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Resumen

En el contexto actual del avance acelerado de las tecnologías basadas en inteligencia

artificial, ante la creciente presión por alcanzar una posición competitiva a nivel interna-

cional, la adopción de modelos de aprendizaje automático ha crecido exponencialmente

en los sectores públicos y privados, en áreas tan críticas como el sector salud, seguridad

y defensa nacional. Estos sectores exigen cada vez más el uso de modelos de inteligen-

cia artificial que sean explicables, como los árboles de decisión, debido a la necesidad

de garantizar la trazabilidad, interpretabilidad y rendición de cuentas en los procesos que

han sido automatizados. Sin embargo, esta misma característica, que los hace valiosos,

también los convierte en objetivos vulnerables para ataques como el envenenamiento de

datos, capaces de alterar su funcionamiento desde la etapa de entrenamiento sin generar

indicadores detectables inicialmente.

El objetivo de este trabajo es demostrar cómo, pese a sus ventajas, estos modelos pue-

den deteriorarse de manera significativa ante ataques dirigidos o indiscriminados, com-

prometiendo no solo su precisión, sino también su lógica interna. Para ello, se llevará a

cabo un experimento en dos fases: una primera con entrenamiento con datos sin enve-

nenar para establecer métricas de referencia, y una segunda con datos envenenados que

permitirá observar el impacto adverso en su rendimiento y estructura.

A través de este análisis, se pretende alertar sobre la necesidad de implementar es-

trategias de defensa para modelos explicables en contextos críticos, subrayando que la

transparencia que proporcionan no garantiza por sí sola la seguridad. Esta línea de inves-

tigación se alinea con los Objetivos de Desarrollo Sostenible, al contribuir al desarrollo de

sistemas confiables, éticos y tecnológicamente responsables en servicios esenciales para

la sociedad.

Palabras clave: Aprendizaje automático, Explicabilidad, Ciberseguridad, Árboles de

decisión, Envenenamiento de datos, Evaluación de modelos
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Abstract

In the current context of the rapid advancement of technologies based on artificial

intelligence, and under growing pressure to achieve a competitive international position,

the adoption of machine learning models has increased exponentially in both public and

private sectors, particularly in critical areas such as health, security, and national defense.

These sectors increasingly demand the use of explainable artificial intelligence models,

such as decision trees, due to the need to ensure traceability, interpretability, and accoun-

tability in automated processes. However, this very characteristic, which makes them va-

luable, also renders them vulnerable targets for attacks such as data poisoning, capable of

altering their functioning from the training stage without generating initially detectable

indicators.

The aim of this work is to demonstrate how, despite their advantages, these models

can significantly deteriorate under targeted or indiscriminate attacks, compromising not

only their accuracy but also their internal logic. To this end, the study will carry out a

two-phase experiment: the first with training on clean data to establish baseline metrics,

and the second with poisoned data to observe the adverse impact on performance and

structure.

Through this analysis, the intention is to highlight the urgent need for defense strate-

gies in explainable models within critical contexts, emphasizing that transparency alone

does not guarantee security. This line of research aligns with the Sustainable Development

Goals by contributing to the development of trustworthy, ethical, and technologically res-

ponsible systems in essential services for society.

Keywords: Machine Learning, Explainability, Cybersecurity, Decision Trees, Data

Poisoning, Model Evaluation
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1. Introducción

1.1. Justificación

La creciente adopción de sistemas de inteligencia artificial (IA) en sectores críticos co-

mo la salud, la seguridad y la defensa nacional, ha sido motivada por múltiples factores.

Las políticas públicas como la aprobación de la Estrategia de Inteligencia Artificial 2024

(Ministerio para la Transformación Digital y de la Función Pública, 2024) han supuesto

un impulso institucional. Sin embargo, también han puesto de manifiesto la necesidad de

abordar los desafíos éticos fundamentales de la IA, que la Unión Europea (UE) resume

en cuatro: la justicia, respeto por la autonomía humana, la previsión del daño y la explica-

bilidad (Ortiz de Zárate Alcarazo, 2022). Por tanto, en este contexto, el presente Trabajo

Fin de Máster (TFM), se justifica desde una triple perspectiva: institucional, científica y

ética.

Desde el punto de vista legal e institucional, la Agenda España Digital 2026 (Minis-

terio de Asuntos Económicos y Transformación Digital, 2022) establece una hoja de ruta

para la transformación digital del país. Según esta hoja de ruta, la ciberseguridad y la IA

son pilares fundamentales para el desarrollo económico y social. Esta agenda enfatiza la

necesidad de garantizar la seguridad y la confianza en los sistemas digitales, especial-

mente en sectores estratégicos. Además, el Reglamento de Inteligencia Artificial de la

Unión Europea (Unión Europea, 2024) establece normas armonizadas en materia de IA

y subraya la importancia de la trazabilidad y la explicabilidad de los sistemas. Esto re-

sulta especialmente crítico para modelos aplicados a ámbitos sensibles como la salud, la

seguridad o la defensa.

Desde una perspectiva científica, el envenenamiento de datos se reconoce como una

amenaza silenciosa y progresiva en los entornos de aprendizaje automático (Biggio &

Roli, 2018). Este tipo de ataque compromete la integridad del modelo puesto que intro-

duce ejemplos maliciosos en el conjunto de entrenamiento, sin generar alertas inmediatas

en su funcionamiento. Estudios recientes en el ámbito de la ciberseguridad y la IA, co-

mo los realizados por organizaciones internacionales (OWASP, 2024) e investigadores

(Calzavara et al., 2025) estudian el modo en que este tipo de amenazas puede modificar
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significativamente el comportamiento de los sistemas. Estas amenazas plantean un de-

safío particular en modelos explicables como los árboles de decisión, cuya facilidad de

interpretación y transparencia puede inducir a una falsa sensación de seguridad. Es posi-

ble, por tanto, que esta aparente sensación de seguridad dé lugar a la errónea percepción

de que las medidas de protección pueden ser postergadas o completamente mitigadas si se

introducen métodos para mejorar la robustez como los Random Forest, no obstante, estos

enfoques son equivocados como exponen estudios previos (Drews et al., 2020; Chang &

Im, 2020; Chen et al., 2019).

Este TFM contribuirá a visibilizar los riesgos asociados al envenenamiento de datos

en modelos explicables, con un enfoque particular en los árboles de decisión, por ser uno

de los modelos más extendidos gracias a su simplicidad, transparencia y capacidad de

explicación (Mienye & Jere, 2024).

Desde una perspectiva ética, se pretende impulsar una labor continua y comprometida

tanto en el diseño de estrategias de defensa para los modelos de IA, como en el desarrollo

de líneas de investigación orientadas a una IA coherente con una visión explicativa, ética

y profundamente responsable. Esta labor no solo busca resguardar la integridad técnica

de los modelos, sino también reconocer su verdadero propósito, más allá de las métri-

cas, entendiendo que la motivación subyacente de este trabajo es proteger a las personas

cuyas realidades pueden verse profundamente afectadas por decisiones automatizadas en

sectores críticos que impactan directamente en sus vidas y su dignidad.

1.1.1. Objetivos de Desarrollo Sostenible (Agenda 2030).

Este trabajo aspira a contribuir a los Objetivos de Desarrollo Sostenible (ODS) de la

Agenda 2030, propuestos por la Organización de las Naciones Unidas. En particular, se

relaciona directamente con los siguientes objetivos:

ODS 3 – Salud y Bienestar: Al centrarse en la confiabilidad de modelos de IA

en el ámbito sanitario, este trabajo promueve un uso más seguro y efectivo de las

tecnologías en la salud pública.

ODS 9 – Industria, Innovación e Infraestructura: Aporta al desarrollo de infra-

estructuras digitales resilientes mediante el análisis y fortalecimiento de modelos
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de aprendizaje automático ante posibles ataques de envenenamiento de datos.

ODS 16 – Paz, Justicia e Instituciones Sólidas: Al estudiar algoritmos explicables

y la degradación de modelos utilizados en seguridad y defensa, se contribuye a una

toma de decisiones más transparente y confiable en instituciones públicas.

Estos objetivos proporcionan un marco de referencia adicional que guía el propósito

social y ético de esta investigación.

1.1.2. Motivación personal

El presente trabajo se enmarca en una inquietud que ha acompañado mi desarrollo

profesional a lo largo de más de 20 años de experiencia laboral en sectores estratégicos

como la seguridad ciudadana, la defensa de la nación y la gestión de instituciones de salud.

Mi paso por instituciones como la Defensa Civil, Escuela de Investigaciones Policiales

y el Ejército de Chile, así como mi experiencia dirigiendo organizaciones vinculadas a

servicios sanitarios y tecnológicos, han reforzado mi convicción sobre la importancia de

construir sistemas confiables, auditables y éticamente responsables. En los últimos años,

esta preocupación se ha profundizado en mi rol como ingeniera en IA, desde donde he

podido observar los desafíos reales que enfrenta la adopción de modelos de aprendizaje

automático en contextos sensibles.

La elección de esta temática responde, por tanto, a una motivación ética, profesional

y técnica. Abordar el estudio de cómo los ataques de envenenamiento de datos afectan a

modelos explicables, como los árboles de decisión, no solo representa una oportunidad

académica, sino una contribución práctica a concienciar sobre el problema, lo cual es un

paso fundamental para plantearse cualquier posible vía de solución en aras de diseñar sis-

temas seguros y transparentes. Este trabajo constituye también el punto de partida para

una línea de investigación en el ámbito de la ciberseguridad aplicada a la IA, con un enfo-

que compartido entre las crecientes necesidades en esta área desde el sector de la empresa

privada, y también desde el sector público. Frente al interés común que representa este

último, se busca aportar en áreas como la defensa de infraestructuras críticas, la mejora

de servicios esenciales y la contribución a la credibilidad y fortalecimiento institucional

dado su alto impacto social.
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1.1.3. Metodología para el desarrollo del TFM

El desarrollo de este trabajo se estructura siguiendo el modelo Cross Industry Standard

Process for Data Mining (CRISP-DM), ampliamente utilizado en proyectos de ciencia de

datos y aprendizaje automático. Esta metodología contempla seis fases interdependientes:

comprensión del negocio, comprensión de los datos, preparación de los datos, modelado,

evaluación y despliegue. En el contexto del presente TFM, se adaptarán estas etapas de la

siguiente manera:

La fase de comprensión del negocio se centra en la identificación de las vulnerabili-

dades en modelos que utilizan algoritmos explicables como los árboles de decisión,

aplicados en sectores críticos como en salud, seguridad y defensa.

La comprensión y preparación de los datos se llevará a cabo mediante la selección

y análisis de datasets apropiados para el entrenamiento y la generación de datos

envenenados.

El modelado incluirá la implementación de modelos con árboles de decisión en

ambos contextos (entrenados con datos sin y con envenenamiento).

La evaluación considerará métricas clásicas para problemas de regresión y clasifi-

cación, así como para el análisis de la estructura explicativa de los árboles.

Finalmente, los hallazgos serán analizados en función del comportamiento observa-

do de los modelos bajo condiciones adversariales, con el objetivo de evaluar cam-

bios en la estructura y en el rendimiento ante manipulaciones en los datos de entre-

namiento. No se contempla una fase de despliegue en producción, ya que el alcance

del trabajo se limita a la experimentación controlada.

Este enfoque estructurado garantiza la coherencia metodológica del trabajo y permi-

te una trazabilidad clara de cada una de las decisiones tomadas a lo largo del desarrollo

del TFM. Además, este marco de gestión se complementa con la perspectiva epistemo-

lógica y experimental desarrollada en la sección 3, en coherencia con el paradigma que

busca objetividad, medición, comprobación y predicción, es decir, el paradigma positi-

vista adoptado, tal como se explica en esa sección. De forma transversal, las fases de
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CRISP-DM se han articulado de manera que cada una contribuya al cumplimiento de los

objetivos específicos planteados en el TFM, asegurando la alineación entre metodología

y resultados esperados.

1.2. Problema y finalidad

Tal como se expuso en el apartado anterior, en sectores críticos como la salud, la

seguridad y la defensa nacional, la adopción de IA ha sido especialmente promovida por

políticas públicas nacionales y normativas internacionales recientes.

No obstante, esta búsqueda de una hiperautomatización de procesos y la adopción

de modelos de IA en áreas críticas, ha generado también un creciente interés por parte

de los reguladores y la sociedad civil (Preece et al., 2018) en torno a la explicabilidad y

gobernanza en el uso de estos sistemas (Grimmelikhuijsen & Meijer, 2022).

En estos contextos, donde las decisiones automatizadas pueden tener consecuencias

críticas en la vida de las personas o en la confianza hacia nuestras estructuras organizacio-

nales, la explicabilidad de los modelos no son una opción, sino un requisito ético cada vez

más exigible, ya que se pretende garantizar la trazabilidad, auditar decisiones y facilitar la

rendición de cuentas por parte de las instituciones que las implementan (Ortiz de Zárate

Alcarazo, 2022). Este requisito de transparencia ha favorecido la difusión de los modelos

explicables, como los árboles de decisión, para la resolución de diversas problemáticas en

áreas críticas tanto en seguridad (Gómez et al., 2023; Cuesta Calvo et al., 2018) y defensa

(Lewis et al., 2016), como en salud (Cordero et al., 2024; Ministerio de Sanidad, s.f.),

puesto que ofrecen una representación clara y comprensible de las decisiones tomadas

por el modelo, lo que los convierte en piezas clave para la legitimación del uso de la IA

en dominios de alto impacto social (Bishop, 2009; Russell & Norvig, 2004).

Pero la real problemática surge de esta misma característica de transparencia y faci-

lidad de interpretación, ya que se expone como una de las principales causas de vulne-

rabilidad de estos algoritmos (Barredo Arrieta et al., 2020). Al ser modelos cuyas reglas

de decisión pueden anticiparse con relativa facilidad, los algoritmos explicables como los

árboles de decisión, se exponen a manipulaciones dirigidas desde la fase de entrenamien-

to. Así sucede con el envenenamiento de datos, que puede alterar la estructura interna del

algoritmo sin generar alertas evidentes.
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Una vez expuesto el contexto, el problema adquiere mayor relevancia: si bien los ata-

ques de envenenamiento de datos han sido ampliamente estudiados en el ámbito de redes

neuronales y otros modelos complejos, los árboles de decisión han recibido una atención

comparativamente menor, a pesar de su uso extensivo en el análisis de datos tabulares

debido a su eficacia (Calzavara et al., 2025). Esta brecha en la literatura pone de relieve la

necesidad de examinar el impacto de estas amenazas en dicho algoritmo, especialmente

en entornos sensibles, donde la trazabilidad y la rendición de cuentas resultan fundamen-

tales (Ramirez et al., 2022).

Al considerar que los árboles de decisión, así como otros modelos explicables, segui-

rán siendo utilizados como una herramienta útil en sectores críticos, este trabajo busca

analizar empíricamente el comportamiento de árboles de decisión entrenados con datos

manipulados, comparándolos con modelos entrenados con datos no alterados. La fina-

lidad es evidenciar el deterioro potencial de su rendimiento, proporcionar métricas que

permitan demostrar su degradación y generar conciencia sobre los riesgos asociados, con

el fin de promover futuras estrategias de defensa adaptadas a entornos de alta sensibilidad.
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1.3. Objetivos del TFM

Objetivo principal

Analizar y documentar el impacto y la degradación de los ataques de envenenamiento

de datos sobre modelos de ML explicables de regresión y clasificación, utilizando árboles

de decisión para el caso de estudio, con el fin de evidenciar su vulnerabilidad ante ataques

adversariales de envenenamiento, obtener criterios de evaluación técnica y evaluar las

implicaciones de su implementación en sectores críticos como salud, seguridad y defensa.

Objetivos específicos

a) Vulnerabilidad asociada a la explicabilidad: Evidenciar la vulnerabilidad ante

ataques adversariales de envenenamiento, asociada a la explicabilidad de los árboles

de decisión.

b) Modos de envenenamiento de datos: Identificar tipos de ataque de envenenamien-

to de datos aplicables a árboles de decisión.

c) Deterioro por envenenamiento de datos: Obtener métricas para medir el poten-

cial deterioro de un modelo explicable basado en árbol de decisión, sometido a

envenenamiento de datos.

d) Riesgos en contextos críticos: Evaluar el impacto, en forma de riesgos operativos y

de gobernanza, del uso de este modelo en contextos críticos como salud, seguridad

y defensa nacional.

e) Recomendaciones para prevenir y mitigar los riesgos: Recopilar y recomendar

medidas de prevención y mitigación del riesgo de envenenamiento de datos en mo-

delos explicables, particularmente sobre árboles de decisión.
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1.4. Planificación

Fase 1: Estado del arte y preparación de datos

Revisión de la literatura.

Búsqueda y selección de la bibliografía y referencias.

Búsqueda y selección de los dataset.

Preparación de los dataset, preprocesamiento y limpieza de datos.

Fase 2: Diseño e implementación de los experimentos

Diseño de los experimentos y selección de métricas.

Desarrollo del mecanismo de generación de datos envenenados.

Definición de criterios de evaluación

Entrenamiento de modelos con datos no alterados y envenenados.

Fase 3: Análisis de resultados y conclusiones

Evaluación de métricas de rendimiento por experimento.

Análisis comparativo de resultados entre experimentos.

Conclusiones.

Ajustes finales.
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2. Marco teórico

2.1. Aprendizaje supervisado: fundamentos, clasificación y regresión

El aprendizaje supervisado es una de las ramas fundamentales del aprendizaje auto-

mático (Machine Learning o ML), y se caracteriza por la existencia de un conjunto de

entrenamiento conformado por pares de datos del tipo entrada-salida, donde el objetivo es

aprender una función que pueda predecir la salida correspondiente a nuevas entradas no

vistas durante el entrenamiento del modelo (Russell & Norvig, 2004). Este paradigma se

utiliza principalmente para realizar dos tareas: clasificación, cuando las salidas pertenecen

a un conjunto discreto de clases, y regresión, cuando las salidas son valores continuos.

En la clasificación, el modelo intenta asignar cada observación de entrada a una de

varias categorías predefinidas. Por ejemplo, en el ámbito médico, esto puede traducirse

en determinar si un paciente padece o no una enfermedad específica, o clasificar el nivel

de riesgo de hospitalización según factores de morbilidad. Por su parte, en la regresión,

el objetivo es predecir una variable cuantitativa, como lo sería en el ámbito de la segu-

ridad y defensa nacional, predecir la tasa de criminalidad en una región determinada, la

probabilidad de éxito de una operación de inteligencia, o el tiempo de respuesta ante una

emergencia.

Ambos enfoques comparten técnicas y modelos base, entre ellos los árboles de deci-

sión, redes neuronales, máquinas de vectores de soporte, y modelos basados en inferencia

bayesiana.

2.1.1. Métricas de evaluación de rendimiento para modelos supervisados

En el aprendizaje automático supervisado, las métricas de evaluación permiten cuan-

tificar el rendimiento de un modelo respecto a su capacidad de generalizar sobre datos

no vistos durante el entrenamiento. Estas métricas externas son independientes del algo-

ritmo utilizado, y se aplican tras el entrenamiento para comparar resultados en tareas de

clasificación o regresión.

A continuación, se describen solo algunas métricas comúnmente usadas para medir

el desempeño de los modelos, enfocándose en aquellas que serán utilizadas en la fase
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experimental de este TFM, diferenciadas según el tipo de experimento (regresión o cla-

sificación). La implementación de estas métricas, sobre árboles de decisión, se detalla la

sección 2.3.2.

2.1.1.a Evaluación de rendimiento de modelos de clasificación

Los modelos de clasificación predicen una etiqueta discreta. Para evaluar su rendi-

miento, una herramienta ampliamente utilizada es la Matriz de confusión.

Predicción Positiva Predicción Negativa

Real Positivo Verdaderos Positivos (TP) Falsos Negativos (FN)

Real Negativo Falsos Positivos (FP) Verdaderos Negativos (TN)

Cuadro 1: Matriz de confusión

De esta matriz se desprenden las métricas más comunes como:

Accuracy (Exactitud): proporción de instancias correctamente clasificadas entre

el total de predicciones. Es sensible a clases desbalanceadas. Formula:

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

Precision (Precisión): proporción de verdaderos positivos entre todos los elemen-

tos clasificados como positivos.

Precision =
T P

T P+FP
(2)

Recall (Sensibilidad o Tasa de verdaderos positivos): proporción de verdaderos

positivos entre todos los elementos que realmente pertenecen a la clase positiva.

Recall =
T P

T P+FN
(3)

F1-Score: media armónica entre precisión y recall, útil cuando se requiere equili-

brio entre ambas.

F1 = 2 · Precision ·Recall
Precision+Recall

(4)
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Average Precision - AP (Precisión Promedio): métrica que resume el área bajo

la curva de precisión-recall (PR), calculada como el promedio de las precisiones

obtenidas para cada nivel de recall. Es especialmente útil en contextos con clases

desbalanceadas.

AP = !
n
(Rn →Rn→1) ·Pn (5)

donde Pn es la precisión en el umbral n, y Rn es el recall correspondiente.

Receiver Operating Characteristic - ROC (Curva de Característica operativa

del receptor): es la representación gráfica de la capacidad del modelo para distin-

guir entre clases, representando la tasa de verdaderos positivos frente a la tasa de

falsos positivos.

2.1.1.b Evaluación de rendimiento de modelos de regresión

Los modelos de regresión predicen un valor continuo. Sus métricas más comunes

incluyen:

MAE (Mean Absolute Error): error absoluto medio entre las predicciones y los

valores reales. Fórmula:

MAE =
1
n

n

!
i=1

|yi → ŷi| (6)

Interpretación de resultados: valores más bajos indican mejor ajuste del modelo,

pero no penaliza errores grandes.

MSE (Mean Squared Error): error cuadrático medio entre las predicciones y los

valores reales. Fórmula :

MSE =
1
n

n

!
i=1

(yi → ŷi)
2 (7)

Interpretación de resultados: valores más bajos indican mejor ajuste del modelo.

Penaliza más los errores grandes debido al cuadrado de las diferencias.

R2 Score (Coeficiente de determinación): mide la proporción de varianza explica-

da por el modelo, independientemente de la escala de la variable objetivo. Fórmula:

R2 = 1→ !n
i=1(yi → ŷi)2

!n
i=1(yi → ȳ)2 (8)
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Interpretación de resultados: valores cercanos a 1 indican un buen ajuste del mode-

lo, mientras que valores negativos sugieren un mal desempeño.

2.2. Modelos explicables de IA: principios y taxonomía

Como ya se ha justificado inicialmente en este trabajo, la explicabilidad de los mo-

delos de IA es un requisito fundamental en sectores críticos, donde la transparencia y

la rendición de cuentas son esenciales. Atender a este requisito se ha vuelto relevante,

especialmente en dichos sectores, puesto que las decisiones automatizadas pueden tener

un impacto significativo en la vida de las personas. Ante estos desafíos de transparencia

surge el campo de la inteligencia artificial explicable (eXplainable AI - XAI) (Barredo

Arrieta et al., 2020), cuyo objetivo es garantizar que los sistemas de IA puedan justificar

sus decisiones de forma inteligible para los humanos.

La XAI se enfrenta a la tensión clásica entre precisión predictiva y comprensión del

modelo, y se la entiende como el conjunto de métodos que “aportan evidencia o razones

comprensibles que justifican cada salida del sistema” (Phillips et al., 2021)

2.2.1. Principios fundamentales

El Instituto Nacional de Estándares y Tecnología (NIST, por sus siglas en inglés) de

EE.UU. ha propuesto cuatro principios clave que toda IA explicable debe cumplir para

ser considerada confiable y transparente (Phillips et al., 2021):

Explicabilidad (Explainability) La IA debe ofrecer explicaciones claras sobre cómo

genera sus resultados.

Justificabilidad (Meaningful) Las explicaciones deben ser comprensibles y relevan-

tes para el usuario final.

Exactitud (Accuracy) Las explicaciones deben reflejar fielmente el comportamiento

real del sistema.

Límites del conocimiento (Knowledge Limits) La IA debe identificar cuándo no

tiene suficiente confianza para emitir una respuesta.

21



El hecho de que en la literatura se ha tendido a confundir explicabilidad con inter-

pretabilidad, haciendo uso indistinto de esta y otras terminologías similares, se reconoce

como el primer obstáculo para la comprensión de la XAI (Barredo Arrieta et al., 2020).

Sin embargo, investigaciones recientes, como las recogidas por Ortiz de Zárate (Ortiz

de Zárate Alcarazo, 2022), enfatizan la necesidad de diferenciarlas. Este trabajo recoge

las definiciones del NIST, diferenciando que mientras la interpretabilidad se refiere a la

transparencia intrínseca del modelo (comprender directamente su estructura y funciona-

miento), la explicabilidad abarca también aquellas técnicas externas que permiten hacer

comprensibles los modelos complejos mediante mecanismos de post análisis (Phillips et

al., 2021).

Por esta razón, se habla no sólo de algoritmos explicables, sino de modelos explica-

bles (Barredo Arrieta et al., 2020), incluyendo tanto los algoritmos como las herramientas

externas que permiten dotarlos de significado. Esta distinción es relevante, ya que permite

abordar la explicabilidad con una perspectiva más amplia, considerando la naturaleza del

modelo y las técnicas utilizadas para interpretarlo.

2.2.2. Clasificación de modelos explicables

Desde un punto de vista conceptual, la literatura distingue dos perspectivas diferentes

(Barredo Arrieta et al., 2020):

2.2.2.a Modelos de ML transparentes

Estos modelos son comprensibles por sí mismos, es decir, son interpretables por dise-

ño sin necesidad de aplicar técnicas adicionales, por ejemplo:

Árboles de decisión (Decision Trees)

Aprendizaje basados en reglas (Ruled-based Learning)

Regresión lineal o logística

Naïve Bayes (en ciertos contextos simples)

Los árboles de decisión pertenecen a esta categoría. Ofrecen una estructura jerárquica

de decisiones, donde cada nodo representa una condición de decisiones que puede se-
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guirse de forma lógica, visual y textual. Cada nodo representa una condición claramente

interpretable, y cada rama un camino de decisión verificable por humanos.

2.2.2.b Modelos de ML con técnicas de explicabilidad post-hocs

Estos modelos no son interpretables por sí mismos, se consideran de “caja negra”,

esto quiere decir que su funcionamiento interno no es comprensible por sí mismo. Sin

embargo, pueden ser analizados mediante herramientas externas que generan explicacio-

nes aproximadas de su comportamiento. Ejemplos de algoritmos complejos incluyen:

Redes neuronales profundas o Deep Neural Networks (DNN)

Redes Neuronales Convolucionales o Convolutional Neural Networks (CNN)

Redes Neuronales Recurrentes o Recurrent Neural Networks (RNN)

Máquina de Soporte Vectorial o Support Vector Machines (SVM)

Métodos ensembled (como Random Forest o XGBoost)

Herramientas de explicabilidad comunes:

Explicaciones locales e independientes del Modelo (Local Interpretable Model-

Agnostic Explanations, LIME)

Explicaciones Aditivas de Shapley (Shapley Additive Explanations, SHAP)

Explicaciones Contrafactuales (Counterfactual Explanations)

Mapas de Saliencia (Saliency Maps, aplicados principalmente a imágenes)

2.2.2.c Otros modelos emergentes

Cabe mencionar que, actualmente y en forma incipiente, comienzan a desarrollarse

técnicas que podrían constituir una nueva clasificación como modelos híbridos o modelos

que integran explicabilidad mediante el uso de arquitecturas tipo Transformers, conocidas

por sus mecanismos de atención, que permiten identificar qué partes de la entrada han

influido más en la predicción del modelo pero como están en un estado de desarrollo

inicial, no se incluyen como una clasificación aceptada aún. Ejemplos de estas técnicas

emergentes incluyen:
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Modelos de atención interpretativa con Procesamiento de Lenguaje Natural (como

Transformers con visualización de atención) (Fantozzi & Naldi, 2024)

Modelos destilados + reglas simbólicas (Tan et al., 2018)

Sistemas de Reglas Inducidas a partir de Redes Neuronales (Distill & Match) (Sun

et al., 2025)

Frameworks como AUTOLYCOUS, que usan XAI para extraer modelos interpre-

tables desde un modelo original bajo “acceso de caja negra”. (Oksuz et al., 2024)

A pesar de que existen investigaciones que promueven los beneficios de los modelos

transparentes por sobre modelos de caja negra que deban ser explicados (Rudin, 2019), los

usos de ambos enfoques son ya tangibles en dominios donde la trazabilidad de la decisión

es un requisito legal o ético. En salud, los árboles clínicos y modelos de riesgo basados

en reglas facilitan la auditoría médica y la comunicación con el paciente. En finanzas

se emplean explicaciones de tipo SHAP o LIME para justificar concesiones de crédito

y detectar sesgos sistémicos. En seguridad se han utilizado árboles de decisión para la

predicción de delitos (Cuesta Calvo et al., 2018).

No obstante lo anterior, recientes trabajos demuestran que muchas explicaciones tam-

bién pueden ser vector de diversos ataques o hacer más efectivos los ataques (Barredo

Arrieta et al., 2020; Ramirez et al., 2022), como la extracción de modelos o el envenena-

miento de datos, subrayando la necesidad de salvaguardas adicionales (Oksuz et al., 2024;

Alruwaili & Moulahi, 2025). En el sector público europeo, la explicabilidad figura ya co-

mo uno de los cuatro principios éticos imprescindibles para una IA “digna de confianza”

como se expuso en la justificación de este TFM.

En suma, las investigaciones actuales convergen en que la explicabilidad no es un

accesorio, sino un requerimiento funcional que condiciona la adopción segura de IA en

ámbitos regulados.

Finalmente, se puede evidenciar que esta taxonomía permite posicionar los árboles de

decisión como una de las pocas técnicas que son explicables por diseño, lo cual justifica su

uso como modelo base en este trabajo, ya que no solo permiten una evaluación directa del

impacto del envenenamiento de datos sobre las predicciones, sino también sobre la lógica
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interna de las decisiones, lo cual no es posible en modelos opacos sin aplicar técnicas

externas.

2.3. Árboles de decisión

2.3.1. Introducción a los árboles de decisión

Los árboles de decisión son algoritmos de aprendizaje supervisado ampliamente uti-

lizados, tanto en tareas de clasificación como de regresión. Su estructura jerárquica per-

mite representar decisiones mediante divisiones sucesivas del espacio de características y

sus posibles consecuencias se observan de manera gráfica, facilitando la interpretación y

comprensión de los resultados por parte de los humanos (Duda et al., 2001).

Un árbol comienza con un nodo raíz que representa todo el conjunto de datos. Luego,

en cada nodo interno, se selecciona una característica y un umbral de decisión que maxi-

miza la medida de pureza que evalúa la homogeneidad (como la entropía, la ganancia de

información o el índice de Gini) para dividir los datos en subconjuntos. Este proceso se

repite recursivamente hasta que se cumplen ciertos criterios de parada, como alcanzar un

número mínimo de ejemplos en un nodo o una profundidad máxima del árbol. Al final del

proceso recursivo, cuando este alcanza el nodo hoja, se asigna una clase (en clasificación)

o un valor promedio (en regresión). La poda es una técnica utilizada para evitar el sobre-

ajuste, eliminando ramas que aportan poca información y mejorando la generalización del

modelo (Duda et al., 2001).

La naturaleza binaria de la toma de decisiones en los árboles y su representación

explícita mediante reglas del tipo “si-entonces” (Russell & Norvig, 2004) convierten a

estos modelos en herramientas de alta explicabilidad.

«A key property of tree-based models, which makes them popular in fields

such as medical diagnosis, for example, is that they are readily interpretable

by humans because they correspond to a sequence of binary decision applied

to the individual input variables.» (Bishop, 2009, p. 664).

“Una propiedad clave de los modelos basados en árboles, que los hace popu-

lares en campos como el diagnóstico médico, por ejemplo, es que son fácil-

mente interpretables por los humanos porque corresponden a una secuencia
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de decisiones binarias aplicadas a las variables de entrada individuales.” (tra-

ducción propia).

No obstante, esta misma estructura explicable puede ser también una fuente de fragi-

lidad. Estudios han demostrado que pequeñas alteraciones en los datos de entrenamiento,

como las introducidas en ataques de envenenamiento de datos, pueden afectar las divisio-

nes, alterar la estructura del árbol, degradar el accuracy del clasificador o forzar ciertas

predicciones (Cinà et al., 2024; Drews et al., 2020). Esta susceptibilidad es aún más crí-

tica en contextos donde se espera que el modelo mantenga la consistencia y justificación

lógica en su comportamiento.

Por ello, aunque los arboles de decisión ofrecen ventajas claras en términos de inter-

pretabilidad y transparencia, su uso en entornos críticos requiere una evaluación cuidadosa

de su robustez frente a ataques adversariales. Este trabajo utilizará árboles como modelo

base precisamente por su valor explicativo, lo que permite no solo medir la degradación

de rendimiento, sino también evidenciar directamente cómo los ataques comprometen su

lógica interna. Adicionalmente, su uso en áreas como la salud, la seguridad y la defensa

nacional, los convierte en un caso de estudio relevante para explorar las implicaciones de

los ataques de envenenamiento de datos en sistemas críticos.

2.3.2. Métricas de evaluación de los árboles de decisión

En el contexto de los árboles de decisión, se distinguen dos tipos de métricas: las mé-

tricas internas, utilizadas durante la construcción del árbol para seleccionar las divisiones

óptimas en cada nodo, como el error cuadrático medio, la entropía o el índice de Gini

que han sido detalladas en el Anexo A, y las métricas externas, empleadas para evaluar el

rendimiento general del modelo una vez entrenado y que detallaron en la sección 2.1.1

Las métricas internas permiten guiar el crecimiento del árbol optimizando la separa-

ción de clase, de esta forma el árbol aprende seleccionando la partición que mejor separa

los datos, guiado por criterios de pureza (Duda et al., 2001, p. 398) o por la reducción del

error en cada partición o nodo. Por su parte, las métricas externas, como Accuracy, F1-

score o el error cuadrático medio (MSE), entre otras, son fundamentales para cuantificar

la capacidad de generalización del modelo, compararlo con otros enfoques y validar su

desempeño en datos no vistos.
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Ambos tipos de métricas son esenciales: las internas definen la estructura del modelo

y las externas permiten evaluar su comportamiento global, tanto en tareas de clasifica-

ción como en aquellas de regresión. Esta distinción será especialmente relevante cuando

se desarrolle la metodología de este trabajo, donde se emplearán métricas externas para

analizar los efectos del envenenamiento de datos sobre el rendimiento de los modelos.

2.3.3. Variantes en árboles de decisión

Hasta ahora se ha descrito el funcionamiento general de los árboles de decisión bina-

rios clásicos. Existen, sin embargo, múltiples variantes desarrolladas con el objetivo de

mejorar su eficiencia, precisión o adaptabilidad a contextos específicos.

Una revisión ampliada de estas variantes, incluyendo los algoritmos ID3, C4.5, CART

y sus desarrollos posteriores como los Optimal Classification Trees (OCT), se presenta en

el Anexo B. Allí se analizan sus fundamentos, diferencias clave y ámbitos de aplicación.

En síntesis, la evolución desde los modelos pioneros hasta enfoques contemporáneos

como los OCT refleja una línea de investigación orientada a maximizar la precisión sin

comprometer la interpretabilidad.

2.3.4. Ventajas y desventajas de los árboles de decisión

La documentación consultada menciona multiples ejemplos de ventajas y desventajas

del uso de los árboles de decisión. A continuación se compilan algunas de las encontradas

en el marco de este trabajo:

Ventajas:

Interpretabilidad: Son fáciles de interpretar por los humanos (Bishop, 2009)

Enfoque similar al humano: La estructura de los árboles de decisión se asemeja al

proceso de toma de decisiones humano, lo que facilita su comprensión y aceptación

en aplicaciones prácticas.(James et al., 2013)

Visualización gráfica: La representación gráfica de los árboles de decisión permite

una visualización clara de las decisiones facilitando la interpretación y comunica-

ción de los resultados a audiencias no técnicas.(James et al., 2013)
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Multitarea: Los árboles de decisión pueden utilizarse tanto para clasificación como

para regresión. (Murphy, 2022)

Robustez ante outliers: Son relativamente menos sensibles a los valores atípicos

(Murphy, 2022)

Son rápidos de entrenar y escalan bien: Los árboles de decisión son eficientes en

términos de tiempo de entrenamiento y pueden manejar grandes conjuntos de datos

sin problemas significativos de escalabilidad (Murphy, 2022).

Manejo de datos faltantes: Pueden manejar valores faltantes de manera efectiva,

ya sea ignorándolos o asignando probabilidades basadas en el resto de los datos

(Murphy, 2022).

Desventajas:

Inestabilidad: Los árboles de decisión tienen una alta varianza, lo que puede ser

su mayor desventaja, ya que pequeñas variaciones en los datos de entrenamiento

pueden resultar en árboles muy diferentes, lo que afecta la consistencia del modelo

debido a su naturaleza jerárquica (Hastie et al., 2009; Bishop, 2009)

Subóptimos: Aunque los árboles de decisión son fáciles de interpretar, pueden no

ser tan óptimos como otros modelos más complejos, dado que las divisiones están

alineadas a los ejes y no pueden capturar relaciones más complejas entre las carac-

terísticas (Bishop, 2009). Por otra parte, el óptimo global de un árbol de decisión

no es necesariamente el óptimo local, lo que puede llevar a soluciones subóptimas

en la práctica (Duda et al., 2001).

Complejidad computacional: La construcción de árboles de decisión puede ser

computacionalmente costosa, especialmente en conjuntos de datos grandes o con

muchas características (Duda et al., 2001).

Poca precisión: Aunque son fáciles de interpretar, los árboles de decisión pueden

no ser tan precisos como otros modelos más complejos (Murphy, 2022).
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2.4. Envenenamiento de datos: definición y tipologías

Al revisar algunas de las investigaciones más actuales, se encuentra que una influyente

fundación estadounidense en el campo de la ciberseguridad, Open Worldwide Application

Security Project (OWASP), en una de sus publicaciones más recientes, presenta una cla-

sificación de los diez riesgos de seguridad más críticos actuales relacionados con el uso

de modelos de IA Generativa y LLM (OWASP, 2024).

A continuación, se enumeran estos riesgos, con su nombre original y una traducción

adaptada (traducción propia):

Inyección de instrucciones (Prompt Injection)

Divulgación de información sensible (Sensitive information Disclosure).

Vulnerabilidades de la cadena de suministro (Supply Chain Vulnerability)

Envenenamiento de modelos y datos (Data and Model Poisoning)

Manejo inadecuado de salidas (Improper output Handling)

Autonomía excesiva (Excessive Agency)

Filtración de instrucciones del sistema (System Prompt Leakage)

Debilidades en vectores y embeddings (Vector and Embedding Weaknesses)

Desinformación (Misinformation)

Consumo descontrolado de recursos (Unbounded Consumption)

Entre todos los mencionados en esta lista de riesgos, los más relevantes a profundizar

en el marco del presente trabajo son los mencionados en el cuarto item: Envenenamiento

de modelos y datos, que buscan comprometer la integridad del modelo desde su fase de

entrenamiento.

Con la finalidad de dar un marco contextual a este tipo de ataque, es importante desta-

car que en ámbito de la ciberseguridad y la ciberinteligencia, el envenenamiento de datos

es uno de los muchos tipos de ataques que pueden enmarcarse dentro de lo que se conoce
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como ataques adversariales (adversarial attacks). Estos ataques buscan explotar vulne-

rabilidades en los modelos de aprendizaje automático para manipular sus predicciones o

comportamientos, y pueden clasificarse en varias categorías según su objetivo y metodo-

logía.

El NIST de Estados Unidos, nos proporciona un exhaustivo marco teórico sobre la

taxonomía de los diversos tipos de ataques adversariales (Vassilev, 2025), haciendo una

primera distinción entre ataques a modelos de IA predictivos y ataques a modelos de

IA generativos. Como los árboles de decisión son modelos predictivos, este trabajo se

centrará en los ataques adversariales que afectan a estos modelos.

De este modo, en el contexto de los modelos predictivos, se define los ataques adver-

sariales como aquellos que buscan comprometer la integridad, confidencialidad o dispo-

nibilidad de un modelo de IA, afectando su capacidad para realizar predicciones precisas

y confiables.

Otros criterios que se tienen en cuenta para clasificar los ataques adversariales son los

objetivos, capacidades y conocimientos del atacante, lo que permite agrupar las variantes

de los ataques para una mejor comprensión de sus características y potenciales impactos.

Finalmente, se identifica que los modelos de ML predictivos diferencian un estado

de entrenamiento donde el modelo aprende y un segundo estado, el estado de despliegue

también llamado de inferencia (Papernot et al., 2018), donde el modelo realiza prediccio-

nes sobre datos no vistos en la fase de entrenamiento.

Los ataques por envenenamiento, en el contexto de sistemas de IA, se refiere a ataques

adversariales diseñados para interferir con el proceso de entrenamiento de un modelo

de ML, introduciendo datos maliciosos en el conjunto de entrenamiento o manipulando

directamente los parámetros del modelo (Vassilev, 2025).

Dependiendo del objetivo del atacante, se pueden encontrar ataques aleatorios o diri-

gidos, y los últimos son por lo general más efectivos y difíciles ya que tienen un objetivo

específico (Lyu et al., 2020).

También es posible diferenciar dos categorías más, mencionadas en la literatura, según

hacia dónde son dirigidos los ataques, a los datos o al modelo (Wan et al., 2023; Vassilev,

2025):

Envenenamiento de datos (Data poisoning): el objetivo de este ataque son los
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datos de entrenamiento, y corresponde a la manipulación de ejemplos dentro del

conjunto de entrenamiento, para alterar el modelo y producir salidas influenciadas

por el atacante. Esta es la categoría en la que se enfoca el presente trabajo.

Envenenamiento del modelo (Model poisoning): el objetivo de este ataque es el

modelo e implica manipular directamente los parámetros del modelo durante su

entrenamiento. Se suele asociar a modelos de aprendizaje distribuido (como ocurre

en federated learning), generalmente por parte de un cliente comprometido. Aunque

igualmente riesgoso, este tipo de ataque se considera fuera del alcance del presente

estudio.

2.4.1. Definición de envenenamiento de datos

El ataque de envenenamiento de datos, también conocido como data poisoning, es

una técnica de ataque adversarial que busca comprometer la integridad de un modelo

de aprendizaje automático. Su naturaleza rompe la suposición implícita de que los datos

de entrenamiento son representativos de los datos de prueba reales, logrando su objetivo

final que es determinar una forma efectiva de contaminar los datos de entrenamiento para

forzar predicciones erróneas del modelo en el momento de la prueba. (Calzavara et al.,

2025).

La metodología de este ataque implica la introducción de ejemplos, diseñados cuida-

dosamente, en el conjunto de datos de entrenamiento, con el fin de alterar el comporta-

miento del modelo final.

Estos ataques son particularmente problemáticos en modelos de alta sensibilidad a

los datos de entrenamiento, como es el caso de los árboles de decisión, ya que incluso

pequeños cambios pueden alterar la estructura del árbol y modificar por completo las

reglas de decisión aprendidas (Bishop, 2009).

2.4.2. Clasificación del envenenamiento de datos

Existen múltiples variantes de este ataque, que pueden clasificarse según el objetivo

del atacante y la forma en que se construyen los datos contaminados:

Según el objetivo del atacante, se identifican tres categorías principales (Cinà et al.,

31



2024):

Indiscriminado (Indiscriminate): El atacante manipula una fracción del conjunto

de entrenamiento para maximizar el error de clasificación del modelo.

Dirigido (Targeted) : El atacante manipula de nuevo un subconjunto de los datos

de entrenamiento, pero esta vez con el objetivo de provocar la clasificación errónea

de un conjunto específico de muestras (limpias).

Puerta trasera (Backdoor): El atacante manipula los datos de entrenamiento para

que el modelo aprenda a clasificar correctamente las muestras limpias, pero al mis-

mo tiempo introduce una serie de muestras envenenadas con un patrón específico

(detonador de puerta trasera) que activan un comportamiento específico del modelo

que se presenta durante la fase de inferencia.

Según la forma en que se construyen los datos contaminados, se pueden distinguir dos

tipos de ataques (Lyu et al., 2020):

Ataques de etiqueta limpia (Clean label attacks): El atacante no puede modificar

las etiquetas de los datos, pero puede introducir ejemplos que alteren el compor-

tamiento del modelo. Estos ataques son más difíciles de detectar, ya que los datos

envenenados pueden parecer legítimos a simple vista y el rendimiento del modelo

no se ve afectado .

Ataques de etiqueta sucia (Dirty label attacks): El atacante puede modificar las

etiquetas de los datos, introduciendo ejemplos que desea etiquetar erróneamente

con una etiqueta objetivo. Estos ataques son más fáciles de detectar, ya que los

datos envenenados pueden ser identificados por su inconsistencia con el resto del

conjunto de entrenamiento.

Complementariamente, el trabajo de Ramirez (Ramirez et al., 2022) nos proporciona

un listado de variantes de ataques de envenenamiento de datos que se ha incluido en el

Anexo. No obstante, es relevante incluir en esta sección dos de los ataques incluidos en el

listado ya que son representativos de las amenazas que enfrentan los árboles de decisión

y son utilizados en la fase experimental de este TFM:
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Ataque de manipulación de etiquetas (Label-Flipping Attacks): Consiste en la

alteración maliciosa de las etiquetas en los datos de entrenamiento, lo que puede

realizarse de forma aleatoria o específica para reducir la precisión general o causar

una clasificación errónea de una clase específica, respectivamente.

Ataques de Envenenamiento basados en características (Feature-Based Poiso-

ning Attacks): Crean muestras de entrenamiento envenenadas que son indistingui-

bles de las muestras originales para la inspección visual humana, preservando así la

privacidad y mostrando una alta resistencia a los métodos de defensa existentes.

Esta sección permite comprender la variedad de vectores de ataque, objetivos y meto-

dologías que pueden emplearse en el envenenamiento de datos, lo que es crucial para el

desarrollo de defensas efectivas y la evaluación de la robustez de los modelos de machine

learning, especialmente aquellos basados en árboles de decisión.

2.4.3. Vulnerabilidad de los árboles de decisión frente al envenenamiento de datos

Los árboles de decisión, si bien destacan por su interpretabilidad y simplicidad, tam-

bién presentan una elevada sensibilidad a pequeñas modificaciones en el conjunto de en-

trenamiento, lo que es una desventaja de su uso como se señaló en la sección 2.3.4. Esto

los convierte en objetivos especialmente vulnerables a ataques de envenenamiento de da-

tos, dado que su estructura se basa en divisiones secuenciales guiadas por métricas de

pureza, incluso unos pocos ejemplos maliciosos pueden alterar drásticamente las deci-

siones tomadas en los nodos superiores del árbol, propagando su efecto hacia todo el

modelo.

Esta problemática ha sido abordada por diversos autores. Por ejemplo, Antidote, es un

sistema para verificar la robustez de árboles de decisión ante este tipo de ataques. En su

estudio demuestran que es posible construir ejemplos adversarios que cambian significa-

tivamente las divisiones del árbol con un número sorprendentemente bajo de instancias

envenenadas(Drews et al., 2020).

Por su parte, investigaciones más actuales dan paso al estudio de ataques específica-

mente diseñado para árboles de decisión, como es el caso de Timber (Calzavara et al.,

2025). Esta técnica utiliza un enfoque de conocimiento completo del modelo para selec-
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cionar ejemplos de entrenamiento cuya modificación maximice el cambio estructural y el

deterioro del rendimiento global del clasificador. Su investigación confirma que incluso

modelos entrenados sobre grandes conjuntos de datos pueden ser profundamente afecta-

dos mediante perturbaciones dirigidas a puntos críticos del espacio de entrada.

Estos estudios coinciden en señalar que los árboles de decisión, son susceptibles a

degradaciones significativas ante la inserción de ejemplos maliciosos. Esta vulnerabili-

dad no solo afecta el rendimiento, sino también la coherencia lógica y la trazabilidad de

las decisiones, elementos fundamentales en aplicaciones donde la explicabilidad es un

requisito.

2.4.4. Métodos de ensamble basados en árboles de decisión: su aparente robustez y

vulnerabilidad ante ataques

Los métodos de ensamble constituyen una estrategia de aprendizaje supervisado para

mejorar el rendimiento, la estabilidad y la generalización de los modelos. Su fundamento

se basa en la combinación de múltiples clasificadores individuales, por ejemplo árboles

de decisión, para formar un modelo compuesto que supere las limitaciones de sus com-

ponentes.

Desde la perspectiva de los árboles de decisión, estos métodos permiten mitigar pro-

blemas como reducir la alta varianza (Murphy, 2022), al combinar las predicciones de

varios árboles entrenados sobre diferentes subconjuntos del conjunto de datos original.

Estas técnicas no solo mejoran el desempeño, sino que también proporcionan una

mayor robustez frente a variaciones en los datos.

Entre los métodos de ensamble más utilizados para árboles de decisión encuentran

(James et al., 2013):

Bagging (Bootstrap Aggregation): Es un procedimiento de propósito general di-

señado para reducir la varianza de un método de aprendizaje estadístico. Es parti-

cularmente útil y frecuente en el contexto de los árboles de decisión. Esta técnica

consiste en que en vez de entrenar el modelo una sola vez con el conjunto de datos

completo, se generan múltiples subconjuntos de entrenamiento mediante muestreo

con reemplazo (bootstrap sampling). Esto se logra tomando repetidas muestras del

conjunto de datos de entrenamiento original, con reemplazo. Cada uno de estos

34



subconjuntos se utiliza para entrenar un modelo base (por ejemplo, un árbol de de-

cisión), y luego las predicciones de todos los modelos se combinan, generalmente

mediante votación mayoritaria (en clasificación) o promediado (en regresión).

Random Forests: Es una mejora sobre los árboles bagged, que busca reducir la

correlación entre los árboles individuales. Funciona muy similar al bagging, pero

la diferencia clave es que cada vez que se considera una división en un árbol, se

selecciona un subconjunto aleatorio de características en lugar de considerar todas

las características disponibles. Esto introduce una mayor diversidad entre los árbo-

les y reduce la varianza del modelo final. Los Random Forests son conocidos por

su robustez y capacidad para manejar grandes conjuntos de datos con muchas ca-

racterísticas, además de ser menos propensos al sobreajuste en comparación con un

único árbol de decisión.

Boosting: Es otra técnica para mejorar las predicciones de los árboles de decisión.

En este caso los árboles se construyen de manera secuencial, donde cada nuevo

árbol se entrena para corregir los errores del árbol anterior. En lugar de entrenar

todos los árboles de forma independiente, el boosting ajusta el modelo en función

de los errores cometidos por los árboles anteriores. Los modelos más conocidos

son AdaBoost y Gradient Boosting, que ajustan iterativamente los pesos de las ins-

tancias mal clasificadas para mejorar la precisión del modelo final. La literatura

también menciona variantes como Forward Stagewise Additive Modeling (FSAM)

y Gradient Boosting Machines (GBM), que se centran en minimizar una función

de pérdida específica durante el entrenamiento. Logit Boosting es una variante que

se utiliza para problemas de clasificación binaria(Murphy, 2022). Uno que merece

mención especial es XGBoost (Extreme Gradient Boosting), que ha ganado popula-

ridad por su eficiencia y rendimiento. XGBoost implementa técnicas avanzadas de

regularización y optimización, lo que lo hace especialmente efectivo para conjuntos

de datos grandes y complejos.

Complementariamente, el Stacking, que es un enfoque de ensamble que combina

múltiples modelos base (que pueden ser árboles de decisión) y utiliza un modelo meta

para hacer la predicción final. En este caso, los modelos base se entrenan por separado
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y sus predicciones se utilizan como características de entrada para el modelo meta, que

aprende a combinar las salidas de los modelos base para mejorar la precisión general

(Hastie et al., 2009). Si bien este modelo no es señalado como un método de ensamble

basado en árboles según la referencia señalada, es importante mencionarlo ya que puede

incluir árboles de decisión como modelos base y sí lo consideran como tal otros autores

(Murphy, 2022).

Finalmente, y en contexto con este TFM, se destaca que esta aparente robustez de los

modelos ensamble no implica inmunidad al enfrentar ataques adversariales. Como seña-

lan (Chang & Im, 2020), incluso modelos de tipo Random Forest pueden ser vulnerables

a estrategias de envenenamiento de datos. El impacto del envenenamiento puede intensi-

ficarse cuando las instancias maliciosas son diseñadas con características que tienden a

distribuirse de forma uniforme, afectando de manera consistente los patrones de decisión

del modelo. Aunque el estudio no menciona directamente su propagación en múltiples

árboles, la manipulación deliberada de atributos con baja desviación estándar sugiere un

efecto acumulativo en el conjunto del Random Forest.

2.5. Aplicación de la IA en sectores críticos: Defensa, Seguridad y

Salud

En esta sección se explora la aplicación de la IA en proyectos de España dentro de los

sectores críticos de la defensa, de la seguridad y de la salud. Estos tres sectores, tienen en

común que generan un impacto directo sobre la vida de las personas con implicaciones

significativas y, en algunos casos, irreversibles.

2.5.1. IA en Defensa

No es nuevo que los avances tecnológicos, quizás más importantes para la sociedad,

se producen en el ámbito militar y en un entorno bélico. En el trabajo de (Roldán Tudela,

2017) un conjunto de autores, recogen un análisis holístico de la IA aplicada, justamente

al ámbito militar.

Se destaca el valor de aplicar IA, junto a otras técnicas relacionadas, como una exi-

gencia de transformación de las capacidades militares en orden de mantener la ventaja
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militar. Esta necesidad se refuerza con el creciente volumen de datos que para ser tratados

requieren de técnicas de IA. El tratamiento de los datos es un factor clave en el ámbito

militar, ya que la información es un recurso estratégico y su correcta interpretación pue-

de marcar la diferencia en la toma de decisiones tácticas y estratégicas. Por otra parte,

la necesidad de inteligencia en el ámbito militar sobre los medios del adversario, la an-

ticipación de sus movimientos y la identificación de patrones de comportamiento es un

factor valioso del que ningún sector militar puede prescindir, y la IA se presenta como

una herramienta clave para potenciarla.

La incorporación del combatiente como un elemento clave en las funciones del com-

bate, resalta la necesidad de mantenerlos preparados, por lo que se incentiva la incorpo-

ración de herramientas de IA para mejorar la instrucción avanzada, considerando ade-

más que la IA puede ayudar a reducir la carga cognitiva del combatiente, permitiéndole

centrarse en tareas más críticas y estratégicas, pudiendo anticiparse a las decisiones del

adversario.

La delegación de la toma de decisiones a sistemas automatizados, sin embargo, no

es tomado a la ligera y en el mencionado trabajo, se destina un capitulo completo a la

ética en el uso de la IA en el ámbito militar. En este sentido, se destaca la importancia

de la trazabilidad y la explicabilidad de las decisiones automatizadas, especialmente en

contextos donde las decisiones pueden tener consecuencias humanas significativas (Lewis

et al., 2016). La ética militar exige que las decisiones tomadas por sistemas automatizados

sean auditables y comprensibles, lo que implica que los modelos utilizados deben ser

transparentes y sus decisiones justificables.

Por otra parte, el trabajo de (Alcántara Suárez, 2023) que analiza la aplicación de ma-

chine learning en sistemas de defensa, complementa esta mirada con ejemplos concretos

de proyectos de defensa que aplican ML. Parece apropiado, entonces, incorporar al menos

dos de estos ejemplos ya que ilustran la aplicabilidad de estas técnicas en proyectos reales

del ámbito militar en España, y adicionalmente resaltar lo valioso del aporte debido a la

escasa información que está disponible en español sobre estos temas. Ambos proyectos

se incluyen en el anexo F.
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2.5.2. IA en Seguridad

En el ámbito de la seguridad, la IA se ha convertido en una herramientas útil para la

detección de amenazas, la prevención del delito y la mejora de la seguridad pública, en

muchos países.

En España, se puede encontrar la publicación realizada en la XVIII Conferencia de la

Asociación Española de Inteligencia Artificial, donde se presenta un trabajo que analiza

el uso de técnicas de ML con algoritmos como los árboles de decisión M5P, M5Rules,

Regresión lineal, k-NN, Random Forest y varios más en la predicción del delito (Cuesta

Calvo et al., 2018). Se destaca el uso de variantes del algoritmo árboles de decisión ya

que refuerza el enfoque de este trabajo.

El trabajo de (Ocaña, 2024) presenta una visión de investigador independiente sobre

la contribución de la IA en la seguridad, destacando las implicaciones jurídicas del uso

de la IA para la prevención y disminución de los riesgos de seguridad. Se menciona el

desarrollo de aplicaciones de IA para la predicción del delito, los cuales tienen vías multi-

modales de ejecución y por tanto, el análisis también requiere una perspectiva multimodal,

que permita integrar datos de diferentes fuentes, como imágenes, texto y audio.

Por otra parte, (Monforte, 2023) nos propone una clasificación de tres categorías, para

agrupar las herramientas que usan IA y que podrían ser aplicadas para investigar delitos;

las Herramientas de predicción y evaluación de riesgos, las Herramientas de investigación

de delitos y las Herramientas de tramitación.

Presentando técnicas utilizadas como reconocimiento facial y de voz para verificar

identidad, reconocimiento de emociones para detectar veracidad en las declaraciones,

procesamiento de lenguaje natural (PLN) para análisis documental, reconocimiento de

imágenes para identificar objetos y personas en contextos de investigación, etc.

El trabajo de (Cuenca & Medina, 2023) proporciona ejemplos de proyectos imple-

mentados en España y que se han realizado para seguridad de la población. De ellos, dos

proyectos se incluyen en el anexo F.
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2.5.3. IA en Salud

La relación entre la ciencias de la computación y el ámbito de la salud tiene una

larga trayectoria que dio lugar al surgimiento de términos específicos como la informática

médica, la bioinformática, procesamiento electrónico de datos médicos, etc. Hoy en día,

la IA, está apoyando a los médicos en tareas que son esenciales y limitadas, dejando la

responsabilidad de manejar a los pacientes a los médicos humanos. No obstante, se valora

su apoyo en la optimización de los procesos de prevención, diagnóstico y tratamiento de

enfermedades (Molina, 2024)

El Reglamento Europeo (Unión Europea, 2025) que regula el espacio europeo de da-

tos de salud, busca establecer un marco normativo que garantice la protección de los

datos personales de salud y promueva su uso para fines de investigación y mejora de la

atención médica. Esta regulación complementa el Reglamento General de Protección de

Datos (RGPD), proporcionando un marco específico para el tratamiento de datos de salud

en la Unión Europea y en él, se regula también el uso de la IA en el ámbito sanitario,

estableciendo requisitos específicos para garantizar la seguridad, la privacidad y la ética

en el tratamiento de estos datos.

Como ejemplos de proyectos de IA en el ámbito de la salud, desarrollados en España,

se incluyen dos en el anexo F.

2.6. Técnicas de defensa ante ataques y escenarios de riesgo

Uno de los principales desafíos en materia de seguridad, ya sea desde un enfoque

técnico o estratégico, es la ausencia de soluciones universales capaces de garantizar una

protección total de los sistemas. En consecuencia, se requiere adoptar medidas de seguri-

dad en capas, que aborden en profundidad distintos vectores de ataque y vulnerabilidades.

Esta lógica aplica también a los escenarios adversariales del aprendizaje automático, don-

de deben considerarse tanto las características del modelo como el contexto de aplicación

y los posibles objetivos del atacante.

Este trabajo no pretende abordar de forma exhaustiva todas las técnicas defensivas

existentes, sino ofrecer una visión general de las estrategias recogidas en la literatura,

especialmente aquellas relacionadas con los ataques de envenenamiento de datos en mo-
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delos predictivos explicables, como los árboles de decisión.

2.6.1. Estrategias y modelos de amenazas

Siguiendo la estructura planteada por (Vassilev, 2025), una primera recomendación

estratégica es modelar al adversario y proyectar diferentes escenarios de ataque. Esta an-

ticipación resulta clave para implementar medidas defensivas acordes al tipo de amenaza.

En este sentido, el trabajo de (Muñoz-González et al., 2017) propone un marco sistemá-

tico para entender los ataques de envenenamiento de datos en modelos de aprendizaje

profundo, que puede adaptarse a otros algoritmos.

Dicho marco considera tres dimensiones principales:

Objetivo del ataque: ¿Busca degradar el rendimiento global del modelo o alterar

específicamente una clase?

Nivel de conocimiento del atacante: ¿Posee acceso completo al modelo, o su co-

nocimiento es parcial o nulo?

Capacidad para manipular los datos: ¿Puede alterar el conjunto de entrenamien-

to, o solo intervenir en la fase de inferencia?

De forma complementaria, (Biggio & Roli, 2018) introduce tres “reglas de oro” apli-

cables a la narrativa de seguridad en el aprendizaje automático:

Conoce a tu adversario (Know your adversary): modelar las amenazas contra el

sistema que se diseña.

Sé proactivo (Be proactive): simular ataques y diseñar contramedidas antes del

despliegue.

Protégete (Protect yourself): implementar medidas de defensa tanto reactivas co-

mo proactivas.

Esta visión estratégica es crucial, dado que muchas técnicas defensivas actuales pre-

sentan limitaciones importantes: algunas reducen la precisión del modelo, otras no son

aplicables a todos los algoritmos, y algunas son vulnerables a ataques más sofisticados,

como los llamados clean-label.
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2.6.2. Escenario de riesgo en modelos explicables

Un aspecto particular en el caso de los modelos explicables, como los árboles de

decisión, es que su lógica interna puede ser fácilmente inferida mediante herramientas

de XAI, facilitando así la ingeniería inversa de su comportamiento lo que representa un

riesgo. Esta facilidad para inferir su lógica interna es una vulnerabilidad que es explotada

por el sistema AUTOLYCUSE (Oksuz et al., 2024), que emplea explicaciones generadas

por el propio modelo para reconstruir su estructura incluso con acceso limitado, lo cual

facilita la generación de ataques dirigidos.

Por tanto, los modelos explicables enfrentan amenazas particulares que, aunque au-

mentan la transparencia, también pueden incrementar la superficie de ataque.

2.6.3. Técnicas de defensa documentadas

Frente a los riesgos mencionados, diversos estudios han propuesto mecanismos de

defensa para mitigar el impacto de los ataques de envenenamiento en modelos de apren-

dizaje automático. Estas estrategias pueden clasificarse en tres grandes enfoques (Ramirez

et al., 2022; Drews et al., 2020):

Filtrado previo al entrenamiento: aplicación de técnicas estadísticas o de apren-

dizaje no supervisado para detectar y eliminar instancias sospechosas o inconsis-

tentes.

Modificación del proceso de aprendizaje: adaptación de algoritmos para limitar la

influencia de datos individuales (por ejemplo, mediante regularización adversarial

o modificación de criterios de partición en árboles).

Auditoría posterior al entrenamiento: análisis del comportamiento del modelo

para detectar reglas de decisión inesperadas o ejemplos con influencia despropor-

cionada.

En cuanto a herramientas específicas, se destaca Antidote (Drews et al., 2020), diseña-

da para evaluar y mejorar la robustez de modelos frente al envenenamiento, en particular

en árboles de decisión.
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De forma inversa, la investigación de (Calzavara et al., 2025) describe el ataque Tim-

ber, un método de envenenamiento de tipo caja blanca que aplica label-flipping para

deteriorar el rendimiento de clasificadores basados en árboles. Aunque no existen aún de-

fensas específicamente robustas para árboles de decisión, se han explorado mecanismos

como saneamientos basados en k-Nearest Neighbors (kNN) y estrategias como Baggins,

que si bien no eliminan el ataque, permiten reducir su efecto.

Este último trabajo es especialmente relevante para el presente TFM, ya que demues-

tra tanto las vulnerabilidades específicas de los árboles de decisión como la necesidad

urgente de diseñar defensas más adecuadas, más allá de las soluciones agnósticas al mo-

delo actualmente disponibles.

La revisión realizada presenta un espectro relativamente acotado de técnicas de defen-

sa ante ataques adversariales en general, y de envenenamiento de datos en particular. Estas

estrategias abarcan diferentes enfoques como la detección y filtrado de instancias sospe-

chosas usando diversas técnicas de sanitización de datos, la modificación del proceso de

aprendizaje con técnicas como regularización, métodos de agregación y ensembled, datos

aumentados, privacidad diferenciada y entrenamiento adversarial, todas ellas para incre-

mentar la robustez del entrenamiento del modelo (Carnerero-Cano, 2023). Sin embargo,

también se identifican limitaciones importantes, como su escasa efectividad frente a ata-

ques sofisticados, su reducida capacidad de generalización a distintos tipos de modelos y,

especialmente, su enfoque reactivo más que preventivo.

Este enfoque toma especial importancia además dada las investigaciones que demues-

tran el concepto de que los ejemplos de entrenamiento adversarial pueden transferirse

entre algoritmos, lo que implica que un ataque diseñado para un modelo específico podría

ser efectivo contra otros modelos, incluso si estos no comparten la misma arquitectura o

metodología de entrenamiento (Muñoz-González et al., 2017). Esto sugiere que las defen-

sas deben ser diseñadas con una perspectiva más amplia, considerando no solo el modelo

específico en cuestión, sino también el ecosistema más amplio de modelos y técnicas de

aprendizaje automático.

En este contexto, se observa que la mayoría de las propuestas revisadas en este trabajo

se centran en detectar y mitigar los efectos del envenenamiento una vez que el ataque

ha ocurrido, dejando relativamente inexplorado el desarrollo de medidas preventivas que
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dificulten el uso de estos datos en el entrenamiento. Esta observación abre, por una parte,

una oportunidad para que el presente TFM, sin ser ese su foco principal, pueda aportar

algunas reflexiones iniciales sobre posibles recomendaciones orientadas a la prevención,

las cuales serán abordadas en las conclusiones. Y, por otra parte, refuerza la necesidad

de continuar investigando en este campo emergente, dinámico y de alto impacto, que aún

presenta importantes desafíos abiertos.

2.7. Cierre del marco teórico

La literatura reciente sobre ataques a modelos y riesgos derivados del uso de XAI

se ha centrado en escenarios con redes neuronales y explicaciones ricas en gradientes,

o en marcos de extracción de modelo que explotan LIME/SHAP para aproximar fron-

teras de decisión (p. ej., AUTOLYCUS). Aunque estos trabajos avanzan la comprensión

de la superficie de ataque, persiste una brecha aplicada: hay poca evidencia en modelos

explicables desplegados en sectores críticos con datos públicos españoles y análisis fino

del cambio estructural del clasificador (raíces, reglas, profundidad) bajo envenenamiento

leve. Este TFM contribuye en esa intersección: (i) operacionaliza ataques simples pero re-

producibles sobre árboles de decisión, (ii) evalúa el deterioro métrico y estructural, y (iii)

contextualiza su impacto en salud, seguridad y defensa, sentando bases empíricas para

trabajos futuros con ensembles y ataques más sofisticados.
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3. Metodología

Esta investigación adopta un enfoque metodológico fundamentado en los supuestos

filosóficos que subyacen a toda actividad investigativa, específicamente en términos de

ontología (la naturaleza de la realidad) y epistemología (cómo puede conocerse dicha

realidad). Siguiendo la clasificación propuesta por Oates (2006), se reconocen tres pa-

radigmas principales en el ámbito de los sistemas de información y la computación: el

positivista, el interpretativo y el crítico.

El paradigma positivista, adoptado en este trabajo, asume que la realidad es objetiva,

única y medible. Desde esta perspectiva, el investigador actúa como un observador inde-

pendiente, cuyo propósito es descubrir relaciones causales y leyes generales a través de

métodos cuantitativos rigurosos. Este paradigma es consistente con la estrategia seleccio-

nada para la investigación: el experimento, una técnica típicamente positivista que per-

mite manipular variables independientes en entornos controlados para evaluar su efecto

sobre variables dependientes (Oates, 2006). En este sentido, el paradigma interpretativo,

orientado a la subjetividad y la comprensión, se presenta como una vía más idónea para

explorar significados y experiencias sociales, mientras que el paradigma crítico, enfocado

en la emancipación y la transformación, se centra en cuestionar las estructuras de poder y

en impulsar cambios sociales.

En este trabajo, el marco de referencia de CRISP-DM, descrito en la sección 1.1.3,

se emplea como guía operativa para la gestión y desarrollo del TFM, mientras que el

enfoque positivista de Oates orienta el diseño experimental. De esta forma, las fases de

comprensión, preparación, modelado y evaluación propias de CRISP-DM se alinean con

el objetivo experimental de establecer relaciones causales entre el tipo de envenenamiento

de datos y el desempeño de los modelos de aprendizaje automático. Así, CRISP-DM

proporciona la estructura secuencial y trazable del proceso, y el enfoque experimental

positivista garantiza el rigor científico en la contrastación de hipótesis.

En particular, se diseñaron dos escenarios experimentales. El primer escenario se cen-

tró en un dataset de criminalidad por comunidad autónoma en España, incluyendo un

baseline y cuatro experimentos de envenenamiento de datos. En todos los casos, se apli-

caron modelos de regresión basados en árboles de decisión para evaluar el impacto de
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las alteraciones. El segundo escenario trabajó con un dataset del ámbito de la salud re-

lacionado con la COVID-19, con un baseline y tres experimentos de envenenamiento de

datos, aplicando modelos de clasificación también basados en árboles de decisión. Esta

configuración experimental permite establecer relaciones causales entre el tipo de enve-

nenamiento de datos y el desempeño de los modelos de aprendizaje automático, en línea

con el enfoque positivista adoptado.

En síntesis, la metodología combina dos niveles complementarios: el nivel filosófico-

epistemológico, sustentado en el paradigma positivista y en el uso del experimento co-

mo estrategia investigativa; y el nivel práctico-operativo, sustentado en CRISP-DM como

marco de gestión y desarrollo. De forma transversal, ambos niveles convergen en el cum-

plimiento de los objetivos específicos del TFM, garantizando la coherencia entre el diseño

metodológico, las tareas realizadas y los resultados esperados.

3.1. Objetivos y tareas

Esta sección define las tareas que guían el diseño experimental del presente trabajo,

según la metodología descrita previamente. Para cada objetivo, descritos en la sección

1.3, se detallan las tareas principales, los indicadores de éxito y los entregables esperados.

Objetivo: a) Vulnerabilidad asociada a la explicabilidad

Tareas: Analizar los puntos críticos de la estructura interna del modelo, mediante

la identificación de los nodos más relevantes y las características que influyen en

las decisiones del modelo, así como problemas para que pueda tener el modelo para

generalizar, o cómo le afectan los sesgos en los datos. Esto permite determinar las

vulnerabilidades de los modelos entrenados con datos no alterados.

Indicadores: Variación en las características del árbol entre réplicas (predicciones,

reglas de decisión, estructura en ramas y nodos) dentro de un umbral definido; es-

tabilidad de métricas de rendimiento (Accuracy/F1 en clasificación, MAE/MSE en

regresión) durante la validación.

Entregables: Figuras de los árboles de referencia; cuadros con indicadores de es-

tabilidad de la estructura y métricas.
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Objetivo: b) Modos de envenenamiento de datos

Tareas: Implementar las técnicas de envenenamiento de datos feature-based y label-

flipping, sobre los datos usados para entrenar los modelos de árboles de decisión.

Indicadores: Reproducibilidad de los ataques (scripts parametrizados); verifica-

ción de que la tasa de envenenamiento aplicada coincide con la nominal (1%, 3%,

5%).

Entregables: Scripts, bloques o notebooks de generación de ataques; cuadros com-

parativos con las tasas efectivas de envenenamiento aplicadas a cada dataset.

Objetivo: c) Deterioro por envenenamiento de datos

Tareas: Entrenar modelos de árboles de decisión sobre datasets envenenados con

diferentes parámetros de ataque; registrar cambios en la estructura del modelo y en

su rendimiento general; comparar métricas entre modelos con y sin datos envene-

nados.

Indicadores: Cambios en las métricas entre modelos (ej. Accuracy/Recall en cla-

sificación; MAE/MSE/R2 en regresión); cambios estructurales significativos en el

árbol (modificación en el número de nodos o en las variables seleccionadas en la

raíz y niveles superiores; alteración de la ruta de decisión principal).

Entregables: Cuadros comparativos por tasa de ataque; figuras de árboles antes y

después del envenenamiento.

Objetivo: d) Riesgos en contextos críticos

Tareas: Implementar y contextualizar experimentos de clasificación y regresión

que permitan evaluar el comportamiento de los modelos en sectores críticos como

salud y seguridad/defensa, considerando de manera independiente las particulari-

dades de cada dominio.

Indicadores: Evidencia de impacto del envenenamiento dentro de cada contexto

(p.ej., deterioro de métricas en el escenario de salud o en el de criminalidad); con-

sistencia y replicabilidad de los resultados obtenidos en cada dominio.
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Entregables: Informe de resultados por dominio; cuadros y gráficas de desempeño

diferenciadas para cada dataset. Subsección en conclusiones: Evaluación de los

riesgos en contextos críticos.

Objetivo: e) Recomendaciones para prevenir y mitigar riesgos

Tareas: Concluir medidas orientadas a la prevención y mitigación del impacto del

envenenamiento de datos en modelos de árboles de decisión.

Indicadores: Generación de recomendaciones basadas en la evidencia empírica de

los experimentos; coherencia con la literatura revisada.

Entregables: Subsección de conclusiones: Recomendaciones de seguridad con

propuestas de medidas preventivas.

3.2. Diseño experimental

Como se estableció en la metodología, este trabajo adopta un diseño experimental de

tipo cuantitativo y comparativo, con un enfoque de laboratorio. Este diseño se articula

en las fases de modelado y evaluación de CRISP-DM, bajo el enfoque positivista descrito

por Oates, que sustenta la elección del experimento como estrategia investigativa.

El experimento se basa en la manipulación de variables independientes (introducción

de envenenamiento en los conjuntos de datos de entrenamiento) y la observación de los

efectos sobre variables dependientes, medidos a través de métricas objetivas y cuantitati-

vas. Los indicadores de éxito incluyen tanto la variación en métricas de rendimiento de

uso extendido en modelos supervisados (Accuracy, Recall, F1-score, MAE, MSE, ROC,

AP) como los cambios observables en la estructura interna de los árboles de decisión

(profundidad, número de nodos, rutas de decisión, estabilidad de reglas).

De esta manera, se diseñan dos experimentos principales: uno de regresión (predic-

ción de la cantidad de delitos) y otro de clasificación (predicción de hospitalizaciones).

Ambos experimentos responden a los objetivos de identificar vulnerabilidades, evaluar el

deterioro inducido por el envenenamiento y comparar los riesgos en diferentes contextos

críticos.
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Su estructura incluye los siguientes ejes:

Escenario de envenenamiento: Se simulan los objetivos del atacante como:

• Ataques dirigidos a clases específicas.

Proporciones de datos envenenados: Se implementan distintos niveles de mani-

pulación: 1%, 3% y 5% de registros envenenados sobre el total del dataset.

Magnitud de la perturbación del ataque: Se aplica una intensidad de alteración

sobre los datos que se define en función de la lógica del ataque y el contexto del

dataset.

Tipos de ataque aplicados:

• Según la forma de construcción de los datos:

↑ Ataques de etiqueta limpia (Clean label attacks): Se introducen ejem-

plos adversarios sin modificar las etiquetas.

↑ Ataques de etiqueta sucia (Dirty label attacks): Se introducen ejemplos

adversarios que alteran las etiquetas originales para inducir errores de

clasificación.

• Según el tipo de manipulación:

↑ Label-flipping: Intercambio de etiquetas en un porcentaje definido del

dataset.

↑ Feature-based: Modificación adversaria de atributos clave que afectan la

estructura del árbol.

Medios para generar los datos envenenados: Se utilizan implementaciones ma-

nuales propias, asistidas por la herramienta ChatGPT, para la generación de ejem-

plos adversarios.

Los ataques implementados han sido seleccionados por ser técnicamente aplicables y

efectivamente observables en modelos de árboles de decisión, permitiendo analizar su im-

pacto tanto en rendimiento como en estructura. En contraste, se han excluido métodos que
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requieren gradientes diferenciables, retro propagación o estructuras densamente conecta-

das, características propias de modelos como redes neuronales profundas o Transformers,

pero ausentes en los árboles de decisión.

Por otra parte el rango de proporciones de datos envenenados escogidos de (1%, 3% y

5% ) son considerados como realista, difícil de detectar y bajo pero con potencial de gene-

rar un alto impacto en el rendimiento con base a tres referencias de la literatura (Calzavara

et al., 2025; Cinà et al., 2024; Chang & Im, 2020). Estas proporciones incorporadas a este

TFM, nos otorga un set de opciones para evaluar el impacto del envenenamiento desde

niveles realistas, que podrían pasar desapercibidos y serían menos exigentes de cumplir

para el atacante. Además, estas proporciones permiten iteraciones rápidas y pruebas re-

producibles, facilitando la experimentación y comparación de resultados.

El flujo metodológico esquemático de estos ataques se puede ver en la Figura 1.

Figura 1: Flujo metodológico del procedimiento de envenenamiento de datos aplicado en
los experimentos
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3.3. Datasets

La experimentación se realiza sobre datasets estructurados, que proporcionan datos

que pueden ser utilizados para tomar decisiones en sectores críticos (salud y seguridad) y

que permiten dar contexto a los experimentos para la implementación de los modelos de

árboles de decisión.

Criterios de selección:

- Disponibilidad pública o privada de los datasets.

- Licencia abierta, de uso académico o permitido su uso para este TFM.

- Relevancia para sectores críticos (salud y seguridad).

- Tamaño que permite iteraciones rápidas y pruebas reproducibles.

- Compatibilidad con tareas de clasificación o regresión.

Criterios de exclusión:

- Datasets que requerían preprocesamiento intensivo no relevante para el análisis.

- Datasets sensibles, sin anonimización o que contenían información personal identi-

ficable.

Fuente inicial de los datasets:

Portal Estadístico de Criminalidad de España (https://estadisticasdecriminalidad.s

es.mir.es/).

Portal de Datos Abiertos del Gobierno de España (https://datos.gob.es/).

Portal Oficial de Datos Europeos (https://data.europa.eu/en).

Plataforma de contratación del Estado (https://contrataciondelestado.es/).

Plataforma gestión de datos de contratación pública (https://contratos.gobierto.es/)

Centro Nacional de Epidemiología del Instituto de Salud Carlos III (https://cnecov

id.isciii.es/).
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Dataset utilizados:

A continuación se presentan los dataset seleccionados para los experimentos, separa-

dos por sector al que representan, junto con una breve descripción de su origen y caracte-

rísticas principales:

Seguridad: El dataset original contiene datos estadísticos de criminalidad obteni-

dos del Portal Estadístico de Criminalidad del Ministerio del Interior de España. Los

datos son provenientes de la Policía Nacional, Guardia Civil, policías autonómicas

y policías locales que proporcionan datos al Sistema Estadístico de Criminalidad.

No se incluyen datos de los Mossos d’Esquadra de robos con fuerza o con violen-

cia/intimidación en establecimientos, ni de robos con violencia/intimidación en vía

pública hasta el año 2019. A partir del año 2020 se encuentran incluidos. No se in-

cluyen datos de los Mossos d’Esquadra ni Ertzaintza de estafas informáticas hasta

2014, no obstante, a partir de 2015 se encuentran incluidos. La adaptación de este

dataset es denominada “dataset de criminalidad”, para referenciarlo en este trabajo.

Salud: El dataset original contiene la declaración de los casos de COVID-19 a la

Red Nacional de Vigilancia Epidemiológica (RENAVE) a través de la plataforma

informática vía Web SiViES (Sistema de Vigilancia de España) que gestiona el

Centro Nacional de Epidemiología (CNE). Esta información procede de la encues-

ta epidemiológica de caso que cada Comunidad Autónoma cumplimentaba ante la

identificación de un caso de COVID-19. La adaptación de este dataset es denomi-

nada “dataset de covid19”, para referenciarlo en este trabajo.

Los dataset seleccionados fueron adaptados durante el presente trabajo con el fin de

simular los conjuntos de datos para los entrenamientos aplicados a tareas de regresión y

clasificación en contextos de los sectores de salud y seguridad. Adicionalmente, se crearon

copias con los datos envenenados en un entorno controlado.

Links de descarga datasets originales:

- Seguridad: Dataset de criminalidad por comunidad

- Salud: Dataset situación y evolución de la pandemia de COVID-19 en España
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3.4. Recursos e Instrumentos

Se utilizan los siguientes recursos:

Lenguaje: Python 3.12.3

Librerías: Scikit-learn, NumPy, Pandas, Matplotlib, Seaborn, entre otras.

Modelos utilizados: árbol de decisión (DecisionTreeClassifier y DecisionTreeRe-

gressor de la librería Scikit-learn).

Aplicaciones: ChatGPT modelos GPT-4o y GPT-5.

Entorno: Jupyter Notebook y Visual Studio Code.

Métricas: Para clasificación Accuracy, Precision, Recall, F1-score, Matriz de con-

fusión, ROC; y para regresión RMSE, MAE, R2 score.

Equipo con tarjeta gráfica: Se utiliza una GPU NVIDIA GeForce RTX 4070 para

acelerar el entrenamiento de los modelos.

3.5. Procedimiento

Los pasos que se siguieron en el diseño experimental se repitieron por los sectores

críticos (seguridad y salud) y se detallan a continuación:

Preprocesamiento de los datos: limpieza y transformación de variables según fue

necesario.

Análisis exploratorio de los datos: visualización de distribuciones, correlaciones y

patrones relevantes.

Selección de variable objetivo y predictoras.

Entrenamiento de un modelo base sin envenenamiento.

Obtención de las métricas de rendimiento del modelo base.

Análisis de vulnerabilidades del modelo.
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Diseño del ataque por envenenamiento: selección del tipo de ataque y parámetros

del mismo.

Implementación de un primer ataque de envenenamiento (p. ej. label-flipping del

1% de los datos con magnitud 3).

Guardado de los datos envenenados.

Entrenamiento del modelo sobre el dataset envenenado.

Comparación de métricas de rendimiento y estructura.

Visualización de los árboles generados.

Repetición del experimento con diferentes proporciones de datos envenenados.

Análisis de los resultados obtenidos, comparando los modelos entrenados con y sin

envenenamiento.

Documentación de los hallazgos y conclusiones.

3.6. Análisis de datos

3.6.1. Dataset de criminalidad

El dataset criminalidad, como se menciona en la sección 3.3, corresponde a una adap-

tación del dataset original para efectos de este trabajo. Este contiene un conjunto de datos

agregados de criminalidad en España, donde cada registro recoge la cantidad de delitos

registrados y agrupados por comunidad autónoma, categoría general de delito y por año.

No incluye información individualizada, sino totales agregados para cada combinación de

variables.

3.6.1.a Procesado y preprocesamiento de datos

Dada la naturaleza del dataset, datos agregados, y a que contenía cálculos de subtota-

les y totales, fue necesario realizar una limpieza de valores irrelevantes, detectar valores

faltantes y mantener la consistencia de los datos.
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Como parte del procesado y preprocesamiento de los datos se realizaron las siguientes

actividades:

Eliminación de registros con subtotales y totales generales.

Eliminación de subcategorías de delitos, manteniendo solo las 12 categorías gene-

rales para mantener la simplicidad en el análisis.

Reorganización de los datos en formato largo, para facilitar el análisis temporal y

el uso de herramientas estadísticas.

Verificación de valores nulos (sin imputar valores porque no se encontraron nulos).

Codificación one-hot de las variables categóricas (Comunidad, Categoría y Año)

para su uso en el entrenamiento.

División del dataset en 80% entrenamiento y 20% validación, con semilla fija para

reproducibilidad (random_state=42).

Cabe señalar que al aplicar one-hot encoding (One-Hot Encoded ó OHE), sobre las

variables categóricas, se crean columnas dummy (término usado en estadística) para cada

valor único de las variables categóricas. Durante el desarrollo de este TFM se les nombrará

como columnas “dummies” (del término variables dummy), “características codificadas”

o “features codificadas”.

Finalmente, no se aplicó normalización ni escalado, ya que los árboles de decisión no

requieren estas transformaciones para su funcionamiento, priorizando así la simplicidad y

reproducibilidad del experimento. Bajo este mismo enfoque de priorizar la reproducibili-

dad y aislar la procedencia de los cambios durante la evaluación del deterioro del modelo

entrenado con datos sin y con envenenamiento, se abstuvo de usar técnicas de validación

cruzada.

3.6.1.b Análisis exploratorio de los datos

A continuación se describe el Análisis exploratorio de datos o EDA (por sus siglas

en inglés, Exploratory Data Analysis), para datos agregados, realizado sobre el dataset de

criminalidad:
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Revisión de la estructura del dataset, identificando cantidad de registros, columnas

y tipos de datos de las variables.

Búsqueda de valores nulos.

Visualización de la distribución de delitos agrupados por año, comunidad autónoma

y categoría del delito, con uso de gráficas de barras para identificar tendencias y

patrones.

El análisis de correlaciones entre variables numéricas fue descartado ya que el da-

taset solo contiene una variable numérica (Cantidad de delitos).

3.6.1.c Configuración del modelo y parámetros de entrenamiento

Para el experimento de regresión, que busca la predicción de la cantidad de delitos,

se empleó un modelo de árbol de regresión (DecisionTreeRegressor) de la librería

scikit-learn.

El modelo fue configurado con los siguientes parámetros:

Parámetro Valor Descripción

criterion squared_error Mide la calidad de una división basándose en la mini-

mización del error cuadrático medio (MSE).

splitter best Selecciona automáticamente la mejor división posible

para cada nodo.

max_depth 4 Limita la profundidad del árbol a 4 niveles para evitar

sobreajuste y facilitar la interpretación.

random_state 42 Fija una semilla para garantizar la reproducibilidad.

Otros Por defecto max_features, max_leaf_nodes,

min_samples_split, min_samples_leaf y

ccp_alpha mantienen valores por defecto.

Cuadro 2: Parámetros de configuración del DecisionTreeRegressor

Se utilizó como variable objetivo, la variable Cantidad (Cantidad de delitos), y como

variables predictoras: Comunidad, Categoría y Año. Se mantuvieron constantes los pará-
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metros y se evitó introducir técnicas o configuraciones aleatorias (random) para asegurar

que las diferencias observadas en el rendimiento del modelo se deban específicamente al

envenenamiento de datos.

3.6.1.d Análisis de vulnerabilidad y diseño del ataque

Para llevar a cabo el análisis de vulnerabilidades del modelo, se implementaron dos

enfoques: el primero evaluar la importancia de las características para comprender qué

dimensiones dominan el modelo (qué sostiene el modelo). El segundo enfoque evalúa los

valores de error por característica para identificar aquellas categorías donde el modelo

tenía mayor dificultad para predecir (puntos débiles).

A partir de este análisis, se procede a diseñar un ataque de envenenamiento de datos

dirigido a las clases específicas Comunidad, utilizando la técnica feature-based.

Como parte del diseño del ataque, se selecciona como objetivo de ataque la caracte-

rística codificada Comunidad_Aragón, que presenta el mayor error (MAE).

El ataque se diseña estableciendo una proporción, respecto a la cantidad total de re-

gistros, como cantidad de datos a envenenar. En este experimento, se seleccionaron tres

proporciones: 1%, 3% y 5%.

El diseño del ataque, permitió definir los requisitos para construir un subconjunto de

registros “candidato” a ser envenenado. Se estableció que los registros que lo componen

debían pertenecer a la comunidad autónoma objetivo del ataque, Comunidad_Aragón, y

debían estar distribuidos dentro de los años 2021, 2022 y 2023 del dataset, por ser los

años más actualizados. Además, se decide mantenerlos concentrados en solo 3 años para

evitar diluir el efecto del ataque.

Para efectos de la experimentación, cuando el subconjunto “candidato” tuvo suficien-

tes registros para cubrir la proporción de datos a envenenar, se le mencionó como con

reemplazo o cr, es decir, los datos envenenados reemplazan los datos originales. De lo

contrario, se duplican registros seleccionados para completar la proporción deseada au-

mentando la cantidad de registros totales del dataset.

Consecuente con lo anterior, este trabajo cubre solo un ejemplo de envenenamiento

del 1% del total de registros del dataset con reemplazo. Los experimentos restantes, se

realizaron con tasas de envenenamiento del 1%, 3% y 5% sin reemplazo de los regis-
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tros, permitiendo que un mismo registro pudiera ser seleccionado más de una vez para

ser envenenado o se agregaran registros duplicados, aumentando así el tamaño total del

dataset.

Finalmente, el valor de la característica Cantidad de los registros correspondientes

fueron multiplicados por un factor de perturbación de 3. Esta magnitud fue seleccionada

para mantener los valores envenenados dentro del rango empírico, sin superar el umbral

µ + 2! , evitando así generar outliers fácilmente detectables, como se dejó registrado en

el cuadro 5.

Nota: El concepto con reemplazo utilizado en el contexto de este trabajo está consi-

derado desde una perspectiva descriptiva del experimento y no debe confundirse con el

concepto de reemplazo del método sample en python y su configuración replace=True,

que es el concepto opuesto al utilizado en este trabajo.

3.6.2. Dataset de covid19

Tal como mencionamos en la sección 3.3, el dataset de covid19, corresponde a una

adaptación del dataset original para efectos de este trabajo. En él se encuentra un conjunto

de datos agregados de vigilancia epidemiológica, en el que cada registro corresponde a

un conteo de casos, de hospitalizaciones, de ingresos en UCI y de defunciones agrupadas

por provincia, sexo, grupo de edad, año, mes y semana epidemiológica, de modo que no

contiene observaciones individuales, sino totales consolidados.

3.6.2.a Procesado y preprocesamiento de datos

Dada la naturaleza del dataset, datos agregados, y a que contenía datos irrelevantes

para el experimento, fue necesario realizar una limpieza para eliminar registros irrelevan-

tes, tratar los valores nulos, adaptar la estructura del dataset y mantener la consistencia de

los datos.

Como parte del procesado y preprocesamiento de los datos, se realizaron las siguientes

actividades:

Eliminación de registros, sin eventos confirmados, para eliminar datos irrelevantes

para la predicción y obtener clases más balanceadas.
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Eliminación de la variable fecha, previa segmentación en variables de mes, año y

semana.

Eliminación de la columna num_hosp.

Adición de la columna hospitalizado de tipo binaria (0, 1).

Verificación de valores faltantes y aplicación de imputación (valor “Desconocido”).

Codificación one-hot de las variables categóricas (provincia, sexo, grupo_edad) pa-

ra su uso en el entrenamiento.

División del dataset en 80% entrenamiento y 20% validación, con semilla fija para

reproducibilidad (random_state=42).

Al igual que en el experimento de regresión, en este experimento de clasificación tam-

poco se aplicó normalización, escalado, técnicas de validación cruzada, ni configuraciones

aleatorias para priorizar simplicidad y reproducibilidad del experimento.

3.6.2.b Análisis exploratorio de los datos

A continuación se describe el EDA realizado sobre el dataset de covid19.

Se realizó un análisis estadístico descriptivo para entender la distribución de los datos

y la relación de las variables predictivas con la variable objetivo. Se generaron visualiza-

ciones para identificar patrones y tendencias:

Revisión de la estructura del dataset, identificando cantidad de registros, columnas

y tipos de datos de las variables.

Búsqueda de valores nulos con gráfica para visualizar su proporción por caracterís-

ticas.

Visualización de la distribución de los datos de la clase objetivo, mediante gráfico

de barras y de pastel.

Visualización de la correlación entre variables, utilizando un mapa de calor.
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3.6.2.c Configuración del modelo y parámetros de entrenamiento

Para el experimento de clasificación, que busca la predicción de hospitalizaciones

frente a casos confirmados de COVID-19, se empleó el modelo de árbol de decisión para

clasificación o modelo de clasificación (DecisionTreeClassifier) de la librería scikit-

learn.

El modelo fue configurado con los siguientes parámetros:

Parámetro Valor Descripción

criterion Gini Mide la calidad de una división basándose en la impu-

reza de Gini. Solo aplicable en tareas de clasificación

en la API de scikit-learn.

splitter best Selecciona automáticamente la mejor división posible

para cada nodo.

max_depth 4 Limita la profundidad del árbol a 4 niveles para evitar

sobreajuste y facilitar la interpretación del modelo.

random_state 42 Fija una semilla para garantizar la reproducibilidad.

min_samples_split 2 Establece un mínimo de 2 muestras para realizar una

división.

min_samples_leaf 1 Establece un mínimo de 1 muestra por hoja.

Otros parámetros Por defecto max_features, max_leaf_nodes y ccp_alpha

mantienen valores por defecto, sin restricciones adi-

cionales ni poda post-entrenamiento.

Cuadro 3: Parámetros de configuración del DecisionTreeClassifier

Se utilizó como variable objetivo, la clase hospitalizado, con valor binario (0, 1), mien-

tras que como variables predictoras se usaron las variables provincia, sexo, grupo_edad,

num_casos, num_uci, num_def, anio, mes y semana.

3.6.2.d Análisis de vulnerabilidad y diseño del ataque

Se realiza un análisis en búsqueda de puntos críticos en la estructura interna del mo-

delo que permitiera identificar las vulnerabilidades posibles de explotar en el ataque de
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envenenamiento de datos.

Para lo anterior, se identifican las características que más influyen en las decisiones del

modelo mediante la obtención de las importancias de las características. Adicionalmente,

se construyó un mapa de vulnerabilidad por nodo usando el grado de impureza por número

de muestras. Los nodos con mayor puntaje attack score concentran el poder separador del

árbol y, por tanto, constituyen los vectores de ataque más eficientes.

A partir de este análisis, se procede a diseñar un ataque de envenenamiento de datos

dirigido a la clase objetivo, utilizando la técnica de label-flipping.

El ataque se diseña estableciendo una proporción, respecto a la cantidad total de re-

gistros, como cantidad de datos a envenenar. En este experimento se seleccionaron tres

proporciones: 1%, 3% y 5%.

El diseño del ataque definió un subconjunto “candidato” de envenenamiento a partir

de los nodos más influyentes del árbol de decisión, identificados en el análisis de vul-

nerabilidad mediante la métrica attack score (producto de la reducción de impureza y el

número de muestras en el nodo). Dentro de estos nodos, se priorizaron los registros de

entrenamiento que se encontraban más próximos a los umbrales de división en las va-

riables numéricas, o bien, pertenecían directamente a categorías relevantes en el caso de

variables categóricas codificadas con One-Hot.

Al calcular el tamaño del subconjunto “candidato”, se garantizó que éste fuese sufi-

ciente para cubrir los diferentes porcentajes de envenenamiento definidos en los experi-

mentos (1%, 3% y 5% del conjunto de entrenamiento). La selección de los registros se

realizó con reemplazo de las etiquetas originales, de modo que cada instancia podía ser

volteada solo una vez, asegurando la trazabilidad del experimento.

Finalmente, la magnitud del ataque correspondió al propio porcentaje de envenena-

miento aplicado, ya que se utilizó un esquema de label-flipping, donde la etiqueta hos-

pitalizado fue invertida (0 ↓ 1 o 1 ↓ 0) en los registros seleccionados. Este criterio fue

suficiente para inducir contradicciones en zonas estratégicas de la frontera de decisión del

árbol, sin necesidad de alterar los valores originales de las otras características, como se

registró en los cuadros y gráficas comparativas de este TFM.

A diferencia del experimento de regresión, en el cual se manipuló una característica

numérica, en este caso el ataque se produjo directamente por la alteración de las etiquetas

60



de la clase objetivo, lo que permite evaluar la sensibilidad del clasificador ante cambios

en la consistencia de la información de entrenamiento.

Nota: El concepto con reemplazo utilizado en el contexto de este trabajo está consi-

derado desde una perspectiva descriptiva del experimento y no debe confundirse con el

concepto de reemplazo en python y su configuración replace=True, que es el concepto

opuesto al utilizado en este trabajo.
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4. Resultados

En esta sección se presentan los resultados obtenidos de los experimentos realizados

con los datasets adaptados de criminalidad y covid19. Se incluyen métricas de rendimien-

to, análisis de vulnerabilidades y comparaciones entre modelos entrenados con datos sin y

con envenenamiento. Cabe destacar que los resultados aquí presentados aplican al contex-

to específico de los experimentos desarrollados para este TFM y no son necesariamente

generalizables a otros contextos o datasets. La investigación y las validaciones necesarias

para generalizar estos resultados quedan fuera del alcance de este trabajo.

4.1. Dataset de criminalidad, experimento de regresión

4.1.1. Resultados del EDA

Del análisis exploratorio de los datos se obtienen los siguientes resultados:

La estructura del dataset inicial contiene 3.360 filas y 4 columnas. Estas columnas

están compuestas por la variable Cantidad (variable objetivo), que es de tipo numérica,

y las tres restantes son categóricas (Comunidad, Categoría y Año). Esta estructura se

mantiene para la obtención de los resultados del EDA.

Posteriormente, tal como se señala en la sección 3.6.1.a, se aplica la codificación

one-hot a las variables categóricas, lo que modifica la estructura del dataset para el entre-

namiento del modelo. De la estructura modificada se obtienen 44 columnas, donde una

contiene datos de tipo numéricos Cantidad y las 43 restantes contiene datos categóricos

codificados.

Durante la exploración, no se encontraron valores nulos, ni faltantes en el dataset.

Respecto a la distribución de los datos, en la figura 2 se muestra la distribución de la

cantidad total de delitos, de todas las comunidades autónomas de España y de todas las

categorías de delitos, agrupados por años. El periodo inicia en el 2010 y se extiende hasta

el 2023.
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Figura 2: Dataset de criminalidad: Cantidad de delitos totales por años.

En la figura 3, se muestra la distribución de la cantidad total de delitos, de todos

los años y de todas las categorías de delitos, agrupados por comunidad autónoma. Están

incluidas como comunidades autónomas, las ciudades de Ceuta y Melilla, y un valor

registrado como En el extranjero.

La comunidad con mayor cantidad de delitos es Cataluña con 6.158.792 delitos, se-

guida de Madrid con 5.320.672 delitos, Andalucía con 5.009.778 delitos y Comunidad

Valenciana con 3.482.551 delitos. Las comunidades con menor cantidad de delitos son

La Rioja con 130.362 delitos, Ceuta con 68.777 delitos y Melilla con 66.341 delitos.

Figura 3: Dataset de criminalidad: Cantidad de delitos totales por comunidad autónoma
en España.

En la figura 4 se muestra la distribución de la cantidad total de delitos, de todos los

años y de todas las comunidades autónomas, agrupados por categoría del delito.
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Figura 4: Dataset de criminalidad: Cantidad de delitos totales por categoría de delito.

La categoría de delito más frecuente es el efectuado contra el Patrimonio con 22.996.509

delitos, seguido por los pertenecientes a la categoría Contra las personas con 3.153.321

delitos y Contra la libertad con 1.346.046 delitos. Mientras los delitos menos frecuen-

tes fueron los pertenecientes a las categorías de delitos de la Admón. pública con 6.580

delitos y los pertenecientes a Legislación especial con 3.623 delitos.

4.1.2. Resultados del análisis de vulnerabilidades

La figura 5 muestra las cinco características codificadas más importantes para la pre-

dicción de la criminalidad utilizadas en el árbol de regresión. Los valores de importan-

cia son los siguientes: Categoría_Patrimonio con 0.39, seguida de Comunidad_Cataluña

con 0.34, Comunidad_Madrid con 0,18, Comunidad_Comunitat Valenciana con 0,06 y

Año_2020 con 0,003.

Figura 5: Dataset de criminalidad: Importancia de las características para el modelo.
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Se obtienen los MAE de todas las comunidades, de los cuales los 5 primeros se mues-

tran en la cuadro 4.

Posición Comunidad Autónoma MAE

1 ARAGÓN 12.038,58

2 MADRID 6.853,16

3 COMUNITAT VALENCIANA 6.780,99

4 EXTREMADURA 5.272,67

5 PAÍS VASCO 4.087,86

Cuadro 4: Dataset de criminalidad: Comunidades autónomas con mayor MAE en la pre-
dicción de criminalidad

La comunidad autónoma que presenta mayor MAE es Aragón, por lo cual se efectúa

un análisis estadístico adicional que se muestra en el cuadro 5.

Este cuadro muestra los valores estadísticos observados en los datos de Aragón. Con-

sidera la media, desviación estándar, el valor máximo observado en Aragón y el valor

máximo general en el dataset. Adicionalmente, se incorpora al cuadro el valor resultante

de multiplicar la media por un factor de 3. Este factor representa la magnitud de la pertur-

bación implementada sobre los valores del subconjunto “candidato” seleccionado para el

ataque de envenenamiento de datos, dando como resultado 10.802,71.

Descripción Valor

Media ARAGÓN 3.600,90

Desviación estándar ARAGÓN 8.842,31

Media ! 3 (ataque) 10.802,71

Máximo observado en ARAGÓN 39.806,00

Máximo general en el dataset 431.028,00

Cuadro 5: Dataset de criminalidad: Datos estadísticos de ARAGÓN
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4.1.3. Resultados de la evaluación de los modelos

En la siguiente figura, se observa gráficamente la estructura del árbol de decisión

entrenado con el dataset sin envenenamiento de datos.

Figura 6: Dataset criminalidad: Estructura del árbol entrenado con datos sin envenena-
miento.

El modelo entrenado con el dataset sin envenenamiento de datos, inicia en el nodo raíz

con la característica codificada Categoría_Patrimonio. Usa un umbral de 0,5 para segmen-

tar las decisiones por nodo. Cuando la característica codificada Categoría_Patrimonio es

menor o igual a 0,5, el modelo toma la rama izquierda (False) de lo contrario, toma la

rama derecha (True) y consulta por la siguiente característica codificada que es Comu-

nidad_Cataluña, manteniendo el mismo umbral en todos los nodos. Este proceso sigue

sucesivamente hasta llegar a las hojas del árbol.

En la figura 7 se observa la estructura del árbol de decisión entrenado con la mayor

proporción de datos envenenados del experimento, correspondiente a una proporción del

5% de datos envenenados sobre el total de registros del dataset. El ataque utilizado es del

tipo feature-based como se explicó en la sección 3.6.1.d.
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Figura 7: Dataset criminalidad: Estructura del árbol entrenado con datos envenenados
(5% de envenenamiento).

Comparativamente, entre el árbol de decisión entrenado sin y con el 5% de datos

envenenados, se observan los siguientes puntos de interés:

El nodo raíz mantiene la característica, Categoría_Patrimonio, como la primera va-

riable de decisión. Sin embargo, en el modelo envenenado, aumenta el error cuadrático

medio en 5.000.727,052 unidades. La cantidad de registros en el nodo aumentan de 2.688

a 2.822 y, la predicción de la cantidad de delitos en ese nodo disminuye de 9.221,463 a

9.171,27.

A partir del segundo nivel del árbol, se observan cambios en la elección de caracte-

rísticas para hacer el split. El nodo de la izquierda del nodo raíz, sustituye la caracterís-

tica codificada Comunidad_Cataluña por la característica codificada Categoría_Contra

la libertad. En el nodo de la derecha, se mantiene la característica codificada Comuni-

dad_Cataluña, pero con cambios en las otras medidas.

A tercer nivel, siguiendo solo la rama izquierda del nodo raíz, se observa que las

características codificadas Comunidad_Madrid y Categoría_Contra la libertad se susti-

tuyen por Comunidad_Cataluña, en ambos casos.

El detalle de los cambios en las estructuras de los árboles de todos los experimentos

de regresión se incluyen en el cuadro 13 del anexo A.

Respecto de los resultados de la medición del rendimiento de los todos los modelos,
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entrenados con y sin datos envenenados, han sido detallados en el cuadro 6, que puede

consultarse a continuación.

Tasa de Envenenamiento MAE MSE R2

0% (sin envenenar) 4315,89 194364378,05 0,8415

1% (con reemplazo) 4343,74 194273114,85 0,8415

1% 4787,53 254497063,18 0,6256

3% 4459,14 187372813,69 0,8555

5% 6195,83 497810941,56 0,5047

Cuadro 6: Dataset de criminalidad: Comparativa de métricas de rendimiento con distintas
tasas de envenenamiento
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4.2. Dataset de covid19, experimento de clasificación

4.2.1. Resultados del EDA

Del análisis exploratorio de los datos se obtienen los siguientes resultados:

La estructura del dataset inicial contiene 300.372 filas y 10 columnas. Las caracterís-

ticas están compuestas por tres columnas (provincia, sexo, grupo_edad) con datos de tipo

categóricos y las restantes (num_casos, num_uci, num_def, anio, mes, semana, hospitali-

zado la variable objetivo) contienen datos de tipo numéricos. Esta estructura se mantiene

para la obtención de los resultados del EDA.

Posterior a la aplicación de la codificación one-hot a las variables categóricas, el data-

set para el entrenamiento del modelo es modificado y las columnas aumentan a 65, donde

las 6 columnas iniciales con datos de tipo numéricos se mantienen y las 54 restantes con-

tienen datos categóricos codificados.

Durante la exploración, se identificaron 6.386 valores nulos en total, todos pertene-

cientes a la variable provincia. La proporción de valores nulos por característica se mues-

tra en la figura 8.

Figura 8: Dataset de covid19: Proporción de valores nulos por característica.

Los valores nulos fueron imputados a valor Desconocido para efectos del entrena-

miento, cuya justificación se detalla en la sección 5.2.1.

Respecto a la distribución de la clase objetivo, en la figura 9 se muestra la distribución

de la clase hospitalizado, con valor binario (0, 1), donde 1 indica que hay al menos un

caso de paciente hospitalizado y 0 que no hubo ningún caso hospitalizado. Se observó

que 156.419 registros están etiquetados como hospitalizado, lo que representa un 52,1%
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de registros con valor 1 y, los registros de los casos en que no hubo hospitalizados son

143.953, que representa un 47,9% de registros con valor 0.

Figura 9: Dataset de covid19: Distribución de las clases hospitalizado (1) y no hospitali-
zado (0) frente a evento de covid19 confirmado.

También se realizó un análisis de correlación entre las variables del dataset, cuyos

resultados se presentan en la figura 10.

Figura 10: Dataset de covid19: Matriz de correlación entre variables.

70



4.2.2. Resultado del análisis de vulnerabilidades

La figura 11 presenta las 5 características expandidas (con características codificadas)

más relevantes en el árbol de clasificación. Se observa que los valores de importancia de

las características son: num_num_casos con 0,56, seguida por num_num_def con 0,14

y la característica codificada cat_grupo_edad_80+ con 0,14. Finalmente, num_num_uci

con 0,12 y num_anio con 0,013.

Figura 11: Dataset de covid19: Importancia de las características para el modelo.

En la figura 12 se presenta el mapa de vulnerabilidades del árbol de clasificación. En

el eje horizontal se representan los nodos del modelo, mientras que el eje vertical indica el

valor de threshold (umbral) en escala logarítmica. El color de cada punto corresponde al

valor normalizado del attack_score (puntuación del ataque), calculado como el producto

entre la variación de impureza y el número de muestras en el nodo, siendo los valores más

cercanos al amarillo los de mayor puntuación relativa. Se observa que la característica

num_casos concentra los nodos con mayor puntuación, incluyendo el nodo raíz (node_id

↔ 0), que aparece con el círculo más grande y de color más claro. En contraste, otros

nodos como el 14 y el 28 presentan umbrales altos, pero con círculos más pequeños y

oscuros, lo que refleja puntuaciones de vulnerabilidad más bajas.
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Figura 12: Dataset de covid19: Mapa de vulnerabilidades.

4.2.3. Resultados de la evaluación de los modelos

En la siguiente figura, se observa gráficamente la estructura del árbol de decisión

entrenado con el dataset sin envenenamiento de datos.

Figura 13: Dataset de covid19: Estructura del árbol de decisión entrenado con datos sin
envenenamiento.

El modelo entrenado con el dataset sin envenenamiento de datos, inicia en el nodo
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raíz con la característica num_num_casos. Usa un umbral de 5,5 para segmentar en ese

nodo. Cuando la característica num_num_casos es menor o igual a 5,5, el modelo toma

la rama izquierda (True) y consulta por la siguiente característica que es la característica

codificada cat_grupo_edad_80+, usando un umbral diferente correspondiente a 0,5. Vol-

viendo al nodo raíz, si la característica num_num_casos es mayor a 5,5, entonces toma

la rama derecha (False) y consulta por la siguiente característica que es num_num_def,

modificando también el umbral a 0,5. Este proceso sigue sucesivamente hasta llegar a las

hojas del árbol.

En la figura 14 se observa la estructura del árbol de decisión entrenado con la mayor

proporción de datos envenenados del experimento, correspondiente a una proporción del

5% de datos envenenados sobre el total de registros del dataset. El ataque utilizado es del

tipo label-flipping como se explicó en la sección 3.6.2.d.

Figura 14: Dataset de covid19: Estructura del árbol de decisión entrenado con datos en-
venenados (5% de envenenamiento).

Comparativamente, entre los árboles de decisión entrenados sin y con datos envene-

nados, se observan los siguientes puntos de interés:

El nodo raíz mantiene la característica num_num_casos, como la primera variable de

decisión. Sin embargo, en el modelo envenenado, aumenta el umbral de 5,5 a 7,5 y el
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índice Gini cambia de 0,499139 a 0,499450. La cantidad de ejemplos no cambia.

A partir del segundo nivel del árbol, se observan cambios en la elección de caracterís-

ticas para hacer el split. En el nodo de la izquierda del nodo raíz, sustituye la característica

codificada cat_grupo_edad_80+ por la característica num_num_casos. En el nodo de la

derecha, se mantiene la característica num_num_def, pero varía la cantidad de registros.

El detalle de los cambios en la estructura de los árboles de todos los experimentos de

clasificación se incluyen en el cuadro 14 del anexo A.

La figura 15 presenta una comparación de las importancias de las características entre

las encontradas en los modelos entrenados con datos envenenados al 1%, 3% y 5%, y

con datos sin envenenar o baseline.

(a) Envenenamiento al 1% (b) Envenenamiento al 3%

(c) Envenenamiento al 5%

Figura 15: Dataset de covid19: Comparativa importancias de características

En todos los casos, la característica num_casos mantiene su posición como aquella con

el peso relativo de importancia más alto, incluso aumenta con el envenenamiento al 1% y

3%, manteniéndose alta al 5%. En contraste, la característica num_uci y grupo_edad_80+

muestran una disminución en su importancia relativa. Finalmente, se muestra la caracte-

rística provincia, que corresponde al dummy provincia_SS.

Las gráficas comparativas para todos los modelos entrenados sin y con datos envene-

nados se muestran en las figuras 16 y 17, y en la cuadro 7.
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(a) Envenenamiento al 1% (b) Envenenamiento al 3% (c) Envenenamiento al 5%

Figura 16: Dataset de covid19: Comparativa de métricas de rendimiento. El F1 (Hosp)
mostrado corresponde a la clase positiva (hospitalizado).

Tasa de Envenenamiento Accuracy ROC AP

0% (modelo sin envenenamiento) 0,6926 0,750 0,755

1% 0,6879 0,754 0,768

3% 0,6819 0,744 0,747

5% 0,6864 0,750 0,760

Cuadro 7: Dataset de covid19: Comparativa del rendimiento de los modelos con distintas
tasas de envenenamiento

(a) Sin envenenamiento (b) Envenenamiento al 1% (c) Envenenamiento al 3%

(d) Envenenamiento al 5%

Figura 17: Dataset de covid19: Comparativa de métrica ROC

La figura 16 presenta la comparación de las métricas Accuracy, F1 (Hosp) y ROC
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AUC entre el modelo baseline y los escenarios de envenenamiento al 1%, 3% y 5%.

Se observa que, en todos los casos, los valores de las métricas disminuyen levemente

respecto al modelo entrenado con datos sin envenenamiento, con la variación más visible

en la métrica F1 (Hosp).

Por su parte, el cuadro 7, resume las métricas de rendimiento de los modelos en fun-

ción de la tasa de envenenamiento, mostrando una tendencia general de disminución en

todas las métricas evaluadas e incorpora la métrica AP (Average Precision).

Posteriormente, se incorporan las gráficas del comportamiento de la curva ROC en

forma comparativa, donde se observa cambios sutiles en la forma de las curvas, frente a

las diferentes tasas de envenenamiento.

El cuadro 8 presenta un resumen de las métricas de rendimiento de los modelos en

función de la matriz de confusión normalizada.

Tasa de Envenenamiento VP VN FP FN

0% (sin envenenar) 0,72 0,67 0,28 0,33

1% 0,68 0,70 0,32 0,30

3% 0,63 0,74 0,37 0,26

5% 0,62 0,75 0,38 0,25

Cuadro 8: Dataset de covid19: Comparativa del rendimiento según matriz de confusion
normalizada

Finalmente, la figura 18 muestra la comparación de las fronteras de decisión entre

el modelo baseline a la izquierda y el modelo entrenado con mayor porcentaje de datos

envenenados, es decir, con un 5% de envenenamiento a la derecha.

En ambos gráficos se representan visualmente las regiones de clasificación, donde la

zona en verde claro corresponde a la predicción de la clase 0 (No hospitalizado), mientras

que la zona en rosa corresponde a la predicción de la clase 1 (Hospitalizado). Los pun-

tos representan los casos reales, distinguiendo entre puntos naranja que son los positivos

(hospitalizados) y puntos azules que son negativos (no hospitalizados).

La comparación permite observar diferencias en las áreas donde se concentran los

falsos positivos (FP) y falsos negativos (FN), siendo estas más pronunciadas en el modelo

envenenado, con un incremento en la proporción de FN (19,59% frente a 14,81%) y una
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reducción en FP (11,77% frente a 15,93%) respecto al baseline.

Figura 18: Dataset de covid19: Comparativa de fronteras de falsos positivos y falsos ne-
gativos del modelo entrenado con datos envenenados (5% de envenenamiento).

5. Discusión

En esta sección se presenta el análisis y discusión de los resultados obtenidos en los

experimentos realizados con los datasets de criminalidad y covid19, abordando la in-

terpretación de los hallazgos y sus implicaciones en el contexto de la seguridad de los

modelos de aprendizaje automático.

5.1. Dataset de criminalidad

5.1.1. Análisis exploratorio de datos

Durante el análisis exploratorio de los datos (EDA) del dataset de criminalidad, se

observaron varios aspectos relevantes que permiten comprender mejor la naturaleza de

los datos y su distribución.

Uno de los primeros aspectos es el relacionado a la extensión de las dimensiones que

se produce por el one-hot encoding, que transforma las variables categóricas en múltiples

variables binarias. Este proceso incrementó significativamente el número de columnas

del dataset, pasando de 4 a 44 columnas. Este aumento en la dimensionalidad puede tener
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implicaciones en el rendimiento del modelo, ya que un mayor número de características

puede llevar a un fenómeno conocido como la maldición de la dimensionalidad, don-

de el espacio de características se vuelve tan grande que los datos se vuelven escasos,

dificultando la generalización del modelo. Sin embargo, en este caso, el uso de árboles

de decisión ayuda a mitigar este problema, ya que estos modelos son capaces de mane-

jar bien conjuntos de datos con alta dimensionalidad y seleccionar automáticamente las

características más relevantes durante el proceso de entrenamiento.

Por otra parte, como no se encontraron valores nulos o faltantes en el dataset, se con-

sidera que esta situación tiene explicación por la propia condición agregada del dataset,

que correspondería a registros de tipo “resumen o totales” de las variables. En este senti-

do, la ausencia de valores nulos puede interpretarse como que no existen combinaciones

de variables sin datos registrados, lo que es consistente con la naturaleza agregada del

dataset.

Esta misma condición, de que los datos estén agregados, se contempló para analizarlos

agrupados por sus respectivos criterios de agregación.

Respecto a los resultados obtenidos al agruparlos por año se puede ver, en la figura 2,

que la cantidad de delitos se distribuye de forma heterogénea dentro del periodo 2010 al

2023. En el año 2023 se registran 2.464.759 de delitos, la mayor cantidad de delitos dentro

del rango total de años. Por otra parte, con 1.766.779 delitos, el menor registro de delitos

es en el año 2020. Si bien, el dataset no da información adicional que pudiera explicar este

comportamiento una contextualización de la situación de España podría darnos algunas

pistas, como por ejemplo que en el año 2020 se vivió el confinamiento por el COVID-19

lo que sería consistente con observar una disminución en los delitos, así como un aumento

en el año 2023, consistente con el término del período de confinamiento.

Luego, los resultados obtenidos al agrupar los datos por comunidad autónoma se

muestran en la figura 3. En ella, se observa que la distribución de delitos es también

heterogénea, pero con bastante diferencia entre las tres comunidades autónomas que acu-

mulan la mayor y menor cantidad de delitos. Para analizar este comportamiento, se calcula

el porcentaje de delitos por comunidad autónoma y se muestran en el cuadro 9. En este

cuadro se observa que las tres primeras comunidades autónomas mencionadas, juntas, ex-

plican el 54,86% de los delitos. Por otra parte, las tres últimas, explican menos del 1% de
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la cantidad de delitos cometidos por comunidades autónomas.

Comunidades Autónomas Mayor% delitos Menor% delitos

Cataluña 20,49% –

Madrid 17,70% –

Andalucía 16,67% –

La Rioja – 0,43%

Ceuta – 0,22%

Melilla – 0,22%

Cuadro 9: Dataset de covid19: Los 3 porcentajes mayores y menores de delitos.

Nuevamente, el dataset no da otras características que nos permitiera relacionar cau-

sas, pero si se incluye un enfoque demográfico de España, las tres comunidades autóno-

mas que concentran el mayor porcentaje de delitos, se corresponden con las comunidades

autónomas más pobladas de España, y al contrario, las últimas tres comunidades autóno-

mas que menor cantidad de delitos presentan son también las que se registran como las

menos pobladas.

Finalmente, al agrupar los datos por categoría de delitos, los resultados se muestran en

la figura 4. En ella se observa que la categoría de delito que mayor cantidad de ellos regis-

tra, es la categoría de delitos contra el Patrimonio, que abarca la cantidad de 22.996.509

delitos y representa el 76,52%. Si bien no hay información adicional, se puede inferir

que los delitos contra la propiedad suelen ser los más frecuentes por la gran diversidad

de modalidades por las cuales pueden llevarse a cabo, muchos de ellos con penas bajas

o inexistentes y la falta de consentimiento o participación que se requiere de la persona

contra la que se comete el delito. Estas, pueden ser algunas razones de aporte experiencial

que podrían explicar este comportamiento.

Cabe señalar que, si bien el objetivo del presente experimento no es desarrollar el me-

jor modelo predictivo para el fenómeno de la criminalidad, sí resulta necesario realizar un

análisis exploratorio, al menos en forma breve, que permita comprender los datos en su

contexto. En este sentido, el EDA presentado aporta la caracterización mínima indispen-

sable sobre la distribución temporal, territorial y categórica de los delitos, constituyendo

la base sobre la cual se construye y justifica el uso del modelo de regresión con árboles
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de decisión en este trabajo.

5.1.2. Evaluación de la vulnerabilidad del modelo y diseño del ataque

La evaluación de las vulnerabilidades del modelo entrenado con datos sin envenenar,

arrojó como resultado dos enfoques complementarios: por un lado, el análisis de la im-

portancia de las características, que permitió identificar las variables más determinantes

en la predicción; y, por otro, el análisis de los puntos que desestabilizan al modelo por su

alto error.

Los resultados del análisis de la importancia de las características identificaron las

cinco más relevantes, es decir, aquellas que el modelo considera son las más importantes

para reducir el error (MSE) en la predicción de la criminalidad.

La característica codificada Categoría_Patrimonio, que corresponde a los delitos con-

tra el patrimonio, es la que más reduce el error, por tanto, el árbol separa con mucha

eficacia los valores objetivos cuando distingue si el delito pertenece a ella o no.

Le siguen las características codificada Comunidad_Cataluña, Comunidad_Madrid y

Comunidad_Comunitat Valenciana, que a su vez, son las comunidades autónomas con

mayor cantidad de delitos como se observó en el análisis exploratorio.

Luego, la característica codificada Año_2020 es la variable temporal que más reduce

el error, lo que indica que el modelo ha aprendido a identificar patrones temporales en los

datos, aunque su importancia es menor en comparación con las otras características.

Del resultado presentado en la figura 5 se puede observar que la importancia de estas

características es bastante concentrada, ya que solo las tres primeras características codi-

ficadas más importantes acumulan más del 90% de la importancia total del modelo. Este

resultado es consistente con el análisis exploratorio dado que, las características que en las

gráficas de distribución de los datos mostraron mayor concentración en pocas categorías

(tipo de delito y comunidad) son las que más reducen el error cuadrático en el modelo.

Por el contrario, la variable temporal que es más equilibrada en su distribución, aporta una

importancia marginal. Esto refuerza la coherencia entre el comportamiento del dataset y

la explicación del modelo.

Realizado el análisis del segundo enfoque, relacionado a los puntos que desestabili-

zan al modelo por su alto error, se elaboró el cuadro 4. En ella se puede identificar las
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cinco comunidades autónomas que presentan mayor MAE en la predicción de crimina-

lidad. La comunidad autónoma que presenta mayor MAE es Aragón, con un valor de

12.038,58, que es casi el doble del segundo valor más alto, que corresponde a Madrid con

6.853,16. Esta diferencia significativa sugiere que el modelo tiene dificultades particula-

res para predecir la criminalidad en Aragón, lo que podría deberse a factores específicos

de esta comunidad autónoma que no están bien capturados por las características del mo-

delo, o por falta de datos representativos. Si bien, las comunidades autónomas de Madrid

y Comunidad Valenciana también presentan un MAE alto y, adicionalmente, se corres-

ponden con ser características consideradas importantes por el modelo, sus valores son

considerablemente menores que el de Aragón, lo que indica que el modelo tiene un mejor

desempeño en estas regiones en comparación con Aragón.

En dicho cuadro, se observa que la media de Aragón fue de µ =3.600,90 y la desvia-

ción estándar de ! = 8,842,31. De ahí se obtiene el umbral de µ +2! = 21.285,52. En el

cuadro también fueron registrados los valores máximos, tanto de Aragón con 39.806 y del

dataset completo con 431.028, todo ello con el objetivo de tener una referencia clara del

rango empírico de los datos. De esta forma, se observa que la magnitud de la perturbación

obtenida en promedio fue de 10.802,71 que cumple el objetivo de mantener los valores

envenenados dentro del rango empírico para que el ataque no de alertas tempranas de

outliers.

5.1.3. Análisis comparativo

5.1.3.a Comparación de las estructuras de los árboles

En la figura 6 se puede observar el árbol sin envenenamiento que sirve de modelo

baseline para realizar las comparaciones.

Este modelo inicia su nodo raíz con la característica codificada Categoría_Patrimonio,

lo que indica que es la característica más importante para efectuar el primer split y es

confirmado según el análisis de importancia de características. El árbol realiza su primera

división en función de si el delito pertenece o no a esta categoría, lo que indica que el

modelo ha aprendido a identificar este patrón como el más importante para separar con

eficacia los valores objetivo. Para hacer esta separación utiliza el umbral de 0,5, que es el
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valor estándar para variables binarias.

Cuando se compara esta característica en el árbol envenenado al 5% de la figura 7,

se observa que este también inicia su nodo raíz con la característica codificada Catego-

ría_Patrimonio, lo que indica que en general la característica Categoría sigue siendo la

más importante para efectuar el primer split, incluso después de introducir datos envene-

nados. Inclusive al revisar los resultados de los cambios en las estructura de los árboles

en todos los experimentos (disponibles para consulta en el cuadro 13 del anexo A), esta

característica se mantiene estable como la característica más importante en el nodo raíz,

lo que sugiere que el envenenamiento no ha afectado la importancia relativa de esta carac-

terística en el modelo, aunque ya se pueden observar cambios en la cantidad de ejemplos

y en el error cuadrático pero que se mantienen en el mismo orden de magnitud. Todos

estos cambios incipientes implican que este nodo no ha sido absolutamente inmune a los

ataques de envenenamiento.

A partir del segundo nivel del árbol se observan cambios en la estructura del árbol lo

que comienza a evidenciar, más notoriamente, el deterioro de este. Así al comparar los

cambios del nodo 1, el árbol sin envenenamiento utiliza la característica codificada Co-

munidad_Cataluña para efectuar el split, mientras que el árbol envenenado al 1% utiliza

la característica codificada Comunidad_Madrid, y los envenenados al 3% y 5% utilizan

la característica codificada Categoría_Contra La Libertad, reflejando una clara inestabi-

lidad en la decisión. Puesto que comienza a variar entre las características más generales

Comunidad y Categoría.

Este cambio indica que el envenenamiento ha afectado la selección de características

en este nodo, generando un deterioro estructural que podría considerarse fuerte ya que

cambia totalmente la lógica del modelo, lo que podría tener implicaciones para la capaci-

dad del modelo para generalizar correctamente. Esta alteración queda reafirmada con las

métricas de rendimiento obtenidas, que se presentan más adelante.

Otro cambio importante a considerar es el observado en el nodo 8, en este nodo los

experimentos sin envenenamiento y con el 1% (con reemplazo) mantienen valores bajos y

estables del Value, valores ↔ 14-16, pero al 1% de envenenamiento da un salto importante

a 15.465,9 para luego volver a valores más pequeños de 59 en el modelo envenenado al

5%. Estos cambios de los valores en tan diferentes magnitudes también son observables
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en otros nodos como los del 12 al 14. Este es un ejemplo de la evidencia obtenida respecto

a la distorsión introducida (un envenenamiento mínimo hace que un nodo pase a predecir

cifras que ya son consideradas outliers internos, es decir, se inducen los outliers).

Como punto particular de interés obtenido de la observación del desarrollo de esta

experimentación es la observación de que no siempre un mayor porcentaje de datos en-

venenados significa mayor deterioro del modelo. Eso se pudo observar, por ejemplo en el

nodo 8 con la explicación del párrafo anterior. Así el valor más alto de Value en el modelo

envenenado al 1% es 15.465,9, mientras que en el modelo envenenado al 5% el valor es

59. Esto indica que el envenenamiento no siempre tiene un efecto lineal con el porcentaje

de datos envenenados, por tanto, el incremento del deterioro podría depender más de qué

registros específicos son alterados y cómo impactan en los split del árbol. Es decir, un

cambio pequeño en registros considerados “críticos” por el modelo pueden desestabilizar

mucho más que un cambio mayor pero en registros menos influyentes.

5.1.3.b Comparación de los rendimientos de los modelos

En el cuadro 6 se presentan las métricas de rendimiento de los modelos entrenados

con diferentes tasas de envenenamiento, incluyendo el modelo sin envenenamiento que

sirve como referencia (baseline).

Dentro de las observaciones de estos resultados, en primer lugar, se puede señalar que

el modelo entrenado con datos sin envenenamiento (0%), presenta un buen ajuste con

un R2 de 0,8415. Esto nos indica que el modelo es capaz de explicar aproximadamente

el 84,15% de la variabilidad en los datos. Además, el modelo muestra valores de error

moderados (MAE = 4.315,89, MSE = 1.94↗108). Cuando se introduce un 1% de enve-

nenamiento con reemplazo, las métricas se mantienen prácticamente inalteradas, lo que

indica que este tipo de perturbación no logra degradar de manera significativa el desem-

peño.

Sin embargo, con un 1% de envenenamiento se observa un deterioro considerable: el

MAE aumenta en torno a un 11%, el MSE se incrementa en más de un 30% y el co-

eficiente de determinación, R2, cae de 0,8415 hasta 0,6256. Este resultado refleja la vul-

nerabilidad del modelo ante pequeñas modificaciones dirigidas, capaces de alterar nodos

clave en la estructura del árbol y de generar predicciones anómalas.
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De forma paradójica, el escenario del 3% se registra una recuperación del desem-

peño en algunas de las métricas, donde el R2 asciende a 0,8555 y el MSE disminuye

ligeramente, en torno a un 3,5%, respecto al MSE del modelo entrenado sin datos en-

venenados. Este comportamiento puede interpretarse como un efecto de regularización

accidental, en el que la presencia de ruido obliga al árbol a simplificar sus divisiones y

mejora transitoriamente la capacidad de generalización.

Finalmente, con un 5% de envenenamiento se alcanza un punto de colapso. El error

absoluto medio aumenta más de un 40%, el MSE se multiplica por 2,5 respecto al modelo

base y el R2 desciende de 0,8415 a 0,5047 (una disminución aprox. del 40%), lo que

evidencia una pérdida evidente de la capacidad explicativa.

En conjunto, los resultados confirman que el árbol de decisión es especialmente sen-

sible a inyecciones específicas de datos envenenados, pudiendo mostrar tanto comporta-

mientos de degradación inmediata como aparentes mejoras espurias antes de colapsar en

niveles más altos de envenenamiento.

5.2. Dataset de covid19

5.2.1. Análisis exploratorio de datos

De los resultados del análisis exploratorio de datos (EDA) del dataset de covid19, se

pueden destacar los siguientes aspectos relevantes:

Se identificaron 6.386 registros con valores nulos, lo que corresponde al 2,1% de los

registros que contenían un valor nulo en la columna provincia. En lugar de eliminarlos,

se imputaron a una categoría “Desconocido” con el fin de preservar la muestra, mantener

la neutralidad en la distribución territorial y asegurar la consistencia con la codificación

one-hot utilizada en el modelo.

Si bien, el porcentaje de registros con valores nulos es bajo, y por tanto el riesgo de

distorsión también lo es, se analizó que eliminarlos implicaría perder más de seis mil

registros que contienen información válida en las demás variables. Por otra parte, al tra-

tarse de provincia, la opción de imputar por media o moda se consideró que carecía de

sentido (no hay un “promedio” de provincias), por tanto, el valor “Desconocido” se con-

sideró como la forma más semánticamente coherente de reflejar que esa información está
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ausente.

Respecto a la distribución de clases, tal como se observa en los resultados de la figu-

ra 9, la adaptación del dataset permitió obtener una distribución de la variable objetivo

hospitalizado con cierto balance entre las dos clases: un 52,1% de los registros corres-

ponden a casos con al menos una hospitalización, mientras que el 47,9% no presentan

hospitalización. Esta proporción cercana al equilibrio es un aspecto positivo para el mo-

delado, ya que reduce el riesgo de sesgo en el entrenamiento de los clasificadores y per-

mite que las métricas de desempeño (Accuracy, F1-score, Recall, etc.) reflejen de manera

más fiel la capacidad del modelo para diferenciar ambas clases. Asimismo, la ligera ma-

yoría de casos hospitalizados garantiza que la clase positiva, de mayor interés analítico, se

encuentre adecuadamente representada. Este balance permite que el modelo disponga de

ejemplos suficientes para aprender patrones asociados a la hospitalización sin necesidad

de técnicas de rebalanceo adicionales.

La matriz de correlación, de las variables numéricas, presentada en la figura 10 evi-

dencia varios patrones relevantes que se discuten a continuación.

En primer lugar, se extraen de esa matriz las asociaciones entre las variables clínicas

que son mostradas en el cuadro 10. Todas ellas son asociaciones positivas, con coeficientes

de correlación que van desde r =0,22 hasta r =0,28. Estas relaciones son coherentes desde

un punto de vista epidemiológico, ya que a mayor incidencia se espera un aumento en

alguna proporción en los indicadores de gravedad.

Variables num_casos num_uci

num_uci 0,28 –

num_def 0,28 0,22

Cuadro 10: Dataset de covid19: Correlaciones entre variables clínicas

Respecto de la correlación entre las variables predictoras y la variable objetivo hos-

pitalizado, esta mantiene correlaciones positivas bajas a moderadas con las variables clí-

nicas. En contraste, las variables temporales presentan escasa relación con la hospita-

lización, con correlaciones negativas muy bajas. Estas correlaciones se resumen en el

cuadro 11.
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Hospitalizado

Variables Correlación Positiva Correlación Negativa

num_casos 0,20 –

num_uci 0,16 –

num_def 0,15 –

anio – -0,12

mes – -0,05

semana – -0,04

Cuadro 11: Dataset de covid19: Correlaciones con la variable objetivo hospitalizado

Este resultado confirma que la hospitalización no depende linealmente de un único

factor, sino de la combinación de distintos indicadores. Estos resultados permiten concluir

que la dimensión temporal aporta información limitada en comparación con las variables

clínicas para explicar la hospitalización.

5.2.2. Evaluación de la vulnerabilidad del modelo y diseño del ataque

La evaluación de las vulnerabilidades del modelo entrenado con datos sin envenenar,

arrojó como resultado dos enfoques complementarios: por un lado, el análisis de la im-

portancia de las características, que permitió identificar las variables más determinantes

en la predicción; y, por otro, la elaboración de un mapa de vulnerabilidades, en el que

se localizaron los nodos y categorías que desestabilizan al modelo por presentar mayores

niveles de impureza.

Los resultados del análisis de la importancia de las características identificaron las

cinco más relevantes, es decir, aquellas cinco que el modelo considera más influyentes

para reducir la impureza (índice Gini) en la clasificación de la variable objetivo.

La variable con mayor importancia es num_num_casos, que por sí sola explica más del

56% de la reducción total de impureza, lo que indica que el modelo se apoya fuertemente

en esta característica para realizar sus predicciones de hospitalización.

Le siguen las variables num_num_def y la categoría codificada cat_grupo_edad_80+,

ambas con una contribución relevante y de magnitud similar entre ellas, lo que evidencia

que la mortalidad y la pertenencia al grupo etario de 80 años o más constituyen fac-
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tores significativos para la clasificación. En un nivel ligeramente inferior se encuentra

num_num_uci, que mantiene una influencia moderada. Finalmente, la variable temporal

anio presenta una importancia residual, confirmando que la dimensión temporal aporta

muy poco al desempeño del modelo en comparación con las variables clínicas.

En resumen, solo las cuatro primeras características (num_num_casos, num_num_def,

cat_grupo_edad_80+ y num_num_uci) concentran un valor de importancia del modelo

de 0,97, esto es que pueden explicar más del 97% de la reducción total de impureza del

modelo, lo que indica una alta concentración de la capacidad explicativa del modelo en

un conjunto reducido de variables.

Con un segundo enfoque, se analiza el mapa de vulnerabilidades lo que permite iden-

tificar los puntos críticos del árbol donde una manipulación de los datos tendría mayor

impacto en la clasificación. Destaca de manera evidente la variable num_casos, la cual

concentra los nodos con mayor attack_score, lo que refleja que el modelo depende de

manera significativa de esta característica para sus divisiones principales. Esta concen-

tración sugiere que pequeñas perturbaciones sobre num_casos pueden inducir cambios

estructurales relevantes en la predicción, aumentando la fragilidad del modelo.

Asimismo, se observa que variables como num_def, num_uci y grupo_edad aparecen

como vulnerabilidades secundarias, con valores de attack_score más bajos pero toda-

vía presentes en varios nodos. Esto indica que, aunque su influencia es menor que la de

num_casos, podrían ser utilizadas en ataques focalizados para degradar la precisión del

clasificador.

Un hallazgo adicional es la presencia de la variable provincia, cuya importancia había

resultado marginal en el análisis de importancias globales, pero que en el mapa muestra

vulnerabilidades puntuales. Este contraste evidencia que una variable con baja importan-

cia general puede, sin embargo, generar inestabilidad local en determinados nodos del

árbol, lo que amplía el espectro de posibles puntos de ataque.

En conjunto, el análisis refuerza la idea de que la vulnerabilidad del modelo no de-

pende únicamente de las características globalmente más importantes, sino también de

aquellas que, en nodos específicos, concentran altos niveles de impureza y muestras, con-

virtiéndose en puntos sensibles para un ataque de envenenamiento de datos.

Los aportes para el análisis de vulnerabilidad de ambos enfoques pueden señalarse co-
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mo: en el caso del análisis de importancia de características aportó una visión global sobre

las variables que estructuran el modelo, y el mapa de vulnerabilidades permitió identificar

con mayor precisión los puntos débiles específicos, asociados a nodos y categorías con

mayor índice de impureza.

Por tanto, el análisis de importancia de características como el mapa de vulnerabili-

dades permitieron evidenciar la dependencia del modelo de clasificación respecto de un

conjunto reducido de variables, destacando especialmente num_casos. Esta concentración

de dependencia en pocas variables implica que la calidad de las etiquetas de entrenamien-

to resulta crítica para la estabilidad del clasificador, ya que cualquier inconsistencia entre

los predictores y la clase objetivo altera de manera directa la lógica de decisión. Este

factor fue el punto clave para definir el diseño del ataque, pues identificó que la mani-

pulación de la etiqueta de salida constituía un punto de vulnerabilidad particularmente

sensible para este modelo y, por tanto, un ataque de tipo label-flipping sobre la variable

objetivo hospitalizado era apropiado.

5.2.3. Análisis comparativo

5.2.3.a Comparación de las estructuras de los árboles

En la figura 13 se puede observar el árbol sin envenenamiento que sirve de modelo

baseline para realizar las comparaciones.

Este modelo inicia su nodo raíz con la característica num_num_casos, lo que confirma

que es la variable más importante para efectuar el primer split. Este resultado es consis-

tente con el análisis de importancia de características, ya que num_num_casos resulta ser

el predictor principal de la necesidad de hospitalización en el conjunto de datos. Para

realizar esta separación se utiliza el umbral de 5,5, dividiendo entre escenarios con muy

pocos casos frente a aquellos con un mayor volumen de casos, lo que refleja el patrón

aprendido por el modelo para discriminar entre hospitalización y no hospitalización.

En el segundo nivel del árbol, cuando la característica num_num_casos tiene valores

bajos y el flujo continua por la rama izquierda, la característica codificada que se utiliza

para el siguiente split es la cat_grupo_edad_80+. Esta división captura la vulnerabilidad

especial de los adultos mayores, lo que coincide con la lógica epidemiológica de la en-
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fermedad. En contraste, en la rama derecha (cuando num_num_casos es mayor), el árbol

utiliza la variable num_num_def, lo que sugiere que la severidad del cuadro clínico se

convierte en el factor determinante para la clasificación.

En los nodos de niveles más profundos se observa la aparición de otras características

como num_anio y el dummy cat_provincia_SS, que si bien tienen menor importancia

global, contribuyen a refinar las predicciones en subconjuntos de datos específicos. Este

comportamiento también es visible en el análisis de importancia de características, donde

el peso de num_num_casos es seguido por variables asociadas a desenlaces graves como

num_num_def y num_num_uci.

En la figura 14 se pudo observar la estructura resultante del árbol entrenado con el

mayor porcentaje de datos envenenados, esto es con datos envenenados al 5%. Al compa-

rar este modelo envenenado con el sin envenenar, se observa que el modelo envenenado

también inicia su nodo raíz con la característica num_num_casos, lo que indica que es-

ta característica sigue siendo la más importante para reducir los niveles de impureza y

efectuar el primer split, incluso después de introducir datos envenenados.

Inclusive al revisar todos los experimentos, en el cuadro comparativo 14, del anexo A,

se observa que esta característica se mantiene estable como la característica más impor-

tante en el nodo raíz, lo que sugiere que el envenenamiento no ha afectado la importancia

relativa de esta característica en el modelo, aunque ya es posible observar cambios en el

índice Gini y en la elección del umbral, cambiando de 5,5 a 7,5 en el experimento del

3%. Esto sugiere que aunque se mantienen los valores en el mismo orden de magnitud las

divisiones son suavemente menos puras, por tanto, todos estos cambios incipientes impli-

can que este nodo no ha sido absolutamente inmune a los ataques de envenenamiento de

datos.

Siguiendo con la comparativa, a partir del segundo nivel del árbol se observan cambios

más notorios en la estructura, lo que comienza demostrar visiblemente el deterioro de este.

Así al comparar los cambios del nodo 1, el árbol sin envenenamiento y con envenenamien-

to del 3% utilizan la característica codificada cat_grupo_edad_80+ para efectuar el split,

mientras que el árbol envenenado al 1% y 5% utilizan la característica num_num_casos,

reflejando una clara inestabilidad en la decisión.

Este cambio indica que el envenenamiento ha afectado la selección de características
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en este nodo, generando un deterioro estructural que podría considerarse fuerte ya que

cambia totalmente la lógica del modelo, lo que podría tener implicaciones para la capaci-

dad del modelo para generalizar correctamente. Esta alteración queda reafirmada con las

métricas de rendimiento obtenidas, que se presentan más adelante.

No obstante este cambio, una observación interesante es comparar la cantidad de

ejemplos y el índice Gini en este nodo 1, ya que a pesar de haber hecho un cambio es-

tructural fuerte consistente en el cambio de la característica con la cual se hace el split, la

cantidad de ejemplos se mantiene igual y el índice Gini también se mantiene en valores

similares, es decir, los modelos sin envenenamiento y con envenenamiento del 1% man-

tienen estos valores similares entre si. Los modelos envenenados al 3% y 5% también

mantienen estos valores similares entre si.

Otros cambios de interés son los observados en algunos nodos como el 6 que cambia

la característica de selección del split, alternando entre num_num_uci, num_num_semana

y num_num_casos, lo que indica una mayor inestabilidad en la estructura del árbol y

pérdida de consistencia. Los nodos como el 8, 9, 11, 13, 27 y 28, cambian directamente

la clase predicha, mostrando un claro deterioro en la capacidad clasificatoria.

Adicionalmente, al igual que se observó con el experimento de regresión, los cambios

observados en el experimento de clasificación también evidencian que no siempre un ma-

yor porcentaje de datos envenenados significa mayor deterioro del modelo. Por ejemplo,

en el nodo 1, el cambio estructural más fuerte se observa en los modelos envenenados al

1% y 5%, mientras que el modelo al 3% mantiene la misma característica que el modelo

sin envenenamiento. Esto indica que el envenenamiento no siempre tiene un efecto lineal

con el porcentaje de datos envenenados, por tanto, este segundo experimento confirma-

ría que el incremento del deterioro podría depender más de qué registros específicos son

alterados y cómo impactan en los split del árbol. En algunos casos, un envenenamiento

mínimo puede impactar directamente en registros considerados críticos por el árbol, pro-

vocando una alteración más significativa que la introducida con porcentajes mayores de

envenenamiento en registros menos influyentes. Este comportamiento evidencia que la

estabilidad del árbol depende no solo de la magnitud del envenenamiento, sino también

de la posición estratégica de los registros alterados en relación con las divisiones clave.

La figura 15 muestra la comparación de la importancia de las características entre los
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modelos envenenados al 1%, 3% y 5% y el modelo baseline.

Es importante destacar que el enfoque de la comparativa es diferente a lo realizado

hasta ahora, ya que cuando se realizó el análisis de importancia de características tal

como muestra la figura 11, se identificaron las cinco características más importantes del

modelo sin envenenamiento, cuyas cuatro primeras coinciden en todos los modelos de

este experimento. Pero la última, num_anio, no se mantiene en los modelos envenenados,

siendo sustituida por provincia.

Finalmente, podemos observar que en todos los casos, la variable num_num_casos

se mantiene como el factor más influyente, aunque con variaciones en su peso relativo:

aumenta levemente en el modelo envenenado al 1%, se refuerza en el envenenado al 3%

y si bien en el modelo envenenado al 5% disminuye comparativamente con el peso re-

lativo obtenido en el modelo envenenado al 3%, sigue siendo mayor que en el modelo

baseline. Este comportamiento refleja que, en niveles bajos de perturbación, el modelo

tiende a redistribuir parte de la importancia hacia otras variables, en particular las caracte-

rísticas codificadas cat_grupo_edad_80+ y num_num_def, mientras que en niveles altos

la estructura se hace progresivamente más dependiente de num_num_casos. En conjunto,

estos resultados evidencian un patrón de reacomodo inicial seguido de una concentración

en un único predictor, lo que reduce la diversidad de señales utilizadas por el árbol y

aumenta su vulnerabilidad.

5.2.3.b Comparación de los rendimientos de los modelos

Los resultados comparativos de la figura 16 y las curvas ROC en la figura 17 permiten

profundizar en el análisis del impacto del envenenamiento.

En primer lugar, se observa que la Accuracy desciende ligeramente en todos los esce-

narios de envenenamiento. Esta métrica alcanza una disminución del 0,89% en el escena-

rio de datos envenenados al 5%. No obstante, el mayor cambio se observa en el escenario

de datos envenenados al 3%, con un descenso del Accuracy del 1,5% del rendimiento glo-

bal. La métrica AP muestra una mayor variabilidad: alcanza un valor superior al baseline

en los escenarios de envenenamiento al 1% (0,768) y 5% (0,760), pero disminuye en el

de 3% de envenenamiento (0,747). En cuanto a la métrica ROC AUC, los valores se man-

tienen cercanos al baseline (0,750), con incrementos mínimos en el modelo envenenado
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al 1% (0,754), disminuciones en el modelo envenenado al 3% (0,744) y recuperación en

el envenenado al 5% (0,750).

Las curvas ROC confirman que la capacidad discriminativa del clasificador entre cla-

ses positivas y negativas se conserva relativamente estable, sin desviaciones significati-

vas respecto al modelo sin envenenamiento. Este comportamiento, en conjunto con las

variaciones de AP, indica que el envenenamiento afecta de forma selectiva a las métri-

cas, impactando con mayor fuerza aquellas sensibles al equilibrio entre clases (como F1

(Hosp) y Accuracy), mientras que otras asociadas a la discriminación global (ROC AUC)

mantienen valores estables.

En términos generales, estos resultados sugieren que, si bien el envenenamiento no

provoca un colapso inmediato del rendimiento, sí introduce inestabilidad en la consisten-

cia de las métricas, lo que constituye una forma de degradación silenciosa pero crítica para

la robustez del modelo. Por otra parte, estos resultados sugieren que el efecto del envene-

namiento no es estrictamente lineal y puede inducir fluctuaciones que, en determinados

contextos, incluso aparentan mejorar la capacidad predictiva del modelo.

Del análisis anterior, también podemos comprobar la necesidad de utilizar múltiples

métricas para evaluar el impacto del envenenamiento, ya que cada una refleja diferentes

aspectos del rendimiento, y por tanto, el análisis de métricas como las tasas de falsos

positivos y falsos negativos, que se discuten a continuación, resultan cruciales para com-

prender las implicaciones prácticas del deterioro inducido por el envenenamiento.

El análisis comparativo de la matriz de confusión normalizada se muestra en el cua-

dro 8, y nos permite observar cómo el envenenamiento afecta de manera diferenciada a

los aciertos y errores del modelo. En el modelo sin envenenamiento, la proporción de

verdaderos positivos (VP = 0,72) y verdaderos negativos (VN = 0,67) se mantiene rela-

tivamente equilibrada, con tasas de falsos positivos (FP = 0,28) y falsos negativos (FN =

0,33) que reflejan un desempeño consistente con las métricas globales. Sin embargo, con

la introducción del envenenamiento se aprecia un patrón progresivo: los VP descienden

hasta 0,62 en el modelo envenenado al 5%, mientras que los VN aumentan hasta 0,75.

Esta dinámica implica que el clasificador tiende a volverse más conservador en la identi-

ficación de casos positivos, lo que conlleva una reducción de falsos negativos (FN = 0,25

en el modelo envenenado al 5%), pero a costa de un incremento en los falsos positivos
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(FP = 0,38).

Este resultado conecta con las variaciones observadas en las métricas globales. La dis-

minución en Accuracy y F1 se explica por el aumento de falsos positivos, que deteriora el

balance entre ambas métricas. En contraste, la estabilidad relativa de la métrica ROC AUC

se entiende porque el modelo mantiene una buena capacidad de discriminación global en-

tre clases, aun cuando redistribuye los errores entre falsos positivos y falsos negativos.

Finalmente, el comportamiento descrito también es coherente con el análisis de impor-

tancias: la creciente dependencia de num_casos hace que el modelo refuerce divisiones

en torno a este predictor, pero con menor capacidad de generalización, amplificando las

confusiones en escenarios de envenenamiento más severo.

Para una mejor comprensión de este fenómeno, la figura 18 presenta una comparación

visual de las fronteras de decisión entre el modelo sin envenenamiento y el modelo con

mayor porcentaje de datos envenenados (modelo envenenado al 5%), ya que este esce-

nario permite observar con mayor claridad el impacto del envenenamiento. En la figura

mencionada anteriormente, el gráfico de la derecha corresponde al modelo entrenado con

datos sin envenenar, el modelo baseline. El gráfico de la izquierda corresponde al modelo

entrenado con datos envenenados al 5%.

Tasa de Envenenamiento FP FPR FN FNR

0% (sin envenenar) 15,93% 32,24% 14,81% 28,65%

5% 11,77% 24,53% 19,59% 37,62%

Cuadro 12: Dataset de covid19: Métricas de error y tasas condicionales en las fronteras
de decisión, calculadas sobre el conjunto de test.

En el caso del modelo baseline, las fronteras se mantienen más regulares, con un nivel

intermedio de falsos positivos y negativos como puede verse en el cuadro 12 que resume

las métricas clave para ambos modelos. Bajo el escenario del 5% de envenenamiento,

la frontera se desplaza y genera una redistribución de los errores: disminuyen los falsos

positivos (FP ↘), pero aumentan los falsos negativos (FN ≃). Este incremento de FN se

aprecia en la zona resaltada en la parte superior de la figura, donde varios puntos naranjas

(clase positiva) quedan ahora clasificados en la región verde claro (clase negativa). Este

desplazamiento evidencia visualmente cómo el envenenamiento afecta la estructura de las
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regiones de clasificación y, en consecuencia, la distribución de los errores.

Este patrón confirma lo observado en la matriz de confusión (Cuadro 8), donde el

clasificador se vuelve más conservador al identificar casos positivos, priorizando la re-

ducción de predicciones erróneas de la clase negativa a costa de una mayor omisión de

casos positivos reales, reduciendo los falsos positivos pero aumentando los falsos negati-

vos.

En términos prácticos, este comportamiento implica un riesgo crítico, ya que la de-

gradación inducida por el envenenamiento no solo reduce la capacidad de generalización,

sino que además incrementa los errores más costosos en aplicaciones clínicas, como los

falsos negativos.
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6. Conclusiones

El objetivo más importante que este TFM ha pretendido explorar, mediante la experi-

mentación empírica, es observar el comportamiento de un modelo basado en árboles de

decisión cuando se expone a un ataque de envenenamiento de datos. El objetivo general

ha sido alcanzado al demostrar que ataques simples de envenenamiento deterioran tanto

métricas (Accuracy, FPR/FNR) como la lógica interna (raíz, reglas, Gini), cumpliendo el

objetivo de evidenciar la degradación del modelo y de medir los cambios. Las conclusio-

nes relacionadas con los objetivos específicos se exponen a continuación.

6.1. Evidencias sobre la vulnerabilidad, modos de envenenamiento y

medida del deterioro

En ambos tipos de experimentos se observaron modificaciones significativas: altera-

ciones en las características seleccionadas para los splits, cambios en los umbrales de

decisión, variaciones en el índice Gini y en la distribución de ejemplos por nodo, así

como modificaciones en las predicciones de clase. Estos resultados confirman que el en-

venenamiento de datos puede inducir cambios estructurales profundos, alterando la lógica

de decisión y la importancia relativa de las características.

La comparación entre modelos sin envenenar y modelos envenenados permitió cuan-

tificar este deterioro a través de métricas de rendimiento.

En el experimento de regresión, incluso con solo un 1% de envenenamiento, se evi-

denció un deterioro notable: el MAE aumentó alrededor de un 11%, el MSE más de un

30% y el coeficiente de determinación cayó aproximadamente un 25%. En cambio, en

clasificación, el impacto inicial fue menor: con un 1% de envenenamiento la Accuracy

descendió en torno al 0,6%, mientras que los indicadores ROC y AP mostraron, incluso,

una ligera mejora respecto al modelo entrenado sin datos envenenados.

Estos resultados reflejan que el efecto del envenenamiento no es lineal. En regresión,

el mayor deterioro global se observó con el 5%, pero entre los modelos envenenados al

1% y 3% hubo variaciones no monotónicas, con ligeras mejoras intermedias en MAE y

MSE. Una tendencia similar se observó en clasificación, donde el peor desempeño general
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se registró con el 3% de envenenamiento. Este comportamiento sugiere que el impacto

depende más de la ubicación estratégica de los registros manipulados que de la magnitud

absoluta del envenenamiento.

Además, se constató que una medida global (como la Accuracy o ROC) no es siem-

pre una métrica suficiente en clasificación. El análisis de la matriz de confusión y de las

fronteras de decisión mostró que el envenenamiento desplaza los límites del modelo, vol-

viéndolo más conservador con los positivos: se reducen los falsos positivos pero aumentan

los falsos negativos. En un contexto clínico, este efecto es crítico, pues implica un mayor

riesgo de no detectar pacientes que requieren hospitalización (para los efectos prácticos

del experimento realizado en este TFM).

Los resultados obtenidos son consistentes con la literatura revisada en el marco teóri-

co: los árboles de decisión son sensibles a modificaciones en los datos y presentan cam-

bios apreciables incluso con tasas de envenenamiento bajas (1%, 3%, 5%, es decir, meno-

res al 10%). Asimismo, se confirma que los ataques de envenenamiento de datos pueden

alterar la estructura, alterando la lógica de decisión y redistribuir la importancia de las

características.

Finalmente, se destaca que la transparencia de los árboles de decisión (su explicabili-

dad) ha sido clave para diseñar los ataques, hacer visibles sus efectos y medirlos con pre-

cisión. Por ello, también se demuestra que esa misma explicabilidad constituye también

una vulnerabilidad al permitir identificar y explotar puntos críticos del modelo. Identifi-

car las características más importantes, los nodos más vulnerables y los problemas que

tenía el modelos para predecir, facilitó el diseño de los ataques más convenientes para los

modelos usados (ataques featured-based y label-flipping). Finalmente, la comprensión del

funcionamiento del modelo y el acceso al dataset, permitió la selección de registros más

convenientes para el envenenamiento, maximizando su impacto incluso con tasas bajas.

Con todo lo anterior, se evidencia la necesidad de proteger los modelos antes incluso

de su entrenamiento, es decir, garantizar la integridad de los datos desde su origen y toma

importancia las recomendaciones de seguridad que se presentan más adelante.
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6.2. Evaluación de los riesgos en contextos críticos

Los experimentos realizados demuestran que un modelo basado en árboles de deci-

sión sometido a envenenamiento de datos puede sufrir cambios estructurales y deterioro

en su rendimiento. La alteración de su lógica de decisión incrementa el riesgo de con-

clusiones erróneas o sesgadas, con consecuencias potencialmente graves en aplicaciones

prácticas, lo que resalta la necesidad de controlar el entorno de entrenamiento, especial-

mente en sectores críticos como la salud, la seguridad o la defensa, donde las decisiones

automatizadas pueden tener consecuencias directas sobre la vida de las personas.

No obstante, más allá de estas consecuencias más extremas, la manipulación de mo-

delos predictivos en el sector público puede tener efectos sociales y económicos de gran

alcance. Entre ellos se incluyen errores en la planificación presupuestaria, reasignaciones

inadecuadas de recursos o restricciones en la provisión de servicios, con consecuencias

para la población que pueden ir desde el aumento impositivo por la presión de aumen-

tar la recaudación estatal o deterioro en la calidad de vida por reducción de prestaciones

esenciales, debido a insuficiencia de los recursos públicos.

Ejemplos concretos ilustran estos riesgos: un modelo de predicción criminal enve-

nenado podría conducir a una distribución ineficiente de recursos policiales; un modelo

de apoyo al diagnóstico médico manipulado podría derivar en diagnósticos incorrectos y

tratamientos inapropiados; y, en defensa, un sistema de predicción de amenazas compro-

metido podría inducir decisiones estratégicas equivocadas, adjudicación de licitaciones

erróneas o incluso elección de objetivos tácticos inadecuados, con posibles pérdidas hu-

manas.

6.3. Recomendaciones de seguridad

De la revisión de la literatura realizada en este TFM se evidencia una brecha impor-

tante: la ausencia de defensas específicas para árboles de decisión frente a ataques de

envenenamiento. Esta vulnerabilidad pone de relieve la urgencia de investigar y diseñar

estrategias de mitigación adaptadas a este tipo de modelos. Si bien existen enfoques ge-

nerales para enfrentar ataques adversariales, estos resultan insuficientes para abordar las

particularidades de los árboles de decisión o prevenir el envenenamiento desde su origen.
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A continuación, se presentan recomendaciones preventivas organizadas en forma de

pautas con sus reflexiones asociadas:

Recomendación 1: Identificar y perfilar al proveedor de los datos.

Reflexiones: ¿Es interno o externo a la organización? ¿Ofrece garantías o certifi-

caciones? ¿Es reconocido y de confianza? ¿Qué medidas aplica para preservar la

integridad de los datos?

Recomendación 2: Evitar usar datos sin verificar.

Reflexiones: Es esencial establecer mecanismos de validación en todas las fases del

proceso. ¿Qué auditorías se realizan? ¿Cómo se transmiten y almacenan los datos?

¿Se aplican pruebas de integridad y técnicas de detección de anomalías?

Recomendación 3: Comprobar reproducibilidad con estudios previos.

Reflexiones: ¿Existen investigaciones previas con esos datos? ¿Se replican los re-

sultados? ¿Coincide la estructura de los datos con lo descrito en la literatura? ¿Qué

metodologías se han usado para validar su calidad?

Recomendación 4: Utilizar múltiples fuentes de datos.

Reflexiones: La diversificación reduce la probabilidad de que todas sean compro-

metidas. ¿Se integran varias fuentes? ¿Cómo se validan entre sí? ¿Qué mecanismos

detectan inconsistencias?

Recomendación 5: Contrastar los datos con conocimiento previo del dominio.

Reflexiones: ¿Son coherentes los datos con la información ya conocida? ¿Se detec-

tan anomalías o patrones inusuales? ¿Coinciden cantidad de registros y dimensio-

nalidad con lo esperado?

Recomendación 6: Monitorear y auditar continuamente el modelo.

Reflexiones: ¿Existen umbrales de alerta para anomalías? ¿Se mantienen registros

de actividad? ¿Qué acciones se ejecutan tras la detección de cambios?

Finalmente, resulta fundamental sensibilizar a los equipos de desarrollo y operaciones

sobre la importancia de la seguridad en todo el ciclo de vida de los datos y los modelos.

Incluir estas medidas desde las fases iniciales del desarrollo contribuye a fortalecer la

resiliencia frente a ataques adversariales.
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6.4. Contribución y coherencia con los ODS.

Coherente con el apartado de Objetivos de Desarrollo Sostenible de la Introducción,

los resultados permiten aterrizar la contribución a los ODS en términos verificables:

ODS 3 (Salud y bienestar). Se observó que el envenenamiento desplaza las fronte-

ras de decisión y vuelve al clasificador más conservador con la clase positiva, redu-

ciendo FP pero aumentando FN. En un contexto de salud, este patrón eleva el riesgo

de no detectar pacientes que requieren atención, aun cuando las métricas globales

puedan aparentar estabilidad. Los resultados evidencian que pequeñas manipula-

ciones en el entrenamiento pueden traducirse en decisiones sanitarias subóptimas,

reforzando la necesidad de controlar el entorno de entrenamiento y de fundamentar

la toma de decisiones en modelos explicables.

ODS 9 (Industria, innovación e infraestructura). Se observó que incluso tasas

bajas de envenenamiento (1–5 %) alteran la lógica interna del árbol (raíz, reglas,

Gini), lo que permite delimitar requisitos de infraestructura metodológica previos

a cualquier uso operativo: control del entorno de entrenamiento, trazabilidad del

origen de los datos y sus transformaciones, etc. Al identificar puntos de fallo y dón-

de se producen los cambios estructurales, el estudio aporta criterios concretos para

fortalecer la infraestructura de datos y experimentación que sostiene la innovación

responsable.

ODS 16 (Paz, justicia e instituciones sólidas). En sectores como seguridad y de-

fensa, los cambios estructurales inducidos por envenenamiento incrementan el ries-

go de conclusiones erróneas o sesgadas, con impacto potencial en la asignación de

recursos y en decisiones estratégicas. Además, la transparencia propia de los ár-

boles, también expone puntos críticos susceptibles de explotación, lo que subraya

la necesidad de trazabilidad de datos y decisiones, así como de procedimientos de

auditoría de reglas y explicaciones. Estas implicaciones se alinean con instituciones

más transparentes y con mayor rendición de cuentas.

En suma, los ODS no quedan como marco declarativo, sino que orientan requisitos de

diseño y prácticas operativas derivadas de la evidencia empírica.
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7. Limitaciones y futuras líneas de investigación

Las principales limitaciones de este TFM se relacionan con el número reducido de

datasets, la elección de un único algoritmo base (árbol individual) de ML sin ensembles,

los tipos de ataques fueron simples comparados con otros que pueden considerarse de

mayor complejidad y la limitada variedad de porcentajes de envenenamiento evaluados

(1%, 3% y 5%). Estas limitaciones condicionan la generalización de los resultados.

Asimismo, se optó por no implementar técnicas con componentes aleatorias, como

cross-validation, grid search o random search. Si bien estas estrategias habrían permi-

tido optimizar hiperparámetros y posiblemente mejorar el rendimiento de los modelos,

también habrían introducido variabilidad en los resultados, dificultando la comparación

directa entre los distintos escenarios de envenenamiento.

Futuras líneas de investigación podrían orientarse hacia:

Realizar un mayor número de experimentos, incluyendo variaciones más amplias

en los porcentajes de envenenamiento, para analizar si los patrones de deterioro se

mantienen o emergen nuevos comportamientos.

Incorporar técnicas de optimización como cross-validation, grid search y random

search, evaluando si mejoran el rendimiento o el uso de ensembles para analizar

robustez relativa de los modelos frente a ataques de envenenamiento.

Extender la aplicación de ataques a otros tipos de modelos, como redes neurona-

les o máquinas de soporte vectorial, empleando métodos explicables que permitan

comprender cómo los ataques afectan su estructura y desempeño.

Explorar enfoques de aprendizaje federado o descentralizado que reduzcan la de-

pendencia de un único conjunto centralizado de datos, disminuyendo así la efecti-

vidad de los ataques. En paralelo, estudiar el uso de técnicas generativas (GANs)

para crear datos sintéticos que contribuyan a entrenar modelos más resilientes.

Desarrollar un framework de defensa preventiva específico para árboles de deci-

sión, orientado a proteger la integridad de los datos desde el origen, evitando la

manipulación antes de que se materialice un ataque.
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Anexos

A. Anexo: Cambios en la estructura en los árboles, según

porcentaje de envenenamiento

Experimento de Regresión

Nodo / Nivel 0% 1% (cr) 1% 3% 5%
Raíz (nodo 0)

Característica: PATRIMONIO PATRIMONIO PATRIMONIO PATRIMONIO PATRIMONIO

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 2.688 2.688 2.714 2.768 2.822

Squared error: 1.530374e+09 1.535982e+09 1.651157e+09 1.478535e+09 1.535246e+09

Value: 9.221,463170 9.295,952009 9.455,829772 9.234,269870 9.196,032247

Nodo 1

Característica: CATALUÑA CATALUÑA MADRID C. LA LIBERTAD C. LA LIBERTAD

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 2.454 2.454 2.485 2.529 2.585

Squared error: 3.032758e+07 3.059474e+07 3.038398e+07 3.095521e+07 2.847380e+07

Value: 2.325,817848 2.353,250611 2.319,868813 2.361,159747 2.314,753965

Nodo 2

Característica: MADRID MADRID CATALUÑA MADRID CATALUÑA

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 2.323 2.323 2.369 2.286 2.346

Squared error: 2.662868e+07 2.692440e+07 2.713773e+07 2.947659e+07 2.677087e+07

Value: 2.092,433922 2.121,413689 2.125,354158 2.073,790901 2.016,586104

Nodo 3

Característica:C. VALENCIANAC. VALENCIANAC. VALENCIANAC. VALENCIANA C. VALENCIANA

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 2.201 2.201 2.248 2.180 2.231

Squared error: 2.269439e+07 2.301989e+07 2.460622e+07 2.604955e+07 2.400772e+07

Value: 1.872,619718 1.903,205816 1.921,445285 1.904,798624 1.849,499328

Nodo 4

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 2.084 2.084 2.128 2.070 2.127

Squared error: 1.955595e+07 1.991353e+07 2.145241e+07 2.321450e+07 2.122172e+07

Value: 1.658,158829 1.690,462092 1.711,578477 1.728,533333 1.680,198402

Nodo 5

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 117 117 120 110 104

Squared error: 6.318478e+07 6.318478e+07 6.590214e+07 6.781291e+07 6.841146e+07

Value: 5.692,589744 5.692,589744 5.643,083333 5.221,790909 5.312,028846

Nodo 6

Característica: L. ESPECIAL L. ESPECIAL C. LA LIBERTAD L. ESPECIAL ADMÓN. PÚBLICA

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 122 122 121 106 115
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Nodo / Nivel 0% 1% (cr) 1% 3% 5%
Squared error: 8.100897e+07 8.100897e+07 5.904551e+07 8.729090e+07 6.932718e+07

Value: 6.058,098361 6.058,098361 5.913,677686 5.549,292453 5.258,069565

Nodo 7

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 111 111 110 95 102

Squared error: 8.505852e+07 8.505852e+07 5.249850e+07 9.344338e+07 7.428021e+07

Value: 6.657,018018 6.657,018018 4.958,454545 6.189,926316 5.920,578431

Nodo 8

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 11 11 11 11 13

Squared error: 7.024793e+01 7.024793e+01 2.414592e+07 5.915702e+01 3.569941e+02

Value: 14,454545 14,454545 15.465,909091 16,545455 59,923077

Nodo 9

Característica:C. LA LIBERTADC. LA LIBERTAD L. ESPECIAL CATALUÑA CATALUÑA

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 131 131 116 243 239

Squared error: 7.782585e+07 7.782585e+07 8.012710e+07 3.677989e+07 3.575088e+07

Value: 6.464,374046 6.464,374046 6.292,327586 5.064,555556 5.241,539749

Nodo 10

Característica: L. ESPECIAL L. ESPECIAL O. I. PENALES MADRID MADRID

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 120 120 105 231 228

Squared error: 7.360916e+07 7.360916e+07 8.396076e+07 3.133401e+07 3.109157e+07

Value: 5.577,241667 5.577,241667 6.949,952380 4.512,277056 4.750,736842

Nodo 11

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 108 108 93 217 216

Squared error: 7.802882e+07 7.802882e+07 8.957711e+07 2.823898e+07 2.847932e+07

Value: 6.190,342593 6.190,342593 7.721,806452 4.090,336406 4.388,365741

Nodo 12

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 12 12 12 14 12

Squared error: 1.909889e+03 1.909889e+03 3.422041e+04 3.377490e+07 3.320314e+07

Value: 59,333333 59,333333 968,083333 11.052,357143 11.273,416667

Nodo 13

Característica: Año_2023 Año_2023 Año_2023 Año_2023 Año_2023

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 11 11 11 12 11

Squared error: 2.158062e+07 2.158062e+07 6.727273e+01 2.271570e+07 .384264e+07

Value: 16.142,181818 16.142,181818 15,000000 15.695,916667 15.414,545455

Nodo 14

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 10 10 10 11 10

Squared error: 1.806820e+07 1.806820e+07 3.000000e+01 1.901311e+07 .934884e+07

Value: 15.424,200000 15.424,200000 13,000000 15.002,636364 14.623,800000

Nodo 15

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 1 1 1 1 1

Squared error: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Value: 23.322,000000 23.322,000000 35,000000 23.322,000000 23.322,000000

Nodo 16
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Nodo / Nivel 0% 1% (cr) 1% 3% 5%
Característica: CATALUÑA CATALUÑA CATALUÑA CATALUÑA ATALUÑA

Threshold: 0.5 0.5 0.5 0.5 0.5

Samples: 234 234 229 239 237

Squared error: 1.153338e+10 1.151655e+10 1.269010e+10 1.100694e+10 1.182010e+10

Value: 81.537,333333 82.105,307692 86.891,912664 81.962,702929 84.251,324895

Nodo 17

Característica: MADRID MADRID MADRID MADRID MADRID

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 221 221 215 229 223

Squared error: 6.913130e+09 6.915767e+09 7.812134e+09 7.458010e+09 6.973622e+09

Value: 64.513,461538 65.114,846154 68.356,576744 69.095,292576 66.215,156951

Nodo 18

Característica:C. VALENCIANAC. VALENCIANAC. VALENCIANAC. VALENCIANA C. VALENCIANA

Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 211 211 202 217 210

Squared error: 4.248984e+09 4.266296e+09 4.270792e+09 4.425107e+09 3.401863e+09

Value: 52.950,194313 53.580,080569 52.797,000000 55.732,124424 51.018,271429

Nodo 19

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 199 199 190 203 199

Squared error: 3.366742e+09 3.395661e+09 3.308353e+09 3.394973e+09 2.474092e+09

Value: 45.023,135678 45.691,005025 44.360,205263 46.590,975369 43.495,944724

Nodo 20

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 12 12 12 14 11

Squared error: 5.564751e+08 5.564751e+08 5.380945e+08 5.818063e+08 6.430892e+08

Value: 184.407,250000 184.407,250000 186.379,583333 188.278,785714 187.104,000000

Nodo 21

Característica: Año_2020 Año_2020 Año_2020 Año_2020 Año_2020

Threshold: 0.5 0.5 0.5 0.5 0.5

Samples: 10 10 13 12 13

Squared error: 7.766844e+08 7.766844e+08 6.236246e+08 6.787625e+08 6.761729e+08

Value: 308.498,400000 308.498,400000 310.128,461538 310.745,916667 311.703,307692

Nodo 22

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 9 9 12 11 12

Squared error: 3.377862e+08 3.377862e+08 2.721071e+08 2.889980e+08 3.098009e+08

Value: 315.745,444444 315.745,444444 315.699,583333 316.879,636364 317.405,666667

Nodo 23

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 1 1 1 1 1

Squared error: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Value: 243.275,000000 243.275,000000 243.275,000000 243.275,000000 243.275,000000

Nodo 24

Característica: Año_2020 Año_2020 Año_2020 Año_2020 Año_2020

Threshold: 0.5 0.5 0.5 0.5 0.5

Samples: 13 13 14 10 14

Squared error: 1.395103e+09 1.395103e+09 1.300110e+09 .659159e+09 1.300110e+09

Value: 370.943,153846 370.943,153846 371.541,714286 376.626,400000 371.541,714286

Nodo 25

Característica: Año_2023 Año_2023 Año_2021 Año_2021 Año_2021
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Nodo / Nivel 0% 1% (cr) 1% 3% 5%
Threshold: 0,5 0,5 0,5 0,5 0,5

Samples: 12 12 13 9 13

Squared error: 1.064323e+09 1.064323e+09 9.829011e+08 1.129440e+09 9.829011e+08

Value: 376.807,250000 376.807,250000 377.000,769231 385.076,666660 377.000,769231

Nodo 26

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 11 11 12 8 12

Squared error: 8.695199e+08 8.695199e+08 7.984521e+08 7.231714e+08 7.984521e+08

Value: 371.878,090909 371.878,090909 381.527,250000 392.875,875000 381.527,250000

Nodo 27

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 1 1 1 1 1

Squared error: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Value: 431.028,000000 431.028,000000 322.683,000000 322.683,000000 322.683,000000

Nodo 28

Característica: Hoja Hoja Hoja Hoja Hoja

Samples: 1 1 1 1 1

Squared error: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Value: 300.574,000000 300.574,000000 300.574,000000 300.574,000000 300.574,000000

Cuadro 13: Dataset de criminalidad: Comparación de nodos seleccionados del árbol de
decisión bajo distintos niveles de envenenamiento.

Experimento de Clasificación

Nodo / Nivel 0% 1% 3% 5%
Raíz (nodo 0)

Característica: num_casos num_casos num_casos num_casos

Threshold: 5,5 5,5 7,5 7,5

Samples: 240.297 240.297 240.297 240.297

Gini: 0,499139 0,499195 0,499344 0,499450

Class: 1 1 1 1

Nodo 1

Característica: grupo_edad_80+ num_casos grupo_edad_80+ num_casos

Threshold: 0,5 0,5 0,5 0,5

Samples: 144.419 144.419 163.815 163.815

Gini: 0,480516 0,480518 0,486700 0,485962

Class: 0 0 0 0

Nodo 2

Característica: num_casos num_def num_casos num_def

Threshold: 0,5 0,5 0,5 0,5

Samples: 94.537 11.342 107.712 11.342

Gini: 0,447912 0,422616 0,461821 0,422616

Class: 0 1 0 1

Nodo 3

Característica: num_def num_uci num_def num_uci

Threshold: 0,5 0,5 0,5 0,5

Samples: 5.757 7.412 5.757 7.412

Gini: 0,394457 0,114764 0,394457 0,114764
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Nodo / Nivel 0% 1% 3% 5%
Class: 1 1 1 1

Nodo 4

Característica: Hoja Hoja Hoja Hoja

Samples: 4.314 6.586 4.314 6.586

Gini: 0,166736 0,000000 0,166736 0,000000

Class: 1 1 1 1

Nodo 5

Característica: Hoja Hoja Hoja Hoja

Samples: 1.443 826 1.443 826

Gini: 0,315313 0,495310 0,315313 0,495310

Class: 0 0 0 0

Nodo 6

Característica: num_uci num_semana num_casos num_semana

Threshold: 0,5 17,5 2,5 17,5

Samples: 88.780 3.930 101.955 3.930

Gini: 0,430254 0,364747 0,449478 0,364747

Class: 0 0 0 0

Nodo 7

Característica: Hoja Hoja Hoja Hoja

Samples: 83.604 1.367 52.522 1.367

Gini: 0,410902 0,430133 0,372080 0,430133

Class: 0 0 0 0

Nodo 8

Característica: Hoja Hoja Hoja Hoja

Samples: 5.176 2.563 49.433 2.563

Gini: 0,415010 0,321122 0,493014 0,321122

Class: 1 0 0 0

Nodo 9

Característica: num_casos num_casos num_casos num_casos

Threshold: 2,5 2,5 2,5 2,5

Samples: 49.882 133.077 56.103 152.473

Gini: 0,499193 0,469312 0,498525 0,478099

Class: 1 0 1 0

Nodo 10

Característica: num_casos grupo_edad_80+ num_casos grupo_edad_80+

Threshold: 0,5 0,5 0,5 0,5

Samples: 32.366 79.303 32.366 79.303

Gini: 0,496269 0,422711 0,496269 0,422711

Class: 0 0 0 0

Nodo 11

Característica: Hoja Hoja Hoja Hoja

Samples: 5.585 52.522 5.585 52.522

Gini: 0,447078 0,372080 0,447078 0,372080

Class: 1 0 1 0

Nodo 12

Característica: Hoja Hoja Hoja Hoja

Samples: 26.781 26.781 26.781 26.781

Gini: 0,485165 0,485165 0,485165 0,485165

Class: 0 0 0 0

Nodo 13

Característica: anio grupo_edad_80+ anio grupo_edad_80+
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Nodo / Nivel 0% 1% 3% 5%
Threshold: 2020,5 0,5 2020,5 0,5

Samples: 17.516 53.774 23.737 73.170

Gini: 0,462452 0,499446 0,469704 0,499950

Class: 1 0 1 0

Nodo 14

Característica: Hoja Hoja Hoja Hoja

Samples: 3.740 36.258 5.052 49.433

Gini: 0,354142 0,485029 0,393463 0,494128

Class: 1 0 1 0

Nodo 15

Característica: Hoja Hoja Hoja Hoja

Samples: 13.776 17.516 18.685 23.737

Gini: 0,479638 0,467233 0,482346 0,481018

Class: 1 1 1 1

Nodo 16

Característica: num_def num_def num_def num_def

Threshold: 0,5 0,5 0,5 0,5

Samples: 95.878 95.878 76.482 76.482

Gini: 0,419453 0,420845 0,392750 0,392750

Class: 1 1 1 1

Nodo 17

Característica: num_uci num_uci num_uci num_uci

Threshold: 0,5 0,5 0,5 0,5

Samples: 69.031 69.031 53.263 53.263

Gini: 0,463829 0,464426 0,446376 0,446376

Class: 1 1 1 1

Nodo 18

Característica: grupo_edad_80+ grupo_edad_80+ grupo_edad_80+ grupo_edad_80+

Threshold: 0,5 0,5 0,5 0,5

Samples: 61.180 61.180 46.640 46.640

Gini: 0,479454 0,479724 0,466691 0,466691

Class: 1 1 1 1

Nodo 19

Característica: Hoja Hoja Hoja Hoja

Samples: 46.090 46.090 35.527 35.527

Gini: 0,496305 0,496174 0,489660 0,489660

Class: 1 1 1 1

Nodo 20

Característica: Hoja Hoja Hoja Hoja

Samples: 15.090 15.090 11.113 11.113

Gini: 0,343586 0,349169 0,305621 0,305621

Class: 1 1 1 1

Nodo 21

Característica: num_casos num_casos num_casos num_casos

Threshold: 13,5 13,5 22,5 22,5

Samples: 7.851 7.851 6.623 6.623

Gini: 0,191691 0,198850 0,166994 0,166994

Class: 1 1 1 1

Nodo 22

Característica: Hoja Hoja Hoja Hoja

Samples: 3.450 3.450 3.767 3.767
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Nodo / Nivel 0% 1% 3% 5%
Gini: 0,268011 0,282009 0,219596 0,219596

Class: 1 1 1 1

Nodo 23

Característica: Hoja Hoja Hoja Hoja

Samples: 4.401 4.401 2.856 2.856

Gini: 0,124287 0,124287 0,090703 0,090703

Class: 1 1 1 1

Nodo 24

Característica: provincia_SS provincia_SS provincia_SS provincia_SS

Threshold: 0,5 0,5 0,5 0,5

Samples: 26.847 26.847 23.219 23.219

Gini: 0,224869 0,229820 0,200212 0,200212

Class: 1 1 1 1

Nodo 25

Característica: num_def num_def provincia_GI provincia_GI

Threshold: 1,5 1,5 0,5 0,5

Samples: 26.016 26.016 22.533 22.533

Gini: 0,207571 0,212722 0,181610 0,181610

Class: 1 1 1 1

Nodo 26

Característica: Hoja Hoja Hoja Hoja

Samples: 14.815 14.815 22.077 22.077

Gini: 0,285347 0,289309 0,167805 0,167805

Class: 1 1 1 1

Nodo 27

Característica: Hoja Hoja Hoja Hoja

Samples: 11.201 11.201 456 456

Gini: 0,086268 0,093222 0,499529 0,499529

Class: 1 1 0 0

Nodo 28

Característica: anio anio anio anio

Threshold: 2021,5 2021,5 2021,5 2021,5

Samples: 831 831 686 686

Gini: 0,499739 0,499837 0,499996 0,499996

Class: 1 1 0 0

Nodo 29

Característica: Hoja Hoja Hoja Hoja

Samples: 373 373 279 279

Gini: 0,273588 0,280747 0,275382 0,275382

Class: 1 1 1 1

Nodo 30

Característica: Hoja Hoja Hoja Hoja

Samples: 458 458 407 407

Gini: 0,371703 0,371703 0,392179 0,392179

Class: 0 0 0 0

Cuadro 14: Dataset de covid19: Comparación de nodos seleccionados del árbol de deci-
sión bajo distintos niveles de envenenamiento.
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B. Anexo: Representación matemática de los árboles de

decisión

Desde una perspectiva más formal, un árbol de decisión se construye dividiendo el

conjunto de datos en subconjuntos de forma recursiva. En cada nodo, el algoritmo se-

lecciona un atributo que maximiza una métrica de ganancia, de forma que la partición

resultante sea lo más “pura” posible.

Las métricas de ganancia se utilizan para evaluar que tan homogéneos o “puros” son

los subconjuntos de datos resultantes después de una división del árbol de decisión.

Si se consideran los modelos de árboles de decisión CART, ese encuentra una repre-

sentación formal de un árbol de regresión definido en el trabajo de Kevin Murphy como

(Murphy, 2022):

f (x;∀) =
J

!
j=1

w jI(x ⇐ R j) (9)

donde:

f (x;∀) es la función de predicción del modelo

w j es el valor asignado a la hoja j

I(x ⇐ R j) es una función indicadora que toma el valor 1 si la entrada x pertenece a

la región R j, y 0 en caso contrario.

R j es el conjunto de nodos hoja del árbol

J es el número total de nodos hoja en el árbol

Esta misma representación se aplica a árboles de clasificación, donde en lugar de

asignar un valor continuo, se asigna una clase discreta a cada hoja del árbol.

De este modo, la diferencia se produce en el tipo de salida que se espera del modelo:

Para clasificación, w j es una clase discreta asignada a la hoja j.

Para regresión, w j es un valor continuo que representa la media de los valores de

salida en la hoja j.
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No obstante, algunos autores prefieren utilizar una notación más explícita para los

árboles de decisión, donde se define la función de predicción como (Nijssen, 2008):

f (x) = argmáx
c

P(y = c | x;∀) (10)
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C. Anexo: Métricas comunes en árboles de decisión

Índice de Gini

Esta métrica es comúnmente utilizada en algunos algoritmos de árboles de decisión

para clasificación y regresión (Classification and Regression Trees - CART).

Se puede volver al trabajo de Kevin Murphy para observar la representación estándar

del índice Gini para un nodo i (Murphy, 2022):

Ginii = 1→ !
c=1

#̂2
ic (11)

donde:

#̂ic es la proporción de ejemplos en el nodo i que pertenecen a la clase c.

1→ #̂ic es la proporción de ejemplos que no pertenecen a la clase c.

El índice de Gini toma valores entre 0 y 1, donde 0 indica que todos los ejemplos en el

nodo pertenecen a la misma clase (pureza máxima) y 1 indica una distribución uniforme

entre las clases (impureza máxima).

Entropía

Otra de las métricas más comunes es la impureza de la entropía (o impureza de

la información), que mide la incertidumbre de un conjunto de datos, representada como

(Duda et al., 2001):

i(N) =→!
j

P(w j) log2 P(w j) (12)

donde:

i(N) es la impureza de la entropía del nodo N.

P(w j) es la proporción de ejemplos en el nodo que pertenecen a la clase j.

j es el número de clases posibles.
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Ganancia de información

La ganancia de información, es otra métrica usada como criterio como por ejemplo

modelos ID3 y C4.5, y se obtiene con base a la medida de la entropía, tratada anterior-

mente.

Esta métrica mide la reducción de la incertidumbre al dividir un conjunto de datos en

función de un atributo, para este caso A y un conjunto de datos S (número de ejemplos en

el nodo padre). Matemáticamente, se define como (Mienye & Jere, 2024):

IG(S,A) = H(S)→ !
v⇐Values(A)

|Sv|
|S| H(Sv) (13)

donde:

IG(S,A) es la ganancia de información al dividir el conjunto de datos S según el

atributo A.

H(S) es la entropía del conjunto de datos original o padre (número de ejemplos en

el nodo padre) S.

Sv es el subconjunto de datos que tiene el valor v (número de ejemplos en el nodo

hijo) para el atributo A.

H(Sv) es la entropía del subconjunto de datos hijo.

Otras medidas de pureza

Hay métricas menos comunes que las anteriores, pero también son útiles:

Índice de Clasificación Errónea: Mide la proporción de ejemplos mal clasificados.

Índice de Deviación: Se utiliza principalmente en árboles de regresión y se basa en

minimizar la desviación o log-verosimilitud.

Varianza: Mide la dispersión de los valores de salida en nodos hoja.
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D. Anexo: Variantes en árboles de decisión

Dentro de los llamados árboles axis-aligned univariados se encuentran los referentes

clásicos (Duda et al., 2001):

ID3 (Iterative Dichotomiser 3): Introducido por Quinlan en 1986, utiliza la ganan-

cia de información como criterio de división y detiene el crecimiento cuando las

instancias quedan perfectamente separadas (Quinlan, 1986) Es uno de los primeros

algoritmos de árboles de decisión.

C4.5: También desarrollado por Quinlan, es una evolución directa del ID3, que

introduce la métrica gain ratio, la gestión explícita de valores ausentes y permite la

poda post-crecimiento de árboles para evitar el sobreajuste (Salzberg, 1994).

C5.0: Una versión más avanzada y optimizada de C4.5, que incluye mejoras en la

velocidad y la eficiencia (Pandya & Pandya, 2015).

CART (Classification and Regression Trees): Introducido por Breiman et al., en

1986, que impone divisiones binarias, emplea el índice de Gini (clasificación) o la

varianza (regresión) y utiliza la poda de complejidad-coste para equilibrar sesgo y

varianza (Breiman et al., 2017).

La literatura revisada amplía esta taxonomía en dos direcciones, por un lado, surgen

los árboles multivariados u oblicuos, que permiten hiperplanos de división orientados ar-

bitrariamente en el espacio de características y permiten realizar divisiones en múltiples

dimensiones simultáneamente, como el algoritmo CHAID (Chi-squared Automatic In-

teraction Detector) (Mienye & Jere, 2024); por otro, los métodos de optimización global

como los Optimal Classification Trees (OCT), que formulan la inducción mediante mixed-

integer optimization, garantizando árboles de tamaño mínimo para una precisión dada y

demostrando que la interpretabilidad no tiene por qué sacrificar rendimiento (Bertsimas

& Dunn, 2017).

Las revisiones sistemáticas más recientes coinciden en clasificar los árboles por:

Estrategia de partición: (univariante vs. multivariante)
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Función objetivo: (impureza, distancia, error reducido)

Técnica de generalización: (poda estadística, complejidad-coste, recocido simula-

do, MIO)

Contexto de uso: Con despliegues masivos en diagnóstico médica, gestión logística

y de inventarios, análisis crediticio y detección de intrusiones cibernéticas debido a

su transparencia y a la facilidad de generar explicaciones de tipo contrafactual.
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E. Anexo: Variantes de Ataques de Envenenamiento de

Datos

Listado de ejemplos agrupados de ataques de envenenamiento de datos en diferentes

tipos de modelos (Ramirez et al., 2022):

Ataque de manipulación de etiquetas (Label-Flipping Attacks): Consiste en la

alteración maliciosa de las etiquetas en los datos de entrenamiento, lo que puede

realizarse de forma aleatoria o específica para reducir la precisión general o causar

una clasificación errónea de una clase específica, respectivamente.

Ataques de máquinas de vectores de soporte (SVM) (Attacks on Support Vec-

tor Machines): Estos ataques aprovechan el conocimiento previo sobre los datos

de entrenamiento, los datos de validación y los hiper parámetros del algoritmo de

aprendizaje SVM para maximizar la función objetivo basada en la tasa de error del

clasificador.

Ataques a algoritmos de agrupamiento (Clustering Algorithms): Se enfocan en

interferir con el proceso de agrupamiento, a menudo insertando pequeñas muestras

envenenadas entre dos clusters existentes para crear conflictos en sus límites de

decisión, lo que puede llevar a una clasificación incorrecta de los datos. Este modelo

solo es aplicable en escenarios de caja blanca, donde el atacante tiene acceso a los

datos de entrenamiento y al modelo.

Ataques mediante optimización de gradiente de redes neuronales(Gradient

Optimization in NN): Utilizan la optimización de retrogradiente para realizar ata-

ques de envenenamiento en modelos de aprendizaje profundo, lo que les permite

abordar problemas de multi clases y ofrecer una generalización adecuada en diver-

sos modelos de aprendizaje.

Ataques mediante GAN (Generative Adversarial Network): Proponen el uso de

GAN para generar datos de envenenamiento que maximicen el error del clasificador

objetivo y logren ser indetectables. Se busca un equilibro entre detectabilidad y

eficacia del ataque.
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Ataques de Envenenamiento basados en características (Feature-Based Poiso-

ning Attacks): Crean muestras de entrenamiento envenenadas que son indistingui-

bles de las muestras originales para la inspección visual humana, preservando así la

privacidad y mostrando una alta resistencia a los métodos de defensa existentes.

Ataques a sistemas de detección por multitud (Attacks on Crowd-Sensing Sys-

tems): Se basan en la creación de interferencias con los datos recopilados mediante

la inyección de datos falsos, aprendiendo de intentos de ataque pasados para mejo-

rar progresivamente.

Ataques a modelos de agregación de datos (Attacks on Data Aggregation Mo-

dels): Se centran en manipular los resultados agregados en la salida del modelo de

agregación, minimizando los parámetros de agregación del modelo y maximizando

el error de los resultados agregados.

Ataques misceláneos:(Miscellaneous attacks) Incluyen ataques a análisis de com-

ponentes principales (PCA) y ataques dirigidos a mecanismos de defensa específi-

cos.
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F. Anexo: Proyectos de IA en sectores críticos

Sector Defensa Nacional

Proyecto COBRA :

El Proyecto Cobra es una iniciativa española orientada al desarrollo de ciber manio-

bras adaptativas para la simulación realista de Amenazas Persistentes Avanzadas (APT)

y el entrenamiento en ciberdefensa mediante técnicas de gamificación. Con participación

de instituciones como la Universidad de Murcia, la Universidad Politécnica de Madrid

e Indra, y validación en entornos militares del Mando Conjunto del Ciberespacio, este

proyecto emplea inteligencia artificial con aprendizaje adaptativo para generar escenarios

dinámicos, personalizados según el desempeño del usuario. Además, incorpora sistemas

de telemetría y biometría para ajustar los entrenamientos en función de capacidades indi-

viduales.(Gómez Mármol et al., 2021)

Proyecto SOPRENE :

El programa I+D+i SOPRENE (Sostenimiento Predictivo basado en Redes Neurona-

les) ha sido fundamental en el contexto de la importancia del mantenimiento inteligente

para la Armada española, destacando el mantenimiento predictivo (PdM) como una estra-

tegia clave. Lanzado en noviembre de 2019 y concluido en febrero de 2021, SOPRENE

desarrolló un demostrador tecnológico para la predicción de averías mediante Inteligencia

Artificial (IA). Actualmente, SOPRENE predice fallos en propulsores de BAM y genera-

dores de F-100, con planes de incluir más equipos. Sus capacidades predictivas se están

integrando en ATAVIA, una aplicación residente en el CESADAR en tierra. Sin embargo,

para superar las limitaciones de comunicación y latencia en buques navegando, se ha pro-

puesto el programa MAPRE. MAPRE busca “miniaturizar” los algoritmos de SOPRENE

para llevar la predicción a bordo de las unidades en tiempo real, sincronizándola con los

sistemas en tierra, lo que es especialmente importante para submarinos S-80 (Armada,

2021).
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Sector Seguridad Pública

Proyecto VeriPol

VeriPol, es una herramienta basada en técnicas de procesamiento de lenguaje natural

(NLP) y aprendizaje automático, capaz de identificar falsos reportes con una precisión

superior al 91%.

VeriPol se integraba con el sistema policial SIDENPOL y permitía entender patrones

de engaño en los textos, proporcionando apoyo en la toma de decisiones y desalentando

la presentación de reportes falsos. Se presentó como la primera herramienta validada con

documentos reales, superando a modelos previos que usaban textos ficticios.(Quijano-

Sánchez, Lara et al., 2018).

Según la nota de prensa del 27 de octubre de 2018 (Policia Nacional, 2018), la Policía

Nacional de España implementó VeriPol en ese año, habiéndola probado en 2015 y luego

en un estudio piloto en junio de 2017 en Málaga y Murcia. No obstante, en marzo de 2025

aparece un artículo en el Diario el País que anuncia que la aplicación dejó de estar opera-

tiva en octubre de 2024 (El País, 2025), en medio de cuestionamientos de la transparencia

del sistema, lo que no ha podido comprobarse en esta investigación.

No obstante, la herramienta VeriPol es un ejemplo de cómo la IA puede ser utilizada

para mejorar la eficiencia y efectividad de las investigaciones policiales, al mismo tiempo

que plantea desafíos éticos y de transparencia que deben ser abordados.

Proyecto ABIS:

El Sistema Automático de Identificación Biométrico (ABIS) es una herramienta antes

conocida como Sistema de Identificación Automática Dactilar (SAID), que permite la

identificación de personas a través de sus huellas dactilares e imágenes faciales recogidas

de escenarios de delitos, ya que es capaz de gestionar imágenes de reseñas dactilares,

palmares, falanges, y otras; además de gestionar las imágenes faciales. Esta herramienta

es utilizada por las Fuerzas y Cuerpos de Seguridad del Estado (Cuerpo Nacional de

Policía y Guardia Civil) para la identificación de personas, tanto en el ámbito nacional

como internacional.

Se registra que el coste de contribución de la UE a este proyecto es de 9.848.790,39
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euros, financiado con fondos europeos y tiene por fecha de término el 31 de diciembre

de 2025, conforme publica en la página web del Ministerio del Interior (Subdirección

General de Planificación y Gestión de Infraestructuras y Medios de Seguridad, s.f.).

Sector Salud

Proyecto NaIA-RD:

El proyecto NaIA-RD, es una herramienta de IA creada a la medida por el Hospital

Universitario de Navarra (HUN) de España, para asistir en el cribado de la Retinopatía

Diabética (RD), que es la principal causa de pérdida de visión entre la población en edad

de trabajar en países desarrollados. Esta herramienta fue implementada en julio de 2020

e integrada en el Sistema de información hospitalaria (HIS) del HUN, siendo utilizada

desde entonces para el cribado rutinario de la RD (Pinto et al., 2024).

Proyecto Árboles de clasificación obtenidos mediante IA

Si bien no es un proyecto propiamente tal, se hace mención especial de la investiga-

ción sobre árboles de decisión de clasificación para la predicción de insuficiencia cardiaca

tras el síndrome coronario agudo sobre pacientes provenientes de dos centros españoles

entre 2006 y 2017. Este estudio resalta el valor de la IA para identificar variables relacio-

nadas con la insuficiencia cardiaca, y sugiere que los árboles de decisión pueden ser una

herramienta útil para la predicción de esta condición en pacientes con síndrome coronario

agudo (Cordero et al., 2024).
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