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Resumen

El desarrollo de videojuegos, es un campo que requiere equipos multidisciplinarios y
recursos considerables, debido al actual auge de herramientas Open source de Inteligencia
Artificial (IA), abren camino a desarrolladores independientes y proyectos con presupuestos
limitados puedan hacerse realidad. Este Trabajo Final de Master (TFM) investiga la
viabilidad de un flujo de trabajo que integra estas herramientas de IA en el desarrollo de un
prototipo de videojuego.

El proyecto se inspira en el juego infantil "Pilla-pilla" y su adaptacion profesional, el
"Chase Tag". El prototipo, construido en Python, simula un entorno de persecucion donde
dos agentes auténomos, un cazador (Chaser) y un fugitivo (Evader), interactian. Su
comportamiento se rige por algoritmos de aprendizaje por refuerzo (Reinforcement Learning
- RL), que les permiten aprender estrategias de persecucion-evasion de manera auténoma.

A lo largo del desarrollo, se utilizaron herramientas de IA para crear fragmentos de
cédigo, con el objetivo de ensamblar un prototipo funcional. Permitiéndonos analizar la
calidad y adaptabilidad del contenido generado, la complejidad de las funcionalidades que
pueden desarrollarse y los desafios de integrar agentes inteligentes.

La finalidad del TFM es determinar si un prototipo integral, con agentes funcionales y
un entorno coherente, puede ser creado con este tipo de herramientas, describiendo los
desafios técnicos y las limitaciones encontradas.

El objetivo general es implementar agentes inteligentes para emular estrategias de
persecucion y evasidén en un videojuego interactivo. Para ello, los objetivos especificos
incluyen: analizar herramientas de |IA de cddigo abierto, desarrollar el entorno del juego en
Python, disefar un protocolo de entrenamiento, crear un sistema de recompensas para el
aprendizaje de los agentes vy, finalmente, implementar los agentes de RL.

En conclusion, este estudio busca ofrecer una perspectiva sobre el potencial de la IA
en el desarrollo de videojuegos, sirviendo de guia para futuros proyectos. Al demostrar que
es posible construir sistemas complejos y funcionales sin grandes inversiones, el TFM
aspira a sentar bases para la democratizacion de la tecnologia y la innovacién en el campo
del disefio de videojuegos y otros proyectos tecnoldgicos en sus etapas iniciales.

Palabras clave: Inteligencia Artificial, Aprendizaje por Refuerzo, Videojuego, Pygame,
Prototipo, Herramientas Open Source, Agentes Autbnomos, Chase Tag.
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Abstract

The field of video game development, which traditionally requires multidisciplinary
teams and significant resources, is becoming more accessible to independent developers
and projects with limited budgets thanks to the rise of open-source Artificial Intelligence (Al)
tools. This Master's Thesis investigates the feasibility of a workflow that integrates these Al
tools into the development of a video game prototype.

The project is inspired by the children's game "Tag" and its professional adaptation,
"Chase Tag." The prototype, built in Python, simulates a pursuit environment where two
autonomous agents, a hunter (Chaser) and a fugitive (Evader), interact. Their behavior is
governed by reinforcement learning algorithms, which allow them to autonomously learn
capture and evasion strategies. Throughout the development, Al tools were used to create
code fragments, with the goal of assembling a functional prototype. This allowed for an
analysis of the quality and adaptability of the generated content, the complexity of the
functionalities that can be developed, and the challenges of integrating intelligent agents.

The main purpose of the thesis is to determine if a complete prototype, with
functional agents and a coherent environment, can be created with this type of tool, by
describing the technical challenges and limitations encountered. The general objective is to
implement intelligent agents to emulate pursuit and evasion strategies in an interactive video
game. The specific objectives include: analyzing open-source Al tools, developing the game
environment in Python, designing a training protocol, creating a reward system for the
agents' learning, and finally, implementing the reinforcement learning agents.

In conclusion, this study seeks to offer a perspective on the potential of Al in video
game development, serving as a guide for future projects. By demonstrating that it is
possible to build complex and functional systems without large investments, the thesis aims
to lay the groundwork for the democratization of technology and innovation in the field of
video game design and other early-stage tech projects.

Keywords: Artificial Intelligence, Reinforcement Learning, Video Game, Pygame, Prototype,
Open-Source Tools, Autonomous Agents, Chase Tag.
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l. Introduccion

La interaccion con los videojuegos ha sido tradicionalmente asociada con el
entretenimiento y la recreacion infantil. Sin embargo, multiples estudios han
evidenciado el potencial de los videojuegos para fomentar habilidades cognitivas,
sociales y de resolucidon de problemas, especialmente cuando se emplean en
entornos controlados y con fines didacticos. Ejemplos clasicos son los simuladores
utilizados en la Férmula 1 o en la formacion de pilotos de aviacion.

Otro ejemplo de la aplicacion de videojuegos como herramienta de
aprendizaje, son los juegos “Buscaminas” y “Solitario”. Estos juegos inicialmente
fueron creados con la intencion de que nuevos usuarios de computadoras, pudiesen
adaptarse a interactuar con el “mouse”. Demostrando de esta manera, la utilidad de
los videojuegos en la adquisicion de destrezas especificas en escenarios seguros y
repetibles.

No obstante, debido a la reciente proliferacion de herramientas de
Inteligencia Atrtificial (IA) y la facilidad en cuanto a disposicidon y acceso, han
comenzado a introducirse rapidamente en muchas disciplinas. Estas tecnologias no
solo facilitan la generacién de activos visuales y sonoros, sino que también permiten
la implementaciéon con bajo coste de agentes inteligentes mediante algoritmos de
acceso libre de aprendizaje por refuerzo (Reinforcement Learning - RL),
democratizando el acceso al desarrollo y prototipado, especialmente para equipos
independientes con recursos limitados.

Este Trabajo Final de Master (TFM) se enmarca en la creacién de un
prototipo de videojuego basado en la dinamica de la competicion “Chase Tag”, que
en la literatura cientifica es conocida como "Pursuit-Evasion").

Esta dinamica consiste en que dos agentes, un Perseguidor (Chaser) y un
Evasor (Evader), interactian dentro de un entorno de dos dimensiones tipo
cuadricula (grid). Ambos agentes se enfrentaran de forma auténoma, y sus
comportamientos se regiran por algoritmos de RL.

El alcance de este trabajo se delimita a la implementaciéon de dos agentes
inteligentes basados en RL dentro de un entorno de videojuegos, empleando
unicamente herramientas vy librerias de acceso libre, y a la documentacién de un
pipeline completo que abarque desde la generacion de recursos hasta la evaluacién
de estrategias de los agentes. Las preguntas de investigacion que guian este
estudio son:

1. ¢Es posible la creacidén del prototipo completamente sin conocimientos en
programacion de videojuegos?

2. ¢(En qué medida puede la IA facilitar la creacién integral de un videojuego
funcional y reproducible en un entorno limitado?



3. ¢Es posible derivar la interaccion entre agentes IA (IA vs IA o usuario vs IA),
concretamente a algoritmos de machine learning por refuerzo, para el
desarrollo de estrategias de persecucion-evasion?

4. ;Cudles son las limitaciones y oportunidades del uso exclusivo de
herramientas libres en el proceso?

A lo largo de este trabajo se responde a estas preguntas que guian el
desarrollo realizado.

Delimitacion del TFM

El estudio se restringe al desarrollo de un prototipo de videojuego en un
entorno bidimensional (2D) con una estructura de cuadricula (grid), utilizando
exclusivamente en lenguaje de programacion Python vy librerias de acceso libre,
tales como Pygame. El alcance se limita a la implementacion y entrenamiento de
dos agentes autbnomos que interactuan en dicho prototipo, bajo politicas de RL, sin
incorporar elementos tridimensionales, motores graficos avanzados ni componentes
de audio.

Contribuciones del TFM

- Un prototipo de videojuego reproducible.

- Un esquema de recompensas y politicas.

- Un conjunto de métricas para evaluar el desempeno de los agentes.

- Un pipeline de desarrollo integramente basado en herramientas libres.

Los objetivos especificos son: seleccionar Herramientas para recursos
graficos y légicas de juegos, Elaboracion de entorno interactivo para agentes
autonomos en Python, disenar y configurar entrenamientos, crear un sistema de
recompensas y por ultimo implementar y evaluar la interaccion entre agentes.

Finalmente, dentro de los apartados de marco tedrico y la metodologia de
trabajo, se detallaran conceptos fundamentales sobre RL, las herramientas
empleadas durante la elaboracion del proyecto, asi como también, el diagramas de
disefio experimentales y las métricas de evaluacion utilizadas en el estudio.



.1. Justificacion

La creaciéon de videojuegos tradicionalmente ha estado reservada para
equipos multidisciplinarios con altos niveles de especializacion y acceso a recursos
considerables, lo que limita el acceso a este campo para desarrolladores
independientes o proyectos con recursos limitados.

En este contexto, el auge de herramientas de IA de libre acceso representa
un cambio de paradigma al democratizar la creacion de contenido y la
implementacion de funcionalidades complejas.

En primer lugar, la generacion de contenido, entornos y funcionalidades
relacionadas al desarrollo de videojuegos requiere una inversion muy significativa,
en cuanto al tiempo de ejecucion, recursos creativos y por la variedad de
habilidades requeridas. Debido a esto, se dificulta a pequefios equipos la posibilidad
de exploracion de ideas innovadoras sin la dependencia de grandes inversiones
iniciales.

Recientemente, gracias al creciente interés en la aplicacion de IA en
diferentes ambitos, se han abierto nuevas posibilidades para la creacion automatica
de activos graficos, sonoros y de algoritmos. Lo que permite a equipos de desarrollo
poder optimizar sus procesos, reducir costos, complementar experiencias de
usuario, ayudando de esta manera a transformar mas ideas simples en prototipos
implementables.

En segundo lugar, esta investigacion tiene una dimension social y educativa,
ya que promueve el acceso a nuevas tecnologias y estimula la creatividad en
personas autodidactas o con recursos propios que no cuentan con la experiencia
necesaria. Al demostrar la posibilidad y limites de la IA, se abren nuevas puertas
para la innovacion y la ensefianza en areas relacionadas con el disefio de
videojuegos, la inteligencia artificial y el desarrollo de software en general.

Este TFM se justifica por la necesidad de explorar como las herramientas de
IA pueden integrarse en el flujo de trabajo, ya sea para el desarrollo de un
videojuego o para el desarrollo de iniciativas. Esto permitira demostrar el potencial
de la IA accesible para la creacion de interacciones complejas sin depender de
costosas licencias o software propietario, abriendo el camino a desarrolladores
independientes y proyectos con recursos limitados.

.2. Problematica

Si bien las herramientas de inteligencia artificial cada dia se estan
actualizando y las versiones gratuitas para la generacion de contenido son cada vez



mas sofisticadas, su aplicacion en el contexto del desarrollo de videojuegos plantea
muchas interrogantes sobre la calidad de recursos, la posibilidad de realizar
funcionalidades complejas o la adaptabilidad del contenido generado a las
necesidades especificas de un proyecto.

Por otra parte, la integracion de este contenido generado con un agente
inteligente también presenta desafios adicionales. No solo garantizando que el
agente aprenda comportamientos utiles, sino también asegurar que dicho
comportamiento sea coherente con el entorno virtual al que pertenece, nos da la
posibilidad de detectar bucles infinitos en los entrenamientos o apariciéon de
comportamientos no deseados.

Ademas de esto, la integracién de agentes generados automaticamente por
IA genera problemas de compatibilidad y dificultades técnicas al momento de
entrenar o evaluar, dificultando la creaciéon de un agente con un rendimiento éptimo
y una capacidad de interaccién sofisticada.

A esto se suman limitaciones practicas como la necesidad de hardware
adecuado para el entrenamiento de los agentes, la gestion éptima de los recursos
computacionales y la dependencia de la supervision humana para ajustar
parametros, corregir errores y validar la calidad del resultado.

Con todo lo mencionado, nos genera incertidumbre respecto a la viabilidad de
utilizar unicamente herramientas de IA gratuitas para un prototipado integral de
videojuegos, especialmente si se pretende crear agentes funcionales dentro de
entornos coherentes de interaccion.

1.3. Finalidad

La finalidad principal de este trabajo final de master es analizar y determinar
la viabilidad o posibles limitaciones de utilizar un flujo de trabajo que combine la
generacion de contenido con IA y el uso de algoritmos de aprendizaje por refuerzo
para la creacion de agentes autonomos en el desarrollo de videojuegos.

Los resultados de esta investigacion podrian ofrecer nuevas perspectivas
sobre el uso de la inteligencia artificial accesible para la creacion integral de
videojuegos. Se busca analizar la calidad de las interacciones de los agentes,
evaluando los procesos desde la creacion de recursos visuales, algoritmos de
configuracion de movimientos o acciones, hasta su integracion dentro de los
entrenamientos, describiendo los desafios encontrados durante su implementacion.

En resumen, el propdsito es ofrecer conclusiones fundamentadas que sirvan
de guia para futuros desarrolladores y académicos interesados en aprovechar la IA
accesible para innovar en el campo del desarrollo de videojuegos y, potencialmente,
en otros proyectos tecnoldgicos en fases iniciales.



1.4. Objetivos

1.4.1.

Objetivo General

Implementar agentes inteligentes basados en aprendizaje por refuerzo con
objetivo de emular estrategias de persecucion-evasion (pursuit-evasion o Chase
Tag), dentro de un entorno de videojuego interactivo creado totalmente en Python.

1.4.2.

1.4.3.

1.4.4.

1.4.5.

1.4.6.

1.4.7.

Objetivos Especificos

Herramientas para recursos graficos y légicas de juegos: Investigar
y seleccionar herramientas de inteligencia artificial Open Source para la
generacion de recursos graficos y la programacion de logicas de juego,
con el fin de identificar las mas adecuadas para el proyecto.

Elaboracion de entorno en Python: Desarrollar un prototipo de
videojuego 2D en Python que sirva como entorno de simulacién para
agentes de IA, implementando las reglas del juego de
persecucion-evasion y permitiendo la interaccidn y recoleccion de datos
de manera controlada.

Diseiio y configuracion de entrenamientos: Disefiar y protocolizar los
entrenamientos para los agentes de IA, estableciendo las fases,
métricas y criterios de evaluacion que permitan la interaccion efectiva
entre ellos y la recoleccidén de datos para su optimizacién.

Sistema de recompensas para optimizacion de aprendizaje: Disefiar
e implementar un sistema de recompensas efectivo, que incentive el
comportamiento deseado de los agentes y que sirva como la sefal de
retroalimentacion clave para el aprendizaje por refuerzo.

Implementacion de agentes con machine learning por refuerzo:
Desarrollo y configuracion de agentes inteligentes basados en
algoritmos de aprendizaje por refuerzo (Q-Learning) para la realizacion
de un objetivo de persecucidn-evasion.

A lo largo de este estudio, estos objetivos especificos se implementaran, a
través de la resolucion de tareas descritas en el apartado de disefio y metodologia.
Ademas de esto, discutiremos los resultados obtenidos tras la realizacion de todas
las pruebas planificadas, dando asi conclusiones respecto a su ejecucion.
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II. Marco teodrico

I.1. Juegos tradicionales como pilla-pillay su
adaptacion a tiempos modernos

El pilla-pilla es considerado un juego de persecucion, y en la actualidad
existen multiples variantes segun la region. Si bien la mecanica central del juego
presenta poca o nula variacion en las diferentes culturas donde se practica, es
comun que su denominacion cambie en funcion del pais o incluso de la localidad.

Por ejemplo, en Venezuela se conoce como “La ere”, en Espafia se puede
llamar “las atrapadas” o “pilla-pilla”, en México y Centroamérica predomina el
nombre “la traes”, mientras que en Argentina, aunque existen algunas variantes en
las reglas o dinamicas de juego, se le conoce principalmente como “la mancha”.

A esto se suman otras denominaciones como “la lleva”, “la queda” o “la pinta”
en distintas regiones hispanohablantes y mas alla. Esta riqueza de nombres vy
pequefias adaptaciones demuestra no solo la difusién global del juego, sino también

su capacidad de arraigarse en la cultura popular de cada sociedad.

A pesar de las diferencias nominales y de las ligeras adaptaciones en las
reglas que pueden encontrarse en cada region, la esencia del pilla-pilla radica en la
simplicidad de correr y atrapar a los demas jugadores. Esta caracteristica ha
permitido que este juego trascienda durante generaciones y continentes,
convirtiéendose en una actividad ludica presente en la infancia de millones de
personas en todo el mundo.

Fig. 1, Imagen pilla-pilla

Reglas basicas del pilla-pilla:

- Participantes: El juego requiere al menos de dos jugadores, aunque puede
participar un grupo grande.

- Designacién del perseguidor: Al inicio, se elige mediante sorteo o0 consenso a
una persona que sera “el que la queda” (el perseguidor o “it” en inglés).
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- Objetivo: El perseguidor debe atrapar a cualquiera de los otros jugadores
tocandolo fisicamente.

- Cambio de rol: Cuando un jugador es tocado por el perseguidor, este pasa a

ser el nuevo perseguidor (“la queda”, “la trae”, etc.), y el anterior perseguidor
se suma a los que huyen.

- Zona de juego: Generalmente se delimita un espacio fisico (patio, parque,
salodn, etc.) donde se desarrolla el juego. Salir de la zona puede implicar
penalizaciones o expulsion temporal.

- Reglas adicionales: En algunas variantes, existen “zonas seguras” donde los
jugadores no pueden ser atrapados, o reglas para evitar que la misma
persona sea perseguida varias veces seguidas. Otras versiones pueden
incluir varios perseguidores o condiciones especiales para cambiar de rol.

La universalidad de este juego, junto con la simplicidad y accesibilidad de sus
reglas, han hecho posible que permanezca vigente a lo largo de los siglos hasta la
actualidad. Un claro ejemplo de la evoluciéon y modernizacion del pilla-pilla es la
competicion internacional conocida como “Chase Tag”.

Esta modalidad toma como base la dinamica original del juego, pero la lleva a
un nivel profesional, donde los participantes -expertos en parkour y otras disciplinas
acrobaticas- deben demostrar gran habilidad y estrategia para esquivar y atrapar a
sus oponentes en un entorno especialmente disefiado.

La combinacién de sencillez en el objetivo y la espectacularidad de las
habilidades fisicas, ha generado una competencia que se ha vuelto cada vez mas
popular, impulsada por eventos televisados y millones de visualizaciones en
plataformas digitales. Asi, el pilla-pilla no solo sobrevive, sino que sigue
reinventandose y adaptandose a los nuevos tiempos y formas de entretenimiento.

i
L
3
J
i
3

Fig. 2, Imagen World Chase Tag

Reglas basicas del Chase Tag (World Chase Tag®, 2025):

- Participantes: Se divide en dos equipos de hasta 5 jugadores, pero solo
participan 2 a la vez (uno por equipo).

12
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- Designacién del perseguidor: Al inicio, se elige mediante sorteo que equipo
arranca como perseguidor (“Chaser”) el otro sera evasor o (“Evader”).

- Objetivo: En un periodo de 20 segundos, el “Chaser” debe atrapar al “Evader”
tocandolo fisicamente con la mano.

- Puntuacion: Solo puede ganar puntos el equipo del jugador que esta como
“‘Evader”. Si en el tiempo dado el “Evader” no es tocado, su equipo suma un
punto y el equipo del “Chaser” debe cambiar de representante.

- Cambio de rol: Si el “Evader” es tocado, este sale del campo y el jugador
“Chaser” pasa a ser el nuevo “Evader”. El equipo del jugador eliminado debe
incorporar a un nuevo miembro como “Chaser”.

- Zona de juego: El area se denomina “Quad” y esta delimitada fisicamente,
contando con obstaculos variables segun la competicion o el nivel de
dificultad. Salir de la zona sefalizada implica la pérdida automatica de la
persecucion.

I.2. Videojuegos como herramienta de aprendizaje y
pygame

Los videojuegos, tradicionalmente concebidos como una forma de
entretenimiento, han demostrado en los ultimos afios un enorme potencial como
herramienta de aprendizaje. Ejemplos de esto los podemos ver en salones de
entrenamiento dentro de diferentes industrias como la Conduccion, Transporte y
Logistica. Como por ejemplo, los simuladores para pilotos de Férmula 1, donde
ayuda a los conductores a ganar incrementan sus niveles de seguridad al realizar
una maniobra, permitiendo familiarizarse con procedimientos sin riesgos reales.

Otro ejemplo son las escuelas de aviacion para vuelos comerciales, que
permiten practicar maniobras, procedimientos de emergencia, navegacion vy
comunicacion sin riesgos.

Un ejemplo clasico en la informatica, es el del popular juego “Minesweeper” o
“‘Buscaminas” como se conoce en los paises de habla hispana. Este juego fue
creado con la intencidon de ser un juego de estrategia, pero muchos profesores en
escuelas lo utilizaban para ensefar a nuevos usuarios a interactuar con el mouse de
la computadora, permitiendo a los usuarios ganar habilidad y precision al clickear.

Todo esto es posible gracias al caracter interactivo que aportan los
videojuegos y que se ve aumentada por la creatividad de los desarrolladores al
crear entornos dinamicos donde los usuarios pueden experimentar, tomar
decisiones y recibir retroalimentaciéon inmediata para aprender de los errores, todo
esto dentro de un ambiente seguro y controlado.
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Diversos estudios han senalado que los videojuegos creados con fines
educativos pueden mejorar la retencion de conocimientos, el desarrollo de
habilidades cognitivas (como la resolucion de problemas, la memoria y la atencién)
e incluso fomentar competencias sociales, como el trabajo en equipo y la
comunicacién. Ademas, permiten la personalizacion del ritmo de aprendizaje y la
adaptacion de los contenidos a las necesidades individuales de cada usuario,
incrementando asi la motivacion y el compromiso con el proceso formativo.

Por otro lado, los videojuegos facilitan la simulacién de escenarios complejos
y abstractos que serian dificiles de replicar en un entorno tradicional, como
experimentos cientificos, situaciones histdricas o contextos laborales. De esta
manera, los estudiantes pueden aprender de manera activa y significativa,
construyendo su propio conocimiento a través de la experiencia directa.

En resumen, el uso de videojuegos en el ambito educativo no solo transforma
la manera en que se transmiten los contenidos, sino que también abre nuevas
posibilidades para la ensefianza y el aprendizaje, haciendo el proceso mas atractivo,
efectivo y accesible para un publico diverso.

I1.3. Inteligencia Artificial y Machine Learning

La inteligencia artificial (IA) hace referencia a la creacion o usos de algoritmos
computarizados que sean capaces de emular la mente humana en la realizacion de
actividades. Sin embargo, los psicélogos, bidlogos y neurocientificos, siguen
teniendo una nocién difusa de la inteligencia, tanto en humanos como en maquinas.

Por esta razon, quienes investigan en el ambito de la IA suelen emplear
preferentemente el término “racionalidad”. La racionalidad como significado, segun
lo indica la Real Academia Espanola, es la capacidad de actuar, pensar y juzgar de
acuerdo con la razon y la légica. Que podemos interpretar como la capacidad para
poder seleccionar la mejor accién posible con la intencién de alcanzar un obijetivo
especifico, considerando criterios de optimizacion y los recursos disponibles.
Aunque la racionalidad no agota el significado de inteligencia, constituye un
elemento fundamental.

En este contexto, se utiliza la expresion “sistema de IA” para referirse a
cualquier componente, ya sea de software o hardware, que integre IA.
Habitualmente, estos sistemas forman parte de plataformas mas amplias y no
suelen operar de forma completamente autébnoma. Asi, de acuerdo con uno de los
manuales mas conocidos de la disciplina, un sistema de |A se caracteriza
principalmente por su racionalidad (Duo Terrén et al., 2023).

Para lograrla, el sistema percibe su entorno mediante sensores, recopila e
interpreta datos, razona sobre la informacion obtenida, decide la mejor accion
posible y actua en consecuencia a través de actuadores, modificando asi su
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entorno. Los sistemas de |A pueden recurrir tanto a reglas simbdlicas como a
modelos numéricos basados en aprendizaje, y son capaces de adaptar su
comportamiento analizando el impacto de sus acciones previas en el entorno.

El aprendizaje automatico (Machine Learning, ML) es una rama de la
inteligencia artificial que se centra en el desarrollo de algoritmos y técnicas que
permiten a los sistemas aprender patrones y tomar decisiones a partir de datos, sin
estar explicitamente programados para realizar tareas especificas (Mitchell, 1997).

Dentro de los distintos tipos de machine learning podemos encontrar:

El aprendizaje supervisado, el cual se utiliza para tareas de clasificacion y
regresion. Este modelo aprende a partir de una base de datos previamente
etiquetados, es decir, cada entrada tiene una respuesta correcta y conocida. Esto
con el objetivo de que el algoritmo encuentre una funcién patrones que permitan
predecir la etiqueta de datos no vistos.

El aprendizaje no supervisado, se utiliza para tareas de segmentaciéon de
clientes, deteccion de anomalias y reduccidn de dimensionalidad, particularmente,
donde los datos no estan etiquetados. El algoritmo debe encontrar por si mismo los
patrones o la estructura de los datos, como agrupacion o asociacién entre ellos.

El aprendizaje por refuerzo (Reinforcement Learning - RL) consiste en
aprender qué hacer, como relacionar situaciones con acciones, para maximizar una
sefal de recompensa numérica. Al agente de aprendizaje no se le dice qué
acciones tomar, sino que debe descubrir cuales acciones producen la mayor
recompensa al probarlas.

En los casos mas interesantes y desafiantes, las acciones pueden afectar no
solo la recompensa inmediata, sino también la siguiente situacion y, a través de ella,
todas las recompensas subsiguientes. Estas dos caracteristicas, la busqueda por
prueba y error y la recompensa retardada, son los dos rasgos distintivos mas
importantes del RL (Duo Terrén et al., 2023).

1.3.1. Exploracion - Explotacion

Uno de los desafios que surgen en el RL, y no en otros tipos de aprendizaje,
es la disyuntiva entre exploracion y explotacion. Para obtener una gran cantidad de
recompensa, un agente de RL debe preferir acciones que ha probado en el pasado
y que ha encontrado efectivas para producir recompensa. Pero para descubrir tales
acciones, tiene que probar acciones que no ha seleccionado antes.

El agente tiene que explotar lo que ya ha experimentado para obtener
recompensa, pero también tiene que explorar para tomar mejores decisiones de
accion en el futuro. El dilema es que ni la exploracion ni la explotacion pueden
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buscarse de forma exclusiva ya que dara a lugar al fracaso en la tarea conjunta. El
agente debe probar (explorar) una variedad de acciones y favorecer
progresivamente (explotar) aquellas que parecen ser mejores.

En una tarea estocastica, cada accion debe probarse muchas veces para
obtener una estimacion fiable de su recompensa esperada. ElI dilema
exploracion-explotaciéon ha sido estudiado intensamente por matematicos durante
muchas décadas, y sin embargo, sigue sin resolverse (Sutton & Barto, 2014).

Por ahora, simplemente sefialamos que todo el problema de equilibrar la
exploracién y la explotacidn ni siquiera surge en el aprendizaje supervisado y no
supervisado, al menos en las formas mas puras de estos paradigmas.

1.3.2. Algoritmos de Machine Learning por refuerzo

Mas alla del agente y el entorno, se pueden identificar cuatro subelementos
principales en un sistema de aprendizaje por refuerzo (Reinforcement Learning -
RL): una politica, una sefal de recompensa, una funcién de valor y, opcionalmente,
un modelo del entorno (Sutton & Barto, 2014).

Una politica es la que define las reglas segun las cuales los agentes se
comportan en un momento dado. A grandes rasgos, una politica es un mapeo de los
estados percibidos del entorno a las acciones que deben tomarse cuando se esta en
esos estados. Corresponde a lo que en psicologia se llamaria un conjunto de reglas
0 asociaciones de estimulo-respuesta (Silver etal.,, 2016). En algunos casos, la
politica puede ser una funcidn simple o una tabla de consulta, mientras que en otros
puede implicar un calculo extenso, como un proceso de persecucion.

La politica es el nucleo de un agente de RL en el sentido de que por si sola
es suficiente para determinar el comportamiento. En general, las politicas pueden
ser estocasticas, especificando probabilidades para cada accion.

Una senal de recompensa define el objetivo de un problema de RL. En cada
paso de tiempo, el entorno envia al agente de RL un uUnico numero llamado
recompensa. El unico objetivo del agente es maximizar la recompensa total que
recibe a largo plazo. La sefal de recompensa, por lo tanto, define cuales son los
eventos buenos y malos para el agente. En un sistema bioldgico, podriamos pensar
en las recompensas como analogas a las experiencias de placer o dolor. Son las
caracteristicas inmediatas y definitorias del problema al que se enfrenta el agente.

La sefal de recompensa es la base principal para alterar la politica; si una
accion seleccionada por la politica es seguida por una recompensa baja, entonces
la politica puede cambiarse para seleccionar alguna otra accion en esa situacioén en
el futuro.
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En general, las sefales de recompensa pueden ser funciones estocasticas
del estado del entorno y de las acciones tomadas.

Dentro de los algoritmos de RL podemos encontrar:

El Q-Learning, este es un algoritmo popular que utiliza la Ecuacion de
Optimalidad de Bellman para aprender la funcién de valor de accidén 6ptima
(Q-values) sin necesidad de un modelo del entorno. ElI Q-learning actualiza los
valores Q en funcién de la recompensa inmediata y el valor Q maximo esperado del
siguiente estado.

SARSA, este es similar al Q-learning, pero el valor del siguiente estado se
basa en la accion que realmente se toma, en lugar de la accion que maximiza el
valor.

1.3.2.1. Entorno de ejecucién

En el Aprendizaje por Refuerzo (Reinforcement Learning - RL), el entorno es
el mundo con el que el agente interactua. Para que este se considere que esté bien
definido, debe proporcionar una base sobre la cual el agente pueda aprender a
través de la interaccidn, buscando maximizar las recompensas recibidas a lo largo
del tiempo. Es el "campo de juego” y las "reglas" que el agente debe dominar.

Fig. 3, Cuadricula Referencia para Entorno

Tabla de Valores de recompensa (Q-Table): representa a la tabla de
consulta utilizada en algoritmos de RL para guardar los valores de recompensa
obtenidos al cambiar de estado a través de una accién particular. La tabla tiene una
fila por cada estado existente y una columna por accién posible.

Acciones
Estados Quieto | Arriba | Abajo |lzquierda| Derecha
Estado 1
Estado 2
Estado 3
Estado N

Fig. 4, Ejemplo de registro de Q Table
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Estados (States - S): Los estados representan todas las diferentes
situaciones o configuraciones en las que el agente puede encontrarse. Un estado
debe proporcionar suficiente informacion para que el agente tome una decision
informada. Ejemplos de esto lo podemos encontrar en el Ajedrez, que hace
referencia a la posicion de todas las piezas en el tablero. Otro ejemplo puede ser un
Robot mdévil, la ubicacién actual del robot (coordenadas X, Y), su orientacién, la
presencia de obstaculos cercanos.

Acciones (Actions - A): Las acciones son los movimientos o decisiones que
el agente puede tomar cuando se encuentra en un estado particular. Estas acciones
tomadas afectan directamente los cambios de estado. Siguiendo los ejemplos antes
mencionados, una accion en el Ajedrez, es mover una pieza de una casilla a otra.
Para el caso del Robot mévil las acciones son girar a la izquierda, avanzar y
detenerse.

1.3.2.2. Bellman’s Equation

La Ecuacion de Bellman es un concepto fundamental en el RL. Su principal
uso es permitir a los agentes tomar decisiones optimas en entornos dinamicos e
inciertos, descomponiendo un problema complejo de toma de decisiones en pasos
mas pequenos y manejables. En esencia, la Ecuacion de Bellman establece una
relacion recursiva entre el valor de un estado (o un par estado-accion) en un
momento dado y el valor de los estados futuros. Esto permite calcular el valor
esperado a largo plazo de estar en un estado particular y seguir una politica
determinada.

Q(S, A) = reward(S) + v [maxA,Q(S', A')]

-1 -1
-1 -1 -1
-1 -1 10

Fig. 5, Ejemplo de registro de Recompensas
La version de la Ecuacion de Bellman conocida como Ecuacion de

Optimalidad de Bellman es fundamental para encontrar la politica 6ptima (Duo Terron
et al., 2023). Esta ecuacién busca la accion que maximiza la recompensa esperada a

18


https://www.zotero.org/google-docs/?ea50ww
https://www.zotero.org/google-docs/?ea50ww

largo plazo en cada estado. Al resolver la Ecuacion de Optimalidad de Bellman, se
puede determinar la mejor accidn a tomar en cada situacién para maximizar las
recompensas acumuladas.

11.3.2.3. Value-based

Mientras que la sefal de recompensa indica lo que es bueno en un sentido
inmediato, la funcién de valor obtenida de la ecuacion de Bellman indica lo que es
bueno a largo plazo. A grandes rasgos, el valor de un estado es la cantidad total de
recompensa que un agente puede esperar acumular en el futuro, comenzando
desde ese estado. Mientras que las recompensas determinan la utilidad intrinseca e
inmediata de los estados del entorno, los valores indican la utilidad a largo plazo de
los estados, teniendo en cuenta los estados que probablemente seguiran y las
recompensas disponibles en esos estados.

1.3.2.4. Aprendizaje con Temporal Difference Error (TD)

Dentro del RL se aplican técnicas adicionales como la diferencia temporal
(TD) para mejorar la capacidad de aprendizaje de los agentes de |IA a partir de
experiencias parciales. Esto ayuda a que la toma de decisiones sea mas optima en
entornos dinamicos y desconocidos, sin la necesidad de contar con un modelo
explicito del entorno.

Esta forma de aprendizaje es fundamental para estimar las funciones de valor
de estado (V(s)) y las funciones de valor de accion (Q(s,a)). Estas funciones
representan la recompensa esperada a largo plazo para cada estado o al tomar una
accion especifica desde un estado dado. A diferencia de los métodos Monte Carlo,
que esperan hasta el final de un episodio para actualizar sus estimaciones, los
métodos TD actualizan las predicciones incrementalmente en cada paso, lo que
permite un aprendizaje mas eficiente en entornos con recompensas diferidas o
largos episodios.

TD Error = Q(Sl, A1) — Q(S1' A)

Observado Esperado

Tanto SARSA y Q-learning utilizan este TD error, para la actualizacion de
valores de recompensa.

1.3.2.5. Esperado vs. Actualizacion de Muestra

La clave del Q-learning es como la Tabla de Valores (Q-table) se actualiza
iterativamente a medida que el agente interactiua con el entorno. Cada vez que el
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agente realiza una accién, observa una recompensa, y transita a un nuevo estado,
utilizando esta informacion para refinar sus estimaciones de valor Q.

Q(S1’ Al)' « Q(S1’ Al) + o (TD Error)

La actualizacion de la Q-table ocurre de forma iterativa durante el
entrenamiento:

Inicializaciéon: la Q-table se inicializa con valores arbitrarios (comunmente
ceros o numeros aleatorios pequefos).

Exploracion y Explotacion: en cada paso de tiempo, el agente se encuentra
en un estado. Utiliza una politica de seleccién de acciones (comunmente e-greedy)

para elegir una accion:

- Con probabilidad € (epsilon), el agente explora y elige una accion
aleatoria para descubrir nuevas posibilidades.

- Con probabilidad 1-€, el agente explota y elige la acciéon que tiene el
valor Q(S,A) mas alto en el estado actual, basandose en su

conocimiento actual.

Ejecucion de la Accién: es el movimiento definido que puede ejecutar el
agente.

Observacion: es el valor de recompensa que recibe el agente cuando
transita los estados.

Actualizacion del Q-value: usando la férmula de Bellman anterior, el agente
actualiza el valor Q(s,a) en la Q-table.

Nuevo Estado: el estado actual se convierte en el nuevo estado.
Este proceso se repite durante muchas iteraciones a las que llamamos

“episodios”, hasta que la Q-table converge, es decir, los valores Q ya no cambian
significativamente (Sutton & Barto, 2014).

I1.4. Estado del arte

Dentro de este estudio se seleccionaron para consulta articulos y recursos
académicos con tematicas de aplicacion de Reinforcement learning dentro de
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estrategias de persecuciéon-evasion. Se incluye una descripcién que se usé como
base para su evaluacion, inspiracion o descarte en el presente trabajo.

I.4.1. Listado de documentaciéon cientifica (ordenados por
enfoque)

1.4.1.1. Vision y aprendizaje distribuido en entornos complejos
"Viper: Visibility-based pursuit-evasion via reinforcement learning.”
Utiliza un modelo de atencion grafica para coordinar agentes que detectan
evasores. (Wang, Y., Cao, Y., Chiun, J., Koley, S., Pham, M., & Sartoretti, G. A,,
2024).

1.4.1.2. MADDPG en escenarios dinamicos y parcialmente observables
“Pursuit-Evasion for Car-like Robots with Sensor Constraints” Modela
un juego con agentes con restricciones cinematicas. Utiliza Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) transfiriendo a robots reales (Gonultas &
Isler, 2025).

11.4.1.3. MAPPO en entornos complejos
"Distributed Pursuit-Evasion Game Decision-Making Based on
Multi-Agent Deep Reinforcement Learning” Este combina aprendizaje por
curriculos automaticos con Multi-Agent Proximal Policy Optimization (MAPPO) (Lin
et al., 2025).

1.4.1.4. Implementacién real con UAVs
"Pursuit-evasion game with online planning using deep reinforcement
learning” Desarrolla un sistema distribuidos para con MADDPG que predice la
trayectoria (Chen et al., 2025).

1.4.1.5. Comportamientos emergentes en entornos tabulares
"Emergent behaviors in multiagent pursuit evasion games within a
bounded 2D grid world" Explora comportamientos emergentes detectados sobre
trayectorias en escenarios de cuadricula (Xu & Dang, 2025).

1.4.1.6. Método clasico: aprendizaje basado en modelos en cuadricula
pequenas
“Multi-Agent Model-Based Reinforcement Learning Experiments in the
Pursuit Evasion Game.” R-max en cuadriculas comparando enfoques
centralizados vs distribuidos (Bouzy & Métivier, 2007).
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1.4.1.7. Swarm descentralizado con MADDPG en espacio continuo
"Pursuit-evasion with Decentralized Robotic Swarm in Continuous State
Space and Action Space via Deep Reinforcement Learning” Multi-Agent
Proximal Policy Optimization (MAPPO) para robots en espacios continuos (Singh
et al., 2020).

1.4.1.8. Aplicaciones especializadas: microagentes o entornos fisicos
unicos
"Reinforcement learning for pursuit and evasion of microswimmers at
low Reynolds number” RL en micro agentes para persecucién—evasion (Borra
et al., 2022).

"Intelligent Pursuit-Evasion Game Based on Deep Reinforcement
Learning for Hypersonic Vehicles” entrenamiento reforzado basado en juegos
(Gao et al., 2023).

1.4.1.9. Adversario consciente y modelado de oponentes
"An Opponent-Aware Reinforcement Learning Method for Team-to-Team
Multi-Vehicle Pursuit via Maximizing Mutual Information Indicator” Modelado de
estrategia del oponente mediante DQN (Wang et al., 2022).

"Adversary agent reinforcement learning for pursuit-evasion”
Entrenamiento en entornos de visibilidad limitada, mediante agentes adversarios
(Huang, 2021).

"Decentralized Multi-Agent Pursuit using Deep Reinforcement Learning”
Modelado con recompensas individuales/colectivas con aplicacién real reales
(Souza et al., 2020).

"Diffusion-Reinforcement Learning Hierarchical Motion Planning in
Multi-agent Adversarial Games" Modelo difuso de planificacion global con RL en
escenarios parcialmente observables (Wu et al., 2024).

.4.2. Comparacién de trabajos con RL relevantes a
pursuit-evasion

Algoritmo

Referencia Entorno . .
principal

Aplicacién practica

(Bouzy & Meétivier, Cuadricula 2D Q-learning tabular = Simulacién de
2007) acotada comportamientos
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(Singh et al., 2020)

(Wang et al., 2022)

Espacio continuo

Urbano simulado,

MADDPG (deep
RL multiagente)

DQN + opponent

emergentes (flanco,
emboscada)

Simulacién de robots en
enjambre, control
descentralizado

Persecucion en

parcialmente modeling vehiculos urbanos
observable (simulacion avanzada)

(Souza et al., 2020) = Espacio continuo Curriculum Transferencia de

learning + politicas a drones reales
DDPG/MADDPG
(Wang, Y., Cao, Y., Entornocomplejo GAT (Graph Simulacién con
Chiun, J., Koley, S con visibilidad Attention) + percepcion visual
1 "I 3 ")
limitada MARL realista

Pham, M., &

Sartoretti, G. A,

2024)

(Gonultas & Isler, Entorno con MADDPG + Transferencia parcial a

2025) restricciones de Curriculum robots reales
visién y sensores

(Lin et al., 2025) Espacio MAPPO + Estrategias cooperativas
continuo, self-play de UAVs
multi-UAV

(Chen et al., 2025) Espacio continuo A MADDPG + Implementacién en

prediccion de UAVs fisicos
trayectoria (quadcopters)

(Borra et al., 2022) Medio fisico RL tabular/ deep = Microswimmers en
fluido (simulacion ' RL basico entornos de dinamica de
continua) fluidos

(Gao et al., 2023) Espacio TD3 (Twin Aplicacion militar
continuo, Delayed DDPG) (vehiculos hipersoénicos)
dinamica
extrema

1.4.3. Breve contexto y observaciones comparativas

11.4.3.1.

Entorno (cuadricula vs continuo)

Cuadricula 2D: trabajos iniciales y académicos (Bouzy & Métivier, 2007); (Xu

& Dang, 2025). Se relacionan con algoritmo Q-learning en cuadricula, similar al
utilizado en este TFM.
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Espacio continuo: la mayoria de papers encontrados (UAVs, microswimmers,
entornos urbanos) usan espacios continuos. Permite mayor capacidad de
movimiento, pero es necesario aplicar algoritmos profundos (DQN, MADDPG,
MAPPO, TD3).

1.4.3.2. Algoritmos:

Q-learning tabular. aplicacion para accionar en cuadriculas como en este
TFM.

Opponent-aware & graph-based: necesario para mejorar la coordinacion de
movimientos y la percepcion del ambiente.

11.4.3.3. Aplicaciones practicas:

Simulacion tabular. utilizada para la prueba de hipoétesis (ej. comportamiento
emergente).

Robdtica: tendencia en aumento en los ultimos afios (MADDPG, MAPPO).

Escenarios especializados: fluidos (micro swimmers) o militares (misiles
hipersénicos) muestran aplicaciones en sistemas persecucion—evasion.

En resumen, de la revision podemos confirmar que el problema de
persecucidn—evasion ha sido ampliamente estudiado en el ambito del reinforcement
learning, tanto en entornos de cuadriculas como en aplicaciones espacios continuos
y sistemas multiagente.

Estos trabajos demuestran que la persecucion—evasion es un dominio valido
para ser analizado a fondo y evaluar la coordinacion, métodos de
exploracién—explotacion y los comportamientos emergentes de las interacciones.

Por tanto, el presente TFM aporta una contribucién adicional diferenciada, ya
que situa el problema en el ambito de los videojuegos, utilizando un enfoque de
Q-learning tabular dentro de entornos de cuadricula, permitiendo generar un
prototipo didactico, reproducible e interpretable.

Si bien esta aplicacion no alcanzé a implementar modelos basados en Deep
Reinforcement Learning, esta aproximacion ofrece valor académico al mostrar de
forma clara y experimental cdmo emergen estrategias de persecuciéon y evasion,
sentando una base pedagdgica y un desarrollo con validacién preliminar que puede
ser adaptada en futuros trabajos hacia escenarios mas realistas y algoritmos de
Deep Learning.
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lll. Metodologia

En este capitulo se expondran las metodologias escogidas y utilizadas para
la realizacidén, implementacién y cumplimiento de los objetivos planteados para el
presente proyecto.

La presente investigacion propone la creacion de algoritmos orientados a la
ayuda en el desarrollo y evaluacién para un entorno de videojuego que simula la
dindamica del pilla-pilla, integrando agentes inteligentes mediante técnicas de
aprendizaje por refuerzo (Reinforcement Learning - RL).

I1.1. Diseno

La investigacion se desarrollara bajo un enfoque exploratorio de tipo aplicado,
y finalizara con la comprobacion de si la aplicacion consciente de herramientas de
IA son funcionales o no. Se optara por un disefio cuasiexperimental, ya que se
manipulan variables independientes (implementacién y configuraciéon de los
agentes, tipos de recompensas, etc.) para observar su impacto en variables
dependientes como el desempeiio, la adaptabilidad y la efectividad de los agentes
durante las partidas.

Para implementar los agentes de IA, necesitamos que el disefio se desarrolle
por etapas, partiendo de los elementos mas basicos y especificos del proyecto. De
esta forma, comenzamos identificando y desarrollando los componentes o modulos
individuales que seran necesarios, asegurandonos de entender y optimizar cada
parte de manera independiente antes de integrarlas en sistemas mas complejos.

La metodologia de ML utilizada es CRISP-DM (Cross Industry Standard
Process for Data Mining) la cual describe como el ciclo de vida para proyectos de
datos no es un método lineal, sino un modelo ciclico y flexible. Esto permite avanzar
por bloques y regresar a fases anteriores, si la informacion no esta en condiciones o
no es suficiente para avanzar (Kotsiantis et al., 2006).

Este proceso esta compuesto por seis fases principales.

1. Comprension del negocio (Business Understanding): Es la etapa inicial
que tiene como mision, comprender los objetivos del proyecto desde el punto
de vista del negocio.
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Comprension de los datos (Data Understanding): Es la etapa de
recoleccion y familiarizacion de datos y requerimientos iniciales. Mediante la
exploracién de sus propiedades, se identifican problemas de calidad para la
formulacién de hipétesis preliminares.

Preparacion de los datos (Data Preparation): Es la etapa donde se limpian,
transforman y seleccionan los requerimientos para ser integrados al proyecto.
Se evaluan faltantes, ademas de corregir errores y construir hipétesis para
modelar.

Modelado (Modeling): En esta fase se elige el algoritmo de aprendizaje mas
adecuado segun el problema a resolver segun la clasificacién seleccionada.
Se entrena utilizando el modelo ajustando sus parametros internos para
minimizar el error y optimizar el rendimiento.

Evaluaciéon y validacion (Evaluation): Una vez entrenado el modelo, se
evalia su desempefo utilizando el conjunto de pruebas y métricas
especificas, para verificar su capacidad de generalizacion. Si el desempefio
no es satisfactorio, se pueden ajustar los parametros del modelo (hiper
parametros), seleccionar nuevas caracteristicas o incluso probar con otros
algoritmos.

Implementacion y monitoreo (Deployment): Finalmente, el modelo
aprendido se integra en un entorno de produccién, donde debe ser
monitoreado y actualizado periédicamente con nuevos datos para mantener
su eficacia.

Business - Data
Understanding 6 Understanding
|
———
— Y
_—

\ Data

Fig. 6, Esquema CRISP-DM
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CRISP-DM es una metodologia iterativa que permite construir sistemas
capaces de adaptarse y mejorar a medida que se dispone de mas datos, siendo
fundamental en aplicaciones como la visidon por computadora, el procesamiento de
lenguaje natural y la prediccidén de series temporales.

Aunque el proyecto se desarroll6 con una metodologia CRISP-DM, nos
basamos en un esquema "Bottom-Up" para la realizaciéon de avances. Partiendo de
la construccion del proyecto desde los niveles mas bajos, es decir, a partir de los
detalles y funcionalidades particulares de cada médulo.

Como por ejemplo la comprension del problema para disefio de entorno y
primeros accionares, definicion de estados y recompensas (preparacion de los
datos), implementacién del algoritmo de RL (modelado)

Cada componente se disefia y evalua por separado, mediante métricas o
funcionalidad (evaluacion), para ser integrados posteriormente segun se coordinen
los entregables para formar el sistema completo (despliegue), en nuestro caso, un
prototipo de videojuego de persecucion-evasion.

Por medio de este proceso de integracion gradual, se logra una solucién
global a partir de la suma de componentes bien definidos, permitiendo identificar y
resolver posibles problemas desde las etapas iniciales de desarrollo..

Esta metodologia es una estrategia de procesamiento de informacion
utilizada especialmente en la ingenieria y el desarrollo de sistemas, ya que favorece
la robustez y flexibilidad en el disefio, permitiendo identificar y resolver posibles
problemas desde las etapas iniciales de desarrollo.

lll.2. Participantes

Dado que el sistema simulado se centra en la interaccion entre agentes
virtuales, los "participantes" principales seran los agentes inteligentes codificados
para desempeniar los roles de perseguidor y evasor dentro del juego.

Unicamente el autor del presente trabajo ha participado en la realizacién de
evaluaciones de funcionalidad y apreciativas sobre el desenvolvimiento de los
agentes en el entorno principal de Juego, de esta manera se pudo validar el
desempeno y la interaccion humano-agente.
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li.3.

Instrumentos

I11.3.1. Recursos de Hardware

Procesador: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (1.69 GHz).
RAM: 16,0 GB (15,4 GB usable).

lll.3.2. Recursos de Software y Lenguaje de Programacion

Windows 11 Pro (versiéon 24H2): Sistema Operativo.
Visual Studio Code (version 1.103.2): Editor de Cddigo.

Lenguaje de Programacion Python (versiéon 3.12.10): Lenguaje principal
sobre el que se ha desarrollado toda la logica del proyecto, debido a su
versatilidad y el amplio ecosistema de bibliotecas disponibles (Wouters, 2025).

Piskel: Aplicacién de ediciéon de imagen y creacion de pixel art utilizada para
el disefio y la elaboracién de todos los recursos graficos y sprites del
videojuego (Descottes, 2017).

ll.3.2.1. Bibliotecas de Python

Pygame (version 2.6.1): Biblioteca principal para el desarrollo del entorno
grafico del videojuego, la gestion de eventos (teclado, raton) y la simulacion
interactiva de las partidas (Pygame, s. f.).

NumPy (version 2.1.3): Utilizada para operaciones de calculo numérico y la
gestion eficiente de matrices, fundamental para la légica subyacente de la
simulacion.

Pandas (version 2.3.1): Empleada para la manipulacion y el analisis de los
datos generados durante las simulaciones.

Matplotlib (version 3.10.3): Usada para la creacion de gréaficos y la
visualizacion de los resultados obtenidos.

Pickle (version 4): Biblioteca estandar de Python, utilizada para serializar y
guardar el estado de los objetos y partidas, permitiendo la persistencia de
datos.

Random (Seed 42): Biblioteca estandar de Python, empleada para la
generacion de numeros pseudoaleatorios necesarios en la simulacién de
eventos estocasticos.
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l.3.2.2. Gestion del codigo

- Git: Se utilizé el sistema de control de versiones Git para el seguimiento y la
gestion de los cambios en el cadigo.

- Politica de Versionado: Se aplicé una politica de versionado con Git,
identificando cada nueva versién con un commit hash de confirmacion unico.
Esto garantiza la trazabilidad y la reproducibilidad de las versiones.

- Version actual: Git con el hash c5a61e5b0ad4ebde0155ae591b45c3d1e4da8a867.

11.3.3. Herramientas de apoyo con IA

- Google Gemini (2.5 Fast all-around help): Modelo de lenguaje avanzado
utilizado como asistente para la resolucion de problemas ldgicos, la
optimizacién de algoritmos y el apoyo en el desarrollo de subprogramas.

- GitHub Copilot (GPT-4.1): Herramienta de autocompletado de cdédigo
integrada en el editor, usada para agilizar el proceso de programacion y la
implementacion de funcionalidades.

l1.4. Procedimiento

ll.4.1. Esquema de trabajo

Se parte de la realizacion de un esquema que sirva como guia para la realizacion de
los moédulos a utilizar. Este esquema consta de 5 médulos:

- El primero es el médulo de Juego, este es el principal y esta dedicado a la
configuracion del juego, comunicandose con el resto de mdédulos mediante la
realizacién de consultas para la obtencién de informacion requerida.

- El segundo es el médulo de Entorno, este se encargara del disefio del campo de
juego donde los agentes interactuan, ademas de las posibles acciones que estos
agentes pueden tomar.

- El tercero es el moédulo de Entrenamiento, este sera el responsable de la gestién y
organizacion de los entrenamientos de los agentes.

- El cuarto y quinto son los médulos de Agentes, son dos modulos idénticos, cada
uno dedicado a la gestion y accionar de cada agente.
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Fig. 7, Diagrama de Modulos

Considerando las restricciones de tiempo inherentes a la ejecucion del
proyecto, basamos la planificacién inicial en un esquema de trabajo por entregable
probados antes de integrarse, para generar avances especificos a producto
terminado que nos permitan ir completando el proyecto.

2025 Q2 2025 Q3 2025 Q4

® Seleeciin de Herramientas mar. 7 Selecciin de Herramientas
® Escenario mar. 23 Escenario

abr. 1 Caminata
abr.7 Obstaculos
abr. 13 Mecanicas de Juego
may. 9

abr. 22

may. 4
may. 12 Revisién con Tutor

jul. 20 Entrenamiento Individual

jul.6 Agregar Saltos

sep. 12 Preparar Presentacion

sep. 20 Presentacién

® Implementar DQN oct. 12 Implementar DON

Fig. 8, Planificacion de Trabajo

lll.4.2. Herramientas para recursos graficos y légicas de juegos

Para la generacidon de recursos, como imagenes, y el desarrollo de
subprogramas auxiliares, se han utilizado los modulos para edicion de imagenes y
los modelos de lenguaje de las herramientas de IA de codigo abierto Gemini (2.5) y
Copilot (GPT-4.1).
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11.4.2.1. Recursos Graficos

Para la generacién de recursos visuales, se llevd a cabo una serie de
pruebas utilizando modelos de inteligencia artificial generativa. El proceso consistio
en el uso de los modulos de gestion de imagenes de Gemini y Copilot, a los que se
alimento con imagenes de muestra, prompts y descripciones textuales detalladas.

Se emplearon diferentes prompts o instrucciones de texto, variando los
parametros de estilo, color y composicion, con el objetivo de obtener imagenes de
alta calidad que fueran coherentes con los requisitos del proyecto.

'ER R RE
@28 '

NN 5

hlr! g s B i s

B3 G
Walking

Fig. 9, Ejemplo de imagen de movimiento de personaje

La evaluacion de los resultados se llevd a cabo de manera sistematica,
comparando la fluidez vista de las imagenes generadas dentro de los modulos del
juego.

1.4.2.2. Légicas de Juegos

Para la generacién de recursos de logicas de juego, al igual que con las
imagenes se llevo a cabo una serie de pruebas utilizando modelos de inteligencia
artificial generativa. En esta oportunidad el proceso consistio en el uso de los
modulos LLM de Gemini y Copilot, a los que se alimentd con prompts y
descripciones textuales detalladas.

Se utilizaron variaciones de prompts e instrucciones de texto, variando las
redacciones y alcance de los pedidos, con el objetivo de ver hasta donde se podian
generar codigos funcionales.

La evaluacion de resultados se llevd a cabo de manera sistematica,
comparando funcionalidad, usabilidad e integracion con cada uno de los modulos
del proyecto.

l.4.3. Elaboracion de entorno en Python
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1.4.3.1. Seleccion de Aplicativo o libreria para el Entorno

En este apartado se identifican las herramientas de inteligencia artificial de
cédigo abierto evaluadas para la generacion de recursos de imagenes y el
desarrollo de subprogramas auxiliares, luego realizamos la seleccion de las mas
adecuada para la realizacion del TFM.

Unity: Uno de los motores mas populares y robustos, utilizado tanto por
estudios independientes como por grandes empresas. Su version Open Source
(Personal) es muy completa y permite exportar a multiples plataformas. Al igual que
Unreal, tiene un umbral de costos antes de que se requiera una licencia de pago.

Se consider6 como primera opcion, ya que es una de las aplicaciones de
desarrollo mas populares del mercado y muchos de los juegos actuales en muchas
plataformas son desarrollados con esta (Ej. Hollow Knight, Cuphead, Fall Guys y
Among Us).

Utiliza el lenguaje de programaciéon C# y actualmente esta promocionando el
uso de Agentes de IA dentro de su entorno. Dentro de sus ventajas encontramos
que debido a su alta popularidad, dispone de una enorme cantidad de recursos
disponibles, tutoriales, cursos y mucha documentacion para aprender.

Si bien era una opcidén gratuita viable, se descartd. Esto se debe a que la
implementacion de agentes es en formato caja negra, y no es posible aplicar
ninguna de las estrategias de Machine Learning o IA para configurar o modificar
casos de estudios, diferentes a las presentadas por la herramienta.

Godot Engine: Una de las mejores opciones, es de cdédigo abierto,
completamente gratuito y muy versatil para crear juegos 2D y 3D. Es muy popular
entre desarrolladores independientes por su facilidad de uso y la activa comunidad.

Se estudio como alternativa durante el desarrollo, también cuenta con gran
popularidad dentro de la comunidad de desarrollo de videojuegos. Esta herramienta,
ademas de desarrollos 3D, nos presenta la posibilidad de realizar desarrollos en 2D,
los cuales son mas sencillos en cuanto a la cantidad de variables a manejar, asi
poder realizar un entregable mas completo inicialmente.

Respecto a recursos de aprendizaje, pasa algo similar a Unity. Debido a su
popularidad, es muy accesible a la hora de conseguir material de apoyo y tutoriales
para implementar pequefios arreglos. Siguiendo en la linea de la implementacién de
IA, incluye una opcion para desarrollo de agente de IA.

El uso de IA es mas complejo de implementar que en el caso de Unity,
aunque también da la posibilidad de poder acceder a interactuar con el desarrollo
del agente. El problema en este caso, es que Godot utiliza principalmente un
lenguaje de programacion propio llamado GDScript.
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Pygame (Pygame Software Foundation, 2024): Especialmente enfocado en el
desarrollo de juegos 2D. Una de las herramientas mas practicas, ya que es una
libreria de Python completamente Open Source. Muy accesible para desarrolladores
sin experiencia que solo quieren realizar pruebas de funcionamiento o iniciar en el
mundo del desarrollo de videojuegos.

Es la opcion mas genérica y sencilla de aplicar, ya que es una libreria de
Python. Al utilizar esta podemos evitar inconvenientes de incompatibilidad entre
lenguajes y permite acceder a todas las variables y a todas las instancias del
cbdigo, ademas de poder realizar fragmentos de cdédigo combinando moédulos si es
requerido.

Es la opcion de menor curva de aprendizaje y para este punto proporciona la
potencia de desarrollo necesaria para la realizacion de las pruebas que componen
este trabajo.

11.4.3.2. Diseino de entorno

Para el desarrollo del entorno del videojuego en Python, se utilizé la libreria
Pygame, permitiendo emular la dinamica persecucion-evasion, mediante la
representacion grafica de los agentes y el area de juego. Ademas de esto, es un
bloque de programacion referencial para el funcionamiento de otros moédulos y tiene
dos funciones:

Creacion de Entorno: Define las posibles acciones que pueden ser tomadas
por los agentes, ademas de sus posiciones de partida. También, es el moédulo
encargado de crear y dar permitir a los usuarios poder visualizar el juego.

Calcular movimiento: Otra de las caracteristicas de este modulo, es la
evaluacion y aplicacion de movimientos segun las acciones tomadas por los
agentes.

Imprimir Ambiente Accion y Posicion
env_step \ =
Variables de 2
Disefio a
player_colition o
g
Q
— z
ey ]

define_field
| define_obstaculos g

—

field_set, Muestra
field_show, ambiente
obstacle_show en pantalla -

R >

Fig. 10, Diagrama del Entorno de juego
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Este entorno consta de tres etapas: en primer lugar tenemos la capa de
fondo, luego contamos con la capa de obstaculos y por ultimo las mecanicas de
juego.

Capa de Fondo: Este delimita el area de movimiento, que se considera como
el espacio donde se disenaran rutas, colocaran los obstaculos y los jugadores para
que estos puedan interactuar.

Dentro de este entorno se delimita la vista de la pantalla y define la cantidad
de estados con los que vamos a estar interactuando dentro de las Q-Tables. El
maximo de estados que tenemos por jugador, viene de la multiplicacion de las
coordenadas X, Y, Z, donde X, se refiere a la maxima cantidad posible de
movimientos horizontales, o la distancia maxima en movimientos de izquierda a
derecha.

Continuamos con Y, que se refiere a la maxima cantidad posible de
movimientos verticales, o la maxima distancia en movimientos de arriba a abajo. Y
por ultimo Z, que se refiere a los posibles movimientos en el eje Z, como por
ejemplo superficies en dos planos diferentes superpuestos.

Fig. 11, Ejemplo de la capa de fondo del Entorno

Calculo de ejemplo: para dos agentes dentro de un entorno de ejemplo con
dimensiones 3x3.

Ag1: Agente 1

Ag2: Agente 2 Estados = Estados(Ag 1) x Estados(Ag 1)

Estados = (X XY X Z) X (X XY X 2)
Estados = (3 X3 x 1) x (3 x3 x 1)
Estados = 9 X 9
Estados = 81

1
- W w

X
Y
Z =

(un solo plano)

Esta capa de fondo, afecta directamente el aprendizaje de los agentes, ya
que todos los datos y tablas van sincronizados con este disefio. Si por alguna razén
este disefio cambia, va a afectar el resto de mecanicas y posibles acciones que los
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agentes tomen. Ante cada modificacion, se debe confirmar que los obstaculos y
puntos de partida sean funcionales con el nuevo tamano.

Obstaculos: Los obstaculos son imagenes agregadas sobre el fondo.
Agregar obstaculos permite tener mayor diversidad de estrategias, crear caminos
para estrategias, superficies donde los agentes se pueden subir para acceder a un
segundo nivel o trampas que los agentes deberan esquivar.

Ll

Fig. 12, Ejemplo de Obstaculos

Es importante notar que cada obstaculo a agregar debe tener su mecanica de
accién, ya sea un bloqueo de cuadricula, trampa con alguna accién definida o una
superficie para que los agentes accedan a un nivel superior. Esta mecanica debe
estar correctamente definida antes de agregarla y se debe verificar el impacto que
tiene sobre las politicas de recompensa actuales.

Acciones: Las acciones demarcan las direcciones y movimientos que los
agentes pueden tomar. Estas variables se deben definir antes de iniciar los
entrenamientos y afectan directamente al tamafio de las tablas usadas para tomar
decisiones.

Ademas de esto, las variables deben estar disefiadas para poder funcionar
con los obstaculos implantados. También, cada accion debe poder ser interpretada
por las politicas de recompensa definidas.

-

Fig. 13, Ejemplo de Direcciones de Movimiento

Mecanicas: son las interacciones y efectos entre agentes, obstaculos o
usuarios.
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- Bloqueo: es un objeto que se coloca en el fondo, impidiendo que el
jugador avance en esa direccion.

e

Fig. 14, Ejemplo de Obstaculo

- Agua: se inserta la imagen en una regioén del fondo. El jugador que
contacte con esto se ahogara y perdera instantaneamente.

Fig. 15, Ejemplo de Ahogado

- Salto: son ramas u obstaculos particulares que bloquean el paso de
los jugadores. Los agentes pueden evitarlos saltando.

Fig. 16, Ejemplo de Salto

- Captura: ocurre cuando los agentes tienen algun tipo de contacto

entre ellos.

Fig. 17, Ejemplo de Captura

lll.4.4. Diseio y configuraciéon de entrenamientos

Este es el bloque encargado del control de los entrenamientos de los
agentes. Si bien, desde el mdédulo de juego se puede consultar la Q-table, sélo
durante la ejecucion de este modulo se pueden modificar dichas tablas. Se
implementaron dos flujos de entrenamiento con el mismo entorno, uno automatico y
otro donde usuarios humanos pueden controlar a uno de los agentes.
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Fig. 18, Bloques de moédulo de entrenamiento

Entrenamiento Automatico: es una funcion del médulo de entrenamiento,
donde los agentes entrenan solos, IA vs IA. Esta funcion esta disehada para
entrenamientos de gran cantidad de sesiones y no para ser visualizado por
usuarios, con la intencibn de que se puedan realizar la mayor cantidad de
interacciones entre agentes en el menor tiempo posible. Durante este
entrenamiento, los agentes interactian en un entorno no visible, siguiendo las
mismas configuraciones dentro de un entorno real y aprendiendo de todos los
movimientos realizados.

Entrenamiento Individual: es una funcion del médulo de entrenamiento que
cuenta con dos formas de uso. En el primer formato, el usuario puede seleccionar el
agente que manejara, ya sea eligiendo ser “Chaser’” o “Evader”. Esta opcion se
puede utilizar para corregir patrones repetitivos identificados durante el
entrenamiento automatico, como por ejemplo, uno de los agentes no posee datos en
una condicién en particular. El segundo formato de uso, es donde no interactuan los
usuarios y dejan que los agentes interactuen entre ellos.

La diferencia de este formato con respecto al Automatico, es que esta versiéon
estd disefada para que se corrijan o mejoren condiciones vistas durante la
ejecucion del juego principal o para realizar entrenamientos bajo la supervision
visual, de interacciones entre agentes, de un usuario. De esta manera, poder validar
si las interacciones estan siendo efectivas o se pueden identificar puntos de mejora.

El funcionamiento de la dinamica de los dos entrenamientos es similar. En un
principio los agentes toman movimientos al azar de las acciones previamente
definidas en el entorno. Posteriormente, a medida que van avanzando las
iteraciones, aplicamos la politica de E-greedy, haciendo que disminuya el nivel de
aleatoriedad, valor de epsilon, de las acciones por cada jugada realizada. De este
modo, nos permite recaer mas en los valores aprendidos por todas las iteraciones
pasadas.
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ll.4.5. Sistema de recompensas para optimizacion de
aprendizaje

Segun lo indicado en nuestro objetivo de elaboracion de sistema de
recompensas, debemos garantizar que dicho sistema incentive las conductas
deseadas (captura exitosa, evasion prolongada, etc.), y que estas sean estén
acordes al entorno de entrenamiento disefado, permitiendo a los agentes utilizar
estas recompensas para aprender a través de la experiencia.

111.4.5.1. Recompensa por movimiento

Con el objetivo de crear el incentivo a mantenerse en constante movimiento y
buscando la mayor recompensa posible, se implementd un sistema de penalizacion
por movimiento. Este sistema aplica un valor de recompensa negativa a cada accién
realizada por los agentes, para fomentar la toma de decisiones eficiente.

También, con la intencién de fomentar el objetivo persecucién-evasion,
incorporamos recompensas dinamicas basadas en la distancia entre agentes.

Al perseguidor (Chaser) se le asigna una recompensa inversamente
proporcional a su distancia con el evasor (Evader), es decir, la recompensa aumenta
a medida que se acerca a él. Por otra parte, el Evader recibe una recompensa mas
alta cuanto mas lejos se encuentre del Chaser.

Para poder obtener estos valores necesitamos realizar el calculos de
distancia, el cual se realiza de la siguiente manera:

distancia = \/(Xz - X1)2 N (Yz _ Y1)2

e

Q | ocha |
Derecha

Abajo

Fig. 19, Ejemplo de calculo de recompensa
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11.4.5.1.1. Movimiento a la derecha del Chaser

Se calcula la distancia entre puntos desde la posicion final del Chaser hasta
la posicion del Evader.

Posicion
Chaser. d = \/(Xz B X1)2 + (Yz B Y1)2
X1 =1, Y1 =1
Ve -2+ a - 1)’
Posicion «/(1)2 + (0)2

Evader:

X,=2,Y =1 VI+0 =1

La recompensa del “Chaser’ por realizar un movimiento a la derecha
acercandose al “Evader” sera de -1. Siempre obteniendo una recompensa negativa,
siendo esta menor a medida de que esté mas cerca al objetivo.

1.4.5.1.2. Movimiento hacia abajo del Chaser

Se calcula la distancia entre puntos desde la posicién final del Chaser hasta
la posicion del Evader.

Posicion Chaser: 4 = \/X —xV+(y —v)
o o4 = i) )

V2 - 02+ (1 - 2)°
Posicion Evader: \/(2)2 + (= 1)

X =2,V =1
2 2 4 +1 =2,23

La recompensa del “Chaser’” por realizar un movimiento hacia abajo
alejandose del “Evader’ sera de -2,23. Siempre obteniendo una recompensa
negativa, siendo esta mayor a medida de que esté mas lejos del objetivo.
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% Poarsm| @
3

-2,23
Abajo

Fig. 20, Ejemplo de calculo de recompensa Chaser

1.4.5.1.3. Movimiento hacia abajo del Evader

Se calcula la distancia entre puntos desde la posicién final del Chaser hasta

la posicién del Evader.

Posicion Chaser: d = \/(Xz _ X1)2 A (Yz — Y1)2

X1=O,Y1=1

d=2-0+@ -1
Posicion Evader: d = (2)2 + (1)2
X =2,Y =2
2 2 d =4 +1 =2,23

JINIE ;

Abajo

Fig. 21, Ejemplo de célculo de recompensa Evader

Calculo de la distancia maxima posible, para realizar la operacién que

garantice que el evader se aleje del Chaser.
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2 2
Tamano del Fondo: d e = \/(Xmax - Xo) + (Ymax B Yo)
X =0,Y =0
0 =0 Y, 2 2
d =3 -0 +B3 -0
X =3,Y =3 max \/( )+ )
max max d__ =424164

recompensa = — (dmax — d) =-(4,24164 - 2,23) = - 2,01164

La recompensa del “Evader” por realizar un movimiento hacia abajo
alejandose del “Chaser’ sera la resta de la distancia maxima posible menos
(4,24164) menos la distancia a la que quedara (2,23), quedando una recompensa
total de -2,01164. Siempre obteniendo una recompensa negativa, siendo esta mayor
a medida de que esté mas lejos del objetivo.

1ll.4.5.2. Recompensa por Saltos

Esta recompensa se aplica siempre que se haga la accion de saltar en
cualquiera de las direcciones, de esta manera podemos garantizar que el jugador
utilice el salto solo en la condicion necesaria

Partiendo del calculo del ejemplo anterior, podemos ver que en el movimiento
a la derecha representado en la imagen tendria una recompensa de -1.

Fig. 22, Imagen recompensa movimiento
Siguiendo la misma linea, se emuld el salto en la misma direccidn, en esta

oportunidad la recompensa sera de -1 por el movimiento a la derecha, mas -0.1 por
realizar el salto. De esta manera la recompensa final para esa accién sera de -1.1.

§ 9

Fig. 23, Imagen recompensa salto
Con esto se garantiza que siempre los valores de recompensa en la Q-table

son mayores para la caminata que para el salto, de esta manera evitamos que el
personaje salte, y lo haga solo cuando sea necesario.
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11.4.5.3. Recomple por contacto con obstaculos

Esta recompensa se aplica cada vez que un jugador hace un movimiento en
sentido de un obstaculo y, debido al obstaculo, no se puede generar el movimiento

en esa direccion.

Fig. 24, Imagen recompensa obstaculo
Partiendo del mismo ejemplo de movimiento a la derecha trabajado. Al
realizar un movimiento a la derecha, la recompensa sera de -1 por el movimiento a

la derecha, mas -0.5 por chocar contra el obstaculo. De esta manera la recompensa
final para esa accion sera de -1.5, contra los -1.1 que seria al saltar.

11.4.5.4. Recompensa por tocar el Agua

Esta recompensa se aplica cada vez que un jugador hace un movimiento en
sentido de los pozos de agua y, debido a esto, el jugador pierde directamente.

Fig. 25, Imagen recompensa tocar agua
Con esto garantizamos que siempre los valores de recompensa en la Q-table

cuyo movimiento haga que el personaje entre en el agua, sean menores. De esta
manera evitamos que los personajes se muevan en direccion al agua.

111.4.5.5. Recompensa de victoria

Esta recompensa se aplica cada vez que un jugador hace un movimiento en
sentido del otro jugador y, debido a esto, el Chaser gana y el Evader pierde.

Fig. 26, Imagen recompensa victoria
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Con esto garantizamos que siempre los valores de recompensa en la Q-table
cuyo movimiento haga que los personajes entren en contacto, sean mayores para el
Chaser y menores para el Evader. De esta manera garantizamos que los dos
jugadores tengan una motivacion para hacer los movimientos de
persecucion-evasion.

1.4.6. Implementacion de agentes con machine learning por
refuerzo

Segun nos pide uno nuestro objetivo, debemos Implementar dos agentes
inteligentes (perseguidor y evasor) utilizando algoritmos de RL, como Q-learning o
Deep Q-Network (DQN), configurando adecuadamente los estados, acciones y
recompensas. Este modulo cuenta con tres responsabilidades principales, ademas
de esto maneja tres entradas y dos salidas.

Inicializacion: es la primera etapa que actua al momento de configurar el
agente. Esta es activada a partir de los modulos de entrenamiento o juego para
inicializar a los agentes, mediante la preparacion de todas las variables.

Accidon y Posicion: esta es una etapa de uso recurrente y es la encargada
de recibir la posicidn actual del agente para luego buscar la mejor accidon dentro de
la memoria del agente.

Guardar: esta etapa puede ser de uso recurrente y es utilizada por el médulo
de entrenamiento para hacer una copia de la tabla de datos vigente dentro de la
memoria a largo plazo del Agente.

| Posicién ‘ Inicializacion ‘ Guardar

A
=] o save_g_table
- | __init__ I ]
~— load_q_table }—I—

accién

get_best_action

update_q_value

‘ Mejor Accién ‘

Q-Table Actualizada

backflip

Y

‘ Imagen Agente ‘

Fig. 27, Modulos de Agentes

Mejor Accion: esta variable de salida contiene la mejor acciéon que puede
tomar el agente en funcion a la entrada recibida.

43



Imagen Agente: esta variable de salida contiene la imagen que debe mostrar
el agente en funcion a la accion y posicion.

l1.4.7. Entrenamiento y prueba de los agentes

El desarrollo y las pruebas se realizaron en un entorno controlado, con el
objetivo de validar la funcionalidad del sistema y analizar el comportamiento de los
agentes en diferentes escenarios, ajustando parametros para comparar resultados
bajo distintas condiciones experimentales.

Ejecutar multiples episodios de entrenamiento, ajustando parametros como
tasa de exploracion (g), tasa de aprendizaje (a) y gamma (y) para optimizar el
aprendizaje de los agentes.

Acciones

Estados (0,0,0) (0,-1,0) (0,1,0) (-1,0,0) (1,0,0) (0,-1,1) 0,1,1) (-1,0,1) (1,0,0)

Quieto Arriba Abajo lzquierda | Derecha | Salto Arriba| Salto Abajo |Salto Izquierda Salto Derecha

NN NN

Fig. 28, Imagen Muestra de Q-table

l1.5. Analisis de datos

l1.5.1. Validacién de resultados en Aplicacion

Durante la realizacion de pruebas con el usuario humano, comparamos el
desemperio de los agentes con el del participante evaluador, recogiendo informacion
cuantitativa y cualitativa sobre la experiencia.

Estas pruebas fueron realizadas dentro del entorno de juego principal, debido
a que este permite que los jugadores interactuen sin afectar los valores de Q-Tables
y mientras que los agentes basan sus acciones completamente de los valores
almacenados en dichas tablas.
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Fig. 29, Imagen Muestra plataforma de juego

Dentro de este, se validé la interaccion de los agentes, ya sea en su rol de
Chaser o de Evader, pudiendo sacar apreciaciones sobre los accionares y
dificultades que les propusieron los agentes con sus acciones.

l11.5.2. Validacion de Resultados de Entrenamiento

Durante la realizacion de entrenamientos, ademas de los registros de las
Q-Tables, se almacenaron resultados de cada uno de los bloques repetitivos. Dentro
de estos bloques, que sirven como punto de control, se fueron almacenando los
resultados de cada episodio, incluyendo métricas de desemperio, logs de decisiones
y evolucion de las politicas de los agentes.

Al finalizar cada bloque de entrenamiento, se obtuvieron las siguientes
graficas resultado:

1.5.2.1. Grafica de Bigote

Esta es la primera grafica obtenida, muestra los avances en cada uno de los
bloques de entrenamiento. Esta permite visualizar el avance del entrenamiento
dandonos indicios de la evolucion del entrenamiento para decidir si se debe o no
intervenir.
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Gréfico del blogue 1 de Entrenamiento
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Fig. 30, Ejemplo grafico de bigote intermedio

En esta grafica veremos 5 columnas, cada una reflejando una condicién en
especial.

Chased: refleja cuando el Chaser logra alcanzar el objetivo. Se grafica un
punto con el valor del paso (step) en el que se logré alcanzar el objetivo. Con esta
representacion podemos apreciar el punto en el cual se esta logrando el objetivo.

De esta forma se puede inferir, por ejemplo, si el promedio esta en la parte
baja de la grafica, quiere decir que el agente estda cumpliendo su objetivo
rapidamente.

Defeated: refleja cuando el Evader logra escapar. Se grafica un punto con el
valor de la distancia promedio entre Chaser y Evader durante la ronda. Con esta
representacion se puede validar si el Evader esta logrando mantenerse distanciado
del Chaser.

De esta forma se puede inferir, por ejemplo, si el promedio de estos valores
estd en la parte baja de la grafica, quiere decir que el agente no esta logrando
mantenerse alejado.

Chaser Ahogado y Evader Ahogado: refleja cuando el Chaser o Evader
hacen un movimiento en sentido del agua teniendo contacto con ella. Se grafica un
punto con el valor del paso (step) en el que el jugador toca el agua. Con esta
representacion se puede apreciar el punto en el cual alguno de los dos jugadores
pierde.

De esta manera se confirma, en qué momento alguno de los jugadores pierde
por ahogamiento.

Doble Ahogado: funciona muy similar a los valores obtenidos en las

columnas “Ahogado”, con la diferencia de que aca se toma en cuenta cuando los
dos jugadores tocan el agua en simultaneo.
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111.56.2.2. Grafica total de resultados

Es la grafica de cierre del entrenamiento automatico, es un grafico de lineas
que nos permitira ver los resultados de avances que vamos a ir teniendo después
de cada bloque de entrenamiento.

La grafica muestra el comportamiento global de los agentes, el dominio de un
agente sobre el otro o la afectacién producida por el entorno.

Porcentaje soobre Bloques de entrenamiento

80 4

Percentage (%)

—— Evader Ahoga
20 4 —— Doble Ahogado

20 4

Fig. 31, Ejemplo grafico de Linea evaluativo

Debido a que los valores obtenidos en cada bloque provienen de un conjunto
de jugadas realizadas por los agentes, se decidié avanzar con esta grafica como la
definitiva para la toma de decisiones.

En otras palabras, esta grafica decide si los agentes son funcionales, en
cuanto a su desenvolvimiento dentro de las jugadas.

11.5.2.3. Analisis de Tabla de Valores (Q-Tables)

Dentro de las herramientas con las que contamos, se cuenta con la
posibilidad de acceder a los valores de las Q-Tables para visualizacion. Esto permite
analizar, en posiciones particulares, la existencia de valores faltantes o fuera de lo
comun. De esta manera se uso para el analisis de causa raiz, como por ejemplo, en
un bucle de movimiento dentro del accionar de los agentes.

Acciones

Estados (0,0,0) 0,10 (0,1,0) 10,0 (1,0,0) ©0,-1,1) (0,1,1) “1,0,1) (1,0,0)
uieto Arriba Abajo Izquierda Derecha Salto Arriba_| Salto Abajo_|Salto Izquierda] Salto Derecha

((5,4,0),(52,0))| -6,72313338|-140,76897677| -5,52848633| -6,68371793 2,82560557 | -40,91517323| -6,59652289| -6,70567397| -6,73727889

( (
(5,3,0),(5,1,0))| -6,72379181| -55,81512469| -3,51257189| -6,75439693| -6,73971575| -77,27028556| -6,66509036| -6,71287023| -6,70447592
( (

((5,1,0),(5,1,0)) 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000

((5,2,0),(4,4,0))| -504952410| -5,44703569| -6,94799360| -6,43503303| -6,47535502 3,30854107| -7,04638421 -6,50726011 -5,45726502

((2,2,0),(1,3,0) 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000 0,00000000

Fig. 32, Ejemplo de Q-table

47




Como ejemplos de analisis, en el primer estado dentro de esta tabla. Se
observa que el valor de movimiento a la derecha esta totalmente incorrecto, ya que
por la posicion, no se permite mover a la derecha, por tanto no permite al agente
tomar las acciones de movimiento hacia abajo, siendo estas las correctas, dando
prioridad la del paso abajo en lugar del salto.
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IV. Resultados

IV.1. Generacion de Imagenes

Esta etapa del proceso consisti6 en la aplicacion de distintos prompts
descriptivos que detallan las caracteristicas para las imagenes deseadas de los
personajes. Continuamente se fueron ajustando los prompts para poder guiar a los
modelos a generar mejores resultados permitiendo que se adapten a nuestro
proyecto.

Prompt usado: “Reemplaza al personaje presente en esta imagen por uno
similar a Vivi el de Final Fantasy 9. Ten en cuenta que las imagenes tienen un
sentido y direccién de movimiento”

Las imagenes generadas por Gemini, fueron mejorando con cada
actualizacion de prompt, logrando mostrar resultados con buen nivel de detalle.
Estas imagenes todavia presentan problemas de coherencia entre los movimientos
hacia arriba, abajo y de los saltos.

R RRE @
TEPRSR
TERRB R

Walking

Fig. 33, Mejor imagen obtenida IA Gemini

Al igual que Gemini, la herramienta Copilot mejoré los detalles de las
imagenes con cada mejora del prompt, pero aun no logra generar completamente
coherencia entre los movimientos hacia arriba y en los saltos.
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Walking

Fig. 34, Mejor imagen obtenida IA Copilot

En ambos casos, las imagenes deben ser recortadas individualmente para
armar un nuevo conjunto de imagenes funcional.

IV.2. Entrenamientos

En esta etapa del proceso, se establecen las condiciones iniciales y con las
que se realizaron las pruebas. De esta manera se evaluara la efectividad de los
agentes dentro del entorno y su capacidad de aprendizaje.

Los parametros iniciales y constantes durante todas las pruebas a realizar seran:

- Entorno no variable, permanecera con las mismas dimensiones, 5x5 y la
misma disposicion de obstaculos.

- Accionar fijo, para los dos agentes, las acciones permitidas seran: estatico,
arriba, abajo, izquierda, derecha, saltar arriba, saltar abajo, salto izquierda y
salto derecha.

- Orden de accionar de los agentes, primero Evader y luego Chaser.

- Posicion inicial de los agentes, se dispondran aleatoriamente dentro de
estas cuatro coordenadas, (1, 1, 0), (4, 4, 0), (1, 4, 0) y (4, 1, 0), excluyendo
salidas en la misma posicion.

- Maxima cantidad de pasos sera de 30

- Valor minimo de Epsilon en 0.01 (1%)

50



- Valor de ratio de aprendizaje (learning rate) en 0.01 (1%)
- Factor de descuento (discount factor) en 0.1 (1%)

- Cada entrenamiento consta de 50 bloques de 147.456 jugadas por bloque.

IV.2.1. Primera ronda de entrenamiento.

En la primera ronda de entrenamiento se inicia con todos los valores de
Q-Tables en cero. Las variables particulares de este entrenamiento, ademas de las
condiciones generales antes mencionadas, seran:

- Epsilon inicial de 1
- Disminucion de Epsilon (Epsilon decay) de 0.98 por jugada.

IV.2.1.1. Resultados Graficos

A continuacién se mostraran los resultados de 3 de los 50 bloques de
entrenamiento realizados.

Grafico del bloque 1 de Entrenamiento

L
iLLL

Qutcomes

Fig. 35, Grafico de Bigote bloque 1, 1er Entrenamiento

Durante este bloque de entrenamiento el Epsilon Inicial fue del 100%, al final
del bloque y por el resto del entrenamiento quedoé en 0%.

Inicia con victoria clara para el Chaser, logrando capturar a su objetivo en el
75,85% de las 147.412 jugadas, y en promedio logro realizar la captura en el paso
numero 11. Contra el 22% de evasiones realizadas por parte del Evader.

Revisando el desenvolvimiento de Evader, se aprecia que en promedio
permanece al 50% de la distancia maxima posible con respecto al Chaser.

Con respecto al ahogamiento de los agentes, a pesar de ser valores bajos, el
Chaser se ahogo en el 1,53% de las veces, esto es casi el triple de veces que el
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Evader con 0,58% de las veces. También en 10 oportunidades los dos agentes se
ahogan a la vez.

Durante los proximos 24 bloques de entrenamiento se invierte el ganador y
es el Evader que supera al Chaser, con mas del 60% de victorias por cada bloque.
Mientras que el Chaser no logra superar el 40% en dos bloques seguidos. A partir
del bloque 4, dejan de ahogarse los dos agentes a la vez.

Estos valores se pueden consultar en la grafica total mostrada mas adelante
o en el archivo de entrenamiento dentro del enlace a git.

Grafico del bloque 25 de Entrenamiento

1] 11

Outcomes

Fig. 36, Gréafico de Bigote bloque 25, 1er Entrenamiento

Resultado a mitad de entrenamiento con un Epsilon de 0%.

Evader obtiene la victoria, logrando escapar de su rival el 67,01% de las
147.455 jugadas, logrando también aumentar la distancia maxima con respecto al
Chaser de 50% a 53,3%.

Contra el 31,7% de capturas realizadas por parte del Chaser, que logro
mantener el promedio de capturas en el paso 11.

Con respecto al ahogamiento de los agentes, los dos lograron reducir las
jugadas que terminan ahogados, el Chaser se ahogd en el 1,1% de las veces,
mientras que el Evader con 0,19% de las veces.

Desde aca hasta el ultimo bloque, los resultados de victorias van oscilando

entre Chaser - Evader. Se puede consultar en la grafica de linea mostrada mas
adelante o en el archivo de entrenamiento.
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Gréfico del blogque 50 de Entrenamiento
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Fig. 37, Gréafico de Bigote bloque 50, 1er Entrenamiento

Para cierre del entrenamiento la victoria fue para el Chaser, logrando capturar
de su rival el 67,91% de las 147.455 jugadas, bajando el promedio de captura al

paso 10.

Contra el 30,98% de evasiones realizadas por parte del Evader, volvio a

aumentar su distancia maxima promedio a un 60%.

Con respecto al ahogamiento de los agentes, volvieron a reducir las jugadas
que terminan ahogados, el Chaser se ahogd en el 0,95% de las veces, mientras que

el Evader con 0,16% de las veces.

Al resumir y graficar todos los porcentajes de acierto obtenidos en cada una
de los 50 bloques del entrenamiento, se obtiene el avance y rendimiento de los

agentes durante todo el entrenamiento.

Porcentaje sobre Bloques de entrenamiento

80 1

60 1

40 -

Percentage (%)

20 A

= Chased
- Defeat

Chaser Ahogado
— Evader Ahogado
Doble Ahogado

o 10 20 30
Bloques de entrenamiento

40 50

Fig. 38, Grafico de Linea 1er Entrenamiento
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En la grafica se observé claramente, cémo los agentes aprendieron
rapidamente a evadir el agua, siendo muy bajos los valores de ahogamiento durante
todo el entrenamiento.

La asertividad de los agentes dentro de sus respectivos objetivos fue mixta,
pero variando dentro del 50%, con la particularidad de que en las primeras etapas
del entrenamiento le cuesta un poco mas al Chaser alcanzar el objetivo.

Estos resultados los analisaremos y compararemos con el resto de rondas de
entrenamiento en el apartado de discuciones de este TFM.

IV.2.1.2. Resultado en Entorno principal de Juego

En esta evaluacidon se puso a prueba funcional el entorno principal de juego
con el entrenamiento realizado, y se observaron los comportamientos de los
agentes. En esta prueba se observd como realizan las acciones y que tipo de
acciones estan tomando los agentes.

Dentro de las jugadas ejecutadas destacan:

- Cumpliendo el objetivo de persecucion-evasion.

- Interaccion correcta con el entorno, moviéndose correctamente y
respetando el funcionamiento de los obstaculos.

- Usan el accionar de salto como movimiento en lugares que no
corresponde.

- Las jugadas vistas son repetitivas y limitadas.

- Se detectan bucles infinitos.

Fig. 39, Muestra de Juego 1er Entrenamiento

En la posicion mostrada en la imagen, los agentes estan haciendo los
movimientos correctos segun lo indicado en su Q-Table, pero al no haber
restricciones de contacto con paredes, ciclos activos para evitar bucles o
aleatoriedad en los movimientos, estos se quedan en este estado hasta reiniciar la
Jugada.
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IV.2.2. Segunda ronda de entrenamiento

En la segunda ronda de entrenamiento se parti6 con todos los valores de
Q-Tables en cero. Para diferenciarlo del entrenamiento del anterior, fue planteado un
Epsilon que variara en funcion del cambio de bloque de entrenamiento y a su vez,
variaciones muy pequefias dentro de cada jugada del bloque.

Las variables particulares de este entrenamiento, ademas de las condiciones
generales antes mencionadas, seran:

- Epsilon inicial de 1

- Disminucion de Epsilon (Epsilon decay) de 0,02 por bloque

- Disminucion de Epsilon interna al bloque de 0,999999 por jugada (solo
afecta al bloque).

IV.2.2.1. Resultados Graficos

A continuacion se muestran los resultados de 3 de los 50 bloques de
entrenamiento realizados.

Gréfico del bloque 1 de Entrenamiento
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Fig. 40, Grafico de Bigote bloque 1, 2do Entrenamiento

Durante este primer bloque, el Epsilon oscilé entre 100% como valor maximo
y 86,29% como valor minimo.

Inicid con una victoria clara para el Chaser, logrando capturar a su objetivo en
el 15,42% de las 144.221 jugadas, que en promedio logro realizar la captura en el
paso numero 11.

Contra el 11,08% de evasiones realizadas por parte del Evader. Revisando el
desenvolvimiento de Evader, se aprecia que en promedio permanece al 46,6% de la
distancia maxima posible con respecto al Chaser.
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En cuanto al ahogamiento de los agentes, en esta oportunidad fueron valores
altos, el Chaser se ahogo en el 38,36% de las veces, muy cercano esta el Evader
con 34,77% de las veces. También en 528 oportunidades los dos agentes se
ahogan a la vez, que equivale al 0.37% de las jugadas.

Para el calculo de valor inicial de Epsilon del siguiente bloque, se le aplico
una reduccion de 2% al Epsilon Inicial del bloque anterior (en este caso, 100% en el
bloque 1), quedando en 98% como valor inicial del siguiente bloque.

Durante los siguientes 24 bloques de entrenamiento el Chaser siempre
predomina en victorias, aumentando con cada bloque la diferencia porcentual
respecto a las victorias del Evader. También se aprecia una reduccién gradual en la
cantidad de jugadas que los dos agentes terminan ahogandose, siendo el Evader
que aprende con una pendiente mas elevada.

Gréfico del bloque 25 de Entrenamiento

30 1
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Outcomes

Fig. 41, Gréafico de Bigote bloque 25, 2do Entrenamiento

Durante el bloque 25, el Epsilon oscilé6 entre 50% como valor maximo y
11,44% como valor minimo.

Al igual que en el analisis anterior, inicia con victoria clara para el Chaser,
logrando capturar a su objetivo en el 43,28% de las 145.735 jugadas, ademas logro
bajar el promedio de captura a 9 pasos.

Mientras el Evader logré evadir solo el 13,75% de las jugadas. Pero en esta
oportunidad logré aumentar la distancia maxima posible promedio a un 50% con
respecto al Chaser.

En cuanto al ahogamiento de los agentes, en esta oportunidad siguen siendo
valores altos pero hay disminucién de ellos, el Chaser se ahogo en el 27,73% de las
veces, y con una mayor correccion esta el Evader con 15,12% de las veces.
También en 161 oportunidades los dos agentes se ahogan a la vez, que equivale al
0,11% de las jugadas.
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Para el calculo de valor inicial de Epsilon del siguiente bloque, se le aplico
una reduccion de 2% al Epsilon Inicial del bloque anterior (en este caso, 50% en el
bloque 25), quedando en 48% como valor inicial para el bloque 26.

Durante los siguientes 24 bloques de entrenamiento el Chaser siempre
predomina en victorias, aumentando con cada bloque la diferencia porcentual
respecto a las victorias del Evader hasta el bloque 40.

En este punto el Chaser muestra indicios de estabilidad en el valor porcentual
de victorias, hasta los ultimos dos bloques, donde se desploma al 50%. Continua la
reduccion gradual en la cantidad de jugadas que los dos agentes terminan
ahogandose, siendo el Evader que aprende con una pendiente mas elevada.

Grafico del bloque 50 de Entrenamiento
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Fig. 42, Gréafico de Bigote bloque 50, 2do Entrenamiento

Durante el bloque 25, el Epsilon oscilé entre 2% como valor maximoy 1,73%
como valor minimo.

Al igual que en el analisis anterior, continua con victoria para el Chaser,
logrando capturar a su objetivo en el 48,99% de las 147.454 jugadas, en esta
oportunidad aumento el promedio de captura a 16 pasos.

Mientras el Evader redujo mucho la ventaja logrando evadir el 48,60% de las
jugadas. Ademas de aumentar la distancia maxima posible promedio a un 53,3%
con respecto al Chaser.

En cuanto al ahogamiento de los agentes, en esta oportunidad hubo una
mejora substancial, el Chaser se ahogo en el 1,93% de las veces, y con una mayor
correccion esta el Evader con 0,48% de las veces. Solo en este ultimo bloque, no
hubo ahogamiento simultaneo de los dos agentes.

Al graficar los porcentajes de acierto obtenidos en cada una de los 50
bloques del entrenamiento, con la intencion de poder apreciar el avance y
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rendimiento de los agentes durante todo el entrenamiento, se obtuvo la siguiente
grafica.
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Fig. 43, Grafico de Linea 2do Entrenamiento

Como observaciones dentro de este analisis, se puede confirmar que a
medida que avanzan los bloques de entrenamiento los dos agentes se hacen mas
asertivos. Dejan de moverse en direccion al agua.

Como acotacion, durante el desarrollo de los bloques de entrenamiento la

pendiente de mejora del Evasor es baja, esto se mantiene durante todo el
entrenamiento.

Ademas de esto, se puede observar como los agentes, a medida que
avanzan los bloques, se van ahogando menos, confirmando las mismas
apreciaciones vistas en el diagrama de bigote. También se confirma la tendencia
alcista en la asertividad de los agentes para cumplir sus objetivos.

IV.2.2.2. Resultado en Entorno de Juego

Al igual que en la primera ronda de entrenamiento, se probd la funcionalidad
del modelo en el entorno principal de juego.

Dentro de las jugadas ejecutadas, podemos destacar:
- No cumple el objetivo de Persecucion-Evasion.
- Interactuan correctamente dentro del entorno, moviéndose correctamente y

respetando el funcionamiento de los obstaculos.
- Usa en menor medida los saltos al moverse.
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- Se aprecian bucles infinitos en jugadas, ya sea a un movimiento, dos o
dentro de una secuencia. En algunos casos pueden ser atribuidas al
Chaser por no intentar acercarse al Evader

IV.2.3. Ronda de complemento de entrenamiento

En la ultima ronda de entrenamiento se partié de la realizacion del segundo
entrenamiento dos veces, con la intencion de incrementar la experiencia de los
agentes. Luego, con las Q-Tables obtenidas, replicamos el entrenamiento de la
primera ronda.

Las variables particulares de este entrenamiento, ademas de las condiciones
generales antes mencionadas, seran:
- Epsilon inicial de 1
- Disminucién de Epsilon (Epsilon decay) de 0.98 por jugada.

IV.2.3.1. Resultados Graficos

A continuacion se muestran los resultados de 3 de los 50 bloques de
entrenamiento realizados.

Gréfico del bloque 1 de Entrenamiento

] TT=

Qutcomes

Fig. 44, Grafico de Bigote bloque 1, 3er Entrenamiento

Durante este bloque de entrenamiento el Epsilon Inicial fue del 100%, al final
del bloque y por el resto del entrenamiento quedo6 en 0%.

Parte con victoria clara para el Evader, logrando evadir su objetivo en el

78,78% de las 147.455 jugadas. También se puede apreciar, que en promedio
permanece al 56,6% de la distancia maxima posible con respecto al Chaser.
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Contra el 19,62% de evasiones realizadas por parte del Evader., que en
promedio logré realizar la captura en el paso numero 17.

En cuanto al ahogamiento de los agentes, en esta oportunidad fueron valores
bajos, el Chaser se ahogo en el 1,35% de las veces, bastante despegado esta el
Evader con 0,25% de las veces. También solo en 1 oportunidad los dos agentes se
ahogan a la vez.

Durante los siguientes 24 bloques de entrenamiento existe dualidad en las
victorias reduciendo ventajas y luego comenzando a ganar. También se aprecia una
reduccion en la cantidad de jugadas que los dos agentes terminan ahogandose,
para ya partiendo de valores cercanos o menores al 1%.

Grafico del bloque 25 de Entrenamiento
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Fig. 45, Gréafico de Bigote bloque 25, 3er Entrenamiento

Resultado a mitad de entrenamiento con valores de Epsilon 0%.

En este bloque refleja una victoria para el Evader, logrando escapar de su
rival el 80,24% de las 147.456 jugadas, logrando también aumentar la distancia
maxima con respecto al Chaser de 56,6% a 60%.

Contra el 18,66% de capturas realizadas por parte del Chaser, que logro
reducir el promedio de capturas en el paso 15.

Con respecto al ahogamiento de los agentes, los dos lograron reducir las
jugadas que terminan ahogados, el Chaser se ahogd en el 0,95% de las veces,
mientras que el Evader con 0,15% de las veces.

Desde aca hasta el ultimo bloque, los resultados de victorias van oscilando

entre Chaser - Evader. Puedes consultar en la grafica total mostrada mas adelante o
en el archivo de entrenamiento.
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Gréfico del blogque 50 de Entrenamiento
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Fig. 46, Grafico de Bigote bloque 50, 3er Entrenamiento

Para cierre del entrenamiento la victoria fue para el Chaser, logrando capturar
de su rival el 82,47% de las 147.456 jugadas, bajando el promedio de captura al
paso 14.

Contra el 16,55% de evasiones realizadas por parte del Evader, que baj6 su
distancia maxima promedio a un 56,6%.

Con respecto al ahogamiento de los agentes, volvieron a reducir las jugadas
que terminan ahogados manteniéndose por debajo del 1%, el Chaser se ahogo en
el 0,88% de las veces, mientras que el Evader con 0,11% de las veces.

Al resumir y graficar todos los porcentajes de acierto obtenidos en cada una
de los 50 bloques del entrenamiento, se obtuvo la siguiente grafica.
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Fig. 47, Gréfico de Linea 3er Entrenamiento
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En esta grafica se observan, valores de ahogamiento muy bajos durante todo
el entrenamiento y el comportamiento de los agentes es variable. A pesar de partir
con valores altos de captura-evasion, se observa una relacion inversa entre los
resultados de los agentes, quedando pendiente una validacion de razones de este
comportamiento.

IV.2.3.2. Resultado en Entorno de Juego

Al igual que en las rondas anteriores, se puso a prueba funcional el modelo
en el entorno principal de juego.

Dentro de las jugadas ejecutadas, podemos destacar:

- Se cumple el objetivo de Persecucion-Evasion.

- Interaccion correcta dentro del entorno, moviéndose correctamente y
respetando el funcionamiento de los obstaculos.

- Se usa en menor medida los saltos como movimiento.

- Se aprecian bucles infinitos en jugadas, ya sea a un movimiento, dos o
dentro de una secuencia. En algunos casos pueden ser atribuidas al
Chaser por no intentar acercarse al Evader
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V. Discusion

A continuacibn se avanzdé con la discusidon de relacionada a la
implementacion y evaluacion del proyecto

V.1. Analisis por Rondas de Entrenamiento

V.1.1. Primera ronda de entrenamiento

Dentro de esta prueba se observo el impacto que tiene la variacion de
Epsilon durante el entrenamiento. Como se minimizé la aleatoriedad de movimientos
de los agentes muy pronto en el entrenamiento, se generd la intencion en los
agentes a aprendan a moverse dentro de las reglas dadas sin explorar, basandose
solo en experiencias conocidas.

Si bien, el agente va enfocado y comienza a avanzar en funciéon de su
objetivo particular, deja de lado la posibilidad de aprender del entorno cercano.

Esto se ve empeorado, debido al impacto que tiene la relacidon del estado con
el movimiento que realiza el oponente.

También pudimos confirmar la poca eficiencia de este entrenamiento en la
obtencion de recompensas, ya que, a pesar de que los saltos eran mas costosos.
En cuanto a la recompensa, como parte de cero la Q-table, el agente va probando
todos las acciones desde el estado inicial, llevandonos a tener muchos movimientos
con saltos no por eficientes, si no por no haber sido usados todavia.

Como cierre del analisis se confirmoé que el resultado general, en cuestion de
cumplimiento de objetivos, es el esperable. Siendo que, durante el entrenamiento el
agente mas victorioso al inicio y por los primeros bloques fue el Evader.

Esto debido a que, mientras los agentes no conozcan el entorno ni tengan
referencias en Q-Tables de lo que tienen que hacer, los movimientos seran
proactivamente al azar, haciendo que el Chaser no cumpla su objetivo hasta tanto
no haya desarrollado una estrategia de persecucion. Una vez el Chaser empiece a
obtener experiencia de victoria lo va a ir acoplando mas a su estrategia y empiezan
a ir rotando las victorias.

V.1.2. Segunda ronda de entrenamiento

El resultado de esta prueba fue el esperado, debido a la aleatoriedad de
movimientos generada, obtuvimos agentes que se desenvuelven mucho mejor.
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Continuando con la revision en el entorno principal de juego, pudimos observar que
los agentes generan menos saltos innecesarios y caminan mucho mas en los
lugares correspondientes. No se eliminé el salto totalmente, pero mejoré en cuanto
a la ronda anterior.

Como punto negativo, luego de esta ronda, no se observé que estuvieran
siguiendo el objetivo principal y en el entorno principal de juego no hay intencién de
persecucion-evasion. Ademas de esto, y como resultado sorpresa, observamos que
el Chaser estuvo dominando, en cuanto a victorias, todo el entrenamiento, cuando lo
esperado era lo contrario.

V.1.3. Ronda de complemento de entrenamiento

En esta ronda se sumaron horas de entrenamiento y se replicé el mismo
esquema del primer entrenamiento, pero sin partir con las Q-tables en cero.

Como era esperado, obtuvimos mejoria en el desenvolvimiento de los
agentes, logrando reducir el uso de saltos, solo a cuando es necesario. Ademas de
esto, la asertividad de los agentes estuvo oscilando en torno al 50% esperado, y
produciendo dualidad entre los ganadores. Dentro del entorno principal de juego,
existe la intencion de persecucion-evasion y genera un entorno de juego funcional.

V.2. Resumen de los entrenamientos

Como cierre de los entrenamientos, se da como satisfactorio los resultados
obtenidos, teniendo en cuenta que se deben aplicar correcciones para poder
evolucionar el proyecto.

Debemos considerar el impacto de Epsilon para los entrenamientos, ya que
esto puede ser muy util al momento de focalizar alguna estrategia.

Identificamos que, el analisis de las jugadas registradas es vital para
identificar errores que pueden llevar a conclusiones imprecisas, ademas de
mostrarnos las interacciones permitiéndonos crear soluciones.
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VI. Conclusiones y Limitaciones

VI.1. Conclusiones

Con la finalizacion de este proyecto se ha logrado implementar agentes
inteligentes basados en aprendizaje por refuerzo (Reinforcement Learning - RL).
Dentro de los logros, se pudo integrar dentro de un videojuego creado totalmente en
el lenguaje de programaciéon Python, permitiéndonos a su vez interactuar como
usuarios con dichos agentes.

La obtencidon de recursos graficos a pesar de no ser totalmente satisfactoria,
generan una buena base para ser editadas manualmente. Si bien obtuvimos buenos
avances con este objetivo, no se implementd en el prototipo final. Esto debido a que
no fue posible la obtencidén de todas las imagenes coherentes, en cuanto a tamafos,
secuencias de movimientos funcionales y obstaculos funcionales, dentro de los
tiempos establecidos para este proyecto.

Dentro de este mismo apartado, pudimos confirmar que si existen opciones
de pago en el mercado, como por ejemplo Scenario o Upscale Media, para esta
obtencion de estos recursos. En estas se pueden enviar videos con la secuencia de
movimiento y personaje, para la creacion de la secuencia de movimiento.

Por otro lado, la IA no solo nos ayudd a entender procesos basicos para la
creacion de un videojuego, si no que fue clave. Aunque, la IA no pudo generar el
cédigo completo, colaboré en la obtencion de bloques funcionales de cdodigo
adaptables al desarrollo de la aplicacion, siendo soporte fundamental para poder
completar el trabajo. Logrando generar bloques y funciones limitadas a operaciones,
que luego pudieron corregidas y facilmente integradas dentro del proyecto.

Se logré implementar y configurar agentes inteligentes basados en algoritmos
de RL con todas sus funciones, sistema de recompensas y un protocolo de
entrenamiento que demuestra el aprendizaje de los agentes.

Dentro de los entregables realizados destacan, un entorno prototipo de
videojuego con tres posibilidades de usos. La primera, entorno de juego totalmente
funcional.

Segundo, un entorno de pruebas solo para interaccion entre usuarios y
obstaculos. Tercero, un entorno de entrenamiento guiado para correccion de errores
o refuerzos de entrenamiento.

Finalmente, un entorno 100% dedicado a entrenamientos aislados entre
agentes.
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VI1.2. Limitaciones y Problematicas

Aunque el desarrollo del TFM fue en general fluido, la investigacién logro
ofrecer un producto funcional. De esta manera consideramos que es crucial
reconocer sus limitaciones y dar a conocer los desafios enfrentados.

VI.2.1. Limitaciones

La principal limitacién es que el juego no es un entregable completo, falta la
realizacion de interfaz que sirva de amalgama general de juego y evite tener que
acceder al coédigo para poder realizar ejecuciones, revisiones o modificaciones.
Ademas, queda pendiente la correccién de los bucles infinitos presentes con la
ausencia de interaccién humana.

VI.2.2. Problematicas Generales

La principal problematica, fue el tiempo que toma desarrollar el entorno, si
bien estaba dentro de las consideraciones de complicidad iniciales, fue bastante
problematico el poder conseguir los recursos solo usando IA gratuita, si bien
podemos obtener facilmente recursos de imagenes, estos no eran los
suficientemente precisos para no generar incongruencias en los movimientos de los
personajes.

Otra de las dificultades presente son atribuibles a la programaciéon y
aplicacion de la IA. Al implementar IA, no abordamos el como detectar y responder
antes los bucles infinitos en los que entran los agentes.

Si bien, son interrumpidos por la finalizacién de la partida, el hecho de que al
eliminar aleatoriedad en los movimientos ocasiona que existan pocas estrategias, y
al existir bucles en algunas jugadas, tenemos jugadas en entrenamientos perdidas.

Ademas de esto, otra de las problematicas a mejorar es la priorizacion y la
evaluacion continua de las politicas de recompensa. Estas tienen un gran impacto
en cuanto a la interaccion con el entorno y objetivo principal, como por ejemplo, los
bordes no tienen ningun tipo de valoracién de recompensa, lo que ocasiona que en
esos momentos los agentes reaccionen sin alguna logica en particular.

Finalmente, los recursos computacionales tanto para almacenamiento como
para procesamiento de datos fue el desafio mas significativo. La creacion del
entorno, grabado de videos de muestras, almacenamiento de datos en tablas
analisis de movimientos y los cdédigos para de prueba utilizados, colapsaron en
varias oportunidades el ordenador. Se tuvo que recurrir a herramientas externas,
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como Google Colab, que a pesar de ser excelente ayuda durante el proyecto,
debido a cortes realizados por el proveedor, de igual forma ocasioné horas de
entrenamiento pérdidas.

VIL.3. Futuras lineas de investigacién

Como punto de partida para continuar y como posibles proyectos de
programacion. Lograr implementar las correcciones de todas las recomendaciones
dadas en este trabajo, de entre las cuales podemos destacar. En primer lugar, la
implementacion de algoritmos de visidn por computadora para deteccion de
acciones y estados. Segundo lugar, el desarrollo de una interfaz de control para no
que permita tener un producto de juego terminado. Y por ultimo, la estandarizacion
de movimientos para lograr que los agentes detecten el seguimiento de acciones
futuras dentro de las recompensas. Esto con la intencién de garantizar la evolucién
regular del software generado, permitiéndonos tener un software mas completo y de
ser posible funcional en alguna plataforma de juegos.

Dentro de la rama de IA, la principal linea de investigacion a realizar, es la de
implementar algoritmos de Deep Q-Network (DQN) o RL profundo. Como evolucion
directa al algoritmo de este proyecto tenemos la implementacion de agentes
basados en modelos de DQN, con el fin de mejorar la capacidad de aprendizaje y la
complejidad estratégica de los agentes. Esto nos permitira aumentar la cantidad de
estados en el juego o agregar nuevas funcionalidades que lo complejizan aun mas.

67



Referencias bibliograficas

Borra, F., Biferale, L., Cencini, M., & Celani, A. (2022). Reinforcement learning for pursuit
and evasion of microswimmers at low Reynolds number. Physical Review Fluids,
7(2), 023103. https://doi.org/10.1103/PhysRevFluids.7.023103

Bouzy, B., & Métivier, M. (2007). Multi-agent model-based reinforcement learning
experiments in the pursuit evasion game. Atrtificial Intelligence, 171, 365-377.

Chen, Y., Shi, Y., Dai, X., Meng, Q., & Yu, T. (2025). Pursuit-evasion game with online
planning using deep reinforcement learning. Applied Intelligence, 55(7), 512.
https://doi.org/10.1007/s10489-025-06396-3

Descottes, J. (2017). Piskel [Software]. https://www.piskelapp.com/

Duo Terron, P., Moreno Guerrero, A. J., Lopez Belmonte, J., & Marin Marin, J. A. (2023).
Inteligencia Artificial y Machine Learning como recurso educativo desde la
perspectiva de docentes en distintas etapas educativas no universitarias. Revista
Interuniversitaria de Investigacion en Tecnologia Educativa, 58-78.
https://doi.org/10.6018/riite.579611

Gao, M., Yan, T,, Li, Q., Fu, W,, & Zhang, J. (2023). Intelligent Pursuit—Evasion Game Based
on Deep Reinforcement Learning for Hypersonic Vehicles. Aerospace, 10(1), 86.
https://doi.org/10.3390/aerospace10010086

Gonultas, B. M., & Isler, V. (2025). Pursuit-Evasion for Car-like Robots with Sensor
Constraints (No. arXiv:2405.05372). arXiv. https://doi.org/10.48550/arXiv.2405.05372

Huang, X. (2021). Adversary agent reinforcement learning for pursuit-evasion (Versién 1).
arXiv. https://doi.org/10.48550/ARXIV.2108.11010

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review of
classification and combining techniques. Artificial Intelligence Review, 26(3),
159-190. https://doi.org/10.1007/s10462-007-9052-3

Lin, Y., Gao, H., & Xia, Y. (2025). Distributed Pursuit-Evasion Game Decision-Making Based

on Multi-Agent Deep Reinforcement Learning. Electronics, 14(11), 2141.

68


https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX

https://doi.org/10.3390/electronics 14112141

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Pygame. (s. f.). [Software]. https://www.pygame.org

Pygame Software Foundation. (2024). PyGame (Versién 2.6.1) [Software].
https://www.pygame.org/

Silver, D., Huang, A., Maddison, C. J., Guez, A, Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587), 484-4809.
https://doi.org/10.1038/nature 16961

Singh, G., Lofaro, D., & Sofge, D. (2020). Pursuit-evasion with Decentralized Robotic Swarm
in Continuous State Space and Action Space via Deep Reinforcement Learning:
Proceedings of the 12th International Conference on Agents and Artificial
Intelligence, 226-233. https://doi.org/10.5220/0008971502260233

Souza, C. de, Newbury, R., Cosgun, A., Castillo, P., Vidolov, B., & Kulic, D. (2020).
Decentralized Multi-Agent Pursuit using Deep Reinforcement Learning.
https://doi.org/10.48550/ARXIV.2010.08193

Sutton, R. S., & Barto, A. (2014). Reinforcement learning: An introduction (Nachdruck). The
MIT Press.

Wang, Q., Li, X, Yuan, Z., Yang, Y., Xu, C., & Zhang, L. (2022). An Opponent-Aware
Reinforcement Learning Method for Team-to-Team Multi-Vehicle Pursuit via
Maximizing Mutual Information Indicator (Version 1). arXiv.
https://doi.org/10.48550/ARXIV.2210.13015

Wang, Y., Cao, Y., Chiun, J., Koley, S., Pham, M., & Sartoretti, G. A. (2024). Viper:
Visibility-based pursuit-evasion via reinforcement learning. In 8th Annual Conference
on Robot Learning. https://openreview.net/forum?id=EPujQZWemk

World Chase Tag®. (2025). https://wct.webflow.io/

69


https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX

Wouters, T. (2025). Python (Version 3.12.10) [Software]. https://www.python.org/

Wu, Z., Ye, S., Natarajan, M., & Gombolay, M. C. (2024). Diffusion-Reinforcement Learning
Hierarchical Motion Planning in Multi-agent Adversarial Games (Version 2). arXiv.
https://doi.org/10.48550/ARXIV.2403.10794

Xu, S., & Dang, Z. (2025). Emergent behaviors in multiagent pursuit evasion games within a
bounded 2D grid world. Scientific Reports, 15(1), 29376.

https://doi.org/10.1038/s41598-025-15057-x

70


https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX
https://www.zotero.org/google-docs/?16rWXX

indice de figuras

Fig. 1. Imagen pilla-pilla........cceeeeeeeeneiniiiiiieeeeeeiieieeiiieeeee e ieeeeeeeeie i e eeeeieeee i eeeeeeees 11
Fig. 2, Imagen World Chase Tag......ceuuuuueiiiiiiiiiieeeeeeee ettt e e eeeeeeeeeeeennn, 12
Fig. 3, Cuadricula Referencia para ENtOrNO. ......uueeeiiiiiiiiieeeiee e, 17
Fig. 4. Ejemplodereqistrode QTable.........ueeeeeeiiiiieeeiieieiiieeeeieeeeee e 17
Fig. 5, Ejemplo de registro de ReCOMPEeNSas........ouveveereeeeeeeiiiiiieeieieeeeeiiiiieeeeeeeeeeeieiieeeene, 18
Fig. 6, Esquema CRISP-DM........oooviiiiiiiiiiiiiiiiiiiieeeeeee ettt 26
Fig. 7, Diagrama de MOAUIOS......oovveeueeeeiiiieiiiiieieeee et 30
Fig. 8, Planificacion de Trabajo........ooouviiiiieiiiiieieeeeeeeeeeeeeeeeeeeeeeeee et 30
Fig. 9, Ejemplo de imagen de movimiento de personaie...........ooovvvveieeeeieeiieeeeeeeeeeeeeeeeeeee. 31
Fig. 10, Diagrama del Entorno de JueQ0........ueevvreeeeeeeeniiiiiiiiiiieeeeiiiiiieeeiieeeeeeeiiiiieeeeeeeeeeeeees 33
Fig. 11, Ejemplo de |a capa de fondo del ENtOrNO........ueeveeeeeeieeiiieiieiieeeiiiiieeeieiiieeieeeeeeeeeeee 34
Fig. 12, Ejemplo de ObsStaculoS........oeveeeiiiiieeeieeiiiieiiiiiiiiieeiiieeeeeiieiiieeie e, 35
Fig. 13. Ejemplo de Direcciones de MoVimientO.........ooeevvveeeeeueeeiiiiiiiiiieieeeieieeeiiieeieeenn 35
Fig. 14, Ejemplo de ObStaCUlO. . .ooeeiiee e 36
Fig. 15, Ejemplo de Ahogado 36
Fig. 16. Ejemplo de SaltO.....oouuiiiiiiiiiiii it 36
Fig. 17, Ejemplo de Captura.......oooiiiiiiieeeieee et e et e e e e e e eeeeeeeeeeeeees 36
Fig. 18, Blogues de médulo de entrenamiento........eeeeeeeiiieeeieeeeeeeeeiiiieeieieeeiieeeiieeeeeeeeeeeeeen 37
Fig. 19, Ejemplo de calculo de reCompenSa......eueeeeeeeiieiiiiiiieiiieiiiiieieeeeeeieeeeeeeieeeeeeeeeeeeeeeeeee, 38
Fig. 20, Ejemplo de calculo de recompensa Chaser............oooeeeiieiiieiieeiieeees 40
Fig. 21. Ejemplo de calculo de recompensa Evader............ooevveeeeeeeeeiiiniiniiiiiiiieiiiieenieeeeees 40
Fig. 22, Imagen recompensa MOVIMIENTO. . .ouiiieuuueeie i, 41
Fig. 23, Imagen recompensa Salt0........ovvveuueieiii i i e 41
Fig. 24, Imagen recompensa obStaculO.....eeveeeeeiieeiiiiiieeiiiiiiieiieiiieicieeieeeceecee 42
Fig. 25, Imagen recompensa toCar aQUa........ouuuvieeeueeeeiiiiiiiiiieiceeee et e eeeeeee i e eeeeeeeeeeeeenn, 42
Fig. 26, Imagen recompensa ViCtOria. . ... uiieiiieeeeeee i e e e e e et e e e e e s e e e e eeeeeeeens, 42
Fig. 27. Modulos de AQeNteS......ooueeiiiiieiiieiiiieeiiieeeeee e 43
Fig. 28, Imagen Muestrade Q-table...........coeeeeeiiiieeeeeiieeeiiieieieeeeeeee e 44
Fig. 29, Imagen Muestra plataforma de jU€gO............uuuueueerieiiiiiiiiiiiiieiiiiiiieeiieiieeieeeieeeieeeee 45
Fig. 30, Ejemplo grafico de bigote intermedio...........ooveeeeeeiiiiiiiiiiiiiiiiiieeiieeieeeieeeeeeeeeeeeee 46
Fig. 31, Ejemplo grafico de Linea evaluativo...........ooeveeeiiiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeeeeeeeeeeeeee 47
Fig. 32, Ejemplode Q-table...........oooviveeerereiiiiiiiiiiieiiieiiiiiieieiieeiieeeeiiieeeeeieeiiieeieieeeeieeeeens 47
Fig. 33. Mejor imagen obtenida IA GemMiNi.......ooeevivieeeeeeieieiiiiiiiiieieeeeeeeeiiieeieeeeeeeeeeeeeees 49
Fig. 34, Mejor imagen obtenida IA Copilot........ccoeeiiiei i 50
Fig. 35, Grafico de Bigote blogue 1. 1er Entrenamiento.........ooeeeeeeeieieiiiiiiiiiiiiiiiiiiinnnnnns 51
Fig. 36. Grafico de Bigote bloque 25. 1er Entrenamiento............ooeevveeeeeeeeeeeeeeeeeiiiieeeeenn, 52
Fig. 37, Grafico de Bigote blogue 50, 1er Entrenamiento............ooooviiieeeeueeeeeiiiiiiiiiinn. 53
Fig. 38, Grafico de Linea ler Entrenamiento............ooveveeeeeeeeeeeininieeiieeeeieeiiieeeeieeeeiinn 53
Fig. 39, Muestra de Juego 1er EntrenamientO.........cceveeeeeieniineieeeeeeiiiiieeieeieeeeieieieeeeeeeeeee 54
Fig. 40, Grafico de Bigote blogue 1, 2do Entrenamiento..........ooovvvviiiiiiiiiiiieeieeeeeeeeeeeeeeeee 55

Fig.

>
—

rafi Bigote bl 25. 2do EntrenamientO. .. oei i

71



Fig. 42, Grafico de Bigote bloque 50, 2do EntrenamientO...........eeveveeeeeeeeeeeeeiieeeieeeeeeeeeeeee 57
Fig. 43, Grafico de Linea 2do Entrenamiento.........ovvvvviiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeee, 58
Fig. 44, Grafico de Bigote blogue 1. 3er Entrenamiento..........ooeeeeeeiiieiiiiiiiiiiiiiiiivnnnnnns 59
Fig. 45, Grafico de Bigote bloque 25, 3er Entrenamiento...........oeeeeeiiieeeeeeeeiieeiiiiiiiieeeen, 60
Fig. 46, Grafico de Bigote blogue 50, 3er Entrenamiento.............oooovvvveeeeeeeeeeiiiiiieinnn. 61
Fig. 47, Grafico de Linea 3er Entrenamiento..........oeeeeeeiiieiiieiiiiiiiiiiiiieiiiiiiiiiiiciieennns 61

72



	 
	Aplicación de aprendizaje por refuerzo para el desarrollo de estrategias de persecución y evasión en videojuegos 
	Resumen 
	Abstract 
	 

	Índice de contenidos 
	 
	I.​Introducción 
	I.1.​Justificación 
	I.2.​Problemática 
	I.3.​Finalidad 
	I.4.​Objetivos 
	I.4.1.​Objetivo General 
	I.4.2.​Objetivos Específicos 


	II.​Marco teórico 
	II.1.​Juegos tradicionales como pilla-pilla y su adaptación a tiempos modernos 
	Fig. 1, Imagen pilla-pilla 
	Fig. 2, Imagen World Chase Tag 

	II.2.​Videojuegos como herramienta de aprendizaje y pygame 
	II.3.​Inteligencia Artificial y Machine Learning 
	II.3.1.​Exploración - Explotación 
	II.3.2.​Algoritmos de Machine Learning por refuerzo 
	II.3.2.1.​Entorno de ejecución 
	Fig. 3, Cuadrícula Referencia para Entorno 
	Fig. 4, Ejemplo de registro de Q Table 

	II.3.2.2.​Bellman’s Equation 
	Fig. 5, Ejemplo de registro de Recompensas 

	II.3.2.3.​Value-based 
	II.3.2.4.​Aprendizaje con Temporal Difference Error (TD) 
	II.3.2.5.​Esperado vs. Actualización de Muestra 


	II.4.​Estado del arte 
	II.4.1.​Listado de documentación científica (ordenados por enfoque) 
	II.4.2.​Comparación de trabajos con RL relevantes a pursuit–evasion 
	II.4.3.​Breve contexto y observaciones comparativas 


	III.​Metodología 
	III.1.​Diseño 
	Fig. 6, Esquema CRISP-DM 

	III.2.​Participantes 
	III.3.​Instrumentos 
	III.3.1.​Recursos de Hardware 
	III.3.2.​Recursos de Software y Lenguaje de Programación 
	III.3.3.​Herramientas de apoyo con IA 

	III.4.​Procedimiento 
	III.4.1.​Esquema de trabajo 
	Fig. 7, Diagrama de Módulos 
	Fig. 8, Planificación de Trabajo 

	III.4.2.​Herramientas para recursos gráficos y lógicas de juegos 
	III.4.2.1.​Recursos Gráficos 
	Fig. 9, Ejemplo de imagen de movimiento de personaje 

	III.4.2.2.​Lógicas de Juegos 

	III.4.3.​Elaboración de entorno en Python 
	III.4.3.1.​Selección de Aplicativo o librería para el Entorno 
	III.4.3.2.​Diseño de entorno 
	Fig. 10, Diagrama del Entorno de juego 
	Fig. 11, Ejemplo de la capa de fondo del Entorno 
	Fig. 12, Ejemplo de Obstáculos 
	Fig. 13, Ejemplo de Direcciones de Movimiento 
	Fig. 14, Ejemplo de Obstáculo 
	Fig. 15, Ejemplo de Ahogado 
	Fig. 16, Ejemplo de Salto 
	Fig. 17, Ejemplo de Captura 


	III.4.4.​Diseño y configuración de entrenamientos 
	Fig. 18, Bloques de módulo de entrenamiento 

	III.4.5.​Sistema de recompensas para optimización de aprendizaje 
	III.4.5.1.​Recompensa por movimiento 
	Fig. 19, Ejemplo de cálculo de recompensa 
	III.4.5.1.1.​Movimiento a la derecha del Chaser 
	III.4.5.1.2.​Movimiento hacia abajo del Chaser 
	Fig. 20, Ejemplo de cálculo de recompensa Chaser 

	III.4.5.1.3.​Movimiento hacia abajo del Evader 
	Fig. 21, Ejemplo de cálculo de recompensa Evader 


	III.4.5.2.​Recompensa por Saltos 
	Fig. 22, Imagen recompensa movimiento 
	Fig. 23, Imagen recompensa salto 

	III.4.5.3.​Recomple por contacto con obstáculos 
	Fig. 24, Imagen recompensa obstáculo 

	III.4.5.4.​Recompensa por tocar el Agua 
	Fig. 25, Imagen recompensa tocar agua 

	III.4.5.5.​Recompensa de victoria 
	Fig. 26, Imagen recompensa victoria 


	III.4.6.​Implementación de agentes con machine learning por refuerzo 
	Fig. 27, Modulos de Agentes 

	III.4.7.​Entrenamiento y prueba de los agentes 
	Fig. 28, Imagen Muestra de Q-table 


	III.5.​Análisis de datos 
	III.5.1.​Validación de resultados en Aplicación 
	Fig. 29, Imagen Muestra plataforma de juego 

	III.5.2.​Validación de Resultados de Entrenamiento 
	III.5.2.1.​Gráfica de Bigote 
	Fig. 30, Ejemplo gráfico de bigote intermedio 

	III.5.2.2.​Grafica total de resultados 
	Fig. 31, Ejemplo gráfico de Línea evaluativo 

	III.5.2.3.​Análisis de Tabla de Valores (Q-Tables) 
	Fig. 32, Ejemplo de Q-table 




	IV.​Resultados 
	IV.1.​Generación de Imágenes 
	Fig. 33, Mejor imagen obtenida IA Gemini 
	Fig. 34, Mejor imagen obtenida IA Copilot 

	IV.2.​Entrenamientos 
	IV.2.1.​Primera ronda de entrenamiento. 
	Fig. 35, Gráfico de Bigote bloque 1, 1er Entrenamiento 
	Fig. 36, Gráfico de Bigote bloque 25, 1er Entrenamiento 
	Fig. 37, Gráfico de Bigote bloque 50, 1er Entrenamiento 
	Fig. 38, Gráfico de Línea 1er Entrenamiento 
	Fig. 39, Muestra de Juego 1er Entrenamiento 

	IV.2.2.​Segunda ronda de entrenamiento 
	 
	Fig. 40, Gráfico de Bigote bloque 1, 2do Entrenamiento 
	 
	Fig. 41, Gráfico de Bigote bloque 25, 2do Entrenamiento 
	 
	Fig. 42, Gráfico de Bigote bloque 50, 2do Entrenamiento 
	Fig. 43, Gráfico de Línea 2do Entrenamiento 

	IV.2.3.​Ronda de complemento de entrenamiento 
	 
	Fig. 44, Gráfico de Bigote bloque 1, 3er Entrenamiento 
	Fig. 45, Gráfico de Bigote bloque 25, 3er Entrenamiento 
	 
	Fig. 46, Gráfico de Bigote bloque 50, 3er Entrenamiento 
	Fig. 47, Gráfico de Línea 3er Entrenamiento 



	V.​Discusión 
	V.1.​Análisis por Rondas de Entrenamiento 
	V.1.1.​Primera ronda de entrenamiento 
	V.1.2.​Segunda ronda de entrenamiento 
	V.1.3.​Ronda de complemento de entrenamiento 

	V.2.​Resumen de los entrenamientos 

	VI.​Conclusiones y Limitaciones 
	VI.1.​Conclusiones 
	VI.2.​Limitaciones y Problemáticas 
	VI.2.1.​Limitaciones 
	VI.2.2.​Problemáticas Generales 

	VI.3.​Futuras líneas de investigación 

	Referencias bibliográficas 
	Índice de figuras 

