooks de generacion de ataques; cuadros com-

parativos con las tasas efectivas de envenenamiento aplicadas a cada dataset.

Objetivo: ¢) Deterioro por envenenamiento de datos

» Tareas: Entrenar modelos de drboles de decision sobre datasets envenenados con
diferentes parametros de ataque; registrar cambios en la estructura del modelo y en
su rendimiento general; comparar métricas entre modelos con y sin datos envene-

nados.

= Indicadores: Cambios en las métricas entre modelos (ej. Accuracy/Recall en cla-
sificacién; MAE/MSE/R? en regresion); cambios estructurales significativos en el
arbol (modificacién en el nimero de nodos o en las variables seleccionadas en la

raiz y niveles superiores; alteracion de la ruta de decisién principal).

= Entregables: Cuadros comparativos por tasa de ataque; figuras de 4rboles antes y

después del envenenamiento.

Objetivo: d) Riesgos en contextos criticos

= Tareas: Implementar y contextualizar experimentos de clasificacién y regresion
que permitan evaluar el comportamiento de los modelos en sectores criticos como
salud y seguridad/defensa, considerando de manera independiente las particulari-

dades de cada dominio.

= Indicadores: Evidencia de impacto del envenenamiento dentro de cada contexto
(p.€j., deterioro de métricas en el escenario de salud o en el de criminalidad); con-

sistencia y replicabilidad de los resultados obtenidos en cada dominio.
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= Entregables: Informe de resultados por dominio; cuadros y graficas de desempeio
diferenciadas para cada dataset. Subseccién en conclusiones: Evaluacion de los

riesgos en contextos criticos.
Objetivo: e) Recomendaciones para prevenir y mitigar riesgos

= Tareas: Concluir medidas orientadas a la prevencién y mitigacion del impacto del

envenenamiento de datos en modelos de arboles de decision.

= Indicadores: Generacion de recomendaciones basadas en la evidencia empirica de

los experimentos; coherencia con la literatura revisada.

= Entregables: Subseccion de conclusiones: Recomendaciones de seguridad con

propuestas de medidas preventivas.

3.2. Disefo experimental

Como se estableci6 en la metodologia, este trabajo adopta un disefio experimental de
tipo cuantitativo y comparativo, con un enfoque de laboratorio. Este disefio se articula
en las fases de modelado y evaluaciéon de CRISP-DM, bajo el enfoque positivista descrito
por Oates, que sustenta la eleccion del experimento como estrategia investigativa.

El experimento se basa en la manipulacion de variables independientes (introduccién
de envenenamiento en los conjuntos de datos de entrenamiento) y la observacion de los
efectos sobre variables dependientes, medidos a través de métricas objetivas y cuantitati-
vas. Los indicadores de éxito incluyen tanto la variacion en métricas de rendimiento de
uso extendido en modelos supervisados (Accuracy, Recall, Fl1-score, MAE, MSE, ROC,
AP) como los cambios observables en la estructura interna de los arboles de decision
(profundidad, nimero de nodos, rutas de decision, estabilidad de reglas).

De esta manera, se disefian dos experimentos principales: uno de regresion (predic-
cién de la cantidad de delitos) y otro de clasificacion (prediccién de hospitalizaciones).
Ambos experimentos responden a los objetivos de identificar vulnerabilidades, evaluar el
deterioro inducido por el envenenamiento y comparar los riesgos en diferentes contextos

criticos.
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Su estructura incluye los siguientes ejes:

Escenario de envenenamiento: Se simulan los objetivos del atacante como:
* Ataques dirigidos a clases especificas.

= Proporciones de datos envenenados: Se implementan distintos niveles de mani-

pulacién: 1%, 3% y 5% de registros envenenados sobre el total del dataset.

= Magnitud de la perturbacion del ataque: Se aplica una intensidad de alteracién
sobre los datos que se define en funcién de la l6gica del ataque y el contexto del

dataset.
= Tipos de ataque aplicados:

* Segiin la forma de construccion de los datos:

o Ataques de etiqueta limpia (Clean label attacks): Se introducen ejem-

plos adversarios sin modificar las etiquetas.

o Ataques de etiqueta sucia (Dirty label attacks): Se introducen ejemplos
adversarios que alteran las etiquetas originales para inducir errores de

clasificacion.
* Segiin el tipo de manipulacion:
o Label-flipping: Intercambio de etiquetas en un porcentaje definido del
dataset.

o Feature-based: Modificacion adversaria de atributos clave que afectan la

estructura del arbol.

= Medios para generar los datos envenenados: Se utilizan implementaciones ma-
nuales propias, asistidas por la herramienta ChatGPT, para la generacion de ejem-

plos adversarios.

Los ataques implementados han sido seleccionados por ser técnicamente aplicables y
efectivamente observables en modelos de drboles de decision, permitiendo analizar su im-

pacto tanto en rendimiento como en estructura. En contraste, se han excluido métodos que
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requieren gradientes diferenciables, retro propagacion o estructuras densamente conecta-
das, caracteristicas propias de modelos como redes neuronales profundas o Transformers,
pero ausentes en los drboles de decision.

Por otra parte el rango de proporciones de datos envenenados escogidos de (1%, 3% y
5% ) son considerados como realista, dificil de detectar y bajo pero con potencial de gene-
rar un alto impacto en el rendimiento con base a tres referencias de la literatura (Calzavara
et al., 2025; Cina et al., 2024; Chang & Im, 2020). Estas proporciones incorporadas a este
TFM, nos otorga un set de opciones para evaluar el impacto del envenenamiento desde
niveles realistas, que podrian pasar desapercibidos y serian menos exigentes de cumplir
para el atacante. Ademds, estas proporciones permiten iteraciones rapidas y pruebas re-
producibles, facilitando la experimentacién y comparacién de resultados.

El flujo metodolégico esquematico de estos ataques se puede ver en la Figura 1.

1. Seleccion del dataset
(Criminalidad / COVID)

2. Preprocesamiento y limpieza
(One-Hot, variable objetivo)

3. Entrenamiento baseline
(Modelo limpio + métricas)

4. Identificacién de vulnerabilidades
(Criminalidad: MAE Aragén / COVID: mapa de vulnerabilidades)

5. Definicién del ataque
(Tasas 1-3-5 %, técnica y parametros)

6. Seleccién del subconjunto candidato
(Criminalidad: Aragén / COVID: attack-score)

7. Aplicacién del env i
((er.m.ina]idad: feature-based / COVID: label—ﬂippi.ng)j

8. Guardado del dataset envenenado
(Nombres estandarizados)

9. Carga y reentrenamiento
(Modelo con dataset envenenado)

10. Evaluacion de resultados
(Métricas + estructura del drbol)

Figura 1: Flujo metodoldgico del procedimiento de envenenamiento de datos aplicado en
los experimentos
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3.3. Datasets

La experimentacion se realiza sobre datasets estructurados, que proporcionan datos
que pueden ser utilizados para tomar decisiones en sectores criticos (salud y seguridad) y
que permiten dar contexto a los experimentos para la implementacién de los modelos de
arboles de decision.

Criterios de seleccion:

- Disponibilidad publica o privada de los datasets.

- Licencia abierta, de uso académico o permitido su uso para este TFM.
- Relevancia para sectores criticos (salud y seguridad).

- Tamafio que permite iteraciones rdpidas y pruebas reproducibles.

- Compatibilidad con tareas de clasificacion o regresion.

Criterios de exclusion:

- Datasets que requerian preprocesamiento intensivo no relevante para el anélisis.
- Datasets sensibles, sin anonimizacion o que contenian informacién personal identi-

ficable.

Fuente inicial de los datasets:

= Portal Estadistico de Criminalidad de Espafia (https://estadisticasdecriminalidad.s

es.mir.es/).
= Portal de Datos Abiertos del Gobierno de Espana (https://datos.gob.es/).
= Portal Oficial de Datos Europeos (https://data.europa.eu/en).
= Plataforma de contratacion del Estado (https://contrataciondelestado.es/).
= Plataforma gestion de datos de contratacién publica (https://contratos.gobierto.es/)

= Centro Nacional de Epidemiologia del Instituto de Salud Carlos III (https://cnecov

id.isciii.es/).
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Dataset utilizados:

A continuacion se presentan los dataset seleccionados para los experimentos, separa-
dos por sector al que representan, junto con una breve descripcion de su origen y caracte-

risticas principales:

= Seguridad: El dataset original contiene datos estadisticos de criminalidad obteni-
dos del Portal Estadistico de Criminalidad del Ministerio del Interior de Espafia. Los
datos son provenientes de la Policia Nacional, Guardia Civil, policias autonémicas
y policias locales que proporcionan datos al Sistema Estadistico de Criminalidad.
No se incluyen datos de los Mossos d’Esquadra de robos con fuerza o con violen-
cia/intimidacién en establecimientos, ni de robos con violencia/intimidacién en via
publica hasta el afio 2019. A partir del afio 2020 se encuentran incluidos. No se in-
cluyen datos de los Mossos d’Esquadra ni Ertzaintza de estafas informaticas hasta
2014, no obstante, a partir de 2015 se encuentran incluidos. La adaptacién de este

dataset es denominada “dataset de criminalidad”, para referenciarlo en este trabajo.

= Salud: El dataset original contiene la declaracién de los casos de COVID-19 a la
Red Nacional de Vigilancia Epidemiolégica (RENAVE) a través de la plataforma
informatica via Web SiViES (Sistema de Vigilancia de Espafia) que gestiona el
Centro Nacional de Epidemiologia (CNE). Esta informacion procede de la encues-
ta epidemioldgica de caso que cada Comunidad Auténoma cumplimentaba ante la
identificacion de un caso de COVID-19. La adaptacion de este dataset es denomi-

nada “dataset de covid19”, para referenciarlo en este trabajo.

Los dataset seleccionados fueron adaptados durante el presente trabajo con el fin de
simular los conjuntos de datos para los entrenamientos aplicados a tareas de regresion y
clasificacion en contextos de los sectores de salud y seguridad. Adicionalmente, se crearon

copias con los datos envenenados en un entorno controlado.

Links de descarga datasets originales:
- Seguridad: Dataset de criminalidad por comunidad

- Salud: Dataset situacion y evolucion de la pandemia de COVID-19 en Espana
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34.

Recursos e Instrumentos

Se utilizan los siguientes recursos:

3.5.

Lenguaje: Python 3.12.3
Librerias: Scikit-learn, NumPy, Pandas, Matplotlib, Seaborn, entre otras.

Modelos utilizados: arbol de decision (DecisionTreeClassifier y DecisionTreeRe-

gressor de la libreria Scikit-learn).
Aplicaciones: ChatGPT modelos GPT-40 y GPT-5.
Entorno: Jupyter Notebook y Visual Studio Code.

Métricas: Para clasificacién Accuracy, Precision, Recall, F1-score, Matriz de con-

fusién, ROC; y para regresion RMSE, MAE, R? score.

Equipo con tarjeta grafica: Se utiliza una GPU NVIDIA GeForce RTX 4070 para

acelerar el entrenamiento de los modelos.

Procedimiento

Los pasos que se siguieron en el disefio experimental se repitieron por los sectores

criticos (seguridad y salud) y se detallan a continuacion:

Preprocesamiento de los datos: limpieza y transformacién de variables segin fue

necesario.

Analisis exploratorio de los datos: visualizacion de distribuciones, correlaciones y

patrones relevantes.

Seleccion de variable objetivo y predictoras.
Entrenamiento de un modelo base sin envenenamiento.
Obtencion de las métricas de rendimiento del modelo base.

Analisis de vulnerabilidades del modelo.
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3.6.

3.6.1.

Disefio del ataque por envenenamiento: seleccion del tipo de ataque y parametros

del mismo.

Implementacion de un primer ataque de envenenamiento (p. ej. label-flipping del

1 % de los datos con magnitud 3).

Guardado de los datos envenenados.

Entrenamiento del modelo sobre el dataset envenenado.

Comparacion de métricas de rendimiento y estructura.

Visualizacion de los arboles generados.

Repeticién del experimento con diferentes proporciones de datos envenenados.

Andlisis de los resultados obtenidos, comparando los modelos entrenados con y sin

envenenamiento.

Documentacién de los hallazgos y conclusiones.

Analisis de datos

Dataset de criminalidad

El dataset criminalidad, como se menciona en la seccidn 3.3, corresponde a una adap-

tacion del dataset original para efectos de este trabajo. Este contiene un conjunto de datos

agregados de criminalidad en Espafia, donde cada registro recoge la cantidad de delitos

registrados y agrupados por comunidad autbnoma, categoria general de delito y por afio.

No incluye informacion individualizada, sino totales agregados para cada combinacién de

variables.

3.6.1.a Procesado y preprocesamiento de datos

Dada la naturaleza del dataset, datos agregados, y a que contenia cdlculos de subtota-

les y totales, fue necesario realizar una limpieza de valores irrelevantes, detectar valores

faltantes y mantener la consistencia de los datos.
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Como parte del procesado y preprocesamiento de los datos se realizaron las siguientes

actividades:

= Eliminacion de registros con subtotales y totales generales.

= Eliminacién de subcategorias de delitos, manteniendo solo las 12 categorias gene-

rales para mantener la simplicidad en el analisis.

= Reorganizacion de los datos en formato largo, para facilitar el andlisis temporal y

el uso de herramientas estadisticas.
= Verificacion de valores nulos (sin imputar valores porque no se encontraron nulos).

= Codificacion one-hot de las variables categéricas (Comunidad, Categoria y Afio)

para su uso en el entrenamiento.

= Division del dataset en 80 % entrenamiento y 20 % validacién, con semilla fija para

reproducibilidad (random_state=42).

Cabe senalar que al aplicar one-hot encoding (One-Hot Encoded 6 OHE), sobre las
variables categodricas, se crean columnas dummy (término usado en estadistica) para cada
valor unico de las variables categdricas. Durante el desarrollo de este TFM se les nombrara
como columnas “dummies” (del término variables dummy), “caracteristicas codificadas”
o “features codificadas”.

Finalmente, no se aplicé normalizacion ni escalado, ya que los drboles de decisiéon no
requieren estas transformaciones para su funcionamiento, priorizando asi la simplicidad y
reproducibilidad del experimento. Bajo este mismo enfoque de priorizar la reproducibili-
dad y aislar la procedencia de los cambios durante la evaluacién del deterioro del modelo
entrenado con datos sin y con envenenamiento, se abstuvo de usar técnicas de validacion

cruzada.

3.6.1.b Analisis exploratorio de los datos

A continuacién se describe el Andlisis exploratorio de datos o EDA (por sus siglas
en inglés, Exploratory Data Analysis), para datos agregados, realizado sobre el dataset de

criminalidad:
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= Revision de la estructura del dataset, identificando cantidad de registros, columnas

y tipos de datos de las variables.
= Busqueda de valores nulos.

= Visualizacion de la distribucion de delitos agrupados por afio, comunidad autébnoma
y categoria del delito, con uso de gréficas de barras para identificar tendencias y

patrones.

= El andlisis de correlaciones entre variables numéricas fue descartado ya que el da-

taset solo contiene una variable numérica (Cantidad de delitos).

3.6.1.c Configuracion del modelo y parametros de entrenamiento

Para el experimento de regresién, que busca la prediccion de la cantidad de delitos,
se empled un modelo de arbol de regresion (DecisionTreeRegressor) de la libreria

scikit-learn.

El modelo fue configurado con los siguientes pardmetros:

Parametro Valor Descripcion

criterion squared_error | Mide la calidad de una divisién basdndose en la mini-

mizacion del error cuadratico medio (MSE).

splitter best Selecciona autométicamente la mejor division posible

para cada nodo.

max_depth 4 Limita la profundidad del arbol a 4 niveles para evitar

sobreajuste y facilitar la interpretacion.

random_state | 42 Fija una semilla para garantizar la reproducibilidad.
Otros Por defecto max_features, max_leaf_nodes,
min_samples_split, min_samples_leaf y

ccp_alpha mantienen valores por defecto.

Cuadro 2: Pardmetros de configuracion del DecisionTreeRegressor

Se utiliz6 como variable objetivo, la variable Cantidad (Cantidad de delitos), y como

variables predictoras: Comunidad, Categoria y Afio. Se mantuvieron constantes los para-
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metros y se evitd introducir técnicas o configuraciones aleatorias (random) para asegurar
que las diferencias observadas en el rendimiento del modelo se deban especificamente al

envenenamiento de datos.

3.6.1.d Analisis de vulnerabilidad y diseio del ataque

Para llevar a cabo el andlisis de vulnerabilidades del modelo, se implementaron dos
enfoques: el primero evaluar la importancia de las caracteristicas para comprender qué
dimensiones dominan el modelo (qué sostiene el modelo). El segundo enfoque evalda los
valores de error por caracteristica para identificar aquellas categorias donde el modelo
tenia mayor dificultad para predecir (puntos débiles).

A partir de este andlisis, se procede a disefiar un ataque de envenenamiento de datos
dirigido a las clases especificas Comunidad, utilizando la técnica feature-based.

Como parte del disefo del ataque, se selecciona como objetivo de ataque la caracte-
ristica codificada Comunidad_Aragon, que presenta el mayor error (MAE).

El ataque se disefia estableciendo una proporcidn, respecto a la cantidad total de re-
gistros, como cantidad de datos a envenenar. En este experimento, se seleccionaron tres
proporciones: 1%, 3%y 5 %.

El disefio del ataque, permitié definir los requisitos para construir un subconjunto de
registros “candidato” a ser envenenado. Se establecié que los registros que lo componen
debian pertenecer a la comunidad autonoma objetivo del ataque, Comunidad_Aragon, y
debian estar distribuidos dentro de los anos 2021, 2022 y 2023 del dataset, por ser los
aflos més actualizados. Ademads, se decide mantenerlos concentrados en solo 3 afos para
evitar diluir el efecto del ataque.

Para efectos de la experimentacion, cuando el subconjunto “candidato” tuvo suficien-
tes registros para cubrir la proporcién de datos a envenenar, se le mencioné como con
reemplazo o cr, es decir, los datos envenenados reemplazan los datos originales. De lo
contrario, se duplican registros seleccionados para completar la proporcion deseada au-
mentando la cantidad de registros totales del dataset.

Consecuente con lo anterior, este trabajo cubre solo un ejemplo de envenenamiento
del 1% del total de registros del dataset con reemplazo. Los experimentos restantes, se

realizaron con tasas de envenenamiento del 1%, 3% y 5% sin reemplazo de los regis-
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tros, permitiendo que un mismo registro pudiera ser seleccionado mds de una vez para
ser envenenado o se agregaran registros duplicados, aumentando asi el tamafio total del
dataset.

Finalmente, el valor de la caracteristica Cantidad de los registros correspondientes
fueron multiplicados por un factor de perturbacién de 3. Esta magnitud fue seleccionada
para mantener los valores envenenados dentro del rango empirico, sin superar el umbral
U+ 20, evitando asi generar outliers facilmente detectables, como se dej6 registrado en
el cuadro 5.

Nota: El concepto con reemplazo utilizado en el contexto de este trabajo estad consi-
derado desde una perspectiva descriptiva del experimento y no debe confundirse con el
concepto de reemplazo del método sample en python y su configuracion replace=True,

que es el concepto opuesto al utilizado en este trabajo.

3.6.2. Dataset de covid19

Tal como mencionamos en la seccidn 3.3, el dataset de covidl9, corresponde a una
adaptacion del dataset original para efectos de este trabajo. En él se encuentra un conjunto
de datos agregados de vigilancia epidemioldgica, en el que cada registro corresponde a
un conteo de casos, de hospitalizaciones, de ingresos en UCI y de defunciones agrupadas
por provincia, sexo, grupo de edad, afio, mes y semana epidemioldgica, de modo que no

contiene observaciones individuales, sino totales consolidados.

3.6.2.a Procesado y preprocesamiento de datos

Dada la naturaleza del dataset, datos agregados, y a que contenia datos irrelevantes
para el experimento, fue necesario realizar una limpieza para eliminar registros irrelevan-
tes, tratar los valores nulos, adaptar la estructura del dataset y mantener la consistencia de
los datos.

Como parte del procesado y preprocesamiento de los datos, se realizaron las siguientes

actividades:

= Eliminacion de registros, sin eventos confirmados, para eliminar datos irrelevantes

para la prediccion y obtener clases mds balanceadas.

57



= Eliminacién de la variable fecha, previa segmentacién en variables de mes, afio y

semana.
= Eliminacién de la columna num_hosp.

= Adicién de la columna hospitalizado de tipo binaria (0, 1).

= Verificacion de valores faltantes y aplicacion de imputacion (valor “Desconocido”).

= Codificacion one-hot de las variables categoricas (provincia, sexo, grupo_edad) pa-

ra su uso en el entrenamiento.

= Division del dataset en 80 % entrenamiento y 20 % validacién, con semilla fija para

reproducibilidad (random_state=42).

Al igual que en el experimento de regresion, en este experimento de clasificacion tam-
poco se aplicé normalizacién, escalado, técnicas de validacidn cruzada, ni configuraciones

aleatorias para priorizar simplicidad y reproducibilidad del experimento.

3.6.2.b Analisis exploratorio de los datos

A continuacién se describe el EDA realizado sobre el dataset de covid19.
Se realiz6 un andlisis estadistico descriptivo para entender la distribucion de los datos
y la relacion de las variables predictivas con la variable objetivo. Se generaron visualiza-

ciones para identificar patrones y tendencias:

Revision de la estructura del dataset, identificando cantidad de registros, columnas

y tipos de datos de las variables.

= Busqueda de valores nulos con grafica para visualizar su proporcidn por caracteris-

ticas.

= Visualizacién de la distribucién de los datos de la clase objetivo, mediante grafico

de barras y de pastel.

= Visualizacién de la correlacion entre variables, utilizando un mapa de calor.
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3.6.2.c Configuracion del modelo y parametros de entrenamiento

Para el experimento de clasificacion, que busca la prediccidon de hospitalizaciones
frente a casos confirmados de COVID-19, se empled el modelo de drbol de decision para
clasificacion o modelo de clasificacién (DecisionTreeClassifier) de la libreria scikit-
learn.

El modelo fue configurado con los siguientes pardmetros:

Parametro Valor Descripcion

criterion Gini Mide la calidad de una division basandose en la impu-
reza de Gini. Solo aplicable en tareas de clasificacion

en la API de scikit-learn.

splitter best Selecciona autométicamente la mejor division posible

para cada nodo.

max_depth 4 Limita la profundidad del arbol a 4 niveles para evitar

sobreajuste y facilitar la interpretacion del modelo.

random_state 42 Fija una semilla para garantizar la reproducibilidad.

min_samples_split | 2 Establece un minimo de 2 muestras para realizar una
division.

min_samples_leaf | 1 Establece un minimo de 1 muestra por hoja.

Otros pardmetros | Por defecto | max_features, max_leaf_nodes y ccp_alpha
mantienen valores por defecto, sin restricciones adi-

cionales ni poda post-entrenamiento.

Cuadro 3: Parametros de configuracion del DecisionTreeClassifier

Se utilizé como variable objetivo, la clase hospitalizado, con valor binario (0, 1), mien-
tras que como variables predictoras se usaron las variables provincia, sexo, grupo_edad,

num_casos, num_uci, num_def, anio, mes 'y semana.

3.6.2.d Analisis de vulnerabilidad y diseio del ataque

Se realiza un andlisis en busqueda de puntos criticos en la estructura interna del mo-

delo que permitiera identificar las vulnerabilidades posibles de explotar en el ataque de
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envenenamiento de datos.

Para lo anterior, se identifican las caracteristicas que mds influyen en las decisiones del
modelo mediante la obtencion de las importancias de las caracteristicas. Adicionalmente,
se construy6 un mapa de vulnerabilidad por nodo usando el grado de impureza por niimero
de muestras. Los nodos con mayor puntaje attack score concentran el poder separador del
arbol y, por tanto, constituyen los vectores de ataque mads eficientes.

A partir de este andlisis, se procede a disefiar un ataque de envenenamiento de datos
dirigido a la clase objetivo, utilizando la técnica de label-flipping.

El ataque se disefia estableciendo una proporcidn, respecto a la cantidad total de re-
gistros, como cantidad de datos a envenenar. En este experimento se seleccionaron tres
proporciones: 1%, 3%y 5 %.

El disefio del ataque definié un subconjunto “candidato” de envenenamiento a partir
de los nodos mads influyentes del drbol de decision, identificados en el andlisis de vul-
nerabilidad mediante la métrica attack score (producto de la reduccion de impureza y el
nimero de muestras en el nodo). Dentro de estos nodos, se priorizaron los registros de
entrenamiento que se encontraban mas préximos a los umbrales de division en las va-
riables numéricas, o bien, pertenecian directamente a categorias relevantes en el caso de
variables categoéricas codificadas con One-Hot.

Al calcular el tamafio del subconjunto “candidato”, se garantizé que éste fuese sufi-
ciente para cubrir los diferentes porcentajes de envenenamiento definidos en los experi-
mentos (1%, 3% y 5% del conjunto de entrenamiento). La seleccion de los registros se
realizé con reemplazo de las etiquetas originales, de modo que cada instancia podia ser
volteada solo una vez, asegurando la trazabilidad del experimento.

Finalmente, la magnitud del ataque correspondi6 al propio porcentaje de envenena-
miento aplicado, ya que se utilizé un esquema de label-flipping, donde la etiqueta hos-
pitalizado fue invertida (0 — 1 o 1 — 0) en los registros seleccionados. Este criterio fue
suficiente para inducir contradicciones en zonas estratégicas de la frontera de decision del
arbol, sin necesidad de alterar los valores originales de las otras caracteristicas, como se
registrd en los cuadros y graficas comparativas de este TFM.

A diferencia del experimento de regresion, en el cual se manipulé una caracteristica

numérica, en este caso el ataque se produjo directamente por la alteracion de las etiquetas

60



de la clase objetivo, lo que permite evaluar la sensibilidad del clasificador ante cambios
en la consistencia de la informacién de entrenamiento.

Nota: El concepto con reemplazo utilizado en el contexto de este trabajo estd consi-
derado desde una perspectiva descriptiva del experimento y no debe confundirse con el
concepto de reemplazo en python y su configuracién replace=True, que es el concepto

opuesto al utilizado en este trabajo.
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4. Resultados

En esta seccidn se presentan los resultados obtenidos de los experimentos realizados
con los datasets adaptados de criminalidad y covid19. Se incluyen métricas de rendimien-
to, andlisis de vulnerabilidades y comparaciones entre modelos entrenados con datos sin y
con envenenamiento. Cabe destacar que los resultados aqui presentados aplican al contex-
to especifico de los experimentos desarrollados para este TFM y no son necesariamente
generalizables a otros contextos o datasets. La investigacion y las validaciones necesarias

para generalizar estos resultados quedan fuera del alcance de este trabajo.

4.1. Dataset de criminalidad, experimento de regresion

4.1.1. Resultados del EDA

Del andlisis exploratorio de los datos se obtienen los siguientes resultados:

La estructura del dataset inicial contiene 3.360 filas y 4 columnas. Estas columnas
estdn compuestas por la variable Cantidad (variable objetivo), que es de tipo numérica,
y las tres restantes son categoricas (Comunidad, Categoria y Afio). Esta estructura se
mantiene para la obtencion de los resultados del EDA.

Posteriormente, tal como se sefiala en la seccién 3.6.1.a, se aplica la codificacion
one-hot a las variables categoricas, lo que modifica la estructura del dataset para el entre-
namiento del modelo. De la estructura modificada se obtienen 44 columnas, donde una
contiene datos de tipo numéricos Cantidad y las 43 restantes contiene datos categdricos
codificados.

Durante la exploracién, no se encontraron valores nulos, ni faltantes en el dataset.

Respecto a la distribucién de los datos, en la figura 2 se muestra la distribucién de la
cantidad total de delitos, de todas las comunidades auténomas de Espafia y de todas las

categorias de delitos, agrupados por afios. El periodo inicia en el 2010 y se extiende hasta

el 2023.
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Figura 2: Dataset de criminalidad: Cantidad de delitos totales por afios.

En la figura 3, se muestra la distribuciéon de la cantidad total de delitos, de todos
los afios y de todas las categorias de delitos, agrupados por comunidad autbnoma. Estan
incluidas como comunidades auténomas, las ciudades de Ceuta y Melilla, y un valor
registrado como En el extranjero.

La comunidad con mayor cantidad de delitos es Cataluiia con 6.158.792 delitos, se-
guida de Madrid con 5.320.672 delitos, Andalucia con 5.009.778 delitos y Comunidad
Valenciana con 3.482.551 delitos. Las comunidades con menor cantidad de delitos son

La Rioja con 130.362 delitos, Ceuta con 68.777 delitos y Melilla con 66.341 delitos.
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Figura 3: Dataset de criminalidad: Cantidad de delitos totales por comunidad auténoma
en Espaia.

En la figura 4 se muestra la distribucion de la cantidad total de delitos, de todos los

afios y de todas las comunidades auténomas, agrupados por categoria del delito.
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Figura 4: Dataset de criminalidad: Cantidad de delitos totales por categoria de delito.

La categoria de delito mds frecuente es el efectuado contra el Patrimonio con 22.996.509
delitos, seguido por los pertenecientes a la categoria Contra las personas con 3.153.321
delitos y Contra la libertad con 1.346.046 delitos. Mientras los delitos menos frecuen-
tes fueron los pertenecientes a las categorias de delitos de la Admon. piiblica con 6.580

delitos y los pertenecientes a Legislacion especial con 3.623 delitos.

4.1.2. Resultados del analisis de vulnerabilidades

La figura 5 muestra las cinco caracteristicas codificadas més importantes para la pre-
diccién de la criminalidad utilizadas en el 4rbol de regresion. Los valores de importan-
cia son los siguientes: Categoria_Patrimonio con 0.39, seguida de Comunidad_Cataluiia
con 0.34, Comunidad_Madrid con 0,18, Comunidad_Comunitat Valenciana con 0,06 y
Afio_2020 con 0,003.

Importancia de variables en el arbol de regresion

Variables

Variable
mmm Categoria_ 5. PATRIMONIO
mmm Comunidad_CATALUNA
e Comunidad_MADRID
Comunidad_COMUNITAT VALENCIANA
Afo_2020

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Importancia (Gini Reducido)

Figura 5: Dataset de criminalidad: Importancia de las caracteristicas para el modelo.
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Se obtienen los MAE de todas las comunidades, de los cuales los 5 primeros se mues-

tran en la cuadro 4.

Posicion | Comunidad Autonoma MAE
1 ARAGON 12.038,58
2 MADRID 6.853,16
3 COMUNITAT VALENCIANA | 6.780,99
4 EXTREMADURA 5.272,67
5 PAIS VASCO 4.087,86

Cuadro 4: Dataset de criminalidad: Comunidades auténomas con mayor MAE en la pre-
diccidén de criminalidad

La comunidad auténoma que presenta mayor MAE es Aragén, por lo cual se efectia
un andlisis estadistico adicional que se muestra en el cuadro 5.

Este cuadro muestra los valores estadisticos observados en los datos de Aragén. Con-
sidera la media, desviacion estdndar, el valor mdximo observado en Aragén y el valor
maximo general en el dataset. Adicionalmente, se incorpora al cuadro el valor resultante
de multiplicar la media por un factor de 3. Este factor representa la magnitud de la pertur-
bacién implementada sobre los valores del subconjunto “candidato” seleccionado para el

ataque de envenenamiento de datos, dando como resultado 10.802,71.

Descripcion Valor
Media ARAGON 3.600,90
Desviacién estdandar ARAGON 8.842,31
Media x 3 (ataque) 10.802,71

Maéximo observado en ARAGON 39.806,00

Maximo general en el dataset 431.028,00

Cuadro 5: Dataset de criminalidad: Datos estadisticos de ARAGON
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4.1.3. Resultados de la evaluacion de los modelos

En la siguiente figura, se observa graficamente la estructura del arbol de decision

entrenado con el dataset sin envenenamiento de datos.

Arbol de Decisi6n para Regresion de Criminalidad

ategoria__ 2. CONTRA LA LIBERTAD <= 0.5|
squ = 77825848.143

AN
or = 4248984217, square
les = 211
e = 52950194

les = 1
4310280

Figura 6: Dataset criminalidad: Estructura del drbol entrenado con datos sin envenena-
miento.

El modelo entrenado con el dataset sin envenenamiento de datos, inicia en el nodo raiz
con la caracteristica codificada Categoria_Patrimonio. Usa un umbral de 0,5 para segmen-
tar las decisiones por nodo. Cuando la caracteristica codificada Categoria_Patrimonio es
menor o igual a 0,5, el modelo toma la rama izquierda (False) de lo contrario, toma la
rama derecha (True) y consulta por la siguiente caracteristica codificada que es Comu-
nidad_Catalufia, manteniendo el mismo umbral en todos los nodos. Este proceso sigue
sucesivamente hasta llegar a las hojas del arbol.

En la figura 7 se observa la estructura del arbol de decision entrenado con la mayor
proporcion de datos envenenados del experimento, correspondiente a una proporcion del
5% de datos envenenados sobre el total de registros del dataset. El ataque utilizado es del

tipo feature-based como se explicé en la seccion 3.6.1.d.
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Envenenado al 5 %, ataque featurebased, caracteristica alterada ARAGON para Regresién de Criminalidad

Categoria_ 5. PATRIMONIO <= 0.5
squared_error = 1535374706.64

Samples = 2822
value = 9171.27

Categoria_ 2. CONTRA LA LIBERTAD <= 0.5
squared_error = 28502546.582
samples = 2586
value = 2307.781

-

Comunidad_CATALUNA <= 0.5
squared_error = 11874755874.443
samples = 236

value = 84378.822

Comunidad_CATALUNA <= 0.5 Comunidad_CATALUNA <= 0.5 Comunidad_MADRID <= 0.5 Afio_2020 <= 0.5
squared_error = 26855338.955 squared_error = 36577948.417 squared_error = 1300110494.918
samples = 2355 samples = 231 samples = 14
value = 2031.406 value = 5125377 value = 66269.45 value = 371541.714
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Figura 7: Dataset criminalidad: Estructura del arbol entrenado con datos envenenados
(5 % de envenenamiento).

Comparativamente, entre el drbol de decision entrenado sin y con el 5% de datos
envenenados, se observan los siguientes puntos de interés:

El nodo raiz mantiene la caracteristica, Categoria_Patrimonio, como la primera va-
riable de decision. Sin embargo, en el modelo envenenado, aumenta el error cuadrético
medio en 5.000.727,052 unidades. La cantidad de registros en el nodo aumentan de 2.688
a 2.822 vy, la prediccion de la cantidad de delitos en ese nodo disminuye de 9.221,463 a
9.171,27.

A partir del segundo nivel del drbol, se observan cambios en la eleccién de caracte-
risticas para hacer el split. El nodo de la izquierda del nodo raiz, sustituye la caracteris-
tica codificada Comunidad_Cataluiia por la caracteristica codificada Categoria_Contra
la libertad. En el nodo de la derecha, se mantiene la caracteristica codificada Comuni-
dad_Catalufia, pero con cambios en las otras medidas.

A tercer nivel, siguiendo solo la rama izquierda del nodo raiz, se observa que las
caracteristicas codificadas Comunidad_Madrid y Categoria_Contra la libertad se susti-
tuyen por Comunidad_Catalufia, en ambos casos.

El detalle de los cambios en las estructuras de los arboles de todos los experimentos

de regresion se incluyen en el cuadro 13 del anexo A.

Respecto de los resultados de la medicion del rendimiento de los todos los modelos,
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entrenados con y sin datos envenenados, han sido detallados en el cuadro 6, que puede

consultarse a continuacion.

0% (sin envenenar) 4315,89 | 194364378,05 | 0,8415
1 % (con reemplazo) 434374 | 194273114,85 | 0,8415

1% 4787,53 | 254497063,18 | 0,6256
3% 4459,14 | 187372813,69 | 0,8555
5% 6195,83 | 497810941,56 | 0,5047

Cuadro 6: Dataset de criminalidad: Comparativa de métricas de rendimiento con distintas
tasas de envenenamiento
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4.2. Dataset de covid19, experimento de clasificacion

4.2.1. Resultados del EDA

Del analisis exploratorio de los datos se obtienen los siguientes resultados:

La estructura del dataset inicial contiene 300.372 filas y 10 columnas. Las caracteris-
ticas estdn compuestas por tres columnas (provincia, sexo, grupo_edad) con datos de tipo
categoricos y las restantes (num_casos, num_uci, num_def, anio, mes, semana, hospitali-
zado la variable objetivo) contienen datos de tipo numéricos. Esta estructura se mantiene
para la obtencion de los resultados del EDA.

Posterior a la aplicacidn de la codificacion one-hot a las variables categéricas, el data-
set para el entrenamiento del modelo es modificado y las columnas aumentan a 65, donde
las 6 columnas iniciales con datos de tipo numéricos se mantienen y las 54 restantes con-
tienen datos categoricos codificados.

Durante la exploracién, se identificaron 6.386 valores nulos en total, todos pertene-
cientes a la variable provincia. La proporcion de valores nulos por caracteristica se mues-

tra en la figura 8.

provincia_iso
sexo
grupo_edad
num_casos
num_hosp

num_uci missing

[ Ffalse
=3 True

variable

num_def
anio
mes

semana

hospitalizado

0.0 0.2 0.4 0.6 0.8 1.0
Count

Figura 8: Dataset de covid19: Proporcion de valores nulos por caracteristica.

Los valores nulos fueron imputados a valor Desconocido para efectos del entrena-
miento, cuya justificacién se detalla en la seccion 5.2.1.

Respecto a la distribucién de la clase objetivo, en la figura 9 se muestra la distribucién
de la clase hospitalizado, con valor binario (0, 1), donde 1 indica que hay al menos un
caso de paciente hospitalizado y 0 que no hubo ningtin caso hospitalizado. Se observé

que 156.419 registros estdn etiquetados como hospitalizado, 1o que representa un 52,1 %

69



de registros con valor 1y, los registros de los casos en que no hubo hospitalizados son

143.953, que representa un 47,9 % de registros con valor 0.

Frecuencia

Distribucion de las Clases

160000 -

140000 A

120000 A

100000 A

80000 -

60000 -

40000 A

20000 A

0 -

Porcentaje de cada Clase

Porcentaje

Clase

Clase

Figura 9: Dataset de covid19: Distribucién de las clases hospitalizado (1) y no hospitali-
zado (0) frente a evento de covid19 confirmado.

También se realiz6 un andlisis de correlacion entre las variables del dataset, cuyos

resultados se presentan en la figura 10.

num_casos

¢ num_uci

num_def

anio

mes

hospitalizado semana

0.2

'
num_casos

-04

-0.2

0.16

l "
num_uci num_def anio mes semana hospitalizado

Figura 10: Dataset de covid19: Matriz de correlacion entre variables.
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4.2.2. Resultado del analisis de vulnerabilidades

La figura 11 presenta las 5 caracteristicas expandidas (con caracteristicas codificadas)
mads relevantes en el arbol de clasificacién. Se observa que los valores de importancia de
las caracteristicas son: num_num_casos con 0,56, seguida por num_num_def con 0,14
y la caracteristica codificada cat_grupo_edad_80+ con 0,14. Finalmente, num_num_uci

con 0,12 y num_anio con 0,013.

Top 5 importancias (expandido)

nuM__num_casos

num__num_def

cat__grupo_edad_80+

num__num_uci

num__anio

T
0.3 0.4 0.5
Importancia

Figura 11: Dataset de covid19: Importancia de las caracteristicas para el modelo.

En la figura 12 se presenta el mapa de vulnerabilidades del arbol de clasificacién. En
el eje horizontal se representan los nodos del modelo, mientras que el eje vertical indica el
valor de threshold (umbral) en escala logaritmica. El color de cada punto corresponde al
valor normalizado del attack_score (puntuacion del ataque), calculado como el producto
entre la variacion de impureza y el nimero de muestras en el nodo, siendo los valores mas
cercanos al amarillo los de mayor puntuacién relativa. Se observa que la caracteristica
num_casos concentra los nodos con mayor puntuacion, incluyendo el nodo raiz (node_id
~ 0), que aparece con el circulo mds grande y de color mas claro. En contraste, otros
nodos como el 14 y el 28 presentan umbrales altos, pero con circulos mas pequefios y

oscuros, lo que refleja puntuaciones de vulnerabilidad més bajas.
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Mapa de vulnerabilidad del &rbol (score = Aimpureza x #muestras)
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Figura 12: Dataset de covid19: Mapa de vulnerabilidades.

4.2.3. Resultados de la evaluacion de los modelos

En la siguiente figura, se observa graficamente la estructura del arbol de decisién

entrenado con el dataset sin envenenamiento de datos.

Arbol de decisién para Clasificacién de Hospitalizacién (Covid19)
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Figura 13: Dataset de covid19: Estructura del arbol de decision entrenado con datos sin
envenenamiento.

El modelo entrenado con el dataset sin envenenamiento de datos, inicia en el nodo
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raiz con la caracteristica num_num_casos. Usa un umbral de 5,5 para segmentar en ese
nodo. Cuando la caracteristica num_num_casos es menor o igual a 5,5, el modelo toma
la rama izquierda (True) y consulta por la siguiente caracteristica que es la caracteristica
codificada cat_grupo_edad_80+, usando un umbral diferente correspondiente a 0,5. Vol-
viendo al nodo raiz, si la caracteristica num_num_casos es mayor a 5,5, entonces toma
la rama derecha (False) y consulta por la siguiente caracteristica que es num_num_def,
modificando también el umbral a 0,5. Este proceso sigue sucesivamente hasta llegar a las
hojas del arbol.

En la figura 14 se observa la estructura del arbol de decisiéon entrenado con la mayor
proporcion de datos envenenados del experimento, correspondiente a una proporcion del
5% de datos envenenados sobre el total de registros del dataset. El ataque utilizado es del

tipo label-flipping como se explicé en la seccién 3.6.2.d.

Envenenado al 5 %, ataque labelflipping, caracteristica alterada Hospitalizado para Clasificacién (Covid19)
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Figura 14: Dataset de covid19: Estructura del arbol de decision entrenado con datos en-
venenados (5 % de envenenamiento).

Comparativamente, entre los drboles de decision entrenados sin y con datos envene-
nados, se observan los siguientes puntos de interés:
El nodo raiz mantiene la caracteristica num_num_casos, como la primera variable de

decision. Sin embargo, en el modelo envenenado, aumenta el umbral de 5,5 a 7,5 y el
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indice Gini cambia de 0,499139 a 0,499450. La cantidad de ejemplos no cambia.

A partir del segundo nivel del arbol, se observan cambios en la eleccién de caracteris-
ticas para hacer el split. En el nodo de la izquierda del nodo raiz, sustituye la caracteristica
codificada cat_grupo_edad_80+ por la caracteristica num_num_casos. En el nodo de la
derecha, se mantiene la caracteristica num_num_def, pero varia la cantidad de registros.

El detalle de los cambios en la estructura de los arboles de todos los experimentos de
clasificacion se incluyen en el cuadro 14 del anexo A.

La figura 15 presenta una comparacion de las importancias de las caracteristicas entre
las encontradas en los modelos entrenados con datos envenenados al 1%, 3% y 5%, y
con datos sin envenenar o baseline.

Comparacién Top-5 importancias agregadas Comparacién Top-5 importancias agregadas
Baseline vs Poison Baseline vs Poison

m Baseline == Baseline
e Poison 1% wem Poison 3%

Importancia agregada

S f \ S ot \ N 0
a0 o 8¢ gmoO—edad 8¢ wmnﬁ‘ﬂ—‘sn a2 gmpo_eda" PR um V¢ grouin

(a) Envenenamiento al 1% (b) Envenenamiento al 3 %

Comparacién Top-5 importancias agregadas
Baseline vs Poison

= Baseline
0.6 == Poison 5%

Importancia agregada

° S 8] ) o
€2 qum_ 8¢ g‘wa}aa qum e o oS

(c) Envenenamiento al 5 %

Figura 15: Dataset de covid19: Comparativa importancias de caracteristicas

En todos los casos, la caracteristica num_casos mantiene su posicion como aquella con
el peso relativo de importancia mds alto, incluso aumenta con el envenenamiento al 1 % y
3 %, manteniéndose alta al 5 %. En contraste, la caracteristica num_uci'y grupo_edad_80+
muestran una disminucion en su importancia relativa. Finalmente, se muestra la caracte-
ristica provincia, que corresponde al dummy provincia_SS.

Las graficas comparativas para todos los modelos entrenados sin y con datos envene-

nados se muestran en las figuras 16 y 17, y en la cuadro 7.
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Comparacién de métricas Comparacién de métricas Comparacién de métricas

== Baseline == Baseline
m== Poison 1% = Poison 3%

Baseline
Poison 5%

Accuracy F1 (Hosp) ROC AUC Accuracy F1 (Hosp) ROC AUC Accuracy F1 (Hosp) ROC AUC

(a) Envenenamiento al 1% (b) Envenenamiento al 3 % (c) Envenenamiento al 5 %

Figura 16: Dataset de covid19: Comparativa de métricas de rendimiento. El F1 (Hosp)
mostrado corresponde a la clase positiva (hospitalizado).

0% (modelo sin envenenamiento) 0,6926 0,750 | 0,755
1% 0,6879 | 0,754 | 0,768
3% 0,6819 | 0,744 | 0,747
5% 0,6864 | 0,750 | 0,760

Cuadro 7: Dataset de covid19: Comparativa del rendimiento de los modelos con distintas
tasas de envenenamiento

Curva ROC Curva ROC (poison) Curva ROC (poison)

00] V7 — AUC = 0.750 00d V7 — AUC=0.754 0o] — AUC=0.744

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR FPR
(a) Sin envenenamiento (b) Envenenamiento al 1 % (c) Envenenamiento al 3 %

Curva ROC (poison)

0.8

0.6

TPR

0.4

0.2

00d b7 — AUC = 0.750

0.0 02 0.4 0.6 08 10
FPR

(d) Envenenamiento al 5 %

Figura 17: Dataset de covid19: Comparativa de métrica ROC

La figura 16 presenta la comparacion de las métricas Accuracy, FI1 (Hosp) y ROC
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AUC entre el modelo baseline y los escenarios de envenenamiento al 1%, 3% y 5 %.
Se observa que, en todos los casos, los valores de las métricas disminuyen levemente
respecto al modelo entrenado con datos sin envenenamiento, con la variacién maés visible
en la métrica F'/ (Hosp).

Por su parte, el cuadro 7, resume las métricas de rendimiento de los modelos en fun-
cién de la tasa de envenenamiento, mostrando una tendencia general de disminucion en
todas las métricas evaluadas e incorpora la métrica AP (Average Precision).

Posteriormente, se incorporan las gréficas del comportamiento de la curva ROC en
forma comparativa, donde se observa cambios sutiles en la forma de las curvas, frente a
las diferentes tasas de envenenamiento.

El cuadro 8 presenta un resumen de las métricas de rendimiento de los modelos en

funcion de la matriz de confusion normalizada.

Tasa de Envenenamiento | VP | VN | FP | FN
0% (sin envenenar) 0,72 | 0,67 | 0,28 | 0,33

1% 0,68 | 0,70 | 0,32 | 0,30
3% 0,63 | 0,74 | 0,37 | 0,26
5% 0,62 | 0,75 | 0,38 | 0,25

Cuadro 8: Dataset de covid19: Comparativa del rendimiento segiin matriz de confusion
normalizada

Finalmente, la figura 18 muestra la comparacion de las fronteras de decision entre
el modelo baseline a la izquierda y el modelo entrenado con mayor porcentaje de datos
envenenados, es decir, con un 5 % de envenenamiento a la derecha.

En ambos graficos se representan visualmente las regiones de clasificacion, donde la
zona en verde claro corresponde a la prediccion de la clase O (No hospitalizado), mientras
que la zona en rosa corresponde a la prediccion de la clase 1 (Hospitalizado). Los pun-
tos representan los casos reales, distinguiendo entre puntos naranja que son los positivos
(hospitalizados) y puntos azules que son negativos (no hospitalizados).

La comparacién permite observar diferencias en las dreas donde se concentran los
falsos positivos (FP) y falsos negativos (FN), siendo estas mas pronunciadas en el modelo

envenenado, con un incremento en la proporcion de FN (19,59 % frente a 14,81 %) y una
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reduccién en FP (11,77 % frente a 15,93 %) respecto al baseline.

FP: 15.93% (FPR: 33.24%)

FP: 11.77% (FPR: 24.55%)
FN: 19.59% (FNR: 37.62%) p FN: 14.81% (FNR: 28.45%)

Figura 18: Dataset de covid19: Comparativa de fronteras de falsos positivos y falsos ne-
gativos del modelo entrenado con datos envenenados (5 % de envenenamiento).

5. Discusion

En esta seccidn se presenta el andlisis y discusidn de los resultados obtenidos en los
experimentos realizados con los datasets de criminalidad y covid19, abordando la in-
terpretacion de los hallazgos y sus implicaciones en el contexto de la seguridad de los

modelos de aprendizaje automatico.

5.1. Dataset de criminalidad

5.1.1. Analisis exploratorio de datos

Durante el andlisis exploratorio de los datos (EDA) del dataset de criminalidad, se
observaron varios aspectos relevantes que permiten comprender mejor la naturaleza de
los datos y su distribucién.

Uno de los primeros aspectos es el relacionado a la extension de las dimensiones que
se produce por el one-hot encoding, que transforma las variables categéricas en multiples
variables binarias. Este proceso incrementd significativamente el nimero de columnas

del dataset, pasando de 4 a 44 columnas. Este aumento en la dimensionalidad puede tener
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implicaciones en el rendimiento del modelo, ya que un mayor ndmero de caracteristicas
puede llevar a un fenémeno conocido como la maldicion de la dimensionalidad, don-
de el espacio de caracteristicas se vuelve tan grande que los datos se vuelven escasos,
dificultando la generalizacién del modelo. Sin embargo, en este caso, el uso de drboles
de decision ayuda a mitigar este problema, ya que estos modelos son capaces de mane-
jar bien conjuntos de datos con alta dimensionalidad y seleccionar automaticamente las
caracteristicas mds relevantes durante el proceso de entrenamiento.

Por otra parte, como no se encontraron valores nulos o faltantes en el dataset, se con-
sidera que esta situacion tiene explicacién por la propia condicién agregada del dataset,
que corresponderia a registros de tipo “resumen o totales” de las variables. En este senti-
do, la ausencia de valores nulos puede interpretarse como que no existen combinaciones
de variables sin datos registrados, lo que es consistente con la naturaleza agregada del
dataset.

Esta misma condicidn, de que los datos estén agregados, se contempl6 para analizarlos
agrupados por sus respectivos criterios de agregacion.

Respecto a los resultados obtenidos al agruparlos por afio se puede ver, en la figura 2,
que la cantidad de delitos se distribuye de forma heterogénea dentro del periodo 2010 al
2023. En el afio 2023 se registran 2.464.759 de delitos, la mayor cantidad de delitos dentro
del rango total de afios. Por otra parte, con 1.766.779 delitos, el menor registro de delitos
es en el ano 2020. Si bien, el dataset no da informacion adicional que pudiera explicar este
comportamiento una contextualizacion de la situacién de Espaifia podria darnos algunas
pistas, como por ejemplo que en el afio 2020 se vivio el confinamiento por el COVID-19
lo que seria consistente con observar una disminucién en los delitos, asi como un aumento
en el afio 2023, consistente con el término del periodo de confinamiento.

Luego, los resultados obtenidos al agrupar los datos por comunidad auténoma se
muestran en la figura 3. En ella, se observa que la distribucién de delitos es también
heterogénea, pero con bastante diferencia entre las tres comunidades autbnomas que acu-
mulan la mayor y menor cantidad de delitos. Para analizar este comportamiento, se calcula
el porcentaje de delitos por comunidad auténoma y se muestran en el cuadro 9. En este
cuadro se observa que las tres primeras comunidades auténomas mencionadas, juntas, ex-

plican el 54,86 % de los delitos. Por otra parte, las tres ultimas, explican menos del 1 % de

78



la cantidad de delitos cometidos por comunidades auténomas.

Comunidades Auténomas A Mayor % delitos | Menor % delitos
Cataluia 20,49 % -
Madrid 17,70 % -
Andalucia 16,67 % -
La Rioja — 0,43 %
Ceuta - 0,22 %
Melilla - 0,22 %

Cuadro 9: Dataset de covid19: Los 3 porcentajes mayores y menores de delitos.

Nuevamente, el dataset no da otras caracteristicas que nos permitiera relacionar cau-
sas, pero si se incluye un enfoque demografico de Espafia, las tres comunidades auténo-
mas que concentran el mayor porcentaje de delitos, se corresponden con las comunidades
autobnomas mds pobladas de Espana, y al contrario, las tltimas tres comunidades auténo-
mas que menor cantidad de delitos presentan son también las que se registran como las
menos pobladas.

Finalmente, al agrupar los datos por categoria de delitos, los resultados se muestran en
la figura 4. En ella se observa que la categoria de delito que mayor cantidad de ellos regis-
tra, es la categoria de delitos contra el Patrimonio, que abarca la cantidad de 22.996.509
delitos y representa el 76,52 %. Si bien no hay informacién adicional, se puede inferir
que los delitos contra la propiedad suelen ser los mds frecuentes por la gran diversidad
de modalidades por las cuales pueden llevarse a cabo, muchos de ellos con penas bajas
o inexistentes y la falta de consentimiento o participacién que se requiere de la persona
contra la que se comete el delito. Estas, pueden ser algunas razones de aporte experiencial
que podrian explicar este comportamiento.

Cabe senalar que, si bien el objetivo del presente experimento no es desarrollar el me-
jor modelo predictivo para el fendmeno de la criminalidad, si resulta necesario realizar un
andlisis exploratorio, al menos en forma breve, que permita comprender los datos en su
contexto. En este sentido, el EDA presentado aporta la caracterizacion minima indispen-
sable sobre la distribucion temporal, territorial y categérica de los delitos, constituyendo

la base sobre la cual se construye y justifica el uso del modelo de regresion con arboles
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de decision en este trabajo.

5.1.2. Evaluacion de la vulnerabilidad del modelo y disefio del ataque

La evaluacion de las vulnerabilidades del modelo entrenado con datos sin envenenar,
arroj6 como resultado dos enfoques complementarios: por un lado, el andlisis de la im-
portancia de las caracteristicas, que permitié identificar las variables mas determinantes
en la prediccion; y, por otro, el andlisis de los puntos que desestabilizan al modelo por su
alto error.

Los resultados del andlisis de la importancia de las caracteristicas identificaron las
cinco mads relevantes, es decir, aquellas que el modelo considera son las mds importantes
para reducir el error (MSE) en la prediccion de la criminalidad.

La caracteristica codificada Categoria_Patrimonio, que corresponde a los delitos con-
tra el patrimonio, es la que mds reduce el error, por tanto, el arbol separa con mucha
eficacia los valores objetivos cuando distingue si el delito pertenece a ella o no.

Le siguen las caracteristicas codificada Comunidad_Cataluiia, Comunidad_Madrid y
Comunidad_Comunitat Valenciana, que a su vez, son las comunidades auténomas con
mayor cantidad de delitos como se observo en el andlisis exploratorio.

Luego, la caracteristica codificada A7sio_2020 es la variable temporal que mas reduce
el error, lo que indica que el modelo ha aprendido a identificar patrones temporales en los
datos, aunque su importancia es menor en comparacion con las otras caracteristicas.

Del resultado presentado en la figura 5 se puede observar que la importancia de estas
caracteristicas es bastante concentrada, ya que solo las tres primeras caracteristicas codi-
ficadas mas importantes acumulan mas del 90 % de la importancia total del modelo. Este
resultado es consistente con el andlisis exploratorio dado que, las caracteristicas que en las
graficas de distribucion de los datos mostraron mayor concentracidén en pocas categorias
(tipo de delito y comunidad) son las que mds reducen el error cuadratico en el modelo.
Por el contrario, la variable temporal que es més equilibrada en su distribucién, aporta una
importancia marginal. Esto refuerza la coherencia entre el comportamiento del dataset y
la explicacion del modelo.

Realizado el andlisis del segundo enfoque, relacionado a los puntos que desestabili-

zan al modelo por su alto error, se elabor6 el cuadro 4. En ella se puede identificar las
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cinco comunidades auténomas que presentan mayor MAE en la prediccion de crimina-
lidad. La comunidad auténoma que presenta mayor MAE es Aragon, con un valor de
12.038,58, que es casi el doble del segundo valor mas alto, que corresponde a Madrid con
6.853,16. Esta diferencia significativa sugiere que el modelo tiene dificultades particula-
res para predecir la criminalidad en Aragon, lo que podria deberse a factores especificos
de esta comunidad auténoma que no estdn bien capturados por las caracteristicas del mo-
delo, o por falta de datos representativos. Si bien, las comunidades auténomas de Madrid
y Comunidad Valenciana también presentan un MAE alto y, adicionalmente, se corres-
ponden con ser caracteristicas consideradas importantes por el modelo, sus valores son
considerablemente menores que el de Aragon, 1o que indica que el modelo tiene un mejor
desempefio en estas regiones en comparacion con Aragon.

En dicho cuadro, se observa que la media de Aragon fue de u =3.600,90 y la desvia-
cion estandar de o = 8,842,31. De ahi se obtiene el umbral de 420 = 21.285,52. En el
cuadro también fueron registrados los valores maximos, tanto de Aragon con 39.806 y del
dataset completo con 431.028, todo ello con el objetivo de tener una referencia clara del
rango empirico de los datos. De esta forma, se observa que la magnitud de la perturbacion
obtenida en promedio fue de 10.802,71 que cumple el objetivo de mantener los valores
envenenados dentro del rango empirico para que el ataque no de alertas tempranas de

outliers.

5.1.3. Anadlisis comparativo

5.1.3.a Comparacion de las estructuras de los arboles

En la figura 6 se puede observar el arbol sin envenenamiento que sirve de modelo
baseline para realizar las comparaciones.

Este modelo inicia su nodo raiz con la caracteristica codificada Categoria_Patrimonio,
lo que indica que es la caracteristica mds importante para efectuar el primer split y es
confirmado segun el andlisis de importancia de caracteristicas. El drbol realiza su primera
divisién en funcién de si el delito pertenece o no a esta categoria, lo que indica que el
modelo ha aprendido a identificar este patrén como el mds importante para separar con

eficacia los valores objetivo. Para hacer esta separacion utiliza el umbral de 0,5, que es el
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valor estdndar para variables binarias.

Cuando se compara esta caracteristica en el arbol envenenado al 5% de la figura 7,
se observa que este también inicia su nodo raiz con la caracteristica codificada Catego-
ria_Patrimonio, lo que indica que en general la caracteristica Categoria sigue siendo la
mds importante para efectuar el primer split, incluso después de introducir datos envene-
nados. Inclusive al revisar los resultados de los cambios en las estructura de los arboles
en todos los experimentos (disponibles para consulta en el cuadro 13 del anexo A), esta
caracteristica se mantiene estable como la caracteristica mds importante en el nodo raiz,
lo que sugiere que el envenenamiento no ha afectado la importancia relativa de esta carac-
teristica en el modelo, aunque ya se pueden observar cambios en la cantidad de ejemplos
y en el error cuadratico pero que se mantienen en el mismo orden de magnitud. Todos
estos cambios incipientes implican que este nodo no ha sido absolutamente inmune a los
ataques de envenenamiento.

A partir del segundo nivel del arbol se observan cambios en la estructura del arbol lo
que comienza a evidenciar, mds notoriamente, el deterioro de este. Asi al comparar los
cambios del nodo 1, el arbol sin envenenamiento utiliza la caracteristica codificada Co-
munidad_Cataluiia para efectuar el split, mientras que el arbol envenenado al 1 % utiliza
la caracteristica codificada Comunidad_Madrid, y 1os envenenados al 3% y 5 % utilizan
la caracteristica codificada Categoria_Contra La Libertad, reflejando una clara inestabi-
lidad en la decision. Puesto que comienza a variar entre las caracteristicas mas generales
Comunidad y Categoria.

Este cambio indica que el envenenamiento ha afectado la seleccion de caracteristicas
en este nodo, generando un deterioro estructural que podria considerarse fuerte ya que
cambia totalmente la 16gica del modelo, lo que podria tener implicaciones para la capaci-
dad del modelo para generalizar correctamente. Esta alteracion queda reafirmada con las
métricas de rendimiento obtenidas, que se presentan mds adelante.

Otro cambio importante a considerar es el observado en el nodo 8, en este nodo los
experimentos sin envenenamiento y con el 1 % (con reemplazo) mantienen valores bajos y
estables del Value, valores ~ 14-16, pero al 1 % de envenenamiento da un salto importante
a 15.465,9 para luego volver a valores mds pequefios de 59 en el modelo envenenado al

5%. Estos cambios de los valores en tan diferentes magnitudes también son observables
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en otros nodos como los del 12 al 14. Este es un ejemplo de la evidencia obtenida respecto
a la distorsion introducida (un envenenamiento minimo hace que un nodo pase a predecir
cifras que ya son consideradas outliers internos, es decir, se inducen los outliers).

Como punto particular de interés obtenido de la observacion del desarrollo de esta
experimentacion es la observacién de que no siempre un mayor porcentaje de datos en-
venenados significa mayor deterioro del modelo. Eso se pudo observar, por ejemplo en el
nodo 8 con la explicacién del parrafo anterior. Asi el valor més alto de Value en el modelo
envenenado al 1% es 15.465,9, mientras que en el modelo envenenado al 5% el valor es
59. Esto indica que el envenenamiento no siempre tiene un efecto lineal con el porcentaje
de datos envenenados, por tanto, el incremento del deterioro podria depender mas de qué
registros especificos son alterados y como impactan en los split del drbol. Es decir, un
cambio pequefio en registros considerados ‘“criticos” por el modelo pueden desestabilizar

mucho mds que un cambio mayor pero en registros menos influyentes.

5.1.3.b Comparacion de los rendimientos de los modelos

En el cuadro 6 se presentan las métricas de rendimiento de los modelos entrenados
con diferentes tasas de envenenamiento, incluyendo el modelo sin envenenamiento que
sirve como referencia (baseline).

Dentro de las observaciones de estos resultados, en primer lugar, se puede sefialar que
el modelo entrenado con datos sin envenenamiento (0 %), presenta un buen ajuste con
un R? de 0,8415. Esto nos indica que el modelo es capaz de explicar aproximadamente
el 84,15 % de la variabilidad en los datos. Ademas, el modelo muestra valores de error
moderados (MAE = 4.315,89, MSE = 1.94x 108). Cuando se introduce un 1% de enve-
nenamiento con reemplazo, las métricas se mantienen practicamente inalteradas, lo que
indica que este tipo de perturbacion no logra degradar de manera significativa el desem-
pefio.

Sin embargo, con un 1 % de envenenamiento se observa un deterioro considerable: el
MAE aumenta en torno a un 11%, el MSE se incrementa en mds de un 30% vy el co-
eficiente de determinacion, R2, cae de 0,8415 hasta 0,6256. Este resultado refleja la vul-
nerabilidad del modelo ante pequefias modificaciones dirigidas, capaces de alterar nodos

clave en la estructura del 4rbol y de generar predicciones andmalas.
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De forma paraddjica, el escenario del 3% se registra una recuperacién del desem-
pefio en algunas de las métricas, donde el R* asciende a 0,8555 y el MSE disminuye
ligeramente, en torno a un 3,5 %, respecto al MSE del modelo entrenado sin datos en-
venenados. Este comportamiento puede interpretarse como un efecto de regularizacion
accidental, en el que la presencia de ruido obliga al arbol a simplificar sus divisiones y
mejora transitoriamente la capacidad de generalizacion.

Finalmente, con un 5% de envenenamiento se alcanza un punto de colapso. El error
absoluto medio aumenta mds de un 40 %, el MSE se multiplica por 2,5 respecto al modelo
base y el R? desciende de 0,8415 a 0,5047 (una disminucién aprox. del 40 %), lo que
evidencia una pérdida evidente de la capacidad explicativa.

En conjunto, los resultados confirman que el arbol de decision es especialmente sen-
sible a inyecciones especificas de datos envenenados, pudiendo mostrar tanto comporta-
mientos de degradacion inmediata como aparentes mejoras espurias antes de colapsar en

niveles mas altos de envenenamiento.

5.2. Dataset de covid19

5.2.1. Analisis exploratorio de datos

De los resultados del anélisis exploratorio de datos (EDA) del dataset de covid19, se
pueden destacar los siguientes aspectos relevantes:

Se identificaron 6.386 registros con valores nulos, lo que corresponde al 2,1 % de los
registros que contenian un valor nulo en la columna provincia. En lugar de eliminarlos,
se imputaron a una categoria “Desconocido” con el fin de preservar la muestra, mantener
la neutralidad en la distribucion territorial y asegurar la consistencia con la codificacion
one-hot utilizada en el modelo.

Si bien, el porcentaje de registros con valores nulos es bajo, y por tanto el riesgo de
distorsion también lo es, se analizé que eliminarlos implicaria perder més de seis mil
registros que contienen informacién valida en las demads variables. Por otra parte, al tra-
tarse de provincia, la opcidén de imputar por media o moda se consideré que carecia de
sentido (no hay un “promedio” de provincias), por tanto, el valor “Desconocido” se con-

sider6 como la forma més semdnticamente coherente de reflejar que esa informacion esta
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ausente.

Respecto a la distribucion de clases, tal como se observa en los resultados de la figu-
ra 9, la adaptacion del dataset permitié obtener una distribucion de la variable objetivo
hospitalizado con cierto balance entre las dos clases: un 52,1 % de los registros corres-
ponden a casos con al menos una hospitalizacién, mientras que el 47,9 % no presentan
hospitalizacion. Esta proporcion cercana al equilibrio es un aspecto positivo para el mo-
delado, ya que reduce el riesgo de sesgo en el entrenamiento de los clasificadores y per-
mite que las métricas de desempeifio (Accuracy, F1-score, Recall, etc.) reflejen de manera
mads fiel la capacidad del modelo para diferenciar ambas clases. Asimismo, la ligera ma-
yoria de casos hospitalizados garantiza que la clase positiva, de mayor interés analitico, se
encuentre adecuadamente representada. Este balance permite que el modelo disponga de
ejemplos suficientes para aprender patrones asociados a la hospitalizacién sin necesidad
de técnicas de rebalanceo adicionales.

La matriz de correlacion, de las variables numéricas, presentada en la figura 10 evi-
dencia varios patrones relevantes que se discuten a continuacion.

En primer lugar, se extraen de esa matriz las asociaciones entre las variables clinicas
que son mostradas en el cuadro 10. Todas ellas son asociaciones positivas, con coeficientes
de correlacion que van desde r =0,22 hasta r =0,28. Estas relaciones son coherentes desde
un punto de vista epidemiolégico, ya que a mayor incidencia se espera un aumento en

alguna proporcién en los indicadores de gravedad.

Variables | num_casos | num_uci

num_uci 0,28 —

num_def 0,28 0,22

Cuadro 10: Dataset de covid19: Correlaciones entre variables clinicas

Respecto de la correlacion entre las variables predictoras y la variable objetivo hos-
pitalizado, esta mantiene correlaciones positivas bajas a moderadas con las variables cli-
nicas. En contraste, las variables temporales presentan escasa relacién con la hospita-
lizacién, con correlaciones negativas muy bajas. Estas correlaciones se resumen en el

cuadro 11.
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Hospitalizado
Variables | Correlacion Positiva | Correlacion Negativa
num_casos 0,20 -
num_uci 0,16 -
num_def 0,15 —
anio - -0,12
mes - -0,05
semana - -0,04

Cuadro 11: Dataset de covid19: Correlaciones con la variable objetivo hospitalizado

Este resultado confirma que la hospitalizacién no depende linealmente de un tnico
factor, sino de la combinacion de distintos indicadores. Estos resultados permiten concluir
que la dimensién temporal aporta informacién limitada en comparacion con las variables

clinicas para explicar la hospitalizacidn.

5.2.2. Evaluacion de la vulnerabilidad del modelo y disefio del ataque

La evaluacion de las vulnerabilidades del modelo entrenado con datos sin envenenar,
arroj6 como resultado dos enfoques complementarios: por un lado, el andlisis de la im-
portancia de las caracteristicas, que permitié identificar las variables més determinantes
en la prediccién; y, por otro, la elaboracién de un mapa de vulnerabilidades, en el que
se localizaron los nodos y categorias que desestabilizan al modelo por presentar mayores
niveles de impureza.

Los resultados del andlisis de la importancia de las caracteristicas identificaron las
cinco mas relevantes, es decir, aquellas cinco que el modelo considera més influyentes
para reducir la impureza (indice Gini) en la clasificacion de la variable objetivo.

La variable con mayor importancia es num_num_casos, que por si sola explica més del
56 % de la reduccion total de impureza, lo que indica que el modelo se apoya fuertemente
en esta caracteristica para realizar sus predicciones de hospitalizacion.

Le siguen las variables num_num_def y la categoria codificada cat_grupo_edad_80+,
ambas con una contribucién relevante y de magnitud similar entre ellas, lo que evidencia

que la mortalidad y la pertenencia al grupo etario de 80 afios 0 mds constituyen fac-
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tores significativos para la clasificacion. En un nivel ligeramente inferior se encuentra
num_num_uci, que mantiene una influencia moderada. Finalmente, la variable temporal
anio presenta una importancia residual, confirmando que la dimensién temporal aporta
muy poco al desempefio del modelo en comparacion con las variables clinicas.

En resumen, solo las cuatro primeras caracteristicas (num_num_casos, num_num_def,
cat_grupo_edad_80+ y num_num_uci) concentran un valor de importancia del modelo
de 0,97, esto es que pueden explicar mas del 97 % de la reduccién total de impureza del
modelo, lo que indica una alta concentracién de la capacidad explicativa del modelo en
un conjunto reducido de variables.

Con un segundo enfoque, se analiza el mapa de vulnerabilidades lo que permite iden-
tificar los puntos criticos del drbol donde una manipulacién de los datos tendria mayor
impacto en la clasificacion. Destaca de manera evidente la variable num_casos, la cual
concentra los nodos con mayor attack_score, lo que refleja que el modelo depende de
manera significativa de esta caracteristica para sus divisiones principales. Esta concen-
tracion sugiere que pequeias perturbaciones sobre num_casos pueden inducir cambios
estructurales relevantes en la prediccion, aumentando la fragilidad del modelo.

Asimismo, se observa que variables como num_def, num_uci 'y grupo_edad aparecen
como vulnerabilidades secundarias, con valores de attack_score més bajos pero toda-
via presentes en varios nodos. Esto indica que, aunque su influencia es menor que la de
num_casos, podrian ser utilizadas en ataques focalizados para degradar la precision del
clasificador.

Un hallazgo adicional es la presencia de la variable provincia, cuya importancia habia
resultado marginal en el andlisis de importancias globales, pero que en el mapa muestra
vulnerabilidades puntuales. Este contraste evidencia que una variable con baja importan-
cia general puede, sin embargo, generar inestabilidad local en determinados nodos del
arbol, lo que amplia el espectro de posibles puntos de ataque.

En conjunto, el andlisis refuerza la idea de que la vulnerabilidad del modelo no de-
pende Unicamente de las caracteristicas globalmente mds importantes, sino también de
aquellas que, en nodos especificos, concentran altos niveles de impureza y muestras, con-
virtiéndose en puntos sensibles para un ataque de envenenamiento de datos.

Los aportes para el andlisis de vulnerabilidad de ambos enfoques pueden sefialarse co-
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mo: en el caso del andlisis de importancia de caracteristicas aportd una vision global sobre
las variables que estructuran el modelo, y el mapa de vulnerabilidades permitié identificar
con mayor precision los puntos débiles especificos, asociados a nodos y categorias con
mayor indice de impureza.

Por tanto, el andlisis de importancia de caracteristicas como el mapa de vulnerabili-
dades permitieron evidenciar la dependencia del modelo de clasificacion respecto de un
conjunto reducido de variables, destacando especialmente num_casos. Esta concentracion
de dependencia en pocas variables implica que la calidad de las etiquetas de entrenamien-
to resulta critica para la estabilidad del clasificador, ya que cualquier inconsistencia entre
los predictores y la clase objetivo altera de manera directa la 16gica de decision. Este
factor fue el punto clave para definir el disefio del ataque, pues identificé que la mani-
pulacién de la etiqueta de salida constituia un punto de vulnerabilidad particularmente
sensible para este modelo y, por tanto, un ataque de tipo label-flipping sobre la variable

objetivo hospitalizado era apropiado.

5.2.3. Analisis comparativo

5.2.3.a Comparacion de las estructuras de los arboles

En la figura 13 se puede observar el drbol sin envenenamiento que sirve de modelo
baseline para realizar las comparaciones.

Este modelo inicia su nodo raiz con la caracteristica num_num_casos, 1o que confirma
que es la variable mds importante para efectuar el primer split. Este resultado es consis-
tente con el andlisis de importancia de caracteristicas, ya que num_num_casos resulta ser
el predictor principal de la necesidad de hospitalizacion en el conjunto de datos. Para
realizar esta separacion se utiliza el umbral de 5,5, dividiendo entre escenarios con muy
pocos casos frente a aquellos con un mayor volumen de casos, lo que refleja el patrén
aprendido por el modelo para discriminar entre hospitalizacién y no hospitalizacion.

En el segundo nivel del arbol, cuando la caracteristica num_num_casos tiene valores
bajos y el flujo continua por la rama izquierda, la caracteristica codificada que se utiliza
para el siguiente split es la cat_grupo_edad_80+. Esta division captura la vulnerabilidad

especial de los adultos mayores, lo que coincide con la 16gica epidemiolédgica de la en-
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fermedad. En contraste, en la rama derecha (cuando num_num_casos es mayor), el rbol
utiliza la variable num_num_def, 1o que sugiere que la severidad del cuadro clinico se
convierte en el factor determinante para la clasificacion.

En los nodos de niveles més profundos se observa la aparicion de otras caracteristicas
como num_anio y el dummy cat_provincia_SS, que si bien tienen menor importancia
global, contribuyen a refinar las predicciones en subconjuntos de datos especificos. Este
comportamiento también es visible en el andlisis de importancia de caracteristicas, donde
el peso de num_num_casos es seguido por variables asociadas a desenlaces graves como
num_num_def y num_num_uci.

En la figura 14 se pudo observar la estructura resultante del drbol entrenado con el
mayor porcentaje de datos envenenados, esto es con datos envenenados al 5 %. Al compa-
rar este modelo envenenado con el sin envenenar, se observa que el modelo envenenado
también inicia su nodo raiz con la caracteristica num_num_casos, 1o que indica que es-
ta caracteristica sigue siendo la mds importante para reducir los niveles de impureza y
efectuar el primer split, incluso después de introducir datos envenenados.

Inclusive al revisar todos los experimentos, en el cuadro comparativo 14, del anexo A,
se observa que esta caracteristica se mantiene estable como la caracteristica mas impor-
tante en el nodo raiz, lo que sugiere que el envenenamiento no ha afectado la importancia
relativa de esta caracteristica en el modelo, aunque ya es posible observar cambios en el
indice Gini y en la eleccion del umbral, cambiando de 5,5 a 7,5 en el experimento del
3 %. Esto sugiere que aunque se mantienen los valores en el mismo orden de magnitud las
divisiones son suavemente menos puras, por tanto, todos estos cambios incipientes impli-
can que este nodo no ha sido absolutamente inmune a los ataques de envenenamiento de
datos.

Siguiendo con la comparativa, a partir del segundo nivel del arbol se observan cambios
mads notorios en la estructura, lo que comienza demostrar visiblemente el deterioro de este.
Asi al comparar los cambios del nodo 1, el arbol sin envenenamiento y con envenenamien-
to del 3 % utilizan la caracteristica codificada cat_grupo_edad_80+ para efectuar el split,
mientras que el arbol envenenado al 1% y 5 % utilizan la caracteristica num_num_casos,
reflejando una clara inestabilidad en la decision.

Este cambio indica que el envenenamiento ha afectado la seleccion de caracteristicas
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en este nodo, generando un deterioro estructural que podria considerarse fuerte ya que
cambia totalmente la 16gica del modelo, lo que podria tener implicaciones para la capaci-
dad del modelo para generalizar correctamente. Esta alteracion queda reafirmada con las
métricas de rendimiento obtenidas, que se presentan mds adelante.

No obstante este cambio, una observacion interesante es comparar la cantidad de
ejemplos y el indice Gini en este nodo 1, ya que a pesar de haber hecho un cambio es-
tructural fuerte consistente en el cambio de la caracteristica con la cual se hace el split, la
cantidad de ejemplos se mantiene igual y el indice Gini también se mantiene en valores
similares, es decir, los modelos sin envenenamiento y con envenenamiento del 1% man-
tienen estos valores similares entre si. Los modelos envenenados al 3% y 5% también
mantienen estos valores similares entre si.

Otros cambios de interés son los observados en algunos nodos como el 6 que cambia
la caracteristica de seleccion del split, alternando entre num_num_uci, num_num_semana
y num_num_casos, lo que indica una mayor inestabilidad en la estructura del arbol y
pérdida de consistencia. Los nodos como el 8, 9, 11, 13, 27 y 28, cambian directamente
la clase predicha, mostrando un claro deterioro en la capacidad clasificatoria.

Adicionalmente, al igual que se observé con el experimento de regresion, los cambios
observados en el experimento de clasificacion también evidencian que no siempre un ma-
yor porcentaje de datos envenenados significa mayor deterioro del modelo. Por ejemplo,
en el nodo 1, el cambio estructural mas fuerte se observa en los modelos envenenados al
1% y 5%, mientras que el modelo al 3 % mantiene la misma caracteristica que el modelo
sin envenenamiento. Esto indica que el envenenamiento no siempre tiene un efecto lineal
con el porcentaje de datos envenenados, por tanto, este segundo experimento confirma-
ria que el incremento del deterioro podria depender mas de qué registros especificos son
alterados y cdmo impactan en los split del arbol. En algunos casos, un envenenamiento
minimo puede impactar directamente en registros considerados criticos por el drbol, pro-
vocando una alteracion mds significativa que la introducida con porcentajes mayores de
envenenamiento en registros menos influyentes. Este comportamiento evidencia que la
estabilidad del arbol depende no solo de la magnitud del envenenamiento, sino también
de la posicidn estratégica de los registros alterados en relacidn con las divisiones clave.

La figura 15 muestra la comparacion de la importancia de las caracteristicas entre los
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modelos envenenados al 1%, 3% y 5% y el modelo baseline.

Es importante destacar que el enfoque de la comparativa es diferente a lo realizado
hasta ahora, ya que cuando se realiz6 el andlisis de importancia de caracteristicas tal
como muestra la figura 11, se identificaron las cinco caracteristicas mas importantes del
modelo sin envenenamiento, cuyas cuatro primeras coinciden en todos los modelos de
este experimento. Pero la ultima, num_anio, no se mantiene en los modelos envenenados,
siendo sustituida por provincia.

Finalmente, podemos observar que en todos los casos, la variable num_num_casos
se mantiene como el factor mas influyente, aunque con variaciones en su peso relativo:
aumenta levemente en el modelo envenenado al 1 %, se refuerza en el envenenado al 3 %
y si bien en el modelo envenenado al 5% disminuye comparativamente con el peso re-
lativo obtenido en el modelo envenenado al 3 %, sigue siendo mayor que en el modelo
baseline. Este comportamiento refleja que, en niveles bajos de perturbacién, el modelo
tiende a redistribuir parte de la importancia hacia otras variables, en particular las caracte-
risticas codificadas cat_grupo_edad_80+ y num_num_def, mientras que en niveles altos
la estructura se hace progresivamente mas dependiente de num_num_casos. En conjunto,
estos resultados evidencian un patrén de reacomodo inicial seguido de una concentracion
en un unico predictor, lo que reduce la diversidad de sefiales utilizadas por el arbol y

aumenta su vulnerabilidad.

5.2.3.b Comparacion de los rendimientos de los modelos

Los resultados comparativos de la figura 16 y las curvas ROC en la figura 17 permiten
profundizar en el andlisis del impacto del envenenamiento.

En primer lugar, se observa que la Accuracy desciende ligeramente en todos los esce-
narios de envenenamiento. Esta métrica alcanza una disminucién del 0,89 % en el escena-
rio de datos envenenados al 5 %. No obstante, el mayor cambio se observa en el escenario
de datos envenenados al 3 %, con un descenso del Accuracy del 1,5 % del rendimiento glo-
bal. La métrica AP muestra una mayor variabilidad: alcanza un valor superior al baseline
en los escenarios de envenenamiento al 1% (0,768) y 5% (0,760), pero disminuye en el
de 3 % de envenenamiento (0,747). En cuanto a la métrica ROC AUC, los valores se man-

tienen cercanos al baseline (0,750), con incrementos minimos en el modelo envenenado
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al 1% (0,754), disminuciones en el modelo envenenado al 3 % (0,744) y recuperacion en
el envenenado al 5% (0,750).

Las curvas ROC confirman que la capacidad discriminativa del clasificador entre cla-
ses positivas y negativas se conserva relativamente estable, sin desviaciones significati-
vas respecto al modelo sin envenenamiento. Este comportamiento, en conjunto con las
variaciones de AP, indica que el envenenamiento afecta de forma selectiva a las métri-
cas, impactando con mayor fuerza aquellas sensibles al equilibrio entre clases (como F/
(Hosp) y Accuracy), mientras que otras asociadas a la discriminacién global (ROC AUC)
mantienen valores estables.

En términos generales, estos resultados sugieren que, si bien el envenenamiento no
provoca un colapso inmediato del rendimiento, si introduce inestabilidad en la consisten-
cia de las métricas, lo que constituye una forma de degradacion silenciosa pero critica para
la robustez del modelo. Por otra parte, estos resultados sugieren que el efecto del envene-
namiento no es estrictamente lineal y puede inducir fluctuaciones que, en determinados
contextos, incluso aparentan mejorar la capacidad predictiva del modelo.

Del anélisis anterior, también podemos comprobar la necesidad de utilizar multiples
métricas para evaluar el impacto del envenenamiento, ya que cada una refleja diferentes
aspectos del rendimiento, y por tanto, el andlisis de métricas como las tasas de falsos
positivos y falsos negativos, que se discuten a continuacién, resultan cruciales para com-
prender las implicaciones précticas del deterioro inducido por el envenenamiento.

El anélisis comparativo de la matriz de confusién normalizada se muestra en el cua-
dro 8, y nos permite observar como el envenenamiento afecta de manera diferenciada a
los aciertos y errores del modelo. En el modelo sin envenenamiento, la proporcién de
verdaderos positivos (VP = 0,72) y verdaderos negativos (VN = 0,67) se mantiene rela-
tivamente equilibrada, con tasas de falsos positivos (FP = 0,28) y falsos negativos (FN =
0,33) que reflejan un desempeio consistente con las métricas globales. Sin embargo, con
la introduccién del envenenamiento se aprecia un patrén progresivo: los VP descienden
hasta 0,62 en el modelo envenenado al 5%, mientras que los VN aumentan hasta 0,75.
Esta dindmica implica que el clasificador tiende a volverse mds conservador en la identi-
ficacion de casos positivos, lo que conlleva una reduccion de falsos negativos (FN = 0,25

en el modelo envenenado al 5%), pero a costa de un incremento en los falsos positivos
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(FP =0,38).

Este resultado conecta con las variaciones observadas en las métricas globales. La dis-
minucién en Accuracy'y F1 se explica por el aumento de falsos positivos, que deteriora el
balance entre ambas métricas. En contraste, la estabilidad relativa de la métrica ROC AUC
se entiende porque el modelo mantiene una buena capacidad de discriminacién global en-
tre clases, aun cuando redistribuye los errores entre falsos positivos y falsos negativos.
Finalmente, el comportamiento descrito también es coherente con el andlisis de impor-
tancias: la creciente dependencia de num_casos hace que el modelo refuerce divisiones
en torno a este predictor, pero con menor capacidad de generalizacién, amplificando las
confusiones en escenarios de envenenamiento mas severo.

Para una mejor comprension de este fendmeno, la figura 18 presenta una comparacién
visual de las fronteras de decision entre el modelo sin envenenamiento y el modelo con
mayor porcentaje de datos envenenados (modelo envenenado al 5 %), ya que este esce-
nario permite observar con mayor claridad el impacto del envenenamiento. En la figura
mencionada anteriormente, el grafico de la derecha corresponde al modelo entrenado con
datos sin envenenar, el modelo baseline. El grafico de la izquierda corresponde al modelo

entrenado con datos envenenados al 5 %.

Tasa de Envenenamiento FP FPR FN FNR
0% (sin envenenar) 1593% | 32,24% | 14,81 % | 28,65 %
5% 11,77% | 24,53% | 19,59% | 37,62 %

Cuadro 12: Dataset de covid19: Métricas de error y tasas condicionales en las fronteras
de decision, calculadas sobre el conjunto de test.

En el caso del modelo baseline, las fronteras se mantienen mds regulares, con un nivel
intermedio de falsos positivos y negativos como puede verse en el cuadro 12 que resume
las métricas clave para ambos modelos. Bajo el escenario del 5% de envenenamiento,
la frontera se desplaza y genera una redistribucién de los errores: disminuyen los falsos
positivos (FP |), pero aumentan los falsos negativos (FN 7). Este incremento de FN se
aprecia en la zona resaltada en la parte superior de la figura, donde varios puntos naranjas
(clase positiva) quedan ahora clasificados en la region verde claro (clase negativa). Este

desplazamiento evidencia visualmente como el envenenamiento afecta la estructura de las
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regiones de clasificacion y, en consecuencia, la distribucién de los errores.

Este patrén confirma lo observado en la matriz de confusién (Cuadro 8), donde el
clasificador se vuelve mds conservador al identificar casos positivos, priorizando la re-
duccidén de predicciones erréneas de la clase negativa a costa de una mayor omision de
casos positivos reales, reduciendo los falsos positivos pero aumentando los falsos negati-
VOs.

En términos practicos, este comportamiento implica un riesgo critico, ya que la de-
gradacién inducida por el envenenamiento no solo reduce la capacidad de generalizacion,
sino que ademads incrementa los errores mas costosos en aplicaciones clinicas, como los

falsos negativos.
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6. Conclusiones

El objetivo més importante que este TFM ha pretendido explorar, mediante la experi-
mentacion empirica, es observar el comportamiento de un modelo basado en arboles de
decision cuando se expone a un ataque de envenenamiento de datos. El objetivo general
ha sido alcanzado al demostrar que ataques simples de envenenamiento deterioran tanto
métricas (Accuracy, FPR/FNR) como la l6gica interna (raiz, reglas, Gini), cumpliendo el
objetivo de evidenciar la degradacién del modelo y de medir los cambios. Las conclusio-

nes relacionadas con los objetivos especificos se exponen a continuacion.

6.1. Evidencias sobre la vulnerabilidad, modos de envenenamiento y

medida del deterioro

En ambos tipos de experimentos se observaron modificaciones significativas: altera-
ciones en las caracteristicas seleccionadas para los splits, cambios en los umbrales de
decision, variaciones en el indice Gini y en la distribucién de ejemplos por nodo, asi
como modificaciones en las predicciones de clase. Estos resultados confirman que el en-
venenamiento de datos puede inducir cambios estructurales profundos, alterando la 16gica
de decision y la importancia relativa de las caracteristicas.

La comparacion entre modelos sin envenenar y modelos envenenados permitié cuan-
tificar este deterioro a través de métricas de rendimiento.

En el experimento de regresion, incluso con solo un 1% de envenenamiento, se evi-
denci6 un deterioro notable: el MAE aument6 alrededor de un 11 %, el MSE maés de un
30% y el coeficiente de determinacion cay6 aproximadamente un 25 %. En cambio, en
clasificacidn, el impacto inicial fue menor: con un 1% de envenenamiento la Accuracy
descendid en torno al 0,6 %, mientras que los indicadores ROC y AP mostraron, incluso,
una ligera mejora respecto al modelo entrenado sin datos envenenados.

Estos resultados reflejan que el efecto del envenenamiento no es lineal. En regresion,
el mayor deterioro global se observé con el 5%, pero entre los modelos envenenados al
1% y 3% hubo variaciones no monotdnicas, con ligeras mejoras intermedias en MAE y

MSE. Una tendencia similar se observé en clasificacion, donde el peor desempefio general
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se registré con el 3% de envenenamiento. Este comportamiento sugiere que el impacto
depende maés de la ubicacidon estratégica de los registros manipulados que de la magnitud
absoluta del envenenamiento.

Ademads, se constaté que una medida global (como la Accuracy o ROC) no es siem-
pre una métrica suficiente en clasificacion. El andlisis de la matriz de confusién y de las
fronteras de decision mostré que el envenenamiento desplaza los limites del modelo, vol-
viéndolo mds conservador con los positivos: se reducen los falsos positivos pero aumentan
los falsos negativos. En un contexto clinico, este efecto es critico, pues implica un mayor
riesgo de no detectar pacientes que requieren hospitalizacion (para los efectos practicos
del experimento realizado en este TFM).

Los resultados obtenidos son consistentes con la literatura revisada en el marco teori-
co: los drboles de decision son sensibles a modificaciones en los datos y presentan cam-
bios apreciables incluso con tasas de envenenamiento bajas (1 %, 3 %, 5 %, es decir, meno-
res al 10%). Asimismo, se confirma que los ataques de envenenamiento de datos pueden
alterar la estructura, alterando la 16gica de decision y redistribuir la importancia de las
caracteristicas.

Finalmente, se destaca que la transparencia de los drboles de decision (su explicabili-
dad) ha sido clave para disefiar los ataques, hacer visibles sus efectos y medirlos con pre-
cision. Por ello, también se demuestra que esa misma explicabilidad constituye también
una vulnerabilidad al permitir identificar y explotar puntos criticos del modelo. Identifi-
car las caracteristicas mas importantes, los nodos més vulnerables y los problemas que
tenia el modelos para predecir, facilité el disefio de los ataques mds convenientes para los
modelos usados (ataques featured-based y label-flipping). Finalmente, la comprensién del
funcionamiento del modelo y el acceso al dataset, permiti6 la seleccién de registros mas
convenientes para el envenenamiento, maximizando su impacto incluso con tasas bajas.

Con todo lo anterior, se evidencia la necesidad de proteger los modelos antes incluso
de su entrenamiento, es decir, garantizar la integridad de los datos desde su origen y toma

importancia las recomendaciones de seguridad que se presentan mds adelante.
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6.2. Evaluacion de los riesgos en contextos criticos

Los experimentos realizados demuestran que un modelo basado en arboles de deci-
sion sometido a envenenamiento de datos puede sufrir cambios estructurales y deterioro
en su rendimiento. La alteraciéon de su logica de decision incrementa el riesgo de con-
clusiones erréneas o sesgadas, con consecuencias potencialmente graves en aplicaciones
practicas, lo que resalta la necesidad de controlar el entorno de entrenamiento, especial-
mente en sectores criticos como la salud, la seguridad o la defensa, donde las decisiones
automatizadas pueden tener consecuencias directas sobre la vida de las personas.

No obstante, mds alld de estas consecuencias mds extremas, la manipulacién de mo-
delos predictivos en el sector publico puede tener efectos sociales y econdmicos de gran
alcance. Entre ellos se incluyen errores en la planificacion presupuestaria, reasignaciones
inadecuadas de recursos o restricciones en la provision de servicios, con consecuencias
para la poblacién que pueden ir desde el aumento impositivo por la presion de aumen-
tar la recaudacion estatal o deterioro en la calidad de vida por reduccién de prestaciones
esenciales, debido a insuficiencia de los recursos publicos.

Ejemplos concretos ilustran estos riesgos: un modelo de prediccién criminal enve-
nenado podria conducir a una distribucién ineficiente de recursos policiales; un modelo
de apoyo al diagnéstico médico manipulado podria derivar en diagndsticos incorrectos y
tratamientos inapropiados; y, en defensa, un sistema de prediccién de amenazas compro-
metido podria inducir decisiones estratégicas equivocadas, adjudicacién de licitaciones
erréneas o incluso eleccidon de objetivos tacticos inadecuados, con posibles pérdidas hu-

manas.

6.3. Recomendaciones de seguridad

De la revision de la literatura realizada en este TFM se evidencia una brecha impor-
tante: la ausencia de defensas especificas para arboles de decision frente a ataques de
envenenamiento. Esta vulnerabilidad pone de relieve la urgencia de investigar y disefiar
estrategias de mitigacion adaptadas a este tipo de modelos. Si bien existen enfoques ge-
nerales para enfrentar ataques adversariales, estos resultan insuficientes para abordar las

particularidades de los drboles de decision o prevenir el envenenamiento desde su origen.

97



A continuacién, se presentan recomendaciones preventivas organizadas en forma de

pautas con sus reflexiones asociadas:

= Recomendacion 1: Identificar y perfilar al proveedor de los datos.
Reflexiones: (Es interno o externo a la organizacion? ;Ofrece garantias o certifi-
caciones? ;Es reconocido y de confianza? ;Qué medidas aplica para preservar la

integridad de los datos?

= Recomendacion 2: Evitar usar datos sin verificar.
Reflexiones: Es esencial establecer mecanismos de validacion en todas las fases del
proceso. ;Qué auditorias se realizan? ;Como se transmiten y almacenan los datos?

(Se aplican pruebas de integridad y técnicas de deteccién de anomalias?

= Recomendacion 3: Comprobar reproducibilidad con estudios previos.
Reflexiones: (Existen investigaciones previas con esos datos? ;Se replican los re-
sultados? ;Coincide la estructura de los datos con lo descrito en la literatura? ;Qué

metodologias se han usado para validar su calidad?

= Recomendacion 4: Utilizar multiples fuentes de datos.
Reflexiones: La diversificacion reduce la probabilidad de que todas sean compro-
metidas. ;Se integran varias fuentes? ;Como se validan entre si? ; Qué mecanismos

detectan inconsistencias?

= Recomendacion 5: Contrastar los datos con conocimiento previo del dominio.
Reflexiones: ;Son coherentes los datos con la informacién ya conocida? ;Se detec-
tan anomalias o patrones inusuales? ;Coinciden cantidad de registros y dimensio-

nalidad con lo esperado?

= Recomendacion 6: Monitorear y auditar continuamente el modelo.
Reflexiones: ;Existen umbrales de alerta para anomalias? ;Se mantienen registros

de actividad? ;Qué acciones se ejecutan tras la deteccidon de cambios?

Finalmente, resulta fundamental sensibilizar a los equipos de desarrollo y operaciones
sobre la importancia de la seguridad en todo el ciclo de vida de los datos y los modelos.
Incluir estas medidas desde las fases iniciales del desarrollo contribuye a fortalecer la

resiliencia frente a ataques adversariales.
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6.4. Contribucion y coherencia con los ODS.

Coherente con el apartado de Objetivos de Desarrollo Sostenible de la Introduccidn,

los resultados permiten aterrizar la contribucion a los ODS en términos verificables:

= ODS 3 (Salud y bienestar). Se observé que el envenenamiento desplaza las fronte-
ras de decision y vuelve al clasificador mas conservador con la clase positiva, redu-
ciendo FP pero aumentando FN. En un contexto de salud, este patrén eleva el riesgo
de no detectar pacientes que requieren atencion, aun cuando las métricas globales
puedan aparentar estabilidad. Los resultados evidencian que pequefias manipula-
ciones en el entrenamiento pueden traducirse en decisiones sanitarias subOptimas,
reforzando la necesidad de controlar el entorno de entrenamiento y de fundamentar

la toma de decisiones en modelos explicables.

= ODS 9 (Industria, innovacion e infraestructura). Se observo que incluso tasas
bajas de envenenamiento (1-5 %) alteran la 16gica interna del arbol (raiz, reglas,
Gini), lo que permite delimitar requisitos de infraestructura metodoldgica previos
a cualquier uso operativo: control del entorno de entrenamiento, trazabilidad del
origen de los datos y sus transformaciones, etc. Al identificar puntos de fallo y don-
de se producen los cambios estructurales, el estudio aporta criterios concretos para
fortalecer la infraestructura de datos y experimentacién que sostiene la innovacién

responsable.

= ODS 16 (Paz, justicia e instituciones sélidas). En sectores como seguridad y de-
fensa, los cambios estructurales inducidos por envenenamiento incrementan el ries-
go de conclusiones errdneas o sesgadas, con impacto potencial en la asignacion de
recursos y en decisiones estratégicas. Ademads, la transparencia propia de los ar-
boles, también expone puntos criticos susceptibles de explotacion, lo que subraya
la necesidad de trazabilidad de datos y decisiones, asi como de procedimientos de
auditoria de reglas y explicaciones. Estas implicaciones se alinean con instituciones

mds transparentes y con mayor rendicion de cuentas.

En suma, los ODS no quedan como marco declarativo, sino que orientan requisitos de

disefio y prdcticas operativas derivadas de la evidencia empirica.
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7. Limitaciones y futuras lineas de investigacion

Las principales limitaciones de este TFM se relacionan con el nimero reducido de
datasets, la eleccion de un unico algoritmo base (drbol individual) de ML sin ensembles,
los tipos de ataques fueron simples comparados con otros que pueden considerarse de
mayor complejidad y la limitada variedad de porcentajes de envenenamiento evaluados
(1%, 3% y 5%). Estas limitaciones condicionan la generalizacién de los resultados.

Asimismo, se opté por no implementar técnicas con componentes aleatorias, como
cross-validation, grid search o random search. Si bien estas estrategias habrian permi-
tido optimizar hiperpardmetros y posiblemente mejorar el rendimiento de los modelos,
también habrian introducido variabilidad en los resultados, dificultando la comparacién
directa entre los distintos escenarios de envenenamiento.

Futuras lineas de investigacion podrian orientarse hacia:

= Realizar un mayor nimero de experimentos, incluyendo variaciones més amplias
en los porcentajes de envenenamiento, para analizar si los patrones de deterioro se

mantienen o emergen nuevos comportamientos.

= Incorporar técnicas de optimizacidén como cross-validation, grid search y random
search, evaluando si mejoran el rendimiento o el uso de ensembles para analizar

robustez relativa de los modelos frente a ataques de envenenamiento.

= Extender la aplicacion de ataques a otros tipos de modelos, como redes neurona-
les o miquinas de soporte vectorial, empleando métodos explicables que permitan

comprender como los ataques afectan su estructura y desempeiio.

= Explorar enfoques de aprendizaje federado o descentralizado que reduzcan la de-
pendencia de un unico conjunto centralizado de datos, disminuyendo asi la efecti-
vidad de los ataques. En paralelo, estudiar el uso de técnicas generativas (GANs)

para crear datos sintéticos que contribuyan a entrenar modelos mads resilientes.

= Desarrollar un framework de defensa preventiva especifico para drboles de deci-
sién, orientado a proteger la integridad de los datos desde el origen, evitando la

manipulacién antes de que se materialice un ataque.
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Anexos

porcentaje de envenenamiento

Experimento de Regresion

A. Anexo: Cambios en la estructura en los arboles, segin

Nodo / Nivel 0% 1% (cr) 1% 3% 5%

Raiz (nodo 0)

Caracteristica:; PATRIMONIO | PATRIMONIO | PATRIMONIO | PATRIMONIO PATRIMONIO
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 2.688 2.688 2714 2.768 2.822
Squared error:| 1.530374e+09 1.535982e+09 1.651157e+09 1.478535e+09 1.535246e+09
Value: 9.221,463170 9.295,952009 9.455,829772 9.234,269870 9.196,032247
Nodo 1

Caracteristica:; CATALUNA CATALUNA MADRID C. LA LIBERTAD| C. LA LIBERTAD
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 2.454 2454 2.485 2.529 2.585
Squared error:| 3.032758e+07 3.059474e+07 3.038398e+07 3.095521e+07 2.847380e+07
Value: 2.325,817848 2.353,250611 2.319,868813 2.361,159747 2.314,753965
Nodo 2

Caracteristica: MADRID MADRID CATALUNA MADRID CATALUNA
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 2.323 2.323 2.369 2.286 2.346
Squared error:| 2.662868e+07 2.692440e+07 2.713773e+07 2.94765%e+07 2.677087e+07
Value: 2.092,433922 2.121,413689 2.125,354158 2.073,790901 2.016,586104
Nodo 3

Caracteristica:|C. VALENCIANA|C. VALENCIANA|C. VALENCIANA|C. VALENCIANA| C. VALENCIANA
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 2.201 2.201 2.248 2.180 2.231
Squared error:| 2.269439e+07 2.301989e+07 2.460622e+07 2.604955e+07 2.400772e+07

Value: 1.872,619718 1.903,205816 1.921,445285 1.904,798624 1.849,499328
Nodo 4

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 2.084 2.084 2.128 2.070 2.127

Squared error:

1.955595e+07

1.991353e+07

2.145241e+07

2.321450e+07

2.122172e+07

Value: 1.658,158829 1.690,462092 1.711,578477 1.728,533333 1.680,198402
Nodo 5

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 117 117 120 110 104
Squared error:| 6.318478e+07 6.318478e+07 6.590214e+07 6.781291e+07 6.841146e+07

Value: 5.692,589744 5.692,589744 5.643,083333 5.221,790909 5.312,028846
Nodo 6

Caracteristica:| L. ESPECIAL L. ESPECIAL |C.LA LIBERTAD| L.ESPECIAL [ADMON. PUBLICA
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 122 122 121 106 115
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Nodo / Nivel 0% 1% (cr) 1% 3% 5%
Squared error:| 8.100897e+07 8.100897e+07 5.904551e+07 8.729090e+07 6.932718e+07
Value: 6.058,098361 6.058,098361 5.913,677686 5.549,292453 5.258,069565
Nodo 7

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 111 111 110 95 102
Squared error:| 8.505852e+07 8.505852e+07 5.249850e+07 9.344338e+07 7.428021e+07
Value: 6.657,018018 6.657,018018 4.958,454545 6.189,926316 5.920,578431
Nodo 8

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 11 11 11 11 13
Squared error:| 7.024793e+01 7.024793e+01 2.414592e+07 5.915702e+01 3.569941e+02
Value: 14,454545 14,454545 15.465,909091 16,545455 59,923077
Nodo 9

Caracteristica:|C. LA LIBERTAD|C. LA LIBERTAD| L. ESPECIAL CATALUNA CATALUNA
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 131 131 116 243 239
Squared error:| 7.782585e+07 7.782585e+07 8.012710e+07 3.67798%e+07 3.575088e+07
Value: 6.464,374046 6.464,374046 6.292,327586 5.064,555556 5.241,539749
Nodo 10

Caracteristica:| L. ESPECIAL L. ESPECIAL | O.I. PENALES MADRID MADRID
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 120 120 105 231 228
Squared error:| 7.360916e+07 7.360916e+07 8.396076e+07 3.133401e+07 3.109157e+07
Value: 5.577,241667 5.577,241667 6.949,952380 4.512,277056 4.750,736842
Nodo 11

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 108 108 93 217 216
Squared error:| 7.802882e+07 7.802882e+07 8.957711e+07 2.823898e+07 2.847932e+07
Value: 6.190,342593 6.190,342593 7.721,806452 4.090,336406 4.388,365741
Nodo 12

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 12 12 12 14 12
Squared error:| 1.909889¢+03 1.909889¢+03 3.422041e+04 3.377490e+07 3.320314e+07
Value: 59,333333 59,333333 968,083333 11.052,357143 11.273,416667
Nodo 13

Caracteristica: Afio_2023 Afio_2023 Afio_2023 Afio_2023 Afio_2023
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 11 11 11 12 11
Squared error:| 2.158062e+07 2.158062e+07 6.727273e+01 2.271570e+07 .384264e+07
Value: 16.142,181818 | 16.142,181818 15,000000 15.695,916667 15.414,545455
Nodo 14

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 10 10 10 11 10
Squared error:| 1.806820e+07 1.806820e+07 3.000000e+01 1.901311e+07 .934884e+07
Value: 15.424,200000 | 15.424,200000 13,000000 15.002,636364 14.623,800000
Nodo 15

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 1 1 1 1 1
Squared error:| 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
Value: 23.322,000000 | 23.322,000000 35,000000 23.322,000000 23.322,000000
Nodo 16
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Squared error:

1.153338e+10

1.151655e+10

1.269010e+10

1.100694e+10

Nodo / Nivel 0% 1% (cr) 1% 3% 5%
Caracteristica:;; CATALUNA CATALUNA CATALUNA CATALUNA ATALUNA
Threshold: 0.5 0.5 0.5 0.5 0.5
Samples: 234 234 229 239 237

1.182010e+10

Value: 81.537,333333 | 82.105,307692 | 86.891,912664 | 81.962,702929 84.251,324895
Nodo 17

Caracteristica: MADRID MADRID MADRID MADRID MADRID
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 221 221 215 229 223
Squared error:| 6.913130e+09 6.915767e+09 7.812134e+09 7.458010e+09 6.973622e+09
Value: 64.513,461538 | 65.114,846154 | 68.356,576744 | 69.095,292576 66.215,156951
Nodo 18

Caracteristica:|C. VALENCIANA|C. VALENCIANA|C. VALENCIANA|C. VALENCIANA| C. VALENCIANA
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 211 211 202 217 210
Squared error:| 4.248984e+09 4.266296e+09 4.270792e+09 4.425107e+09 3.401863e+09

111

Value: 52.950,194313 | 53.580,080569 | 52.797,000000 | 55.732,124424 51.018,271429
Nodo 19

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 199 199 190 203 199
Squared error:| 3.366742e+09 3.395661e+09 3.308353e+09 3.394973e+09 2.474092e+09
Value: 45.023,135678 | 45.691,005025 | 44.360,205263 | 46.590,975369 43.495,944724
Nodo 20

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 12 12 12 14 11
Squared error:| 5.564751e+08 5.564751e+08 5.380945e+08 5.818063e+08 6.430892e+08
Value: 184.407,250000 | 184.407,250000 | 186.379,583333 | 188.278,785714 | 187.104,000000
Nodo 21

Caracteristica: Afo_2020 Ano_2020 Ano_2020 Afo_2020 Afo_2020
Threshold: 0.5 0.5 0.5 0.5 0.5
Samples: 10 10 13 12 13
Squared error:| 7.766844e+08 7.766844e+08 6.236246e+08 6.787625e+08 6.761729e+08
Value: 308.498,400000 | 308.498,400000 | 310.128,461538 | 310.745,916667 | 311.703,307692
Nodo 22

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 9 9 12 11 12
Squared error:| 3.377862e+08 3.377862e+08 2.721071e+08 2.889980e+08 3.098009e+08
Value: 315.745,444444 | 315.745,444444 | 315.699,583333 | 316.879,636364 | 317.405,666667
Nodo 23

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 1 1 1 1 1
Squared error:| 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
Value: 243.275,000000 | 243.275,000000 | 243.275,000000 | 243.275,000000 | 243.275,000000
Nodo 24

Caracteristica: Afio_2020 Afio_2020 Afio_2020 Aiio_2020 Afio_2020
Threshold: 0.5 0.5 0.5 0.5 0.5
Samples: 13 13 14 10 14
Squared error:| 1.395103e+09 1.395103e+09 1.300110e+09 .659159e+09 1.300110e+09
Value: 370.943,153846 | 370.943,153846 | 371.541,714286 | 376.626,400000 | 371.541,714286
Nodo 25

Caracteristica: Afo_2023 Afio_2023 Afio_2021 Afio_2021 Afio_2021




Nodo / Nivel 0% 1% (cr) 1% 3% 5%
Threshold: 0,5 0,5 0,5 0,5 0,5
Samples: 12 12 13 9 13
Squared error:| 1.064323e+09 1.064323e+09 9.829011e+08 1.129440e+09 9.829011e+08
Value: 376.807,250000 | 376.807,250000 | 377.000,769231 | 385.076,666660 | 377.000,769231
Nodo 26

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 11 11 12 8 12
Squared error:| 8.695199¢+08 8.695199¢+08 7.984521e+08 7.231714e+08 7.984521e+08

Value: 371.878,090909 | 371.878,090909 | 381.527,250000 | 392.875,875000 | 381.527,250000
Nodo 27

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 1 1 1 1 1
Squared error:| 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
Value: 431.028,000000 | 431.028,000000 | 322.683,000000 | 322.683,000000 | 322.683,000000
Nodo 28

Caracteristica: Hoja Hoja Hoja Hoja Hoja
Samples: 1 1 1 1 1
Squared error:| 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
Value: 300.574,000000 | 300.574,000000 | 300.574,000000 | 300.574,000000 | 300.574,000000

Cuadro 13: Dataset de criminalidad: Comparacion de nodos seleccionados del arbol de
decision bajo distintos niveles de envenenamiento.

Experimento de Clasificacion

Nodo / Nivel 0% 1% 3% 5%
Raiz (nodo 0)

Caracteristica: num_casos num_casos num_casos num_casos
Threshold: 5,5 5,5 7.5 7,5
Samples: 240.297 240.297 240.297 240.297
Gini: 0,499139 0,499195 0,499344 0,499450
Class: 1 1 1 1
Nodo 1

Caracteristica: | grupo_edad_80+ num_casos grupo_edad_80+ num_casos
Threshold: 0,5 0,5 0,5 0,5
Samples: 144.419 144.419 163.815 163.815
Gini: 0,480516 0,480518 0,486700 0,485962
Class: 0 0 0 0
Nodo 2

Caracteristica: num_casos num_def num_casos num_def
Threshold: 0,5 0,5 0,5 0,5
Samples: 94.537 11.342 107.712 11.342
Gini: 0,447912 0,422616 0,461821 0,422616
Class: 0 1 0 1
Nodo 3

Caracteristica: num_def num_uci num_def num_uci
Threshold: 0,5 0,5 0,5 0,5
Samples: 5.757 7.412 5.757 7.412
Gini: 0,394457 0,114764 0,394457 0,114764
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Nodo / Nivel 0 % 1% 3% 5%
Class: 1 1 1 1
Nodo 4

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 4.314 6.586 4.314 6.586
Gini: 0,166736 0,000000 0,166736 0,000000
Class: 1 1 1 1
Nodo 5

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 1.443 826 1.443 826
Gini: 0,315313 0,495310 0,315313 0,495310
Class: 0 0 0 0
Nodo 6

Caracteristica: num_uci num_semana num_casos num_semana
Threshold: 0,5 17,5 2,5 17,5
Samples: 88.780 3.930 101.955 3.930
Gini: 0,430254 0,364747 0,449478 0,364747
Class: 0 0 0 0
Nodo 7

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 83.604 1.367 52.522 1.367
Gini: 0,410902 0,430133 0,372080 0,430133
Class: 0 0 0 0
Nodo 8

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 5.176 2.563 49.433 2.563
Gini: 0,415010 0,321122 0,493014 0,321122
Class: 1 0 0 0
Nodo 9

Caracteristica: num_casos num_casos num_casos num_casos
Threshold: 2,5 2,5 2,5 2,5
Samples: 49.882 133.077 56.103 152.473
Gini: 0,499193 0,469312 0,498525 0,478099
Class: 1 0 1 0
Nodo 10

Caracteristica: num_casos grupo_edad_80+ num_casos grupo_edad_80+
Threshold: 0,5 0,5 0,5 0,5
Samples: 32.366 79.303 32.366 79.303
Gini: 0,496269 0,422711 0,496269 0,422711
Class: 0 0 0 0
Nodo 11

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 5.585 52.522 5.585 52.522
Gini: 0,447078 0,372080 0,447078 0,372080
Class: 1 0 1 0
Nodo 12

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 26.781 26.781 26.781 26.781
Gini: 0,485165 0,485165 0,485165 0,485165
Class: 0 0 0 0
Nodo 13

Caracteristica: anio grupo_edad_80+ anio grupo_edad_80+
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Nodo / Nivel 0 % 1% 3% 5%
Threshold: 2020,5 0,5 2020,5 0,5
Samples: 17.516 53.774 23.737 73.170
Gini: 0,462452 0,499446 0,469704 0,499950
Class: 1 0 1 0
Nodo 14

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 3.740 36.258 5.052 49.433
Gini: 0,354142 0,485029 0,393463 0,494128
Class: 1 0 1 0
Nodo 15

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 13.776 17.516 18.685 23.737
Gini: 0,479638 0,467233 0,482346 0,481018
Class: 1 1 1 1
Nodo 16

Caracteristica: num_def num_def num_def num_def
Threshold: 0,5 0,5 0,5 0,5
Samples: 95.878 95.878 76.482 76.482
Gini: 0,419453 0,420845 0,392750 0,392750
Class: 1 1 1 1
Nodo 17

Caracteristica: num_uci num_uci num_uci num_uci
Threshold: 0,5 0,5 0,5 0,5
Samples: 69.031 69.031 53.263 53.263
Gini: 0,463829 0,464426 0,446376 0,446376
Class: 1 1 1 1
Nodo 18

Caracteristica: | grupo_edad_80+ | grupo_edad_80+ | grupo_edad_80+ | grupo_edad_80+
Threshold: 0,5 0,5 0,5 0,5
Samples: 61.180 61.180 46.640 46.640
Gini: 0,479454 0,479724 0,466691 0,466691
Class: 1 1 1 1
Nodo 19

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 46.090 46.090 35.527 35.527
Gini: 0,496305 0,496174 0,489660 0,489660
Class: 1 1 1 1
Nodo 20

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 15.090 15.090 11.113 11.113
Gini: 0,343586 0,349169 0,305621 0,305621
Class: 1 1 1 1
Nodo 21

Caracteristica: num_casos num_casos num_casos num_casos
Threshold: 13,5 13,5 22,5 22,5
Samples: 7.851 7.851 6.623 6.623
Gini: 0,191691 0,198850 0,166994 0,166994
Class: 1 1 1 1
Nodo 22

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 3.450 3.450 3.767 3.767
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Nodo / Nivel 0 % 1% 3% 5%
Gini: 0,268011 0,282009 0,219596 0,219596
Class: 1 1 1 1
Nodo 23

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 4.401 4.401 2.856 2.856
Gini: 0,124287 0,124287 0,090703 0,090703
Class: 1 1 1 1
Nodo 24

Caracteristica: provincia_SS provincia_SS provincia_SS provincia_SS
Threshold: 0,5 0,5 0,5 0,5
Samples: 26.847 26.847 23.219 23.219
Gini: 0,224869 0,229820 0,200212 0,200212
Class: 1 1 1 1
Nodo 25

Caracteristica: num_def num_def provincia_GI provincia_GI
Threshold: L5 1.5 0,5 0,5
Samples: 26.016 26.016 22.533 22.533
Gini: 0,207571 0,212722 0,181610 0,181610
Class: 1 1 1 1
Nodo 26

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 14.815 14.815 22.077 22.077
Gini: 0,285347 0,289309 0,167805 0,167805
Class: 1 1 1 1
Nodo 27

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 11.201 11.201 456 456
Gini: 0,086268 0,093222 0,499529 0,499529
Class: 1 1 0 0
Nodo 28

Caracteristica: anio anio anio anio
Threshold: 2021,5 2021,5 2021,5 2021,5
Samples: 831 831 686 686
Gini: 0,499739 0,499837 0,499996 0,499996
Class: 1 1 0 0
Nodo 29

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 373 373 279 279
Gini: 0,273588 0,280747 0,275382 0,275382
Class: 1 1 1 1
Nodo 30

Caracteristica: Hoja Hoja Hoja Hoja
Samples: 458 458 407 407
Gini: 0,371703 0,371703 0,392179 0,392179
Class: 0 0 0 0

Cuadro 14: Dataset de covid19: Comparacién de nodos seleccionados del arbol de deci-
sién bajo distintos niveles de envenenamiento.

115



B. Anexo: Representacion matematica de los arboles de
decision

Desde una perspectiva mds formal, un arbol de decision se construye dividiendo el
conjunto de datos en subconjuntos de forma recursiva. En cada nodo, el algoritmo se-
lecciona un atributo que maximiza una métrica de ganancia, de forma que la particién
resultante sea lo mds “pura” posible.

Las métricas de ganancia se utilizan para evaluar que tan homogéneos o “puros” son
los subconjuntos de datos resultantes después de una division del drbol de decision.

Si se consideran los modelos de drboles de decision CART, ese encuentra una repre-
sentacion formal de un arbol de regresion definido en el trabajo de Kevin Murphy como

(Murphy, 2022):
J
f(x:0) =) w(x€R)) &)
=1

=

donde:

= f(x;0) es la funcién de prediccion del modelo

w; es el valor asignado a la hoja j

I(x € R;) es una funcién indicadora que toma el valor 1 si la entrada x pertenece a

laregion R, y 0 en caso contrario.

R; es el conjunto de nodos hoja del drbol

J es el namero total de nodos hoja en el arbol

Esta misma representacion se aplica a drboles de clasificacién, donde en lugar de
asignar un valor continuo, se asigna una clase discreta a cada hoja del arbol.

De este modo, la diferencia se produce en el tipo de salida que se espera del modelo:
= Para clasificacion, w; es una clase discreta asignada a la hoja j.

= Para regresion, w; es un valor continuo que representa la media de los valores de

salida en la hoja j.
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No obstante, algunos autores prefieren utilizar una notacién mds explicita para los

arboles de decision, donde se define la funcién de prediccion como (Nijssen, 2008):

f(x) =argmixP(y =c | x;0) (10)
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C. Anexo: Métricas comunes en arboles de decision

Indice de Gini

Esta métrica es cominmente utilizada en algunos algoritmos de arboles de decision
para clasificacion y regresion (Classification and Regression Trees - CART).
Se puede volver al trabajo de Kevin Murphy para observar la representacion estandar

del indice Gini para un nodo i (Murphy, 2022):

Gini;=1-Y #. (11)
c=1
donde:
= 7; es la proporcion de ejemplos en el nodo i que pertenecen a la clase c.
= | — 7. es la proporcion de ejemplos que no pertenecen a la clase c.

El indice de Gini toma valores entre 0 y 1, donde O indica que todos los ejemplos en el
nodo pertenecen a la misma clase (pureza maxima) y 1 indica una distribucién uniforme
entre las clases (impureza méaxima).

Entropia

Otra de las métricas mds comunes es la impureza de la entropia (o impureza de
la informacién), que mide la incertidumbre de un conjunto de datos, representada como

(Duda et al., 2001):

i(N) = =} P(w;)log, P(w)) (12)
donde:
= [(N) es la impureza de la entropia del nodo N.
= P(w;j) es la proporcion de ejemplos en el nodo que pertenecen a la clase j.

= jes el ndmero de clases posibles.
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Ganancia de informacion

La ganancia de informacion, es otra métrica usada como criterio como por ejemplo
modelos ID3 y C4.5, y se obtiene con base a la medida de la entropia, tratada anterior-
mente.

Esta métrica mide la reduccién de la incertidumbre al dividir un conjunto de datos en
funcién de un atributo, para este caso A y un conjunto de datos S (nimero de ejemplos en
el nodo padre). Matematicamente, se define como (Mienye & Jere, 2024):

IG(S,A)=H(S)— ) S,

veValues(A) |S‘

H(S,) (13)
donde:

= /G(S,A) es la ganancia de informacién al dividir el conjunto de datos S segtn el

atributo A.

= H(S) es la entropia del conjunto de datos original o padre (ndmero de ejemplos en

el nodo padre) S.

= §, es el subconjunto de datos que tiene el valor v (nimero de ejemplos en el nodo

hijo) para el atributo A.

= H(S,) es la entropia del subconjunto de datos hijo.

Otras medidas de pureza
Hay métricas menos comunes que las anteriores, pero también son ttiles:
» Indice de Clasificacién Errénea: Mide la proporcioén de ejemplos mal clasificados.

= Indice de Deviacion: Se utiliza principalmente en arboles de regresion y se basa en

minimizar la desviacién o log-verosimilitud.

= Varianza: Mide la dispersion de los valores de salida en nodos hoja.
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D. Anexo: Variantes en arboles de decision

Dentro de los llamados arboles axis-aligned univariados se encuentran los referentes

clasicos (Duda et al., 2001):

= ID3 (Iterative Dichotomiser 3): Introducido por Quinlan en 1986, utiliza la ganan-
cia de informacién como criterio de division y detiene el crecimiento cuando las
instancias quedan perfectamente separadas (Quinlan, 1986) Es uno de los primeros

algoritmos de drboles de decision.

= (C4.5: También desarrollado por Quinlan, es una evolucién directa del ID3, que
introduce la métrica gain ratio, la gestion explicita de valores ausentes y permite la

poda post-crecimiento de arboles para evitar el sobreajuste (Salzberg, 1994).

= (CS5.0: Una versién mds avanzada y optimizada de C4.5, que incluye mejoras en la

velocidad y la eficiencia (Pandya & Pandya, 2015).

= CART (Classification and Regression Trees): Introducido por Breiman et al., en
1986, que impone divisiones binarias, emplea el indice de Gini (clasificacion) o la
varianza (regresion) y utiliza la poda de complejidad-coste para equilibrar sesgo y

varianza (Breiman et al., 2017).

La literatura revisada amplia esta taxonomia en dos direcciones, por un lado, surgen
los drboles multivariados u oblicuos, que permiten hiperplanos de division orientados ar-
bitrariamente en el espacio de caracteristicas y permiten realizar divisiones en multiples
dimensiones simultdneamente, como el algoritmo CHAID (Chi-squared Automatic In-
teraction Detector) (Mienye & Jere, 2024); por otro, los métodos de optimizacion global
como los Optimal Classification Trees (OCT), que formulan la induccién mediante mixed-
integer optimization, garantizando drboles de tamafio minimo para una precision dada y
demostrando que la interpretabilidad no tiene por qué sacrificar rendimiento (Bertsimas
& Dunn, 2017).

Las revisiones sistemdticas mds recientes coinciden en clasificar los drboles por:

= Estrategia de particion: (univariante vs. multivariante)
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= Funcién objetivo: (impureza, distancia, error reducido)

= Técnica de generalizacion: (poda estadistica, complejidad-coste, recocido simula-

do, MIO)

= Contexto de uso: Con despliegues masivos en diagndstico médica, gestion logistica
y de inventarios, andlisis crediticio y deteccion de intrusiones cibernéticas debido a

su transparencia y a la facilidad de generar explicaciones de tipo contrafactual.
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E. Anexo: Variantes de Ataques de Envenenamiento de

Datos

Listado de ejemplos agrupados de ataques de envenenamiento de datos en diferentes

tipos de modelos (Ramirez et al., 2022):

= Ataque de manipulacion de etiquetas (Label-Flipping Attacks): Consiste en la
alteracion maliciosa de las etiquetas en los datos de entrenamiento, lo que puede
realizarse de forma aleatoria o especifica para reducir la precision general o causar

una clasificacion erronea de una clase especifica, respectivamente.

= Ataques de maquinas de vectores de soporte (SVM) (Attacks on Support Vec-
tor Machines): Estos ataques aprovechan el conocimiento previo sobre los datos
de entrenamiento, los datos de validacion y los hiper pardmetros del algoritmo de
aprendizaje SVM para maximizar la funcién objetivo basada en la tasa de error del

clasificador.

= Ataques a algoritmos de agrupamiento (Clustering Algorithms): Se enfocan en
interferir con el proceso de agrupamiento, a menudo insertando pequefias muestras
envenenadas entre dos clusters existentes para crear conflictos en sus limites de
decision, lo que puede llevar a una clasificacion incorrecta de los datos. Este modelo
solo es aplicable en escenarios de caja blanca, donde el atacante tiene acceso a los

datos de entrenamiento y al modelo.

= Ataques mediante optimizacion de gradiente de redes neuronales(Gradient
Optimization in NN): Utilizan la optimizacion de retrogradiente para realizar ata-
ques de envenenamiento en modelos de aprendizaje profundo, lo que les permite
abordar problemas de multi clases y ofrecer una generalizacion adecuada en diver-

sos modelos de aprendizaje.

= Ataques mediante GAN (Generative Adversarial Network): Proponen el uso de
GAN para generar datos de envenenamiento que maximicen el error del clasificador
objetivo y logren ser indetectables. Se busca un equilibro entre detectabilidad y

eficacia del ataque.

122



Ataques de Envenenamiento basados en caracteristicas (Feature-Based Poiso-
ning Attacks): Crean muestras de entrenamiento envenenadas que son indistingui-
bles de las muestras originales para la inspeccion visual humana, preservando asi la

privacidad y mostrando una alta resistencia a los métodos de defensa existentes.

Ataques a sistemas de deteccion por multitud (Attacks on Crowd-Sensing Sys-
tems): Se basan en la creacion de interferencias con los datos recopilados mediante
la inyeccidn de datos falsos, aprendiendo de intentos de ataque pasados para mejo-

rar progresivamente.

Ataques a modelos de agregacion de datos (Attacks on Data Aggregation Mo-
dels): Se centran en manipular los resultados agregados en la salida del modelo de
agregacion, minimizando los pardmetros de agregacion del modelo y maximizando

el error de los resultados agregados.

Ataques miscelaneos:(Miscellaneous attacks) Incluyen ataques a anélisis de com-
ponentes principales (PCA) y ataques dirigidos a mecanismos de defensa especifi-

COS.
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F. Anexo: Proyectos de IA en sectores criticos

Sector Defensa Nacional

Proyecto COBRA :

El Proyecto Cobra es una iniciativa espafiola orientada al desarrollo de ciber manio-
bras adaptativas para la simulacion realista de Amenazas Persistentes Avanzadas (APT)
y el entrenamiento en ciberdefensa mediante técnicas de gamificacién. Con participacion
de instituciones como la Universidad de Murcia, la Universidad Politécnica de Madrid
e Indra, y validacion en entornos militares del Mando Conjunto del Ciberespacio, este
proyecto emplea inteligencia artificial con aprendizaje adaptativo para generar escenarios
dindmicos, personalizados segun el desempefio del usuario. Ademads, incorpora sistemas
de telemetria y biometria para ajustar los entrenamientos en funcion de capacidades indi-

viduales.(Gémez Marmol et al., 2021)

Proyecto SOPRENE :

El programa I+D+1 SOPRENE (Sostenimiento Predictivo basado en Redes Neurona-
les) ha sido fundamental en el contexto de la importancia del mantenimiento inteligente
para la Armada espafiola, destacando el mantenimiento predictivo (PdM) como una estra-
tegia clave. Lanzado en noviembre de 2019 y concluido en febrero de 2021, SOPRENE
desarroll6 un demostrador tecnoldgico para la prediccion de averias mediante Inteligencia
Artificial (IA). Actualmente, SOPRENE predice fallos en propulsores de BAM y genera-
dores de F-100, con planes de incluir mds equipos. Sus capacidades predictivas se estan
integrando en ATAVIA, una aplicacion residente en el CESADAR en tierra. Sin embargo,
para superar las limitaciones de comunicacion y latencia en buques navegando, se ha pro-
puesto el programa MAPRE. MAPRE busca “miniaturizar” los algoritmos de SOPRENE
para llevar la prediccion a bordo de las unidades en tiempo real, sincronizdndola con los

sistemas en tierra, lo que es especialmente importante para submarinos S-80 (Armada,

2021).
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Sector Seguridad Puablica

Proyecto VeriPol

VeriPol, es una herramienta basada en técnicas de procesamiento de lenguaje natural
(NLP) y aprendizaje automaético, capaz de identificar falsos reportes con una precision
superior al 91 %.

VeriPol se integraba con el sistema policial SIDENPOL y permitia entender patrones
de engafio en los textos, proporcionando apoyo en la toma de decisiones y desalentando
la presentacion de reportes falsos. Se presenté como la primera herramienta validada con
documentos reales, superando a modelos previos que usaban textos ficticios.(Quijano-
Sanchez, Lara et al., 2018).

Segun la nota de prensa del 27 de octubre de 2018 (Policia Nacional, 2018), la Policia
Nacional de Espafia implement6 VeriPol en ese afio, habiéndola probado en 2015 y luego
en un estudio piloto en junio de 2017 en Mdlaga y Murcia. No obstante, en marzo de 2025
aparece un articulo en el Diario el Pais que anuncia que la aplicacién dejo de estar opera-
tiva en octubre de 2024 (El Pais, 2025), en medio de cuestionamientos de la transparencia
del sistema, lo que no ha podido comprobarse en esta investigacion.

No obstante, la herramienta VeriPol es un ejemplo de cémo la IA puede ser utilizada
para mejorar la eficiencia y efectividad de las investigaciones policiales, al mismo tiempo

que plantea desafios éticos y de transparencia que deben ser abordados.

Proyecto ABIS:

El Sistema Automatico de Identificacion Biométrico (ABIS) es una herramienta antes
conocida como Sistema de Identificacion Automatica Dactilar (SAID), que permite la
identificacion de personas a través de sus huellas dactilares e imagenes faciales recogidas
de escenarios de delitos, ya que es capaz de gestionar imédgenes de reseflas dactilares,
palmares, falanges, y otras; ademds de gestionar las imagenes faciales. Esta herramienta
es utilizada por las Fuerzas y Cuerpos de Seguridad del Estado (Cuerpo Nacional de
Policia y Guardia Civil) para la identificacién de personas, tanto en el &mbito nacional
como internacional.

Se registra que el coste de contribucion de la UE a este proyecto es de 9.848.790,39
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euros, financiado con fondos europeos y tiene por fecha de término el 31 de diciembre
de 2025, conforme publica en la pagina web del Ministerio del Interior (Subdireccién

General de Planificacion y Gestion de Infraestructuras y Medios de Seguridad, s.f.).

Sector Salud

Proyecto NalA-RD:

El proyecto NalA-RD, es una herramienta de IA creada a la medida por el Hospital
Universitario de Navarra (HUN) de Espafia, para asistir en el cribado de la Retinopatia
Diabética (RD), que es la principal causa de pérdida de vision entre la poblacion en edad
de trabajar en paises desarrollados. Esta herramienta fue implementada en julio de 2020
e integrada en el Sistema de informacién hospitalaria (HIS) del HUN, siendo utilizada

desde entonces para el cribado rutinario de la RD (Pinto et al., 2024).

Proyecto Arboles de clasificacién obtenidos mediante IA

Si bien no es un proyecto propiamente tal, se hace mencidn especial de la investiga-
cion sobre arboles de decision de clasificacion para la prediccidn de insuficiencia cardiaca
tras el sindrome coronario agudo sobre pacientes provenientes de dos centros espafioles
entre 2006 y 2017. Este estudio resalta el valor de la IA para identificar variables relacio-
nadas con la insuficiencia cardiaca, y sugiere que los drboles de decision pueden ser una
herramienta util para la prediccion de esta condicidn en pacientes con sindrome coronario

agudo (Cordero et al., 2024).
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Fe de errata

Se presenta el siguiente fe de erratas para subsanar errores de transcripcion detectados
en la memoria ya depositada. Las correcciones no alteran los resultados ni las conclusio-

nes del trabajo.
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1. Cuadro 15 (Matriz de confusion normalizada)

Dice:

Tasa de Envenenamiento | VP | VN | FP | FN
0% (sin envenenar) 0,72 | 0,67 | 0,28 | 0,33

1% 0,68 | 0,70 | 0,32 | 0,30
3% 0,63 | 0,74 | 0,37 | 0,26
5% 0,62 | 0,75 | 0,38 | 0,25

Cuadro 15: Dataset de covid19: Comparativa del rendimiento segin matriz de confusion
normalizada

Debe decir:

Tasa de Envenenamiento | VP | VN | FN | FP
0% (sin envenenar) 0,72 | 0,67 | 0,28 | 0,33

1% 0,68 | 0,70 | 0,32 | 0,30
3% 0,63 | 0,74 | 0,37 | 0,26
5% 0,62 | 0,75 | 0,38 | 0,25

Cuadro 16: Dataset de covid19: Comparativa del rendimiento segin matriz de confusion
normalizada

Correccion: se ha intercambiado el orden de las columnas FN/FP.
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2. Descripcion de figura de fronteras de decision
Dice:

Finalmente, la figura 18 muestra la comparacién de las fronteras de decision entre el
modelo baseline a la izquierda y el modelo entrenado con mayor porcentaje de datos

envenenados, es decir, con un 5 % de envenenamiento a la derecha.
Debe decir:

Finalmente, la figura 18 muestra la comparacion de las fronteras de decision entre el
modelo baseline a la derecha y el modelo entrenado con mayor porcentaje de datos

envenenados, es decir, con un 5% de envenenamiento a la izquierda.

Correccion: se invirtieron las posiciones izquierda/derecha.

Pagina 92
1. Texto explicativo de la matriz de confusion
Dice:

En el modelo sin envenenamiento, la proporcion de verdaderos positivos (VP =0,72) y
verdaderos negativos (VN = 0,67) se mantiene relativamente equilibrada, con tasas de
falsos positivos (FP = 0,28) y falsos negativos (FN = 0,33) que reflejan un desempefio
consistente con las métricas globales. Sin embargo, con la introduccién del envenena-
miento se aprecia un patrén progresivo: los VP descienden hasta 0,62 en el modelo
envenenado al 5%, mientras que los VN aumentan hasta 0,75. Esta dindmica impli-
ca que el clasificador tiende a volverse mas conservador en la identificacién de casos
positivos, lo que conlleva una reduccion de falsos negativos (FN = 0,25 en el modelo

envenenado al 5 %), pero a costa de un incremento en los falsos positivos (FP = 0,38).
Debe decir:

En el modelo sin envenenamiento, la proporcion de verdaderos positivos (VP =0,72) y
verdaderos negativos (VN = 0,67) se mantiene relativamente equilibrada, con tasas de
falsos positivos (FP = 0,33) y falsos negativos (FN = 0,28) que reflejan un desempefio
consistente con las métricas globales. Sin embargo, con la introduccién del envenena-

miento se aprecia un patrén progresivo: los VP descienden hasta 0,62 en el modelo
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envenenado al 5%, mientras que los VN aumentan hasta 0,75. Esta dindmica impli-
ca que el clasificador tiende a volverse mas conservador en la identificacién de casos
positivos, lo que conlleva una reduccion de falsos positivos (FP = 0,25 en el modelo

envenenado al 5 %), pero a costa de un incremento en los falsos negativos (FN = 0,38).

Correccion: valores numéricos y falsos positivos/negativos invertidos.
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1. Cuadro 17 (Métricas de error y tasas condicionales en fronteras de decision)

Dice:
Tasa de Envenenamiento FP FPR FN FNR
0% (sin envenenar) 15,93% | 32,24% | 14,81 % | 28,65 %
5% 11,77% | 24,53% | 19,59% | 37,62 %

Cuadro 17: Dataset de covid19: Métricas de error y tasas condicionales en las fronteras
de decision, calculadas sobre el conjunto de test.

Debe decir:

Tasa de Envenenamiento FP FPR FN FNR
0% (sin envenenar) 15,93% | 33,24% | 14,81 % | 28,45 %
5% 11,77% | 24,55% | 19,59% | 37,62 %

Cuadro 18: Dataset de covid19: Métricas de error y tasas condicionales en las fronteras
de decision, calculadas sobre el conjunto de test.

Correccion: ajustes menores en decimales (FPR y FNR).
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