

MÁSTER DE FORMACIÓN PERMANENTE EN

INTELIGENCIA ARTIFICIAL

Aplicación de aprendizaje por refuerzo
para el desarrollo de estrategias de

persecución y evasión en videojuegos

Presentado por:

CESAR AUGUSTO AROCHA CASTILLO

Dirigido por:

VICENTE CASTILLO FAULÍ

CURSO ACADÉMICO 2024-2025

1

Resumen

El desarrollo de videojuegos, es un campo que requiere equipos multidisciplinarios y
recursos considerables, debido al actual auge de herramientas Open source de Inteligencia
Artificial (IA), abren camino a desarrolladores independientes y proyectos con presupuestos
limitados puedan hacerse realidad. Este Trabajo Final de Máster (TFM) investiga la
viabilidad de un flujo de trabajo que integra estas herramientas de IA en el desarrollo de un
prototipo de videojuego.

El proyecto se inspira en el juego infantil "Pilla-pilla" y su adaptación profesional, el
"Chase Tag". El prototipo, construido en Python, simula un entorno de persecución donde
dos agentes autónomos, un cazador (Chaser) y un fugitivo (Evader), interactúan. Su
comportamiento se rige por algoritmos de aprendizaje por refuerzo (Reinforcement Learning
- RL), que les permiten aprender estrategias de persecución-evasión de manera autónoma.

A lo largo del desarrollo, se utilizaron herramientas de IA para crear fragmentos de
código, con el objetivo de ensamblar un prototipo funcional. Permitiéndonos analizar la
calidad y adaptabilidad del contenido generado, la complejidad de las funcionalidades que
pueden desarrollarse y los desafíos de integrar agentes inteligentes.

La finalidad del TFM es determinar si un prototipo integral, con agentes funcionales y
un entorno coherente, puede ser creado con este tipo de herramientas, describiendo los
desafíos técnicos y las limitaciones encontradas.

El objetivo general es implementar agentes inteligentes para emular estrategias de
persecución y evasión en un videojuego interactivo. Para ello, los objetivos específicos
incluyen: analizar herramientas de IA de código abierto, desarrollar el entorno del juego en
Python, diseñar un protocolo de entrenamiento, crear un sistema de recompensas para el
aprendizaje de los agentes y, finalmente, implementar los agentes de RL.

En conclusión, este estudio busca ofrecer una perspectiva sobre el potencial de la IA
en el desarrollo de videojuegos, sirviendo de guía para futuros proyectos. Al demostrar que
es posible construir sistemas complejos y funcionales sin grandes inversiones, el TFM
aspira a sentar bases para la democratización de la tecnología y la innovación en el campo
del diseño de videojuegos y otros proyectos tecnológicos en sus etapas iniciales.

Palabras clave: Inteligencia Artificial, Aprendizaje por Refuerzo, Videojuego, Pygame,
Prototipo, Herramientas Open Source, Agentes Autónomos, Chase Tag.

Enlace a github: https://github.com/ces-arocha/TFM

Commit Hash: c5a61e5b0a4ebde0155ae591b45c3d1e4da8a867.

Resumen realizado en Gemini con el prompt: “Para ser utilizado como Resumen de un
TFM. Crea el resumen de 500 palabras, del siguiente TFM”.

2

https://github.com/ces-arocha/TFM

Abstract

The field of video game development, which traditionally requires multidisciplinary
teams and significant resources, is becoming more accessible to independent developers
and projects with limited budgets thanks to the rise of open-source Artificial Intelligence (AI)
tools. This Master's Thesis investigates the feasibility of a workflow that integrates these AI
tools into the development of a video game prototype.

The project is inspired by the children's game "Tag" and its professional adaptation,
"Chase Tag." The prototype, built in Python, simulates a pursuit environment where two
autonomous agents, a hunter (Chaser) and a fugitive (Evader), interact. Their behavior is
governed by reinforcement learning algorithms, which allow them to autonomously learn
capture and evasion strategies. Throughout the development, AI tools were used to create
code fragments, with the goal of assembling a functional prototype. This allowed for an
analysis of the quality and adaptability of the generated content, the complexity of the
functionalities that can be developed, and the challenges of integrating intelligent agents.

The main purpose of the thesis is to determine if a complete prototype, with
functional agents and a coherent environment, can be created with this type of tool, by
describing the technical challenges and limitations encountered. The general objective is to
implement intelligent agents to emulate pursuit and evasion strategies in an interactive video
game. The specific objectives include: analyzing open-source AI tools, developing the game
environment in Python, designing a training protocol, creating a reward system for the
agents' learning, and finally, implementing the reinforcement learning agents.

In conclusion, this study seeks to offer a perspective on the potential of AI in video
game development, serving as a guide for future projects. By demonstrating that it is
possible to build complex and functional systems without large investments, the thesis aims
to lay the groundwork for the democratization of technology and innovation in the field of
video game design and other early-stage tech projects.

Keywords: Artificial Intelligence, Reinforcement Learning, Video Game, Pygame, Prototype,
Open-Source Tools, Autonomous Agents, Chase Tag.

GitHub Link: https://github.com/ces-arocha/TFM

Commit Hash: c5a61e5b0a4ebde0155ae591b45c3d1e4da8a867.

Abstract created with Gemini using the prompt: "Translate to English: Resumen”

3

https://github.com/ces-arocha/TFM

Índice de contenidos

Resumen​ 2
Abstract​ 3
Índice de contenidos​ 4
I. Introducción​ 6

I.1. Justificación​ 8
I.2. Problemática​ 8
I.3. Finalidad​ 9
I.4. Objetivos​ 10

I.4.1. Objetivo General​ 10
I.4.2. Objetivos Específicos​ 10

II. Marco teórico​ 11
II.1. Juegos tradicionales como pilla-pilla y su adaptación a tiempos modernos​ 11
II.2. Videojuegos como herramienta de aprendizaje y pygame​ 13
II.3. Inteligencia Artificial y Machine Learning​ 14

II.3.1. Exploración - Explotación​ 15
II.3.2. Algoritmos de Machine Learning por refuerzo​ 16

II.3.2.1. Entorno de ejecución​ 17
II.3.2.2. Bellman’s Equation​ 18
II.3.2.3. Value-based​ 19
II.3.2.4. Aprendizaje con Temporal Difference Error (TD)​ 19
II.3.2.5. Esperado vs. Actualización de Muestra​ 19

II.4. Estado del arte​ 20
II.4.1. Listado de documentación científica (ordenados por enfoque)​ 21
II.4.2. Comparación de trabajos con RL relevantes a pursuit–evasion​ 22
II.4.3. Breve contexto y observaciones comparativas​ 23

III. Metodología​ 25
III.1. Diseño​ 25
III.2. Participantes​ 27
III.3. Instrumentos​ 28

III.3.1. Recursos de Hardware​ 28
III.3.2. Recursos de Software y Lenguaje de Programación​ 28
III.3.3. Herramientas de apoyo con IA​ 29

III.4. Procedimiento​ 29
III.4.1. Esquema de trabajo​ 29
III.4.2. Herramientas para recursos gráficos y lógicas de juegos​ 30

III.4.2.1. Recursos Gráficos​ 31
III.4.2.2. Lógicas de Juegos​ 31

III.4.3. Elaboración de entorno en Python​ 31
III.4.3.1. Selección de Aplicativo o librería para el Entorno​ 32
III.4.3.2. Diseño de entorno​ 33

III.4.4. Diseño y configuración de entrenamientos​ 36

4

III.4.5. Sistema de recompensas para optimización de aprendizaje​ 38
III.4.5.1. Recompensa por movimiento​ 38
III.4.5.2. Recompensa por Saltos​ 41
III.4.5.3. Recomple por contacto con obstáculos​ 42
III.4.5.4. Recompensa por tocar el Agua​ 42
III.4.5.5. Recompensa de victoria​ 42

III.4.6. Implementación de agentes con machine learning por refuerzo​ 43
III.4.7. Entrenamiento y prueba de los agentes​ 44

III.5. Análisis de datos​ 44
III.5.1. Validación de resultados en Aplicación​ 44
III.5.2. Validación de Resultados de Entrenamiento​ 45

III.5.2.1. Gráfica de Bigote​ 45
III.5.2.2. Grafica total de resultados​ 47
III.5.2.3. Análisis de Tabla de Valores (Q-Tables)​ 47

IV. Resultados​ 49
IV.1. Generación de Imágenes​ 49
IV.2. Entrenamientos​ 50

IV.2.1. Primera ronda de entrenamiento.​ 51
IV.2.2. Segunda ronda de entrenamiento​ 55
IV.2.3. Ronda de complemento de entrenamiento​ 59

V. Discusión​ 63
V.1. Análisis por Rondas de Entrenamiento​ 63

V.1.1. Primera ronda de entrenamiento​ 63
V.1.2. Segunda ronda de entrenamiento​ 63
V.1.3. Ronda de complemento de entrenamiento​ 64

V.2. Resumen de los entrenamientos​ 64
VI. Conclusiones y Limitaciones​ 65

VI.1. Conclusiones​ 65
VI.2. Limitaciones y Problemáticas​ 66

VI.2.1. Limitaciones​ 66
VI.2.2. Problemáticas Generales​ 66

VI.3. Futuras líneas de investigación​ 67
Referencias bibliográficas​ 68
Índice de figuras​ 71

5

I.​ Introducción

La interacción con los videojuegos ha sido tradicionalmente asociada con el
entretenimiento y la recreación infantil. Sin embargo, múltiples estudios han
evidenciado el potencial de los videojuegos para fomentar habilidades cognitivas,
sociales y de resolución de problemas, especialmente cuando se emplean en
entornos controlados y con fines didácticos. Ejemplos clásicos son los simuladores
utilizados en la Fórmula 1 o en la formación de pilotos de aviación.

Otro ejemplo de la aplicación de videojuegos como herramienta de
aprendizaje, son los juegos “Buscaminas” y “Solitario”. Estos juegos inicialmente
fueron creados con la intención de que nuevos usuarios de computadoras, pudiesen
adaptarse a interactuar con el “mouse”. Demostrando de esta manera, la utilidad de
los videojuegos en la adquisición de destrezas específicas en escenarios seguros y
repetibles.

No obstante, debido a la reciente proliferación de herramientas de
Inteligencia Artificial (IA) y la facilidad en cuanto a disposición y acceso, han
comenzado a introducirse rápidamente en muchas disciplinas. Estas tecnologías no
solo facilitan la generación de activos visuales y sonoros, sino que también permiten
la implementación con bajo coste de agentes inteligentes mediante algoritmos de
acceso libre de aprendizaje por refuerzo (Reinforcement Learning - RL),
democratizando el acceso al desarrollo y prototipado, especialmente para equipos
independientes con recursos limitados.

Este Trabajo Final de Máster (TFM) se enmarca en la creación de un
prototipo de videojuego basado en la dinámica de la competición “Chase Tag”, que
en la literatura científica es conocida como "Pursuit-Evasion").

Esta dinámica consiste en que dos agentes, un Perseguidor (Chaser) y un
Evasor (Evader), interactúan dentro de un entorno de dos dimensiones tipo
cuadrícula (grid). Ambos agentes se enfrentarán de forma autónoma, y sus
comportamientos se regirán por algoritmos de RL.

El alcance de este trabajo se delimita a la implementación de dos agentes
inteligentes basados en RL dentro de un entorno de videojuegos, empleando
únicamente herramientas y librerías de acceso libre, y a la documentación de un
pipeline completo que abarque desde la generación de recursos hasta la evaluación
de estrategias de los agentes. Las preguntas de investigación que guían este
estudio son:

1.​ ¿Es posible la creación del prototipo completamente sin conocimientos en
programación de videojuegos?

2.​ ¿En qué medida puede la IA facilitar la creación integral de un videojuego
funcional y reproducible en un entorno limitado?

6

3.​ ¿Es posible derivar la interacción entre agentes IA (IA vs IA o usuario vs IA),
concretamente a algoritmos de machine learning por refuerzo, para el
desarrollo de estrategías de persecución-evasión?

4.​ ¿Cuáles son las limitaciones y oportunidades del uso exclusivo de
herramientas libres en el proceso?

A lo largo de este trabajo se responde a estas preguntas que guían el

desarrollo realizado.

Delimitación del TFM

El estudio se restringe al desarrollo de un prototipo de videojuego en un
entorno bidimensional (2D) con una estructura de cuadrícula (grid), utilizando
exclusivamente en lenguaje de programación Python y librerías de acceso libre,
tales como Pygame. El alcance se limita a la implementación y entrenamiento de
dos agentes autónomos que interactúan en dicho prototipo, bajo políticas de RL, sin
incorporar elementos tridimensionales, motores gráficos avanzados ni componentes
de audio.

Contribuciones del TFM

-​ Un prototipo de videojuego reproducible.
-​ Un esquema de recompensas y políticas.
-​ Un conjunto de métricas para evaluar el desempeño de los agentes.
-​ Un pipeline de desarrollo íntegramente basado en herramientas libres.

Los objetivos específicos son: seleccionar Herramientas para recursos

gráficos y lógicas de juegos, Elaboración de entorno interactivo para agentes
autónomos en Python, diseñar y configurar entrenamientos, crear un sistema de
recompensas y por último implementar y evaluar la interacción entre agentes.

Finalmente, dentro de los apartados de marco teórico y la metodología de
trabajo, se detallarán conceptos fundamentales sobre RL, las herramientas
empleadas durante la elaboración del proyecto, así como también, el diagramas de
diseño experimentales y las métricas de evaluación utilizadas en el estudio.

7

I.1.​ Justificación

La creación de videojuegos tradicionalmente ha estado reservada para
equipos multidisciplinarios con altos niveles de especialización y acceso a recursos
considerables, lo que limita el acceso a este campo para desarrolladores
independientes o proyectos con recursos limitados.

En este contexto, el auge de herramientas de IA de libre acceso representa
un cambio de paradigma al democratizar la creación de contenido y la
implementación de funcionalidades complejas.

En primer lugar, la generación de contenido, entornos y funcionalidades
relacionadas al desarrollo de videojuegos requiere una inversión muy significativa,
en cuanto al tiempo de ejecución, recursos creativos y por la variedad de
habilidades requeridas. Debido a esto, se dificulta a pequeños equipos la posibilidad
de exploración de ideas innovadoras sin la dependencia de grandes inversiones
iniciales.

Recientemente, gracias al creciente interés en la aplicación de IA en
diferentes ámbitos, se han abierto nuevas posibilidades para la creación automática
de activos gráficos, sonoros y de algoritmos. Lo que permite a equipos de desarrollo
poder optimizar sus procesos, reducir costos, complementar experiencias de
usuario, ayudando de esta manera a transformar más ideas simples en prototipos
implementables.

En segundo lugar, esta investigación tiene una dimensión social y educativa,
ya que promueve el acceso a nuevas tecnologías y estimula la creatividad en
personas autodidactas o con recursos propios que no cuentan con la experiencia
necesaria. Al demostrar la posibilidad y límites de la IA, se abren nuevas puertas
para la innovación y la enseñanza en áreas relacionadas con el diseño de
videojuegos, la inteligencia artificial y el desarrollo de software en general.

Este TFM se justifica por la necesidad de explorar cómo las herramientas de
IA pueden integrarse en el flujo de trabajo, ya sea para el desarrollo de un
videojuego o para el desarrollo de iniciativas. Esto permitirá demostrar el potencial
de la IA accesible para la creación de interacciones complejas sin depender de
costosas licencias o software propietario, abriendo el camino a desarrolladores
independientes y proyectos con recursos limitados.

I.2.​ Problemática

Si bien las herramientas de inteligencia artificial cada día se están
actualizando y las versiones gratuitas para la generación de contenido son cada vez

8

más sofisticadas, su aplicación en el contexto del desarrollo de videojuegos plantea
muchas interrogantes sobre la calidad de recursos, la posibilidad de realizar
funcionalidades complejas o la adaptabilidad del contenido generado a las
necesidades específicas de un proyecto.

Por otra parte, la integración de este contenido generado con un agente
inteligente también presenta desafíos adicionales. No solo garantizando que el
agente aprenda comportamientos útiles, sino también asegurar que dicho
comportamiento sea coherente con el entorno virtual al que pertenece, nos da la
posibilidad de detectar bucles infinitos en los entrenamientos o aparición de
comportamientos no deseados.

Además de esto, la integración de agentes generados automáticamente por
IA genera problemas de compatibilidad y dificultades técnicas al momento de
entrenar o evaluar, dificultando la creación de un agente con un rendimiento óptimo
y una capacidad de interacción sofisticada.

A esto se suman limitaciones prácticas como la necesidad de hardware
adecuado para el entrenamiento de los agentes, la gestión óptima de los recursos
computacionales y la dependencia de la supervisión humana para ajustar
parámetros, corregir errores y validar la calidad del resultado.

Con todo lo mencionado, nos genera incertidumbre respecto a la viabilidad de
utilizar únicamente herramientas de IA gratuitas para un prototipado integral de
videojuegos, especialmente si se pretende crear agentes funcionales dentro de
entornos coherentes de interacción.

I.3.​ Finalidad

La finalidad principal de este trabajo final de máster es analizar y determinar
la viabilidad o posibles limitaciones de utilizar un flujo de trabajo que combine la
generación de contenido con IA y el uso de algoritmos de aprendizaje por refuerzo
para la creación de agentes autónomos en el desarrollo de videojuegos.

Los resultados de esta investigación podrían ofrecer nuevas perspectivas
sobre el uso de la inteligencia artificial accesible para la creación integral de
videojuegos. Se busca analizar la calidad de las interacciones de los agentes,
evaluando los procesos desde la creación de recursos visuales, algoritmos de
configuración de movimientos o acciones, hasta su integración dentro de los
entrenamientos, describiendo los desafíos encontrados durante su implementación.

En resumen, el propósito es ofrecer conclusiones fundamentadas que sirvan
de guía para futuros desarrolladores y académicos interesados en aprovechar la IA
accesible para innovar en el campo del desarrollo de videojuegos y, potencialmente,
en otros proyectos tecnológicos en fases iniciales.

9

I.4.​ Objetivos

I.4.1.​ Objetivo General

Implementar agentes inteligentes basados en aprendizaje por refuerzo con
objetivo de emular estrategías de persecución-evasión (pursuit-evasion o Chase
Tag), dentro de un entorno de videojuego interactivo creado totalmente en Python.

I.4.2.​ Objetivos Específicos

I.4.3.​ Herramientas para recursos gráficos y lógicas de juegos: Investigar

y seleccionar herramientas de inteligencia artificial Open Source para la
generación de recursos gráficos y la programación de lógicas de juego,
con el fin de identificar las más adecuadas para el proyecto.

I.4.4.​ Elaboración de entorno en Python: Desarrollar un prototipo de

videojuego 2D en Python que sirva como entorno de simulación para
agentes de IA, implementando las reglas del juego de
persecución-evasión y permitiendo la interacción y recolección de datos
de manera controlada.

I.4.5.​ Diseño y configuración de entrenamientos: Diseñar y protocolizar los

entrenamientos para los agentes de IA, estableciendo las fases,
métricas y criterios de evaluación que permitan la interacción efectiva
entre ellos y la recolección de datos para su optimización.

I.4.6.​ Sistema de recompensas para optimización de aprendizaje: Diseñar

e implementar un sistema de recompensas efectivo, que incentive el
comportamiento deseado de los agentes y que sirva como la señal de
retroalimentación clave para el aprendizaje por refuerzo.

I.4.7.​ Implementación de agentes con machine learning por refuerzo:

Desarrollo y configuración de agentes inteligentes basados en
algoritmos de aprendizaje por refuerzo (Q-Learning) para la realización
de un objetivo de persecución-evasión.

A lo largo de este estudio, estos objetivos específicos se implementarán, a

través de la resolución de tareas descritas en el apartado de diseño y metodología.
Además de esto, discutiremos los resultados obtenidos tras la realización de todas
las pruebas planificadas, dando así conclusiones respecto a su ejecución.

10

II.​ Marco teórico

II.1.​ Juegos tradicionales como pilla-pilla y su
adaptación a tiempos modernos

El pilla-pilla es considerado un juego de persecución, y en la actualidad

existen múltiples variantes según la región. Si bien la mecánica central del juego
presenta poca o nula variación en las diferentes culturas donde se practica, es
común que su denominación cambie en función del país o incluso de la localidad.

Por ejemplo, en Venezuela se conoce como “La ere”, en España se puede
llamar “las atrapadas” o “pilla-pilla”, en México y Centroamérica predomina el
nombre “la traes”, mientras que en Argentina, aunque existen algunas variantes en
las reglas o dinámicas de juego, se le conoce principalmente como “la mancha”.

A esto se suman otras denominaciones como “la lleva”, “la queda” o “la pinta”
en distintas regiones hispanohablantes y más allá. Esta riqueza de nombres y
pequeñas adaptaciones demuestra no solo la difusión global del juego, sino también
su capacidad de arraigarse en la cultura popular de cada sociedad.

A pesar de las diferencias nominales y de las ligeras adaptaciones en las
reglas que pueden encontrarse en cada región, la esencia del pilla-pilla radica en la
simplicidad de correr y atrapar a los demás jugadores. Esta característica ha
permitido que este juego trascienda durante generaciones y continentes,
convirtiéndose en una actividad lúdica presente en la infancia de millones de
personas en todo el mundo.

Fig. 1, Imagen pilla-pilla

Reglas básicas del pilla-pilla:

-​ Participantes: El juego requiere al menos de dos jugadores, aunque puede
participar un grupo grande.

-​ Designación del perseguidor: Al inicio, se elige mediante sorteo o consenso a
una persona que será “el que la queda” (el perseguidor o “it” en inglés).

11

-​ Objetivo: El perseguidor debe atrapar a cualquiera de los otros jugadores
tocándolo físicamente.

-​ Cambio de rol: Cuando un jugador es tocado por el perseguidor, este pasa a
ser el nuevo perseguidor (“la queda”, “la trae”, etc.), y el anterior perseguidor
se suma a los que huyen.

-​ Zona de juego: Generalmente se delimita un espacio físico (patio, parque,
salón, etc.) donde se desarrolla el juego. Salir de la zona puede implicar
penalizaciones o expulsión temporal.

-​ Reglas adicionales: En algunas variantes, existen “zonas seguras” donde los
jugadores no pueden ser atrapados, o reglas para evitar que la misma
persona sea perseguida varias veces seguidas. Otras versiones pueden
incluir varios perseguidores o condiciones especiales para cambiar de rol.

La universalidad de este juego, junto con la simplicidad y accesibilidad de sus

reglas, han hecho posible que permanezca vigente a lo largo de los siglos hasta la
actualidad. Un claro ejemplo de la evolución y modernización del pilla-pilla es la
competición internacional conocida como “Chase Tag”.

Esta modalidad toma como base la dinámica original del juego, pero la lleva a
un nivel profesional, donde los participantes -expertos en parkour y otras disciplinas
acrobáticas- deben demostrar gran habilidad y estrategia para esquivar y atrapar a
sus oponentes en un entorno especialmente diseñado.

La combinación de sencillez en el objetivo y la espectacularidad de las
habilidades físicas, ha generado una competencia que se ha vuelto cada vez más
popular, impulsada por eventos televisados y millones de visualizaciones en
plataformas digitales. Así, el pilla-pilla no solo sobrevive, sino que sigue
reinventándose y adaptándose a los nuevos tiempos y formas de entretenimiento.

Fig. 2, Imagen World Chase Tag

Reglas básicas del Chase Tag (World Chase Tag®, 2025):

-​ Participantes: Se divide en dos equipos de hasta 5 jugadores, pero solo
participan 2 a la vez (uno por equipo).

12

https://www.zotero.org/google-docs/?SoCnAK

-​ Designación del perseguidor: Al inicio, se elige mediante sorteo que equipo
arranca como perseguidor (“Chaser”) el otro será evasor o (“Evader”).

-​ Objetivo: En un periodo de 20 segundos, el “Chaser” debe atrapar al “Evader”
tocándolo físicamente con la mano.

-​ Puntuación: Solo puede ganar puntos el equipo del jugador que está como
“Evader”. Si en el tiempo dado el “Evader” no es tocado, su equipo suma un
punto y el equipo del “Chaser” debe cambiar de representante.

-​ Cambio de rol: Si el “Evader” es tocado, este sale del campo y el jugador
“Chaser” pasa a ser el nuevo “Evader”. El equipo del jugador eliminado debe
incorporar a un nuevo miembro como “Chaser”.

-​ Zona de juego: El área se denomina “Quad” y está delimitada físicamente,
contando con obstáculos variables según la competición o el nivel de
dificultad. Salir de la zona señalizada implica la pérdida automática de la
persecución.

II.2.​ Videojuegos como herramienta de aprendizaje y
pygame

Los videojuegos, tradicionalmente concebidos como una forma de

entretenimiento, han demostrado en los últimos años un enorme potencial como
herramienta de aprendizaje. Ejemplos de esto los podemos ver en salones de
entrenamiento dentro de diferentes industrias como la Conducción, Transporte y
Logística. Como por ejemplo, los simuladores para pilotos de Fórmula 1, donde
ayuda a los conductores a ganar incrementan sus niveles de seguridad al realizar
una maniobra, permitiendo familiarizarse con procedimientos sin riesgos reales.

Otro ejemplo son las escuelas de aviación para vuelos comerciales, que
permiten practicar maniobras, procedimientos de emergencia, navegación y
comunicación sin riesgos.

Un ejemplo clásico en la informática, es el del popular juego “Minesweeper” o
“Buscaminas” como se conoce en los países de habla hispana. Este juego fue
creado con la intención de ser un juego de estrategía, pero muchos profesores en
escuelas lo utilizaban para enseñar a nuevos usuarios a interactuar con el mouse de
la computadora, permitiendo a los usuarios ganar habilidad y precisión al clickear.

Todo esto es posible gracias al carácter interactivo que aportan los
videojuegos y que se ve aumentada por la creatividad de los desarrolladores al
crear entornos dinámicos donde los usuarios pueden experimentar, tomar
decisiones y recibir retroalimentación inmediata para aprender de los errores, todo
esto dentro de un ambiente seguro y controlado.

13

Diversos estudios han señalado que los videojuegos creados con fines
educativos pueden mejorar la retención de conocimientos, el desarrollo de
habilidades cognitivas (como la resolución de problemas, la memoria y la atención)
e incluso fomentar competencias sociales, como el trabajo en equipo y la
comunicación. Además, permiten la personalización del ritmo de aprendizaje y la
adaptación de los contenidos a las necesidades individuales de cada usuario,
incrementando así la motivación y el compromiso con el proceso formativo.

Por otro lado, los videojuegos facilitan la simulación de escenarios complejos
y abstractos que serían difíciles de replicar en un entorno tradicional, como
experimentos científicos, situaciones históricas o contextos laborales. De esta
manera, los estudiantes pueden aprender de manera activa y significativa,
construyendo su propio conocimiento a través de la experiencia directa.

En resumen, el uso de videojuegos en el ámbito educativo no solo transforma
la manera en que se transmiten los contenidos, sino que también abre nuevas
posibilidades para la enseñanza y el aprendizaje, haciendo el proceso más atractivo,
efectivo y accesible para un público diverso.

II.3.​ Inteligencia Artificial y Machine Learning

La inteligencia artificial (IA) hace referencia a la creación o usos de algoritmos
computarizados que sean capaces de emular la mente humana en la realización de
actividades. Sin embargo, los psicólogos, biólogos y neurocientíficos, siguen
teniendo una noción difusa de la inteligencia, tanto en humanos como en máquinas.

Por esta razón, quienes investigan en el ámbito de la IA suelen emplear
preferentemente el término “racionalidad”. La racionalidad como significado, según
lo indica la Real Academia Española, es la capacidad de actuar, pensar y juzgar de
acuerdo con la razón y la lógica. Que podemos interpretar como la capacidad para
poder seleccionar la mejor acción posible con la intención de alcanzar un objetivo
específico, considerando criterios de optimización y los recursos disponibles.
Aunque la racionalidad no agota el significado de inteligencia, constituye un
elemento fundamental.

En este contexto, se utiliza la expresión “sistema de IA” para referirse a
cualquier componente, ya sea de software o hardware, que integre IA.
Habitualmente, estos sistemas forman parte de plataformas más amplias y no
suelen operar de forma completamente autónoma. Así, de acuerdo con uno de los
manuales más conocidos de la disciplina, un sistema de IA se caracteriza
principalmente por su racionalidad (Dúo Terrón et al., 2023).

Para lograrla, el sistema percibe su entorno mediante sensores, recopila e
interpreta datos, razona sobre la información obtenida, decide la mejor acción
posible y actúa en consecuencia a través de actuadores, modificando así su

14

https://www.zotero.org/google-docs/?Z6kQvW

entorno. Los sistemas de IA pueden recurrir tanto a reglas simbólicas como a
modelos numéricos basados en aprendizaje, y son capaces de adaptar su
comportamiento analizando el impacto de sus acciones previas en el entorno.

El aprendizaje automático (Machine Learning, ML) es una rama de la
inteligencia artificial que se centra en el desarrollo de algoritmos y técnicas que
permiten a los sistemas aprender patrones y tomar decisiones a partir de datos, sin
estar explícitamente programados para realizar tareas específicas (Mitchell, 1997).

Dentro de los distintos tipos de machine learning podemos encontrar:

El aprendizaje supervisado, el cual se utiliza para tareas de clasificación y
regresión. Este modelo aprende a partir de una base de datos previamente
etiquetados, es decir, cada entrada tiene una respuesta correcta y conocida. Esto
con el objetivo de que el algoritmo encuentre una función patrones que permitan
predecir la etiqueta de datos no vistos.

El aprendizaje no supervisado, se utiliza para tareas de segmentación de
clientes, detección de anomalías y reducción de dimensionalidad, particularmente,
donde los datos no están etiquetados. El algoritmo debe encontrar por sí mismo los
patrones o la estructura de los datos, como agrupación o asociación entre ellos.

El aprendizaje por refuerzo (Reinforcement Learning - RL) consiste en
aprender qué hacer, cómo relacionar situaciones con acciones, para maximizar una
señal de recompensa numérica. Al agente de aprendizaje no se le dice qué
acciones tomar, sino que debe descubrir cuáles acciones producen la mayor
recompensa al probarlas.

En los casos más interesantes y desafiantes, las acciones pueden afectar no
solo la recompensa inmediata, sino también la siguiente situación y, a través de ella,
todas las recompensas subsiguientes. Estas dos características, la búsqueda por
prueba y error y la recompensa retardada, son los dos rasgos distintivos más
importantes del RL (Dúo Terrón et al., 2023).

II.3.1.​ Exploración - Explotación

Uno de los desafíos que surgen en el RL, y no en otros tipos de aprendizaje,
es la disyuntiva entre exploración y explotación. Para obtener una gran cantidad de
recompensa, un agente de RL debe preferir acciones que ha probado en el pasado
y que ha encontrado efectivas para producir recompensa. Pero para descubrir tales
acciones, tiene que probar acciones que no ha seleccionado antes.

El agente tiene que explotar lo que ya ha experimentado para obtener
recompensa, pero también tiene que explorar para tomar mejores decisiones de
acción en el futuro. El dilema es que ni la exploración ni la explotación pueden

15

https://www.zotero.org/google-docs/?dgC59z
https://www.zotero.org/google-docs/?5H4dpz

buscarse de forma exclusiva ya que dará a lugar al fracaso en la tarea conjunta. El
agente debe probar (explorar) una variedad de acciones y favorecer
progresivamente (explotar) aquellas que parecen ser mejores.

En una tarea estocástica, cada acción debe probarse muchas veces para
obtener una estimación fiable de su recompensa esperada. El dilema
exploración-explotación ha sido estudiado intensamente por matemáticos durante
muchas décadas, y sin embargo, sigue sin resolverse (Sutton & Barto, 2014).

Por ahora, simplemente señalamos que todo el problema de equilibrar la
exploración y la explotación ni siquiera surge en el aprendizaje supervisado y no
supervisado, al menos en las formas más puras de estos paradigmas.

II.3.2.​ Algoritmos de Machine Learning por refuerzo

Más allá del agente y el entorno, se pueden identificar cuatro subelementos
principales en un sistema de aprendizaje por refuerzo (Reinforcement Learning -
RL): una política, una señal de recompensa, una función de valor y, opcionalmente,
un modelo del entorno (Sutton & Barto, 2014).

Una política es la que define las reglas según las cuales los agentes se
comportan en un momento dado. A grandes rasgos, una política es un mapeo de los
estados percibidos del entorno a las acciones que deben tomarse cuando se está en
esos estados. Corresponde a lo que en psicología se llamaría un conjunto de reglas
o asociaciones de estímulo-respuesta (Silver et al., 2016). En algunos casos, la
política puede ser una función simple o una tabla de consulta, mientras que en otros
puede implicar un cálculo extenso, como un proceso de persecución.

La política es el núcleo de un agente de RL en el sentido de que por sí sola
es suficiente para determinar el comportamiento. En general, las políticas pueden
ser estocásticas, especificando probabilidades para cada acción.

Una señal de recompensa define el objetivo de un problema de RL. En cada
paso de tiempo, el entorno envía al agente de RL un único número llamado
recompensa. El único objetivo del agente es maximizar la recompensa total que
recibe a largo plazo. La señal de recompensa, por lo tanto, define cuáles son los
eventos buenos y malos para el agente. En un sistema biológico, podríamos pensar
en las recompensas como análogas a las experiencias de placer o dolor. Son las
características inmediatas y definitorias del problema al que se enfrenta el agente.

La señal de recompensa es la base principal para alterar la política; si una
acción seleccionada por la política es seguida por una recompensa baja, entonces
la política puede cambiarse para seleccionar alguna otra acción en esa situación en
el futuro.

16

https://www.zotero.org/google-docs/?2IOQyc
https://www.zotero.org/google-docs/?0IZg2N
https://www.zotero.org/google-docs/?BdlXk7

En general, las señales de recompensa pueden ser funciones estocásticas
del estado del entorno y de las acciones tomadas.

Dentro de los algoritmos de RL podemos encontrar:

El Q-Learning, este es un algoritmo popular que utiliza la Ecuación de
Optimalidad de Bellman para aprender la función de valor de acción óptima
(Q-values) sin necesidad de un modelo del entorno. El Q-learning actualiza los
valores Q en función de la recompensa inmediata y el valor Q máximo esperado del
siguiente estado.

SARSA, este es similar al Q-learning, pero el valor del siguiente estado se
basa en la acción que realmente se toma, en lugar de la acción que maximiza el
valor.

II.3.2.1.​ Entorno de ejecución

En el Aprendizaje por Refuerzo (Reinforcement Learning - RL), el entorno es
el mundo con el que el agente interactúa. Para que este se considere que esté bien
definido, debe proporcionar una base sobre la cual el agente pueda aprender a
través de la interacción, buscando maximizar las recompensas recibidas a lo largo
del tiempo. Es el "campo de juego" y las "reglas" que el agente debe dominar.

Fig. 3, Cuadrícula Referencia para Entorno

Tabla de Valores de recompensa (Q-Table): representa a la tabla de

consulta utilizada en algoritmos de RL para guardar los valores de recompensa
obtenidos al cambiar de estado a través de una acción particular. La tabla tiene una
fila por cada estado existente y una columna por acción posible.

Estados Acciones
Quieto Arriba Abajo Izquierda Derecha

Estado 1

Estado 2
Estado 3
Estado N

Fig. 4, Ejemplo de registro de Q Table

17

Estados (States - S): Los estados representan todas las diferentes
situaciones o configuraciones en las que el agente puede encontrarse. Un estado
debe proporcionar suficiente información para que el agente tome una decisión
informada. Ejemplos de esto lo podemos encontrar en el Ajedrez, que hace
referencia a la posición de todas las piezas en el tablero. Otro ejemplo puede ser un
Robot móvil, la ubicación actual del robot (coordenadas X, Y), su orientación, la
presencia de obstáculos cercanos.

Acciones (Actions - A): Las acciones son los movimientos o decisiones que
el agente puede tomar cuando se encuentra en un estado particular. Estas acciones
tomadas afectan directamente los cambios de estado. Siguiendo los ejemplos antes
mencionados, una acción en el Ajedrez, es mover una pieza de una casilla a otra.
Para el caso del Robot móvil las acciones son girar a la izquierda, avanzar y
detenerse.

II.3.2.2.​ Bellman’s Equation

La Ecuación de Bellman es un concepto fundamental en el RL. Su principal
uso es permitir a los agentes tomar decisiones óptimas en entornos dinámicos e
inciertos, descomponiendo un problema complejo de toma de decisiones en pasos
más pequeños y manejables. En esencia, la Ecuación de Bellman establece una
relación recursiva entre el valor de un estado (o un par estado-acción) en un
momento dado y el valor de los estados futuros. Esto permite calcular el valor
esperado a largo plazo de estar en un estado particular y seguir una política
determinada.

 𝑄(𝑆
1
, 𝐴

1
) = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑆

1
) + γ 𝑚𝑎𝑥

𝐴'
𝑄(𝑆' , 𝐴') []

-1 -1

-1 -1 -1

-1 -1 10

Fig. 5, Ejemplo de registro de Recompensas

La versión de la Ecuación de Bellman conocida como Ecuación de
Optimalidad de Bellman es fundamental para encontrar la política óptima (Dúo Terrón
et al., 2023). Esta ecuación busca la acción que maximiza la recompensa esperada a

18

https://www.zotero.org/google-docs/?ea50ww
https://www.zotero.org/google-docs/?ea50ww

largo plazo en cada estado. Al resolver la Ecuación de Optimalidad de Bellman, se
puede determinar la mejor acción a tomar en cada situación para maximizar las
recompensas acumuladas.

II.3.2.3.​ Value-based

Mientras que la señal de recompensa indica lo que es bueno en un sentido
inmediato, la función de valor obtenida de la ecuación de Bellman indica lo que es
bueno a largo plazo. A grandes rasgos, el valor de un estado es la cantidad total de
recompensa que un agente puede esperar acumular en el futuro, comenzando
desde ese estado. Mientras que las recompensas determinan la utilidad intrínseca e
inmediata de los estados del entorno, los valores indican la utilidad a largo plazo de
los estados, teniendo en cuenta los estados que probablemente seguirán y las
recompensas disponibles en esos estados.

II.3.2.4.​ Aprendizaje con Temporal Difference Error (TD)

Dentro del RL se aplican técnicas adicionales como la diferencia temporal
(TD) para mejorar la capacidad de aprendizaje de los agentes de IA a partir de
experiencias parciales. Esto ayuda a que la toma de decisiones sea más óptima en
entornos dinámicos y desconocidos, sin la necesidad de contar con un modelo
explícito del entorno.

Esta forma de aprendizaje es fundamental para estimar las funciones de valor
de estado (V(s)) y las funciones de valor de acción (Q(s,a)). Estas funciones
representan la recompensa esperada a largo plazo para cada estado o al tomar una
acción específica desde un estado dado. A diferencia de los métodos Monte Carlo,
que esperan hasta el final de un episodio para actualizar sus estimaciones, los
métodos TD actualizan las predicciones incrementalmente en cada paso, lo que
permite un aprendizaje más eficiente en entornos con recompensas diferidas o
largos episodios.

 𝑇𝐷 𝐸𝑟𝑟𝑜𝑟 = 𝑄(𝑆
1
, 𝐴

1
)

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑑𝑜
− 𝑄(𝑆

1
, 𝐴)

𝐸𝑠𝑝𝑒𝑟𝑎𝑑𝑜

Tanto SARSA y Q-learning utilizan este TD error, para la actualización de

valores de recompensa.

II.3.2.5.​ Esperado vs. Actualización de Muestra

La clave del Q-learning es cómo la Tabla de Valores (Q-table) se actualiza
iterativamente a medida que el agente interactúa con el entorno. Cada vez que el

19

agente realiza una acción, observa una recompensa, y transita a un nuevo estado,
utilizando esta información para refinar sus estimaciones de valor Q.

 𝑄(𝑆
1
, 𝐴

1
)' ← 𝑄(𝑆

1
, 𝐴

1
) + α 𝑇𝐷 𝐸𝑟𝑟𝑜𝑟()

La actualización de la Q-table ocurre de forma iterativa durante el

entrenamiento:

Inicialización: la Q-table se inicializa con valores arbitrarios (comúnmente
ceros o números aleatorios pequeños).

Exploración y Explotación: en cada paso de tiempo, el agente se encuentra
en un estado. Utiliza una política de selección de acciones (comúnmente ϵ-greedy)
para elegir una acción:

-​ Con probabilidad ϵ (epsilon), el agente explora y elige una acción
aleatoria para descubrir nuevas posibilidades.

-​ Con probabilidad 1−ϵ, el agente explota y elige la acción que tiene el

valor Q(S,A) más alto en el estado actual, basándose en su
conocimiento actual.

Ejecución de la Acción: es el movimiento definido que puede ejecutar el

agente.

Observación: es el valor de recompensa que recibe el agente cuando
transita los estados.

Actualización del Q-value: usando la fórmula de Bellman anterior, el agente
actualiza el valor Q(s,a) en la Q-table.

Nuevo Estado: el estado actual se convierte en el nuevo estado.

Este proceso se repite durante muchas iteraciones a las que llamamos
“episodios”, hasta que la Q-table converge, es decir, los valores Q ya no cambian
significativamente (Sutton & Barto, 2014).

II.4.​ Estado del arte

Dentro de este estudio se seleccionaron para consulta artículos y recursos
académicos con temáticas de aplicación de Reinforcement learning dentro de

20

https://www.zotero.org/google-docs/?Jsy0nM

estrategias de persecución-evasión. Se incluye una descripción que se usó como
base para su evaluación, inspiración o descarte en el presente trabajo.

II.4.1.​ Listado de documentación científica (ordenados por
enfoque)

II.4.1.1.​ Visión y aprendizaje distribuido en entornos complejos

"Viper: Visibility-based pursuit-evasion via reinforcement learning.”
Utiliza un modelo de atención gráfica para coordinar agentes que detectan
evasores. (Wang, Y., Cao, Y., Chiun, J., Koley, S., Pham, M., & Sartoretti, G. A.,
2024).

II.4.1.2.​ MADDPG en escenarios dinámicos y parcialmente observables
“Pursuit-Evasion for Car-like Robots with Sensor Constraints” Modela

un juego con agentes con restricciones cinemáticas. Utiliza Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) transfiriendo a robots reales (Gonultas &
Isler, 2025).

II.4.1.3.​ MAPPO en entornos complejos
"Distributed Pursuit–Evasion Game Decision-Making Based on

Multi-Agent Deep Reinforcement Learning” Este combina aprendizaje por
currículos automáticos con Multi-Agent Proximal Policy Optimization (MAPPO) (Lin
et al., 2025).

II.4.1.4.​ Implementación real con UAVs
"Pursuit-evasion game with online planning using deep reinforcement

learning” Desarrolla un sistema distribuidos para con MADDPG que predice la
trayectoria (Chen et al., 2025).

II.4.1.5.​ Comportamientos emergentes en entornos tabulares
"Emergent behaviors in multiagent pursuit evasion games within a

bounded 2D grid world" Explora comportamientos emergentes detectados sobre
trayectorias en escenarios de cuadrícula (Xu & Dang, 2025).

II.4.1.6.​ Método clásico: aprendizaje basado en modelos en cuadrícula
pequeñas

“Multi-Agent Model-Based Reinforcement Learning Experiments in the
Pursuit Evasion Game.” R-max en cuadrículas comparando enfoques
centralizados vs distribuidos (Bouzy & Métivier, 2007).

21

https://www.zotero.org/google-docs/?4sYf0J
https://www.zotero.org/google-docs/?4sYf0J
https://www.zotero.org/google-docs/?BTrrrh
https://www.zotero.org/google-docs/?BTrrrh
https://www.zotero.org/google-docs/?i8tUjb
https://www.zotero.org/google-docs/?i8tUjb
https://www.zotero.org/google-docs/?nXPQYK
https://www.zotero.org/google-docs/?e1pX0b
https://www.zotero.org/google-docs/?hZ5r1j

II.4.1.7.​ Swarm descentralizado con MADDPG en espacio continuo
"Pursuit-evasion with Decentralized Robotic Swarm in Continuous State

Space and Action Space via Deep Reinforcement Learning” Multi-Agent
Proximal Policy Optimization (MAPPO) para robots en espacios continuos (Singh
et al., 2020).

II.4.1.8.​ Aplicaciones especializadas: microagentes o entornos físicos
únicos

"Reinforcement learning for pursuit and evasion of microswimmers at
low Reynolds number” RL en micro agentes para persecución–evasión (Borra
et al., 2022).

"Intelligent Pursuit–Evasion Game Based on Deep Reinforcement
Learning for Hypersonic Vehicles” entrenamiento reforzado basado en juegos
(Gao et al., 2023).

II.4.1.9.​ Adversario consciente y modelado de oponentes
"An Opponent-Aware Reinforcement Learning Method for Team-to-Team

Multi-Vehicle Pursuit via Maximizing Mutual Information Indicator” Modelado de
estrategia del oponente mediante DQN (Wang et al., 2022).

"Adversary agent reinforcement learning for pursuit-evasion”
Entrenamiento en entornos de visibilidad limitada, mediante agentes adversarios
(Huang, 2021).

"Decentralized Multi-Agent Pursuit using Deep Reinforcement Learning"
Modelado con recompensas individuales/colectivas con aplicación real reales
(Souza et al., 2020).

"Diffusion-Reinforcement Learning Hierarchical Motion Planning in
Multi-agent Adversarial Games" Modelo difuso de planificación global con RL en
escenarios parcialmente observables (Wu et al., 2024).

II.4.2.​ Comparación de trabajos con RL relevantes a
pursuit–evasion

Referencia Entorno Algoritmo
principal Aplicación práctica

(Bouzy & Métivier,
2007)

Cuadrícula 2D
acotada

Q-learning tabular Simulación de
comportamientos

22

https://www.zotero.org/google-docs/?RgPn15
https://www.zotero.org/google-docs/?RgPn15
https://www.zotero.org/google-docs/?LGhkjk
https://www.zotero.org/google-docs/?LGhkjk
https://www.zotero.org/google-docs/?Sc5nMG
https://www.zotero.org/google-docs/?O47MKp
https://www.zotero.org/google-docs/?f3SZS8
https://www.zotero.org/google-docs/?NocDBD
https://www.zotero.org/google-docs/?ALmIOs
https://www.zotero.org/google-docs/?cLFhUi
https://www.zotero.org/google-docs/?cLFhUi

emergentes (flanco,
emboscada)

(Singh et al., 2020) Espacio continuo MADDPG (deep
RL multiagente)

Simulación de robots en
enjambre, control
descentralizado

(Wang et al., 2022) Urbano simulado,
parcialmente
observable

DQN + opponent
modeling

Persecución en
vehículos urbanos
(simulación avanzada)

(Souza et al., 2020) Espacio continuo Curriculum
learning +
DDPG/MADDPG

Transferencia de
políticas a drones reales

(Wang, Y., Cao, Y.,
Chiun, J., Koley, S.,
Pham, M., &
Sartoretti, G. A.,
2024)

Entorno complejo
con visibilidad
limitada

GAT (Graph
Attention) +
MARL

Simulación con
percepción visual
realista

(Gonultas & Isler,
2025)

Entorno con
restricciones de
visión y sensores

MADDPG +
Curriculum

Transferencia parcial a
robots reales

(Lin et al., 2025) Espacio
continuo,
multi-UAV

MAPPO +
self-play

Estrategias cooperativas
de UAVs

(Chen et al., 2025) Espacio continuo MADDPG +
predicción de
trayectoria

Implementación en
UAVs físicos
(quadcopters)

(Borra et al., 2022) Medio físico
fluido (simulación
continua)

RL tabular / deep
RL básico

Microswimmers en
entornos de dinámica de
fluidos

(Gao et al., 2023) Espacio
continuo,
dinámica
extrema

TD3 (Twin
Delayed DDPG)

Aplicación militar
(vehículos hipersónicos)

II.4.3.​ Breve contexto y observaciones comparativas

II.4.3.1.​ Entorno (cuadrícula vs continuo)

Cuadrícula 2D: trabajos iniciales y académicos (Bouzy & Métivier, 2007); (Xu
& Dang, 2025). Se relacionan con algoritmo Q-learning en cuadrícula, similar al
utilizado en este TFM.

23

https://www.zotero.org/google-docs/?jWct4U
https://www.zotero.org/google-docs/?CuFmRF
https://www.zotero.org/google-docs/?ew6y1N
https://www.zotero.org/google-docs/?ew6y1N
https://www.zotero.org/google-docs/?ew6y1N
https://www.zotero.org/google-docs/?ew6y1N
https://www.zotero.org/google-docs/?ew6y1N
https://www.zotero.org/google-docs/?Mnl8u3
https://www.zotero.org/google-docs/?Mnl8u3
https://www.zotero.org/google-docs/?rsEjd4
https://www.zotero.org/google-docs/?RZHeEt
https://www.zotero.org/google-docs/?Co64B7
https://www.zotero.org/google-docs/?q5Ls6L
https://www.zotero.org/google-docs/?uJDkOo
https://www.zotero.org/google-docs/?OCGe96
https://www.zotero.org/google-docs/?OCGe96

Espacio continuo: la mayoría de papers encontrados (UAVs, microswimmers,
entornos urbanos) usan espacios continuos. Permite mayor capacidad de
movimiento, pero es necesario aplicar algoritmos profundos (DQN, MADDPG,
MAPPO, TD3).

II.4.3.2.​ Algoritmos:

Q-learning tabular: aplicación para accionar en cuadrículas como en este
TFM.

Opponent-aware & graph-based: necesario para mejorar la coordinación de
movimientos y la percepción del ambiente.

II.4.3.3.​ Aplicaciones prácticas:

Simulación tabular: utilizada para la prueba de hipótesis (ej. comportamiento
emergente).

Robótica: tendencia en aumento en los últimos años (MADDPG, MAPPO).
Escenarios especializados: fluidos (micro swimmers) o militares (misiles

hipersónicos) muestran aplicaciones en sistemas persecución–evasión.

En resumen, de la revisión podemos confirmar que el problema de
persecución–evasión ha sido ampliamente estudiado en el ámbito del reinforcement
learning, tanto en entornos de cuadrículas como en aplicaciones espacios continuos
y sistemas multiagente.

Estos trabajos demuestran que la persecución–evasión es un dominio válido
para ser analizado a fondo y evaluar la coordinación, métodos de
exploración–explotación y los comportamientos emergentes de las interacciones.

Por tanto, el presente TFM aporta una contribución adicional diferenciada, ya
que sitúa el problema en el ámbito de los videojuegos, utilizando un enfoque de
Q-learning tabular dentro de entornos de cuadrícula, permitiendo generar un
prototipo didáctico, reproducible e interpretable.

Si bien esta aplicación no alcanzó a implementar modelos basados en Deep
Reinforcement Learning, esta aproximación ofrece valor académico al mostrar de
forma clara y experimental cómo emergen estrategias de persecución y evasión,
sentando una base pedagógica y un desarrollo con validación preliminar que puede
ser adaptada en futuros trabajos hacia escenarios más realistas y algoritmos de
Deep Learning.

24

III.​ Metodología

En este capítulo se expondrán las metodologías escogidas y utilizadas para
la realización, implementación y cumplimiento de los objetivos planteados para el
presente proyecto.

La presente investigación propone la creación de algoritmos orientados a la

ayuda en el desarrollo y evaluación para un entorno de videojuego que simula la
dinámica del pilla-pilla, integrando agentes inteligentes mediante técnicas de
aprendizaje por refuerzo (Reinforcement Learning - RL).

III.1.​ Diseño

La investigación se desarrollará bajo un enfoque exploratorio de tipo aplicado,
y finalizará con la comprobación de si la aplicación consciente de herramientas de
IA son funcionales o no. Se optará por un diseño cuasiexperimental, ya que se
manipulan variables independientes (implementación y configuración de los
agentes, tipos de recompensas, etc.) para observar su impacto en variables
dependientes como el desempeño, la adaptabilidad y la efectividad de los agentes
durante las partidas.

Para implementar los agentes de IA, necesitamos que el diseño se desarrolle

por etapas, partiendo de los elementos más básicos y específicos del proyecto. De
esta forma, comenzamos identificando y desarrollando los componentes o módulos
individuales que serán necesarios, asegurándonos de entender y optimizar cada
parte de manera independiente antes de integrarlas en sistemas más complejos.

La metodología de ML utilizada es CRISP-DM (Cross Industry Standard

Process for Data Mining) la cual describe como el ciclo de vida para proyectos de
datos no es un método lineal, sino un modelo cíclico y flexible. Esto permite avanzar
por bloques y regresar a fases anteriores, si la información no está en condiciones o
no es suficiente para avanzar (Kotsiantis et al., 2006).

Este proceso está compuesto por seis fases principales.

1.​ Comprensión del negocio (Business Understanding): Es la etapa inicial
que tiene como misión, comprender los objetivos del proyecto desde el punto
de vista del negocio.

25

https://www.zotero.org/google-docs/?Of1Orw

2.​ Comprensión de los datos (Data Understanding): Es la etapa de
recolección y familiarización de datos y requerimientos iniciales. Mediante la
exploración de sus propiedades, se identifican problemas de calidad para la
formulación de hipótesis preliminares.

3.​ Preparación de los datos (Data Preparation): Es la etapa donde se limpian,

transforman y seleccionan los requerimientos para ser integrados al proyecto.
Se evalúan faltantes, además de corregir errores y construir hipótesis para
modelar.

4.​ Modelado (Modeling): En esta fase se elige el algoritmo de aprendizaje más

adecuado según el problema a resolver según la clasificación seleccionada.
Se entrena utilizando el modelo ajustando sus parámetros internos para
minimizar el error y optimizar el rendimiento.

5.​ Evaluación y validación (Evaluation): Una vez entrenado el modelo, se

evalúa su desempeño utilizando el conjunto de pruebas y métricas
específicas, para verificar su capacidad de generalización. Si el desempeño
no es satisfactorio, se pueden ajustar los parámetros del modelo (hiper
parámetros), seleccionar nuevas características o incluso probar con otros
algoritmos.

6.​ Implementación y monitoreo (Deployment): Finalmente, el modelo

aprendido se integra en un entorno de producción, donde debe ser
monitoreado y actualizado periódicamente con nuevos datos para mantener
su eficacia.

Fig. 6, Esquema CRISP-DM

26

CRISP-DM es una metodología iterativa que permite construir sistemas
capaces de adaptarse y mejorar a medida que se dispone de más datos, siendo
fundamental en aplicaciones como la visión por computadora, el procesamiento de
lenguaje natural y la predicción de series temporales.

Aunque el proyecto se desarrolló con una metodología CRISP-DM, nos

basamos en un esquema "Bottom-Up" para la realización de avances. Partiendo de
la construcción del proyecto desde los niveles más bajos, es decir, a partir de los
detalles y funcionalidades particulares de cada módulo.

Como por ejemplo la comprensión del problema para diseño de entorno y
primeros accionares, definición de estados y recompensas (preparación de los
datos), implementación del algoritmo de RL (modelado)

Cada componente se diseña y evalúa por separado, mediante métricas o
funcionalidad (evaluación), para ser integrados posteriormente según se coordinen
los entregables para formar el sistema completo (despliegue), en nuestro caso, un
prototipo de videojuego de persecución-evasión.

Por medio de este proceso de integración gradual, se logra una solución
global a partir de la suma de componentes bien definidos, permitiendo identificar y
resolver posibles problemas desde las etapas iniciales de desarrollo..

Esta metodología es una estrategia de procesamiento de información
utilizada especialmente en la ingeniería y el desarrollo de sistemas, ya que favorece
la robustez y flexibilidad en el diseño, permitiendo identificar y resolver posibles
problemas desde las etapas iniciales de desarrollo.

III.2.​ Participantes

Dado que el sistema simulado se centra en la interacción entre agentes
virtuales, los "participantes" principales serán los agentes inteligentes codificados
para desempeñar los roles de perseguidor y evasor dentro del juego.

Únicamente el autor del presente trabajo ha participado en la realización de
evaluaciones de funcionalidad y apreciativas sobre el desenvolvimiento de los
agentes en el entorno principal de Juego, de esta manera se pudo validar el
desempeño y la interacción humano-agente.

27

III.3.​ Instrumentos

III.3.1.​ Recursos de Hardware

-​ Procesador: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (1.69 GHz).

-​ RAM: 16,0 GB (15,4 GB usable).

III.3.2.​ Recursos de Software y Lenguaje de Programación
-​ Windows 11 Pro (versión 24H2): Sistema Operativo.

-​ Visual Studio Code (versión 1.103.2): Editor de Código.

-​ Lenguaje de Programación Python (versión 3.12.10): Lenguaje principal
sobre el que se ha desarrollado toda la lógica del proyecto, debido a su
versatilidad y el amplio ecosistema de bibliotecas disponibles (Wouters, 2025).

-​ Piskel: Aplicación de edición de imagen y creación de pixel art utilizada para
el diseño y la elaboración de todos los recursos gráficos y sprites del
videojuego (Descottes, 2017).

III.3.2.1.​ Bibliotecas de Python

-​ Pygame (versión 2.6.1): Biblioteca principal para el desarrollo del entorno
gráfico del videojuego, la gestión de eventos (teclado, ratón) y la simulación
interactiva de las partidas (Pygame, s. f.).

-​ NumPy (versión 2.1.3): Utilizada para operaciones de cálculo numérico y la
gestión eficiente de matrices, fundamental para la lógica subyacente de la
simulación.

-​ Pandas (versión 2.3.1): Empleada para la manipulación y el análisis de los
datos generados durante las simulaciones.

-​ Matplotlib (versión 3.10.3): Usada para la creación de gráficos y la
visualización de los resultados obtenidos.

-​ Pickle (versión 4): Biblioteca estándar de Python, utilizada para serializar y
guardar el estado de los objetos y partidas, permitiendo la persistencia de
datos.

-​ Random (Seed 42): Biblioteca estándar de Python, empleada para la
generación de números pseudoaleatorios necesarios en la simulación de
eventos estocásticos.

28

https://www.zotero.org/google-docs/?6teKkK
https://www.zotero.org/google-docs/?1Ac2mg
https://www.zotero.org/google-docs/?tBxxPi

III.3.2.2.​ Gestión del código

-​ Git: Se utilizó el sistema de control de versiones Git para el seguimiento y la
gestión de los cambios en el código.

-​ Política de Versionado: Se aplicó una política de versionado con Git,
identificando cada nueva versión con un commit hash de confirmación único.
Esto garantiza la trazabilidad y la reproducibilidad de las versiones.

-​ Versión actual: Git con el hash c5a61e5b0a4ebde0155ae591b45c3d1e4da8a867.

III.3.3.​ Herramientas de apoyo con IA
-​ Google Gemini (2.5 Fast all-around help): Modelo de lenguaje avanzado

utilizado como asistente para la resolución de problemas lógicos, la
optimización de algoritmos y el apoyo en el desarrollo de subprogramas.

-​ GitHub Copilot (GPT-4.1): Herramienta de autocompletado de código
integrada en el editor, usada para agilizar el proceso de programación y la
implementación de funcionalidades.

III.4.​ Procedimiento

III.4.1.​ Esquema de trabajo

Se parte de la realización de un esquema que sirva como guía para la realización de
los módulos a utilizar. Este esquema consta de 5 módulos:

-​ El primero es el módulo de Juego, este es el principal y está dedicado a la
configuración del juego, comunicándose con el resto de módulos mediante la
realización de consultas para la obtención de información requerida.

-​ El segundo es el módulo de Entorno, este se encargará del diseño del campo de
juego donde los agentes interactúan, además de las posibles acciones que estos
agentes pueden tomar.

-​ El tercero es el módulo de Entrenamiento, este será el responsable de la gestión y
organización de los entrenamientos de los agentes.

-​ El cuarto y quinto son los módulos de Agentes, son dos módulos idénticos, cada
uno dedicado a la gestión y accionar de cada agente.

29

Fig. 7, Diagrama de Módulos

​ Considerando las restricciones de tiempo inherentes a la ejecución del
proyecto, basamos la planificación inicial en un esquema de trabajo por entregable
probados antes de integrarse, para generar avances específicos a producto
terminado que nos permitan ir completando el proyecto.

Fig. 8, Planificación de Trabajo

III.4.2.​ Herramientas para recursos gráficos y lógicas de juegos

Para la generación de recursos, como imágenes, y el desarrollo de
subprogramas auxiliares, se han utilizado los módulos para edición de imágenes y
los modelos de lenguaje de las herramientas de IA de código abierto Gemini (2.5) y
Copilot (GPT-4.1).

30

III.4.2.1.​ Recursos Gráficos

Para la generación de recursos visuales, se llevó a cabo una serie de
pruebas utilizando modelos de inteligencia artificial generativa. El proceso consistió
en el uso de los módulos de gestión de imágenes de Gemini y Copilot, a los que se
alimentó con imágenes de muestra, prompts y descripciones textuales detalladas.

Se emplearon diferentes prompts o instrucciones de texto, variando los
parámetros de estilo, color y composición, con el objetivo de obtener imágenes de
alta calidad que fueran coherentes con los requisitos del proyecto.

Fig. 9, Ejemplo de imagen de movimiento de personaje

La evaluación de los resultados se llevó a cabo de manera sistemática,

comparando la fluidez vista de las imágenes generadas dentro de los módulos del
juego.

III.4.2.2.​ Lógicas de Juegos

Para la generación de recursos de lógicas de juego, al igual que con las
imágenes se llevó a cabo una serie de pruebas utilizando modelos de inteligencia
artificial generativa. En esta oportunidad el proceso consistió en el uso de los
módulos LLM de Gemini y Copilot, a los que se alimentó con prompts y
descripciones textuales detalladas.

Se utilizaron variaciones de prompts e instrucciones de texto, variando las
redacciones y alcance de los pedidos, con el objetivo de ver hasta donde se podían
generar códigos funcionales.

La evaluación de resultados se llevó a cabo de manera sistemática,
comparando funcionalidad, usabilidad e integración con cada uno de los módulos
del proyecto.

III.4.3.​ Elaboración de entorno en Python

31

III.4.3.1.​ Selección de Aplicativo o librería para el Entorno

En este apartado se identifican las herramientas de inteligencia artificial de
código abierto evaluadas para la generación de recursos de imágenes y el
desarrollo de subprogramas auxiliares, luego realizamos la selección de las más
adecuada para la realización del TFM.

Unity: Uno de los motores más populares y robustos, utilizado tanto por
estudios independientes como por grandes empresas. Su versión Open Source
(Personal) es muy completa y permite exportar a múltiples plataformas. Al igual que
Unreal, tiene un umbral de costos antes de que se requiera una licencia de pago.

Se consideró como primera opción, ya que es una de las aplicaciones de
desarrollo más populares del mercado y muchos de los juegos actuales en muchas
plataformas son desarrollados con esta (Ej. Hollow Knight, Cuphead, Fall Guys y
Among Us).

Utiliza el lenguaje de programación C# y actualmente está promocionando el
uso de Agentes de IA dentro de su entorno. Dentro de sus ventajas encontramos
que debido a su alta popularidad, dispone de una enorme cantidad de recursos
disponibles, tutoriales, cursos y mucha documentación para aprender.

Si bien era una opción gratuita viable, se descartó. Esto se debe a que la
implementación de agentes es en formato caja negra, y no es posible aplicar
ninguna de las estrategias de Machine Learning o IA para configurar o modificar
casos de estudios, diferentes a las presentadas por la herramienta.

Godot Engine: Una de las mejores opciones, es de código abierto,
completamente gratuito y muy versátil para crear juegos 2D y 3D. Es muy popular
entre desarrolladores independientes por su facilidad de uso y la activa comunidad.

Se estudió como alternativa durante el desarrollo, también cuenta con gran
popularidad dentro de la comunidad de desarrollo de videojuegos. Esta herramienta,
además de desarrollos 3D, nos presenta la posibilidad de realizar desarrollos en 2D,
los cuales son más sencillos en cuanto a la cantidad de variables a manejar, así
poder realizar un entregable más completo inicialmente.

Respecto a recursos de aprendizaje, pasa algo similar a Unity. Debido a su
popularidad, es muy accesible a la hora de conseguir material de apoyo y tutoriales
para implementar pequeños arreglos. Siguiendo en la línea de la implementación de
IA, incluye una opción para desarrollo de agente de IA.

El uso de IA es más complejo de implementar que en el caso de Unity,
aunque también da la posibilidad de poder acceder a interactuar con el desarrollo
del agente. El problema en este caso, es que Godot utiliza principalmente un
lenguaje de programación propio llamado GDScript.

32

Pygame (Pygame Software Foundation, 2024): Especialmente enfocado en el
desarrollo de juegos 2D. Una de las herramientas más prácticas, ya que es una
librería de Python completamente Open Source. Muy accesible para desarrolladores
sin experiencia que solo quieren realizar pruebas de funcionamiento o iniciar en el
mundo del desarrollo de videojuegos.

Es la opción más genérica y sencilla de aplicar, ya que es una librería de
Python. Al utilizar esta podemos evitar inconvenientes de incompatibilidad entre
lenguajes y permite acceder a todas las variables y a todas las instancias del
código, además de poder realizar fragmentos de código combinando módulos si es
requerido.

Es la opción de menor curva de aprendizaje y para este punto proporciona la
potencia de desarrollo necesaria para la realización de las pruebas que componen
este trabajo.

III.4.3.2.​ Diseño de entorno

Para el desarrollo del entorno del videojuego en Python, se utilizó la librería
Pygame, permitiendo emular la dinámica persecución-evasión, mediante la
representación gráfica de los agentes y el área de juego. Además de esto, es un
bloque de programación referencial para el funcionamiento de otros módulos y tiene
dos funciones:

Creación de Entorno: Define las posibles acciones que pueden ser tomadas
por los agentes, además de sus posiciones de partida. También, es el módulo
encargado de crear y dar permitir a los usuarios poder visualizar el juego.

Calcular movimiento: Otra de las características de este módulo, es la
evaluación y aplicación de movimientos según las acciones tomadas por los
agentes.

Fig. 10, Diagrama del Entorno de juego

33

https://www.zotero.org/google-docs/?on0qNp

Este entorno consta de tres etapas: en primer lugar tenemos la capa de
fondo, luego contamos con la capa de obstáculos y por último las mecánicas de
juego.

Capa de Fondo: Este delimita el área de movimiento, que se considera como
el espacio donde se diseñarán rutas, colocarán los obstáculos y los jugadores para
que estos puedan interactuar.

Dentro de este entorno se delimita la vista de la pantalla y define la cantidad
de estados con los que vamos a estar interactuando dentro de las Q-Tables. El
máximo de estados que tenemos por jugador, viene de la multiplicación de las
coordenadas X, Y, Z, donde X, se refiere a la máxima cantidad posible de
movimientos horizontales, o la distancia máxima en movimientos de izquierda a
derecha.

Continuamos con Y, que se refiere a la máxima cantidad posible de
movimientos verticales, o la máxima distancia en movimientos de arriba a abajo. Y
por último Z, que se refiere a los posibles movimientos en el eje Z, como por
ejemplo superficies en dos planos diferentes superpuestos.

Fig. 11, Ejemplo de la capa de fondo del Entorno

Cálculo de ejemplo: para dos agentes dentro de un entorno de ejemplo con
dimensiones 3x3.

Ag1: Agente 1
Ag2: Agente 2

X = 3
Y = 3
Z = 1 (un solo plano)

 𝐸𝑠𝑡𝑎𝑑𝑜𝑠 = 𝐸𝑠𝑡𝑎𝑑𝑜𝑠(𝐴𝑔 1) × 𝐸𝑠𝑡𝑎𝑑𝑜𝑠(𝐴𝑔 1)
 𝐸𝑠𝑡𝑎𝑑𝑜𝑠 = (𝑋 × 𝑌 × 𝑍) × (𝑋 × 𝑌 × 𝑍)

 𝐸𝑠𝑡𝑎𝑑𝑜𝑠 = (3 × 3 × 1) × (3 × 3 × 1)
 𝐸𝑠𝑡𝑎𝑑𝑜𝑠 = 9 × 9

 𝐸𝑠𝑡𝑎𝑑𝑜𝑠 = 81

​ Esta capa de fondo, afecta directamente el aprendizaje de los agentes, ya
que todos los datos y tablas van sincronizados con este diseño. Si por alguna razón
este diseño cambia, va a afectar el resto de mecánicas y posibles acciones que los

34

agentes tomen. Ante cada modificación, se debe confirmar que los obstáculos y
puntos de partida sean funcionales con el nuevo tamaño.

Obstáculos: Los obstáculos son imágenes agregadas sobre el fondo.
Agregar obstáculos permite tener mayor diversidad de estrategias, crear caminos
para estrategias, superficies donde los agentes se pueden subir para acceder a un
segundo nivel o trampas que los agentes deberán esquivar.

Fig. 12, Ejemplo de Obstáculos

Es importante notar que cada obstáculo a agregar debe tener su mecánica de

acción, ya sea un bloqueo de cuadrícula, trampa con alguna acción definida o una
superficie para que los agentes accedan a un nivel superior. Esta mecánica debe
estar correctamente definida antes de agregarla y se debe verificar el impacto que
tiene sobre las políticas de recompensa actuales.

Acciones: Las acciones demarcan las direcciones y movimientos que los
agentes pueden tomar. Estas variables se deben definir antes de iniciar los
entrenamientos y afectan directamente al tamaño de las tablas usadas para tomar
decisiones.

Además de esto, las variables deben estar diseñadas para poder funcionar
con los obstáculos implantados. También, cada acción debe poder ser interpretada
por las políticas de recompensa definidas.

Fig. 13, Ejemplo de Direcciones de Movimiento

​ Mecánicas: son las interacciones y efectos entre agentes, obstáculos o
usuarios.

35

-​ Bloqueo: es un objeto que se coloca en el fondo, impidiendo que el
jugador avance en esa dirección.

Fig. 14, Ejemplo de Obstáculo

-​ Agua: se inserta la imagen en una región del fondo. El jugador que

contacte con esto se ahogará y perderá instantáneamente.

Fig. 15, Ejemplo de Ahogado

-​ Salto: son ramas u obstáculos particulares que bloquean el paso de

los jugadores. Los agentes pueden evitarlos saltando.

Fig. 16, Ejemplo de Salto

-​ Captura: ocurre cuando los agentes tienen algún tipo de contacto

entre ellos.

Fig. 17, Ejemplo de Captura

III.4.4.​ Diseño y configuración de entrenamientos

Este es el bloque encargado del control de los entrenamientos de los
agentes. Si bien, desde el módulo de juego se puede consultar la Q-table, sólo
durante la ejecución de este módulo se pueden modificar dichas tablas. Se
implementaron dos flujos de entrenamiento con el mismo entorno, uno automático y
otro donde usuarios humanos pueden controlar a uno de los agentes.

36

Fig. 18, Bloques de módulo de entrenamiento

Entrenamiento Automático: es una función del módulo de entrenamiento,

donde los agentes entrenan solos, IA vs IA. Esta función está diseñada para
entrenamientos de gran cantidad de sesiones y no para ser visualizado por
usuarios, con la intención de que se puedan realizar la mayor cantidad de
interacciones entre agentes en el menor tiempo posible. Durante este
entrenamiento, los agentes interactúan en un entorno no visible, siguiendo las
mismas configuraciones dentro de un entorno real y aprendiendo de todos los
movimientos realizados.

Entrenamiento Individual: es una función del módulo de entrenamiento que
cuenta con dos formas de uso. En el primer formato, el usuario puede seleccionar el
agente que manejara, ya sea eligiendo ser “Chaser” o “Evader”. Esta opción se
puede utilizar para corregir patrones repetitivos identificados durante el
entrenamiento automático, como por ejemplo, uno de los agentes no posee datos en
una condición en particular. El segundo formato de uso, es donde no interactúan los
usuarios y dejan que los agentes interactúen entre ellos.

La diferencia de este formato con respecto al Automático, es que esta versión
está diseñada para que se corrijan o mejoren condiciones vistas durante la
ejecución del juego principal o para realizar entrenamientos bajo la supervisión
visual, de interacciones entre agentes, de un usuario. De esta manera, poder validar
si las interacciones están siendo efectivas o se pueden identificar puntos de mejora.

El funcionamiento de la dinámica de los dos entrenamientos es similar. En un
principio los agentes toman movimientos al azar de las acciones previamente
definidas en el entorno. Posteriormente, a medida que van avanzando las
iteraciones, aplicamos la política de E-greedy, haciendo que disminuya el nivel de
aleatoriedad, valor de epsilon, de las acciones por cada jugada realizada. De este
modo, nos permite recaer más en los valores aprendidos por todas las iteraciones
pasadas.

37

III.4.5.​ Sistema de recompensas para optimización de
aprendizaje

Según lo indicado en nuestro objetivo de elaboración de sistema de

recompensas, debemos garantizar que dicho sistema incentive las conductas
deseadas (captura exitosa, evasión prolongada, etc.), y que estas sean estén
acordes al entorno de entrenamiento diseñado, permitiendo a los agentes utilizar
estas recompensas para aprender a través de la experiencia.

III.4.5.1.​ Recompensa por movimiento

Con el objetivo de crear el incentivo a mantenerse en constante movimiento y
buscando la mayor recompensa posible, se implementó un sistema de penalización
por movimiento. Este sistema aplica un valor de recompensa negativa a cada acción
realizada por los agentes, para fomentar la toma de decisiones eficiente.

También, con la intención de fomentar el objetivo persecución-evasión,
incorporamos recompensas dinámicas basadas en la distancia entre agentes.

Al perseguidor (Chaser) se le asigna una recompensa inversamente
proporcional a su distancia con el evasor (Evader), es decir, la recompensa aumenta
a medida que se acerca a él. Por otra parte, el Evader recibe una recompensa más
alta cuanto más lejos se encuentre del Chaser.

Para poder obtener estos valores necesitamos realizar el cálculos de
distancia, el cual se realiza de la siguiente manera:

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑎 = 𝑋
2

− 𝑋
1()2 + 𝑌

2
− 𝑌

1()2

Fig. 19, Ejemplo de cálculo de recompensa

38

III.4.5.1.1.​ Movimiento a la derecha del Chaser

Se calcula la distancia entre puntos desde la posición final del Chaser hasta
la posición del Evader.

Posición
Chaser:
 = 1, = 1 𝑋

1
𝑌

1

Posición
Evader:
 = 2, = 1 𝑋

2
𝑌

2

 𝑑 = 𝑋
2

− 𝑋
1()2 + 𝑌

2
− 𝑌

1()2

 2 − 1()2 + 1 − 1()2

 1()2 + 0()2

 = 1 1 + 0

La recompensa del “Chaser” por realizar un movimiento a la derecha

acercándose al “Evader” será de -1. Siempre obteniendo una recompensa negativa,
siendo esta menor a medida de que esté más cerca al objetivo.

III.4.5.1.2.​ Movimiento hacia abajo del Chaser

Se calcula la distancia entre puntos desde la posición final del Chaser hasta
la posición del Evader.

Posición Chaser:
 = 0, = 2 𝑋

1
𝑌

1

Posición Evader:

 = 2, = 1 𝑋
2

𝑌
2

 𝑑 = 𝑋
2

− 𝑋
1()2 + 𝑌

2
− 𝑌

1()2

 2 − 0()2 + 1 − 2()2

 2()2 + − 1()2

 = 4 + 1 2, 23

La recompensa del “Chaser” por realizar un movimiento hacia abajo

alejándose del “Evader” será de -2,23. Siempre obteniendo una recompensa
negativa, siendo esta mayor a medida de que esté más lejos del objetivo.

39

Fig. 20, Ejemplo de cálculo de recompensa Chaser

III.4.5.1.3.​ Movimiento hacia abajo del Evader

Se calcula la distancia entre puntos desde la posición final del Chaser hasta
la posición del Evader.

Posición Chaser:
 = 0, = 1 𝑋

1
𝑌

1

Posición Evader:

 = 2, = 2 𝑋
2

𝑌
2

 𝑑 = 𝑋
2

− 𝑋
1()2 + 𝑌

2
− 𝑌

1()2

 𝑑 = 2 − 0()2 + 2 − 1()2

 𝑑 = 2()2 + 1()2

 = 𝑑 = 4 + 1 2, 23

Fig. 21, Ejemplo de cálculo de recompensa Evader

Cálculo de la distancia máxima posible, para realizar la operación que

garantice que el evader se aleje del Chaser.

40

Tamaño del Fondo:
 = 0, = 0 𝑋

0
𝑌

0

 = 3, = 3 𝑋
𝑚𝑎𝑥

𝑌
𝑚𝑎𝑥

 𝑑
𝑚𝑎𝑥

 = 𝑋
𝑚𝑎𝑥

− 𝑋
0()2 + 𝑌

𝑚𝑎𝑥
− 𝑌

0()2

 𝑑
𝑚𝑎𝑥

 = 3 − 0()2 + 3 − 0()2

 4,24164 𝑑
𝑚𝑎𝑥

 =

recompensa = - (4,24164 - 2,23) = - 2,01164 − 𝑑
𝑚𝑎𝑥

− 𝑑() =

La recompensa del “Evader” por realizar un movimiento hacia abajo

alejándose del “Chaser” será la resta de la distancia máxima posible menos
(4,24164) menos la distancia a la que quedará (2,23), quedando una recompensa
total de -2,01164. Siempre obteniendo una recompensa negativa, siendo esta mayor
a medida de que esté más lejos del objetivo.

III.4.5.2.​ Recompensa por Saltos

Esta recompensa se aplica siempre que se haga la acción de saltar en
cualquiera de las direcciones, de esta manera podemos garantizar que el jugador
utilice el salto solo en la condición necesaria

Partiendo del cálculo del ejemplo anterior, podemos ver que en el movimiento
a la derecha representado en la imagen tendría una recompensa de -1.

Fig. 22, Imagen recompensa movimiento

Siguiendo la misma línea, se emuló el salto en la misma dirección, en esta

oportunidad la recompensa será de -1 por el movimiento a la derecha, más -0.1 por
realizar el salto. De esta manera la recompensa final para esa acción será de -1.1.

Fig. 23, Imagen recompensa salto

Con esto se garantiza que siempre los valores de recompensa en la Q-table

son mayores para la caminata que para el salto, de esta manera evitamos que el
personaje salte, y lo haga solo cuando sea necesario.

41

III.4.5.3.​ Recomple por contacto con obstáculos

Esta recompensa se aplica cada vez que un jugador hace un movimiento en
sentido de un obstáculo y, debido al obstáculo, no se puede generar el movimiento
en esa dirección.

Fig. 24, Imagen recompensa obstáculo

Partiendo del mismo ejemplo de movimiento a la derecha trabajado. Al

realizar un movimiento a la derecha, la recompensa será de -1 por el movimiento a
la derecha, más -0.5 por chocar contra el obstáculo. De esta manera la recompensa
final para esa acción será de -1.5, contra los -1.1 que sería al saltar.

III.4.5.4.​ Recompensa por tocar el Agua

Esta recompensa se aplica cada vez que un jugador hace un movimiento en
sentido de los pozos de agua y, debido a esto, el jugador pierde directamente.

Fig. 25, Imagen recompensa tocar agua

Con esto garantizamos que siempre los valores de recompensa en la Q-table

cuyo movimiento haga que el personaje entre en el agua, sean menores. De esta
manera evitamos que los personajes se muevan en dirección al agua.

III.4.5.5.​ Recompensa de victoria

Esta recompensa se aplica cada vez que un jugador hace un movimiento en
sentido del otro jugador y, debido a esto, el Chaser gana y el Evader pierde.

Fig. 26, Imagen recompensa victoria

42

Con esto garantizamos que siempre los valores de recompensa en la Q-table
cuyo movimiento haga que los personajes entren en contacto, sean mayores para el
Chaser y menores para el Evader. De esta manera garantizamos que los dos
jugadores tengan una motivación para hacer los movimientos de
persecución-evasión.

III.4.6.​ Implementación de agentes con machine learning por
refuerzo

Según nos pide uno nuestro objetivo, debemos Implementar dos agentes

inteligentes (perseguidor y evasor) utilizando algoritmos de RL, como Q-learning o
Deep Q-Network (DQN), configurando adecuadamente los estados, acciones y
recompensas. Este módulo cuenta con tres responsabilidades principales, además
de esto maneja tres entradas y dos salidas.

Inicialización: es la primera etapa que actúa al momento de configurar el
agente. Esta es activada a partir de los módulos de entrenamiento o juego para
inicializar a los agentes, mediante la preparación de todas las variables.

Acción y Posición: esta es una etapa de uso recurrente y es la encargada
de recibir la posición actual del agente para luego buscar la mejor acción dentro de
la memoria del agente.

Guardar: esta etapa puede ser de uso recurrente y es utilizada por el módulo
de entrenamiento para hacer una copia de la tabla de datos vigente dentro de la
memoria a largo plazo del Agente.

Fig. 27, Modulos de Agentes

Mejor Acción: esta variable de salida contiene la mejor acción que puede

tomar el agente en función a la entrada recibida.

43

Imagen Agente: esta variable de salida contiene la imagen que debe mostrar
el agente en función a la acción y posición.

III.4.7.​ Entrenamiento y prueba de los agentes

El desarrollo y las pruebas se realizaron en un entorno controlado, con el
objetivo de validar la funcionalidad del sistema y analizar el comportamiento de los
agentes en diferentes escenarios, ajustando parámetros para comparar resultados
bajo distintas condiciones experimentales.

Ejecutar múltiples episodios de entrenamiento, ajustando parámetros como
tasa de exploración (ε), tasa de aprendizaje (α) y gamma (γ) para optimizar el
aprendizaje de los agentes.

Estados
Acciones

(0,0,0)
Quieto

(0,-1,0)
Arriba

(0,1,0)
Abajo

(-1,0,0)
Izquierda

(1,0,0)
Derecha

(0,-1,1)
Salto Arriba

(0,1,1)
Salto Abajo

(-1,0,1)
Salto Izquierda

(1,0,0)
Salto Derecha

[(0, 0), (2, 2)]

[(0, 1), (2, 2)]

[(0, 2), (2, 2)]

[(1, 0), (2, 2)]

[(1, 1), (2, 2)]

[(1, 2), (2, 2)]
Fig. 28, Imagen Muestra de Q-table

III.5.​ Análisis de datos

III.5.1.​ Validación de resultados en Aplicación

Durante la realización de pruebas con el usuario humano, comparamos el
desempeño de los agentes con el del participante evaluador, recogiendo información
cuantitativa y cualitativa sobre la experiencia.

Estas pruebas fueron realizadas dentro del entorno de juego principal, debido
a que este permite que los jugadores interactúen sin afectar los valores de Q-Tables
y mientras que los agentes basan sus acciones completamente de los valores
almacenados en dichas tablas.

44

Fig. 29, Imagen Muestra plataforma de juego

Dentro de este, se validó la interacción de los agentes, ya sea en su rol de

Chaser o de Evader, pudiendo sacar apreciaciones sobre los accionares y
dificultades que les propusieron los agentes con sus acciones.

III.5.2.​ Validación de Resultados de Entrenamiento

Durante la realización de entrenamientos, además de los registros de las
Q-Tables, se almacenaron resultados de cada uno de los bloques repetitivos. Dentro
de estos bloques, que sirven como punto de control, se fueron almacenando los
resultados de cada episodio, incluyendo métricas de desempeño, logs de decisiones
y evolución de las políticas de los agentes.

Al finalizar cada bloque de entrenamiento, se obtuvieron las siguientes
gráficas resultado:

III.5.2.1.​ Gráfica de Bigote

Esta es la primera gráfica obtenida, muestra los avances en cada uno de los
bloques de entrenamiento. Esta permite visualizar el avance del entrenamiento
dándonos indicios de la evolución del entrenamiento para decidir si se debe o no
intervenir.

45

Fig. 30, Ejemplo gráfico de bigote intermedio

En esta gráfica veremos 5 columnas, cada una reflejando una condición en

especial.

Chased: refleja cuando el Chaser logra alcanzar el objetivo. Se grafica un
punto con el valor del paso (step) en el que se logró alcanzar el objetivo. Con esta
representación podemos apreciar el punto en el cual se está logrando el objetivo.

De esta forma se puede inferir, por ejemplo, si el promedio está en la parte
baja de la gráfica, quiere decir que el agente está cumpliendo su objetivo
rápidamente.

Defeated: refleja cuando el Evader logra escapar. Se grafica un punto con el
valor de la distancia promedio entre Chaser y Evader durante la ronda. Con esta
representación se puede validar si el Evader está logrando mantenerse distanciado
del Chaser.

De esta forma se puede inferir, por ejemplo, si el promedio de estos valores
está en la parte baja de la gráfica, quiere decir que el agente no está logrando
mantenerse alejado.

Chaser Ahogado y Evader Ahogado: refleja cuando el Chaser o Evader
hacen un movimiento en sentido del agua teniendo contacto con ella. Se grafica un
punto con el valor del paso (step) en el que el jugador toca el agua. Con esta
representación se puede apreciar el punto en el cual alguno de los dos jugadores
pierde.

De esta manera se confirma, en qué momento alguno de los jugadores pierde
por ahogamiento.

Doble Ahogado: funciona muy similar a los valores obtenidos en las
columnas “Ahogado”, con la diferencia de que acá se toma en cuenta cuando los
dos jugadores tocan el agua en simultáneo.

46

III.5.2.2.​ Grafica total de resultados

Es la gráfica de cierre del entrenamiento automático, es un gráfico de líneas
que nos permitirá ver los resultados de avances que vamos a ir teniendo después
de cada bloque de entrenamiento.

La gráfica muestra el comportamiento global de los agentes, el dominio de un
agente sobre el otro o la afectación producida por el entorno.

Fig. 31, Ejemplo gráfico de Línea evaluativo

Debido a que los valores obtenidos en cada bloque provienen de un conjunto
de jugadas realizadas por los agentes, se decidió avanzar con esta gráfica como la
definitiva para la toma de decisiones.

En otras palabras, esta gráfica decide si los agentes son funcionales, en
cuanto a su desenvolvimiento dentro de las jugadas.

III.5.2.3.​ Análisis de Tabla de Valores (Q-Tables)

Dentro de las herramientas con las que contamos, se cuenta con la
posibilidad de acceder a los valores de las Q-Tables para visualización. Esto permite
analizar, en posiciones particulares, la existencia de valores faltantes o fuera de lo
común. De esta manera se usó para el análisis de causa raíz, como por ejemplo, en
un bucle de movimiento dentro del accionar de los agentes.

Estados
Acciones

(0,0,0)
Quieto

(0,-1,0)
Arriba

(0,1,0)
Abajo

(-1,0,0)
Izquierda

(1,0,0)
Derecha

(0,-1,1)
Salto Arriba

(0,1,1)
Salto Abajo

(-1,0,1)
Salto Izquierda

(1,0,0)
Salto Derecha

((5, 4, 0), (5, 2, 0)) -6,72313338 -140,76897677 -5,52848633 -6,68371793 2,82560557 -40,91517323 -6,59652289 -6,70567397 -6,73727889

((5, 3, 0), (5, 1, 0)) -6,72379181 -55,81512469 -3,51257189 -6,75439693 -6,73971575 -77,27028556 -6,66509036 -6,71287023 -6,70447592

((5, 1, 0), (5, 1, 0)) 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000

((5, 2, 0), (4, 4, 0)) -5,04952410 -5,44703569 -6,94799360 -6,43503303 -6,47535502 3,30854107 -7,04638421 -6,50726011 -5,45726502

((2, 2, 0), (1, 3, 0)) 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000

Fig. 32, Ejemplo de Q-table

47

Como ejemplos de análisis, en el primer estado dentro de esta tabla. Se
observa que el valor de movimiento a la derecha está totalmente incorrecto, ya que
por la posición, no se permite mover a la derecha, por tanto no permite al agente
tomar las acciones de movimiento hacia abajo, siendo estas las correctas, dando
prioridad la del paso abajo en lugar del salto.

48

IV.​ Resultados

IV.1.​ Generación de Imágenes

Esta etapa del proceso consistió en la aplicación de distintos prompts
descriptivos que detallan las características para las imágenes deseadas de los
personajes. Continuamente se fueron ajustando los prompts para poder guiar a los
modelos a generar mejores resultados permitiendo que se adapten a nuestro
proyecto.

Prompt usado: “Reemplaza al personaje presente en esta imagen por uno
similar a Viví el de Final Fantasy 9. Ten en cuenta que las imágenes tienen un
sentido y dirección de movimiento”

Las imágenes generadas por Gemini, fueron mejorando con cada
actualización de prompt, logrando mostrar resultados con buen nivel de detalle.
Estas imágenes todavía presentan problemas de coherencia entre los movimientos
hacia arriba, abajo y de los saltos.

Fig. 33, Mejor imagen obtenida IA Gemini

Al igual que Gemini, la herramienta Copilot mejoró los detalles de las

imágenes con cada mejora del prompt, pero aún no logra generar completamente
coherencia entre los movimientos hacia arriba y en los saltos.

49

Fig. 34, Mejor imagen obtenida IA Copilot

En ambos casos, las imágenes deben ser recortadas individualmente para

armar un nuevo conjunto de imágenes funcional.

IV.2.​ Entrenamientos

En esta etapa del proceso, se establecen las condiciones iniciales y con las
que se realizaron las pruebas. De esta manera se evaluará la efectividad de los
agentes dentro del entorno y su capacidad de aprendizaje.

Los parámetros iniciales y constantes durante todas las pruebas a realizar serán:

-​ Entorno no variable, permanecerá con las mismas dimensiones, 5x5 y la
misma disposición de obstáculos.

-​ Accionar fijo, para los dos agentes, las acciones permitidas serán: estático,
arriba, abajo, izquierda, derecha, saltar arriba, saltar abajo, salto izquierda y
salto derecha.

-​ Orden de accionar de los agentes, primero Evader y luego Chaser.

-​ Posición inicial de los agentes, se dispondrán aleatoriamente dentro de
estas cuatro coordenadas, (1, 1, 0), (4, 4, 0), (1, 4, 0) y (4, 1, 0), excluyendo
salidas en la misma posición.

-​ Máxima cantidad de pasos será de 30

-​ Valor mínimo de Epsilon en 0.01 (1%)

50

-​ Valor de ratio de aprendizaje (learning rate) en 0.01 (1%)

-​ Factor de descuento (discount factor) en 0.1 (1%)

-​ Cada entrenamiento consta de 50 bloques de 147.456 jugadas por bloque.

IV.2.1.​ Primera ronda de entrenamiento.

En la primera ronda de entrenamiento se inicia con todos los valores de
Q-Tables en cero. Las variables particulares de este entrenamiento, además de las
condiciones generales antes mencionadas, serán:

-​ Epsilon inicial de 1
-​ Disminución de Epsilon (Epsilon decay) de 0.98 por jugada.

IV.2.1.1.​ Resultados Gráficos

A continuación se mostrarán los resultados de 3 de los 50 bloques de

entrenamiento realizados.

Fig. 35, Gráfico de Bigote bloque 1, 1er Entrenamiento

Durante este bloque de entrenamiento el Epsilon Inicial fue del 100%, al final

del bloque y por el resto del entrenamiento quedó en 0%.

Inicia con victoria clara para el Chaser, logrando capturar a su objetivo en el
75,85% de las 147.412 jugadas, y en promedio logró realizar la captura en el paso
número 11. Contra el 22% de evasiones realizadas por parte del Evader.

Revisando el desenvolvimiento de Evader, se aprecia que en promedio
permanece al 50% de la distancia máxima posible con respecto al Chaser.

Con respecto al ahogamiento de los agentes, a pesar de ser valores bajos, el
Chaser se ahogó en el 1,53% de las veces, esto es casi el triple de veces que el

51

Evader con 0,58% de las veces. También en 10 oportunidades los dos agentes se
ahogan a la vez.

​ Durante los próximos 24 bloques de entrenamiento se invierte el ganador y
es el Evader que supera al Chaser, con más del 60% de victorias por cada bloque.
Mientras que el Chaser no logra superar el 40% en dos bloques seguidos. A partir
del bloque 4, dejan de ahogarse los dos agentes a la vez.

Estos valores se pueden consultar en la gráfica total mostrada más adelante
o en el archivo de entrenamiento dentro del enlace a git.

Fig. 36, Gráfico de Bigote bloque 25, 1er Entrenamiento

Resultado a mitad de entrenamiento con un Epsilon de 0%.

Evader obtiene la victoria, logrando escapar de su rival el 67,01% de las

147.455 jugadas, logrando también aumentar la distancia máxima con respecto al
Chaser de 50% a 53,3%.

Contra el 31,7% de capturas realizadas por parte del Chaser, que logró
mantener el promedio de capturas en el paso 11.

Con respecto al ahogamiento de los agentes, los dos lograron reducir las
jugadas que terminan ahogados, el Chaser se ahogó en el 1,1% de las veces,
mientras que el Evader con 0,19% de las veces.

Desde acá hasta el último bloque, los resultados de victorias van oscilando
entre Chaser - Evader. Se puede consultar en la gráfica de línea mostrada más
adelante o en el archivo de entrenamiento.

52

Fig. 37, Gráfico de Bigote bloque 50, 1er Entrenamiento

Para cierre del entrenamiento la victoria fue para el Chaser, logrando capturar

de su rival el 67,91% de las 147.455 jugadas, bajando el promedio de captura al
paso 10.

Contra el 30,98% de evasiones realizadas por parte del Evader, volvió a
aumentar su distancia máxima promedio a un 60%.

Con respecto al ahogamiento de los agentes, volvieron a reducir las jugadas
que terminan ahogados, el Chaser se ahogó en el 0,95% de las veces, mientras que
el Evader con 0,16% de las veces.

Al resumir y graficar todos los porcentajes de acierto obtenidos en cada una
de los 50 bloques del entrenamiento, se obtiene el avance y rendimiento de los
agentes durante todo el entrenamiento.

Fig. 38, Gráfico de Línea 1er Entrenamiento

53

En la gráfica se observó claramente, cómo los agentes aprendieron
rápidamente a evadir el agua, siendo muy bajos los valores de ahogamiento durante
todo el entrenamiento.

La asertividad de los agentes dentro de sus respectivos objetivos fue mixta,
pero variando dentro del 50%, con la particularidad de que en las primeras etapas
del entrenamiento le cuesta un poco más al Chaser alcanzar el objetivo.

Estos resultados los analisaremos y compararemos con el resto de rondas de
entrenamiento en el apartado de discuciones de este TFM.

IV.2.1.2.​ Resultado en Entorno principal de Juego

En esta evaluación se puso a prueba funcional el entorno principal de juego
con el entrenamiento realizado, y se observaron los comportamientos de los
agentes. En esta prueba se observó cómo realizan las acciones y que tipo de
acciones están tomando los agentes.

Dentro de las jugadas ejecutadas destacan:

-​ Cumpliendo el objetivo de persecución-evasión.
-​ Interacción correcta con el entorno, moviéndose correctamente y

respetando el funcionamiento de los obstáculos.
-​ Usan el accionar de salto como movimiento en lugares que no

corresponde.
-​ Las jugadas vistas son repetitivas y limitadas.
-​ Se detectan bucles infinitos.

Fig. 39, Muestra de Juego 1er Entrenamiento

En la posición mostrada en la imagen, los agentes están haciendo los
movimientos correctos según lo indicado en su Q-Table, pero al no haber
restricciones de contacto con paredes, ciclos activos para evitar bucles o
aleatoriedad en los movimientos, estos se quedan en este estado hasta reiniciar la
Jugada.

54

IV.2.2.​ Segunda ronda de entrenamiento

En la segunda ronda de entrenamiento se partió con todos los valores de
Q-Tables en cero. Para diferenciarlo del entrenamiento del anterior, fue planteado un
Epsilon que variará en función del cambio de bloque de entrenamiento y a su vez,
variaciones muy pequeñas dentro de cada jugada del bloque.

Las variables particulares de este entrenamiento, además de las condiciones
generales antes mencionadas, serán:

-​ Epsilon inicial de 1
-​ Disminución de Epsilon (Epsilon decay) de 0,02 por bloque
-​ Disminución de Epsilon interna al bloque de 0,999999 por jugada (solo

afecta al bloque).

IV.2.2.1.​ Resultados Gráficos

A continuación se muestran los resultados de 3 de los 50 bloques de
entrenamiento realizados.

Fig. 40, Gráfico de Bigote bloque 1, 2do Entrenamiento

Durante este primer bloque, el Epsilon osciló entre 100% como valor máximo
y 86,29% como valor mínimo.

Inició con una victoria clara para el Chaser, logrando capturar a su objetivo en
el 15,42% de las 144.221 jugadas, que en promedio logró realizar la captura en el
paso número 11.

Contra el 11,08% de evasiones realizadas por parte del Evader. Revisando el
desenvolvimiento de Evader, se aprecia que en promedio permanece al 46,6% de la
distancia máxima posible con respecto al Chaser.

55

En cuanto al ahogamiento de los agentes, en esta oportunidad fueron valores
altos, el Chaser se ahogó en el 38,36% de las veces, muy cercano está el Evader
con 34,77% de las veces. También en 528 oportunidades los dos agentes se
ahogan a la vez, que equivale al 0.37% de las jugadas.

Para el cálculo de valor inicial de Epsilon del siguiente bloque, se le aplicó
una reducción de 2% al Epsilon Inicial del bloque anterior (en este caso, 100% en el
bloque 1), quedando en 98% como valor inicial del siguiente bloque.

​ Durante los siguientes 24 bloques de entrenamiento el Chaser siempre
predomina en victorias, aumentando con cada bloque la diferencia porcentual
respecto a las victorias del Evader. También se aprecia una reducción gradual en la
cantidad de jugadas que los dos agentes terminan ahogándose, siendo el Evader
que aprende con una pendiente más elevada.

Fig. 41, Gráfico de Bigote bloque 25, 2do Entrenamiento

Durante el bloque 25, el Epsilon osciló entre 50% como valor máximo y

11,44% como valor mínimo.

Al igual que en el análisis anterior, inicia con victoria clara para el Chaser,
logrando capturar a su objetivo en el 43,28% de las 145.735 jugadas, además logró
bajar el promedio de captura a 9 pasos.

Mientras el Evader logró evadir sólo el 13,75% de las jugadas. Pero en esta
oportunidad logró aumentar la distancia máxima posible promedio a un 50% con
respecto al Chaser.

En cuanto al ahogamiento de los agentes, en esta oportunidad siguen siendo
valores altos pero hay disminución de ellos, el Chaser se ahogó en el 27,73% de las
veces, y con una mayor corrección está el Evader con 15,12% de las veces.
También en 161 oportunidades los dos agentes se ahogan a la vez, que equivale al
0,11% de las jugadas.

56

Para el cálculo de valor inicial de Epsilon del siguiente bloque, se le aplicó
una reducción de 2% al Epsilon Inicial del bloque anterior (en este caso, 50% en el
bloque 25), quedando en 48% como valor inicial para el bloque 26.

​ Durante los siguientes 24 bloques de entrenamiento el Chaser siempre
predomina en victorias, aumentando con cada bloque la diferencia porcentual
respecto a las victorias del Evader hasta el bloque 40.

En este punto el Chaser muestra indicios de estabilidad en el valor porcentual
de victorias, hasta los últimos dos bloques, donde se desploma al 50%. Continúa la
reducción gradual en la cantidad de jugadas que los dos agentes terminan
ahogándose, siendo el Evader que aprende con una pendiente más elevada.

Fig. 42, Gráfico de Bigote bloque 50, 2do Entrenamiento

Durante el bloque 25, el Epsilon osciló entre 2% como valor máximo y 1,73%
como valor mínimo.

Al igual que en el análisis anterior, continúa con victoria para el Chaser,
logrando capturar a su objetivo en el 48,99% de las 147.454 jugadas, en esta
oportunidad aumentó el promedio de captura a 16 pasos.

Mientras el Evader redujo mucho la ventaja logrando evadir el 48,60% de las
jugadas. Además de aumentar la distancia máxima posible promedio a un 53,3%
con respecto al Chaser.

En cuanto al ahogamiento de los agentes, en esta oportunidad hubo una
mejora substancial, el Chaser se ahogó en el 1,93% de las veces, y con una mayor
corrección está el Evader con 0,48% de las veces. Solo en este último bloque, no
hubo ahogamiento simultáneo de los dos agentes.

Al graficar los porcentajes de acierto obtenidos en cada una de los 50
bloques del entrenamiento, con la intención de poder apreciar el avance y

57

rendimiento de los agentes durante todo el entrenamiento, se obtuvo la siguiente
gráfica.

Fig. 43, Gráfico de Línea 2do Entrenamiento

Como observaciones dentro de este análisis, se puede confirmar que a
medida que avanzan los bloques de entrenamiento los dos agentes se hacen más
asertivos. Dejan de moverse en dirección al agua.

Como acotación, durante el desarrollo de los bloques de entrenamiento la
pendiente de mejora del Evasor es baja, esto se mantiene durante todo el
entrenamiento.

Además de esto, se puede observar cómo los agentes, a medida que
avanzan los bloques, se van ahogando menos, confirmando las mismas
apreciaciones vistas en el diagrama de bigote. También se confirma la tendencia
alcista en la asertividad de los agentes para cumplir sus objetivos.

IV.2.2.2.​ Resultado en Entorno de Juego

Al igual que en la primera ronda de entrenamiento, se probó la funcionalidad
del modelo en el entorno principal de juego.

Dentro de las jugadas ejecutadas, podemos destacar:

-​ No cumple el objetivo de Persecución-Evasión.
-​ Interactúan correctamente dentro del entorno, moviéndose correctamente y

respetando el funcionamiento de los obstáculos.
-​ Usa en menor medida los saltos al moverse.

58

-​ Se aprecian bucles infinitos en jugadas, ya sea a un movimiento, dos o
dentro de una secuencia. En algunos casos pueden ser atribuidas al
Chaser por no intentar acercarse al Evader

IV.2.3.​ Ronda de complemento de entrenamiento

En la última ronda de entrenamiento se partió de la realización del segundo
entrenamiento dos veces, con la intención de incrementar la experiencia de los
agentes. Luego, con las Q-Tables obtenidas, replicamos el entrenamiento de la
primera ronda.

Las variables particulares de este entrenamiento, además de las condiciones
generales antes mencionadas, serán:

-​ Epsilon inicial de 1
-​ Disminución de Epsilon (Epsilon decay) de 0.98 por jugada.

IV.2.3.1.​ Resultados Gráficos

A continuación se muestran los resultados de 3 de los 50 bloques de

entrenamiento realizados.

Fig. 44, Gráfico de Bigote bloque 1, 3er Entrenamiento

Durante este bloque de entrenamiento el Epsilon Inicial fue del 100%, al final
del bloque y por el resto del entrenamiento quedó en 0%.

Parte con victoria clara para el Evader, logrando evadir su objetivo en el
78,78% de las 147.455 jugadas. También se puede apreciar, que en promedio
permanece al 56,6% de la distancia máxima posible con respecto al Chaser.

59

Contra el 19,62% de evasiones realizadas por parte del Evader., que en
promedio logró realizar la captura en el paso número 17.

En cuanto al ahogamiento de los agentes, en esta oportunidad fueron valores
bajos, el Chaser se ahogó en el 1,35% de las veces, bastante despegado está el
Evader con 0,25% de las veces. También solo en 1 oportunidad los dos agentes se
ahogan a la vez.

Durante los siguientes 24 bloques de entrenamiento existe dualidad en las
victorias reduciendo ventajas y luego comenzando a ganar. También se aprecia una
reducción en la cantidad de jugadas que los dos agentes terminan ahogándose,
para ya partiendo de valores cercanos o menores al 1%.

Fig. 45, Gráfico de Bigote bloque 25, 3er Entrenamiento

Resultado a mitad de entrenamiento con valores de Epsilon 0%.

En este bloque refleja una victoria para el Evader, logrando escapar de su
rival el 80,24% de las 147.456 jugadas, logrando también aumentar la distancia
máxima con respecto al Chaser de 56,6% a 60%.

Contra el 18,66% de capturas realizadas por parte del Chaser, que logró
reducir el promedio de capturas en el paso 15.

Con respecto al ahogamiento de los agentes, los dos lograron reducir las
jugadas que terminan ahogados, el Chaser se ahogó en el 0,95% de las veces,
mientras que el Evader con 0,15% de las veces.

Desde acá hasta el último bloque, los resultados de victorias van oscilando
entre Chaser - Evader. Puedes consultar en la gráfica total mostrada más adelante o
en el archivo de entrenamiento.

60

Fig. 46, Gráfico de Bigote bloque 50, 3er Entrenamiento

Para cierre del entrenamiento la victoria fue para el Chaser, logrando capturar
de su rival el 82,47% de las 147.456 jugadas, bajando el promedio de captura al
paso 14.

Contra el 16,55% de evasiones realizadas por parte del Evader, que bajó su
distancia máxima promedio a un 56,6%.

Con respecto al ahogamiento de los agentes, volvieron a reducir las jugadas
que terminan ahogados manteniéndose por debajo del 1%, el Chaser se ahogó en
el 0,88% de las veces, mientras que el Evader con 0,11% de las veces.

Al resumir y graficar todos los porcentajes de acierto obtenidos en cada una
de los 50 bloques del entrenamiento, se obtuvo la siguiente gráfica.

Fig. 47, Gráfico de Línea 3er Entrenamiento

61

En esta gráfica se observan, valores de ahogamiento muy bajos durante todo
el entrenamiento y el comportamiento de los agentes es variable. A pesar de partir
con valores altos de captura-evasión, se observa una relación inversa entre los
resultados de los agentes, quedando pendiente una validación de razones de este
comportamiento.

IV.2.3.2.​ Resultado en Entorno de Juego

Al igual que en las rondas anteriores, se puso a prueba funcional el modelo
en el entorno principal de juego.

Dentro de las jugadas ejecutadas, podemos destacar:

-​ Se cumple el objetivo de Persecución-Evasión.
-​ Interacción correcta dentro del entorno, moviéndose correctamente y

respetando el funcionamiento de los obstáculos.
-​ Se usa en menor medida los saltos como movimiento.
-​ Se aprecian bucles infinitos en jugadas, ya sea a un movimiento, dos o

dentro de una secuencia. En algunos casos pueden ser atribuidas al
Chaser por no intentar acercarse al Evader

62

V.​ Discusión

A continuación se avanzó con la discusión de relacionada a la
implementación y evaluación del proyecto

V.1.​ Análisis por Rondas de Entrenamiento

V.1.1.​ Primera ronda de entrenamiento

Dentro de esta prueba se observó el impacto que tiene la variación de
Epsilon durante el entrenamiento. Como se minimizó la aleatoriedad de movimientos
de los agentes muy pronto en el entrenamiento, se generó la intención en los
agentes a aprendan a moverse dentro de las reglas dadas sin explorar, basándose
solo en experiencias conocidas.

Si bien, el agente va enfocado y comienza a avanzar en función de su
objetivo particular, deja de lado la posibilidad de aprender del entorno cercano.

Esto se ve empeorado, debido al impacto que tiene la relación del estado con
el movimiento que realiza el oponente.

También pudimos confirmar la poca eficiencia de este entrenamiento en la
obtención de recompensas, ya que, a pesar de que los saltos eran más costosos.
En cuanto a la recompensa, como parte de cero la Q-table, el agente va probando
todos las acciones desde el estado inicial, llevándonos a tener muchos movimientos
con saltos no por eficientes, si no por no haber sido usados todavía.

Como cierre del análisis se confirmó que el resultado general, en cuestión de
cumplimiento de objetivos, es el esperable. Siendo que, durante el entrenamiento el
agente más victorioso al inicio y por los primeros bloques fue el Evader.

Esto debido a que, mientras los agentes no conozcan el entorno ni tengan
referencias en Q-Tables de lo que tienen que hacer, los movimientos serán
proactivamente al azar, haciendo que el Chaser no cumpla su objetivo hasta tanto
no haya desarrollado una estrategia de persecución. Una vez el Chaser empiece a
obtener experiencia de victoria lo va a ir acoplando más a su estrategia y empiezan
a ir rotando las victorias.

V.1.2.​ Segunda ronda de entrenamiento

El resultado de esta prueba fue el esperado, debido a la aleatoriedad de
movimientos generada, obtuvimos agentes que se desenvuelven mucho mejor.

63

Continuando con la revisión en el entorno principal de juego, pudimos observar que
los agentes generan menos saltos innecesarios y caminan mucho más en los
lugares correspondientes. No se eliminó el salto totalmente, pero mejoró en cuanto
a la ronda anterior.

Como punto negativo, luego de esta ronda, no se observó que estuvieran
siguiendo el objetivo principal y en el entorno principal de juego no hay intención de
persecución-evasión. Además de esto, y como resultado sorpresa, observamos que
el Chaser estuvo dominando, en cuanto a victorias, todo el entrenamiento, cuando lo
esperado era lo contrario.

V.1.3.​ Ronda de complemento de entrenamiento

En esta ronda se sumaron horas de entrenamiento y se replicó el mismo
esquema del primer entrenamiento, pero sin partir con las Q-tables en cero.

Como era esperado, obtuvimos mejoría en el desenvolvimiento de los
agentes, logrando reducir el uso de saltos, solo a cuando es necesario. Además de
esto, la asertividad de los agentes estuvo oscilando en torno al 50% esperado, y
produciendo dualidad entre los ganadores. Dentro del entorno principal de juego,
existe la intención de persecución-evasión y genera un entorno de juego funcional.

V.2.​ Resumen de los entrenamientos

Como cierre de los entrenamientos, se da como satisfactorio los resultados
obtenidos, teniendo en cuenta que se deben aplicar correcciones para poder
evolucionar el proyecto.

Debemos considerar el impacto de Epsilon para los entrenamientos, ya que
esto puede ser muy útil al momento de focalizar alguna estrategía.

Identificamos que, el análisis de las jugadas registradas es vital para
identificar errores que pueden llevar a conclusiones imprecisas, además de
mostrarnos las interacciones permitiéndonos crear soluciones.

64

VI.​Conclusiones y Limitaciones

VI.1.​ Conclusiones

Con la finalización de este proyecto se ha logrado implementar agentes
inteligentes basados en aprendizaje por refuerzo (Reinforcement Learning - RL).
Dentro de los logros, se pudo integrar dentro de un videojuego creado totalmente en
el lenguaje de programación Python, permitiéndonos a su vez interactuar como
usuarios con dichos agentes.

La obtención de recursos gráficos a pesar de no ser totalmente satisfactoria,
generan una buena base para ser editadas manualmente. Si bien obtuvimos buenos
avances con este objetivo, no se implementó en el prototipo final. Esto debido a que
no fue posible la obtención de todas las imágenes coherentes, en cuanto a tamaños,
secuencias de movimientos funcionales y obstáculos funcionales, dentro de los
tiempos establecidos para este proyecto.

Dentro de este mismo apartado, pudimos confirmar que sí existen opciones
de pago en el mercado, como por ejemplo Scenario o Upscale Media, para esta
obtención de estos recursos. En estas se pueden enviar videos con la secuencia de
movimiento y personaje, para la creación de la secuencia de movimiento.

Por otro lado, la IA no solo nos ayudó a entender procesos básicos para la
creación de un videojuego, si no que fue clave. Aunque, la IA no pudo generar el
código completo, colaboró en la obtención de bloques funcionales de código
adaptables al desarrollo de la aplicación, siendo soporte fundamental para poder
completar el trabajo. Logrando generar bloques y funciones limitadas a operaciones,
que luego pudieron corregidas y fácilmente integradas dentro del proyecto.

Se logró implementar y configurar agentes inteligentes basados en algoritmos
de RL con todas sus funciones, sistema de recompensas y un protocolo de
entrenamiento que demuestra el aprendizaje de los agentes.

Dentro de los entregables realizados destacan, un entorno prototipo de
videojuego con tres posibilidades de usos. La primera, entorno de juego totalmente
funcional.

Segundo, un entorno de pruebas solo para interacción entre usuarios y
obstáculos. Tercero, un entorno de entrenamiento guiado para corrección de errores
o refuerzos de entrenamiento.

Finalmente, un entorno 100% dedicado a entrenamientos aislados entre
agentes.

65

VI.2.​ Limitaciones y Problemáticas

Aunque el desarrollo del TFM fue en general fluido, la investigación logró
ofrecer un producto funcional. De esta manera consideramos que es crucial
reconocer sus limitaciones y dar a conocer los desafíos enfrentados.

VI.2.1.​ Limitaciones

La principal limitación es que el juego no es un entregable completo, falta la

realización de interfaz que sirva de amalgama general de juego y evite tener que
acceder al código para poder realizar ejecuciones, revisiones o modificaciones.
Además, queda pendiente la corrección de los bucles infinitos presentes con la
ausencia de interacción humana.

VI.2.2.​ Problemáticas Generales

La principal problemática, fue el tiempo que toma desarrollar el entorno, si

bien estaba dentro de las consideraciones de complicidad iniciales, fue bastante
problemático el poder conseguir los recursos solo usando IA gratuita, si bien
podemos obtener fácilmente recursos de imágenes, estos no eran los
suficientemente precisos para no generar incongruencias en los movimientos de los
personajes.

Otra de las dificultades presente son atribuibles a la programación y
aplicación de la IA. Al implementar IA, no abordamos el cómo detectar y responder
antes los bucles infinitos en los que entran los agentes.

Si bien, son interrumpidos por la finalización de la partida, el hecho de que al
eliminar aleatoriedad en los movimientos ocasiona que existan pocas estrategias, y
al existir bucles en algunas jugadas, tenemos jugadas en entrenamientos perdidas.

Además de esto, otra de las problemáticas a mejorar es la priorización y la
evaluación continua de las políticas de recompensa. Estas tienen un gran impacto
en cuanto a la interacción con el entorno y objetivo principal, como por ejemplo, los
bordes no tienen ningún tipo de valoración de recompensa, lo que ocasiona que en
esos momentos los agentes reaccionen sin alguna lógica en particular.

Finalmente, los recursos computacionales tanto para almacenamiento como
para procesamiento de datos fue el desafío más significativo. La creación del
entorno, grabado de vídeos de muestras, almacenamiento de datos en tablas
análisis de movimientos y los códigos para de prueba utilizados, colapsaron en
varias oportunidades el ordenador. Se tuvo que recurrir a herramientas externas,

66

como Google Colab, que a pesar de ser excelente ayuda durante el proyecto,
debido a cortes realizados por el proveedor, de igual forma ocasionó horas de
entrenamiento pérdidas.

VI.3.​ Futuras líneas de investigación

Como punto de partida para continuar y como posibles proyectos de
programación. Lograr implementar las correcciones de todas las recomendaciones
dadas en este trabajo, de entre las cuales podemos destacar. En primer lugar, la
implementación de algoritmos de visión por computadora para detección de
acciones y estados. Segundo lugar, el desarrollo de una interfaz de control para no
que permita tener un producto de juego terminado. Y por último, la estandarización
de movimientos para lograr que los agentes detecten el seguimiento de acciones
futuras dentro de las recompensas. Esto con la intención de garantizar la evolución
regular del software generado, permitiéndonos tener un software más completo y de
ser posible funcional en alguna plataforma de juegos.

Dentro de la rama de IA, la principal línea de investigación a realizar, es la de
implementar algoritmos de Deep Q-Network (DQN) o RL profundo. Como evolución
directa al algoritmo de este proyecto tenemos la implementación de agentes
basados en modelos de DQN, con el fin de mejorar la capacidad de aprendizaje y la
complejidad estratégica de los agentes. Esto nos permitirá aumentar la cantidad de
estados en el juego o agregar nuevas funcionalidades que lo complejizan aún más.

67

Referencias bibliográficas

Borra, F., Biferale, L., Cencini, M., & Celani, A. (2022). Reinforcement learning for pursuit

and evasion of microswimmers at low Reynolds number. Physical Review Fluids,

7(2), 023103. https://doi.org/10.1103/PhysRevFluids.7.023103

Bouzy, B., & Métivier, M. (2007). Multi-agent model-based reinforcement learning

experiments in the pursuit evasion game. Artificial Intelligence, 171, 365-377.

Chen, Y., Shi, Y., Dai, X., Meng, Q., & Yu, T. (2025). Pursuit-evasion game with online

planning using deep reinforcement learning. Applied Intelligence, 55(7), 512.

https://doi.org/10.1007/s10489-025-06396-3

Descottes, J. (2017). Piskel [Software]. https://www.piskelapp.com/

Dúo Terrón, P., Moreno Guerrero, A. J., López Belmonte, J., & Marín Marín, J. A. (2023).

Inteligencia Artificial y Machine Learning como recurso educativo desde la

perspectiva de docentes en distintas etapas educativas no universitarias. Revista

Interuniversitaria de Investigación en Tecnología Educativa, 58-78.

https://doi.org/10.6018/riite.579611

Gao, M., Yan, T., Li, Q., Fu, W., & Zhang, J. (2023). Intelligent Pursuit–Evasion Game Based

on Deep Reinforcement Learning for Hypersonic Vehicles. Aerospace, 10(1), 86.

https://doi.org/10.3390/aerospace10010086

Gonultas, B. M., & Isler, V. (2025). Pursuit-Evasion for Car-like Robots with Sensor

Constraints (No. arXiv:2405.05372). arXiv. https://doi.org/10.48550/arXiv.2405.05372

Huang, X. (2021). Adversary agent reinforcement learning for pursuit-evasion (Versión 1).

arXiv. https://doi.org/10.48550/ARXIV.2108.11010

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review of

classification and combining techniques. Artificial Intelligence Review, 26(3),

159-190. https://doi.org/10.1007/s10462-007-9052-3

Lin, Y., Gao, H., & Xia, Y. (2025). Distributed Pursuit–Evasion Game Decision-Making Based

on Multi-Agent Deep Reinforcement Learning. Electronics, 14(11), 2141.

68

https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX

https://doi.org/10.3390/electronics14112141

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Pygame. (s. f.). [Software]. https://www.pygame.org

Pygame Software Foundation. (2024). PyGame (Versión 2.6.1) [Software].

https://www.pygame.org/

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with

deep neural networks and tree search. Nature, 529(7587), 484-489.

https://doi.org/10.1038/nature16961

Singh, G., Lofaro, D., & Sofge, D. (2020). Pursuit-evasion with Decentralized Robotic Swarm

in Continuous State Space and Action Space via Deep Reinforcement Learning:

Proceedings of the 12th International Conference on Agents and Artificial

Intelligence, 226-233. https://doi.org/10.5220/0008971502260233

Souza, C. de, Newbury, R., Cosgun, A., Castillo, P., Vidolov, B., & Kulic, D. (2020).

Decentralized Multi-Agent Pursuit using Deep Reinforcement Learning.

https://doi.org/10.48550/ARXIV.2010.08193

Sutton, R. S., & Barto, A. (2014). Reinforcement learning: An introduction (Nachdruck). The

MIT Press.

Wang, Q., Li, X., Yuan, Z., Yang, Y., Xu, C., & Zhang, L. (2022). An Opponent-Aware

Reinforcement Learning Method for Team-to-Team Multi-Vehicle Pursuit via

Maximizing Mutual Information Indicator (Versión 1). arXiv.

https://doi.org/10.48550/ARXIV.2210.13015

Wang, Y., Cao, Y., Chiun, J., Koley, S., Pham, M., & Sartoretti, G. A. (2024). Viper:

Visibility-based pursuit-evasion via reinforcement learning. In 8th Annual Conference

on Robot Learning. https://openreview.net/forum?id=EPujQZWemk

World Chase Tag®. (2025). https://wct.webflow.io/

69

https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX

Wouters, T. (2025). Python (Versión 3.12.10) [Software]. https://www.python.org/

Wu, Z., Ye, S., Natarajan, M., & Gombolay, M. C. (2024). Diffusion-Reinforcement Learning

Hierarchical Motion Planning in Multi-agent Adversarial Games (Versión 2). arXiv.

https://doi.org/10.48550/ARXIV.2403.10794

Xu, S., & Dang, Z. (2025). Emergent behaviors in multiagent pursuit evasion games within a

bounded 2D grid world. Scientific Reports, 15(1), 29376.

https://doi.org/10.1038/s41598-025-15057-x

70

https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX

Índice de figuras

Fig. 1, Imagen pilla-pilla..11
Fig. 2, Imagen World Chase Tag..12
Fig. 3, Cuadrícula Referencia para Entorno...17
Fig. 4, Ejemplo de registro de Q Table...17
Fig. 5, Ejemplo de registro de Recompensas.. 18
Fig. 6, Esquema CRISP-DM.. 26
Fig. 7, Diagrama de Módulos... 30
Fig. 8, Planificación de Trabajo.. 30
Fig. 9, Ejemplo de imagen de movimiento de personaje... 31
Fig. 10, Diagrama del Entorno de juego.. 33
Fig. 11, Ejemplo de la capa de fondo del Entorno... 34
Fig. 12, Ejemplo de Obstáculos... 35
Fig. 13, Ejemplo de Direcciones de Movimiento.. 35
Fig. 14, Ejemplo de Obstáculo... 36
Fig. 15, Ejemplo de Ahogado...36
Fig. 16, Ejemplo de Salto... 36
Fig. 17, Ejemplo de Captura.. 36
Fig. 18, Bloques de módulo de entrenamiento.. 37
Fig. 19, Ejemplo de cálculo de recompensa.. 38
Fig. 20, Ejemplo de cálculo de recompensa Chaser..40
Fig. 21, Ejemplo de cálculo de recompensa Evader..40
Fig. 22, Imagen recompensa movimiento.. 41
Fig. 23, Imagen recompensa salto...41
Fig. 24, Imagen recompensa obstáculo... 42
Fig. 25, Imagen recompensa tocar agua... 42
Fig. 26, Imagen recompensa victoria... 42
Fig. 27, Modulos de Agentes... 43
Fig. 28, Imagen Muestra de Q-table.. 44
Fig. 29, Imagen Muestra plataforma de juego... 45
Fig. 30, Ejemplo gráfico de bigote intermedio..46
Fig. 31, Ejemplo gráfico de Línea evaluativo... 47
Fig. 32, Ejemplo de Q-table... 47
Fig. 33, Mejor imagen obtenida IA Gemini...49
Fig. 34, Mejor imagen obtenida IA Copilot... 50
Fig. 35, Gráfico de Bigote bloque 1, 1er Entrenamiento.. 51
Fig. 36, Gráfico de Bigote bloque 25, 1er Entrenamiento.. 52
Fig. 37, Gráfico de Bigote bloque 50, 1er Entrenamiento.. 53
Fig. 38, Gráfico de Línea 1er Entrenamiento... 53
Fig. 39, Muestra de Juego 1er Entrenamiento...54
Fig. 40, Gráfico de Bigote bloque 1, 2do Entrenamiento... 55
Fig. 41, Gráfico de Bigote bloque 25, 2do Entrenamiento... 56

71

Fig. 42, Gráfico de Bigote bloque 50, 2do Entrenamiento... 57
Fig. 43, Gráfico de Línea 2do Entrenamiento.. 58
Fig. 44, Gráfico de Bigote bloque 1, 3er Entrenamiento.. 59
Fig. 45, Gráfico de Bigote bloque 25, 3er Entrenamiento.. 60
Fig. 46, Gráfico de Bigote bloque 50, 3er Entrenamiento.. 61
Fig. 47, Gráfico de Línea 3er Entrenamiento... 61

72

	
	Aplicación de aprendizaje por refuerzo para el desarrollo de estrategias de persecución y evasión en videojuegos
	Resumen
	Abstract
	

	Índice de contenidos
	
	I.​Introducción
	I.1.​Justificación
	I.2.​Problemática
	I.3.​Finalidad
	I.4.​Objetivos
	I.4.1.​Objetivo General
	I.4.2.​Objetivos Específicos

	II.​Marco teórico
	II.1.​Juegos tradicionales como pilla-pilla y su adaptación a tiempos modernos
	Fig. 1, Imagen pilla-pilla
	Fig. 2, Imagen World Chase Tag

	II.2.​Videojuegos como herramienta de aprendizaje y pygame
	II.3.​Inteligencia Artificial y Machine Learning
	II.3.1.​Exploración - Explotación
	II.3.2.​Algoritmos de Machine Learning por refuerzo
	II.3.2.1.​Entorno de ejecución
	Fig. 3, Cuadrícula Referencia para Entorno
	Fig. 4, Ejemplo de registro de Q Table

	II.3.2.2.​Bellman’s Equation
	Fig. 5, Ejemplo de registro de Recompensas

	II.3.2.3.​Value-based
	II.3.2.4.​Aprendizaje con Temporal Difference Error (TD)
	II.3.2.5.​Esperado vs. Actualización de Muestra

	II.4.​Estado del arte
	II.4.1.​Listado de documentación científica (ordenados por enfoque)
	II.4.2.​Comparación de trabajos con RL relevantes a pursuit–evasion
	II.4.3.​Breve contexto y observaciones comparativas

	III.​Metodología
	III.1.​Diseño
	Fig. 6, Esquema CRISP-DM

	III.2.​Participantes
	III.3.​Instrumentos
	III.3.1.​Recursos de Hardware
	III.3.2.​Recursos de Software y Lenguaje de Programación
	III.3.3.​Herramientas de apoyo con IA

	III.4.​Procedimiento
	III.4.1.​Esquema de trabajo
	Fig. 7, Diagrama de Módulos
	Fig. 8, Planificación de Trabajo

	III.4.2.​Herramientas para recursos gráficos y lógicas de juegos
	III.4.2.1.​Recursos Gráficos
	Fig. 9, Ejemplo de imagen de movimiento de personaje

	III.4.2.2.​Lógicas de Juegos

	III.4.3.​Elaboración de entorno en Python
	III.4.3.1.​Selección de Aplicativo o librería para el Entorno
	III.4.3.2.​Diseño de entorno
	Fig. 10, Diagrama del Entorno de juego
	Fig. 11, Ejemplo de la capa de fondo del Entorno
	Fig. 12, Ejemplo de Obstáculos
	Fig. 13, Ejemplo de Direcciones de Movimiento
	Fig. 14, Ejemplo de Obstáculo
	Fig. 15, Ejemplo de Ahogado
	Fig. 16, Ejemplo de Salto
	Fig. 17, Ejemplo de Captura

	III.4.4.​Diseño y configuración de entrenamientos
	Fig. 18, Bloques de módulo de entrenamiento

	III.4.5.​Sistema de recompensas para optimización de aprendizaje
	III.4.5.1.​Recompensa por movimiento
	Fig. 19, Ejemplo de cálculo de recompensa
	III.4.5.1.1.​Movimiento a la derecha del Chaser
	III.4.5.1.2.​Movimiento hacia abajo del Chaser
	Fig. 20, Ejemplo de cálculo de recompensa Chaser

	III.4.5.1.3.​Movimiento hacia abajo del Evader
	Fig. 21, Ejemplo de cálculo de recompensa Evader

	III.4.5.2.​Recompensa por Saltos
	Fig. 22, Imagen recompensa movimiento
	Fig. 23, Imagen recompensa salto

	III.4.5.3.​Recomple por contacto con obstáculos
	Fig. 24, Imagen recompensa obstáculo

	III.4.5.4.​Recompensa por tocar el Agua
	Fig. 25, Imagen recompensa tocar agua

	III.4.5.5.​Recompensa de victoria
	Fig. 26, Imagen recompensa victoria

	III.4.6.​Implementación de agentes con machine learning por refuerzo
	Fig. 27, Modulos de Agentes

	III.4.7.​Entrenamiento y prueba de los agentes
	Fig. 28, Imagen Muestra de Q-table

	III.5.​Análisis de datos
	III.5.1.​Validación de resultados en Aplicación
	Fig. 29, Imagen Muestra plataforma de juego

	III.5.2.​Validación de Resultados de Entrenamiento
	III.5.2.1.​Gráfica de Bigote
	Fig. 30, Ejemplo gráfico de bigote intermedio

	III.5.2.2.​Grafica total de resultados
	Fig. 31, Ejemplo gráfico de Línea evaluativo

	III.5.2.3.​Análisis de Tabla de Valores (Q-Tables)
	Fig. 32, Ejemplo de Q-table

	IV.​Resultados
	IV.1.​Generación de Imágenes
	Fig. 33, Mejor imagen obtenida IA Gemini
	Fig. 34, Mejor imagen obtenida IA Copilot

	IV.2.​Entrenamientos
	IV.2.1.​Primera ronda de entrenamiento.
	Fig. 35, Gráfico de Bigote bloque 1, 1er Entrenamiento
	Fig. 36, Gráfico de Bigote bloque 25, 1er Entrenamiento
	Fig. 37, Gráfico de Bigote bloque 50, 1er Entrenamiento
	Fig. 38, Gráfico de Línea 1er Entrenamiento
	Fig. 39, Muestra de Juego 1er Entrenamiento

	IV.2.2.​Segunda ronda de entrenamiento
	
	Fig. 40, Gráfico de Bigote bloque 1, 2do Entrenamiento
	
	Fig. 41, Gráfico de Bigote bloque 25, 2do Entrenamiento
	
	Fig. 42, Gráfico de Bigote bloque 50, 2do Entrenamiento
	Fig. 43, Gráfico de Línea 2do Entrenamiento

	IV.2.3.​Ronda de complemento de entrenamiento
	
	Fig. 44, Gráfico de Bigote bloque 1, 3er Entrenamiento
	Fig. 45, Gráfico de Bigote bloque 25, 3er Entrenamiento
	
	Fig. 46, Gráfico de Bigote bloque 50, 3er Entrenamiento
	Fig. 47, Gráfico de Línea 3er Entrenamiento

	V.​Discusión
	V.1.​Análisis por Rondas de Entrenamiento
	V.1.1.​Primera ronda de entrenamiento
	V.1.2.​Segunda ronda de entrenamiento
	V.1.3.​Ronda de complemento de entrenamiento

	V.2.​Resumen de los entrenamientos

	VI.​Conclusiones y Limitaciones
	VI.1.​Conclusiones
	VI.2.​Limitaciones y Problemáticas
	VI.2.1.​Limitaciones
	VI.2.2.​Problemáticas Generales

	VI.3.​Futuras líneas de investigación

	Referencias bibliográficas
	Índice de figuras

