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RESUMEN 

Este Trabajo de Fin de Máster propone una metodología innovadora de análisis retrospectivo 

de parámetros geotécnicos aplicada al diseño de cimentaciones superficiales, más 

concretamente, en la estimación del módulo de elasticidad en suelos granulares. Frente a las 

limitaciones de los enfoques tradicionales, dependientes de un elevado número de ensayos in 

situ, hipótesis simplificadas y análisis iterativos costosos, se plantea un esquema híbrido que 

combina el potencial exploratorio del aprendizaje automático con la precisión de métodos 

deterministas. El objetivo es ofrecer una herramienta robusta, eficiente y adaptable a contextos 

reales de obra civil y edificación. 

En primer lugar, se implementa un módulo de búsqueda global que, gracias a técnicas de 

Machine Learning, ofrece estimaciones preliminares del módulo de elasticidad y otros 

parámetros esenciales. A continuación, estas estimaciones se refinan mediante un algoritmo 

de optimización que integra los métodos de Gauss-Newton o Levenberg-Marquardt, 

garantizando una convergencia rápida y estable. Este enfoque asegura no solo la precisión en 

la predicción de respuestas tensionales y deformacionales, sino también una drástica 

reducción en el número de iteraciones necesarias. 

La metodología se valida exhaustivamente en dos escenarios: un caso sintético (con y sin 

introducción de ruido estadístico) y un proyecto real de cimentación en un edificio de gran 

altura. En el primer caso, se alcanzó un error medio cuadrático (RMSE) de apenas 2.3 kPa 

(R²=1.00) en condiciones ideales y 1,623.0 kPa (R²=0.898) con ruido; en el segundo, la 

correlación con los datos reales obtuvo un R²=0.998. Estos resultados se han contrastado con 

treinta y dos métodos clásicos de análisis inverso, ofreciendo el método propuesto no solo una 

eficiencia computacional notablemente inferior, sino que también demuestran una elevada 

precisión en los parámetros retrocalculados. 

Además, la arquitectura modular de la propuesta facilita su integración con sistemas de 

monitorización en tiempo real (IoT) y herramientas de inteligencia artificial, adaptándose a los 

nuevos Eurocódigos (EN 1997-1:2024, EN 1997-3:2025) y contribuyendo al cumplimiento de 

los Objetivos de Desarrollo Sostenible de la Agenda 2030. En definitiva, este estudio ofrece una 

herramienta robusta y escalable, capaz de transformar la práctica profesional en diseño y 

control de cimentaciones, reduciendo costes y tiempos sin sacrificar fiabilidad ni seguridad. 
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ABSTRACT 

This Master's Thesis proposes an innovative backanalysis methodology for the calibration of 

geotechnical parameters applied to the design of shallow foundations, specifically focusing on 

the estimation of the elastic modulus in granular soils. In contrast to the limitations of 

traditional approaches, typically reliant on a large number of in situ tests, simplified 

assumptions, and computationally expensive iterative analyses, this work introduces a hybrid 

framework that combines the exploratory power of machine learning with the precision of 

deterministic methods. The aim is to deliver a robust, efficient, and adaptable tool for real-

world civil engineering and building projects. 

First, a global search module is implemented using machine learning techniques to provide 

preliminary estimates of the elastic modulus and other key soil parameters. These estimates 

are then refined through an optimization algorithm that incorporates either the Gauss-Newton 

or Levenberg-Marquardt methods, ensuring rapid and stable convergence. This dual-stage 

approach guarantees not only accurate predictions of stress and deformation responses, but 

also a significant reduction in the number of iterations required. 

The proposed methodology is thoroughly validated in two scenarios: a synthetic case (both 

with and without added statistical noise) and a real-world foundation project for a high-rise 

building. In the synthetic case, a root mean square error (RMSE) of just 2.3 kPa (R² = 1.00) was 

achieved under ideal conditions, and 1,623.0 kPa (R² = 0.898) with noise. In the real project, 

the correlation with monitored data reached R² = 0.998. These results were benchmarked 

against thirty-two conventional inverse analysis methods, with the proposed approach 

demonstrating not only superior computational efficiency but also high accuracy in the back-

calculated parameters. 

Moreover, the modular architecture of the methodology facilitates integration with real-time 

monitoring systems (IoT) and artificial intelligence tools. It aligns with the requirements of the 

new Eurocodes (EN 1997-1:2024, EN 1997-3:2025) and contributes to the achievement of the 

Sustainable Development Goals of the 2030 Agenda. In summary, this study presents a robust 

and scalable solution with the potential to transform professional practice in the design and 

monitoring of foundations, reducing both costs and execution time without compromising 

reliability or safety. 
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1. INTRODUCCIÓN 

Mucho antes del desarrollo formal de la mecánica de suelos, civilizaciones antiguas como los 

egipcios, griegos o romanos ya conocían la importancia del terreno y la necesidad de 

proporcionar una cimentación adecuada para prolongar la vida útil de sus estructuras. Estas 

culturas empleaban métodos empíricos basados en la observación directa del comportamiento 

del suelo: realizaban pruebas de carga rudimentarias para estimar la capacidad portante y los 

asientos potenciales, estudiaban la vegetación para evaluar la humedad y naturaleza del 

terreno, o realizaban catas para detectar la presencia de agua subterránea. 

Durante la Edad Media, estas prácticas empíricas se complementaron con técnicas como las 

pruebas de absorción de agua en el terreno natural, que permitían identificar materiales 

cohesivos y anticipar posibles riesgos o incertidumbres para la cimentación. A lo largo de la 

historia, la observación del comportamiento del suelo y los ensayos de campo han sido la base 

para el diseño de cimentaciones y siguen siendo, hasta hoy, herramientas esenciales para la 

caracterización del medio geotécnico. 

Los trabajos realizados por el ingeniero francés Jean-Rodolphe Perronet en el siglo XVIII, 

destacándose la construcción de puentes como el Pont de Neuilly en París (1772-1774), 

aplicaban metodologías observacionales pioneras para la evaluación y monitorización del 

comportamiento del terreno durante la construcción. En sus registros detallados, Perronet 

documentaba cuidadosamente el asentamiento de las cimentaciones y adaptaba el diseño 

conforme a las observaciones obtenidas durante la ejecución, ejemplificando tempranamente 

el enfoque que actualmente conocemos como análisis observacional (Peck, 1969). 

Esta metodología de monitoreo sistemático y adaptación constructiva ante comportamientos 

inesperados del suelo sería posteriormente formalizada por Ralph B. Peck en su influyente 

trabajo "Advantages and Limitations of the Observational Method in Applied Soil Mechanics" 

(1969), consolidando el análisis observacional como una estrategia fundamental en la práctica 

geotécnica moderna. 

Estas referencias históricas demuestran cómo el análisis observacional ha estado 

implícitamente presente en la ingeniería geotécnica desde hace siglos, evolucionando 

significativamente hasta convertirse en una metodología clave respaldada por normativas 

internacionales contemporáneas como los Eurocódigos, especialmente en la última 

generación. 
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El desarrollo de la mecánica de suelos como disciplina científica ha permitido establecer 

modelos más rigurosos para describir la interacción entre cimentación y terreno. Sin embargo, 

incluso con la consolidación de estos modelos, el enfoque observacional sigue siendo 

fundamental, no solo para validar teorías y modelos numéricos, sino también para ajustar las 

predicciones de comportamiento a las condiciones reales de cada obra. 

En este contexto, la irrupción de la Inteligencia Artificial (IA) y la sensorización avanzada (IoT) 

ha impulsado la evolución de los métodos de análisis observacional, permitiendo aprovechar 

grandes volúmenes de datos en tiempo real. Estas herramientas ofrecen un enorme potencial 

para optimizar la toma de decisiones, calibrar modelos numéricos con datos reales y reducir la 

incertidumbre asociada a la modelización del terreno. La combinación de sistemas de 

monitoreo mediante sensores de última generación y algoritmos de IA facilita una evaluación 

más precisa del comportamiento del suelo durante la fase de construcción, permitiendo 

identificar desviaciones respecto al diseño previsto, minimizar riesgos y optimizar las 

soluciones de cimentación. 

La caracterización y modelización del comportamiento del suelo, junto con los métodos 

utilizados para evaluar los asientos, son elementos clave para comprender la interacción entre 

la cimentación y el terreno. Para mejorar la precisión de los modelos empleados por el 

diseñador, es necesario implementar enfoques híbridos que combinen modelos físicos clásicos 

con técnicas de análisis de datos, permitiendo ajustar los parámetros geotécnicos a las 

condiciones reales del suelo mediante sistemas de monitoreo continuo. 

En cualquier caso, un análisis riguroso debe contemplar tres etapas esenciales: 

• La observación del medio, que proporciona la información básica sobre las condiciones 

reales del terreno; 

• La creación del problema, que implica la formulación de un modelo teórico o numérico 

basado en los principios de la mecánica de suelos y los datos observados; 

• El contraste del modelo con la realidad, mediante la comparación de las predicciones 

del modelo con los datos obtenidos in situ, ajustando así los parámetros o planteando 

nuevas hipótesis si es necesario. 

 

Este enfoque cíclico, donde la observación, la modelización y la validación se retroalimentan, 

es la base para avanzar hacia soluciones más eficaces y adaptativas, especialmente en un 
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contexto donde las tecnologías de monitoreo y las herramientas de inteligencia artificial están 

redefiniendo la forma en que se entiende y gestiona la construcción. 

El objetivo del presente trabajo es integrar estos enfoques clásicos y modernos para 

desarrollar una metodología de análisis retrospectivo que permita, a partir de mediciones 

reales de asientos y presiones de contacto, calibrar parámetros geotécnicos clave y optimizar 

el diseño de cimentaciones superficiales en función de las condiciones específicas del terreno. 

La metodología propuesta en este Trabajo de Final de Máster no solo responde a la necesidad 

técnica de mejorar la precisión y eficiencia en la estimación de parámetros geotécnicos, sino 

que también se alinea con los principios de sostenibilidad que rigen la ingeniería del siglo XXI. 

En concreto, se articula con varios de los Objetivos de Desarrollo Sostenible (ODS) establecidos 

por la Agenda 2030 de Naciones Unidas, especialmente en lo relativo a la innovación, la 

eficiencia en el uso de recursos, la resiliencia de las infraestructuras y la mitigación del impacto 

ambiental de los proyectos de ingeniería civil. 
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2. OBJETIVOS 

El presente Trabajo de Final de Máster tiene como objetivo el desarrollo de una metodología 

de análisis retrospectivo de parámetros geotécnicos, específicamente enfocado en el módulo 

de elasticidad, con la finalidad de optimizar el diseño estructural y geotécnico de cimentaciones 

superficiales en suelos granulares. Esta metodología pretende ayudar a reducir las 

incertidumbres inherentes a las predicciones realizadas mediante modelos numéricos 

tradicionales y análisis convencionales frente al comportamiento real observado del terreno y 

la estructura durante su fase operativa. 

Para alcanzar este objetivo, se llevará a cabo en primer lugar una revisión exhaustiva del estado 

del arte, abordando en detalle las bases teóricas relacionadas con el cálculo de asientos en 

cimentaciones superficiales sobre terrenos granulares. Este análisis incluirá un estudio 

profundo sobre la teoría de elasticidad aplicada a suelos, los modelos constitutivos más 

relevantes y utilizados en la práctica actual, y los principales métodos para la determinación 

de la distribución de tensiones bajo cimentaciones superficiales. Asimismo, se profundizará en 

las funciones objetivo más utilizadas y en los algoritmos de optimización existentes con el fin 

de identificar las metodologías más prometedoras. Posteriormente, se realizará una evaluación 

sistemática y comparativa entre estas técnicas y el método propuesto en este trabajo, 

aplicándolas a un caso de estudio sintético específicamente diseñado para tal propósito. 

El algoritmo de optimización propuesto consistirá en una implementación híbrida, integrando 

métodos de búsqueda global fundamentados en técnicas de aprendizaje automático (Machine 

Learning), con algoritmos deterministas clásicos de búsqueda local, tales como Gauss-Newton 

o Levenberg-Marquardt. Esta combinación tiene como objetivo mejorar la precisión de la 

estimación de parámetros geotécnicos, al mismo tiempo que reducir el coste computacional 

asociado a los métodos tradicionales. Además, este algoritmo híbrido se integrará dentro de un 

flujo de trabajo claramente estructurado, compuesto por modelos físicos fundamentados en 

los principios esenciales de la mecánica de suelos y del análisis estructural, buscando así 

equilibrar precisión y rigor físico con capacidad predictiva basada en datos empíricos. 

El propósito central de este enfoque híbrido es crear un modelo flexible capaz de aprender 

patrones complejos directamente a partir de datos reales obtenidos en campo, incorporando 

simultáneamente bases estructurales y geotécnicas esenciales para una correcta 

interpretación física de los resultados. Se espera que este modelo mejore de forma significativa 

a medida que evoluciona la construcción, ofreciendo predicciones cada vez más precisas del 
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comportamiento real del terreno, reduciendo así las incertidumbres iniciales de diseño y 

permitiendo optimizar progresivamente la estructura. 

Adicionalmente, se estudiará en profundidad la influencia que tiene el punto de partida elegido 

para realizar el análisis retrospectivo. Este análisis explorará la manera en que la selección 

inicial de parámetros afecta el número total de iteraciones requeridas hasta alcanzar una 

solución convergente. El objetivo es desarrollar una metodología clara para orientar 

adecuadamente el algoritmo hacia puntos iniciales óptimos, logrando así una reducción 

significativa en el número de iteraciones y, en consecuencia, del consumo computacional global 

requerido. 

El análisis retrospectivo planteado se basará en mediciones realizadas en tiempo real mediante 

el uso de instrumentación de última generación. En este contexto, se abordará el desarrollo de 

un procedimiento automatizado de cálculo inverso, que permita integrar directamente los 

datos generados por el sistema de monitorización con el modelo numérico. El objetivo último 

de esta automatización es ofrecer recomendaciones de ajuste de parámetros prácticamente en 

tiempo real, minimizando la intervención humana y manteniendo un coste computacional 

razonablemente bajo. 

Con la intención de validar la metodología propuesta, esta será aplicada a un caso de estudio 

sintético específicamente desarrollado para este trabajo. Se considerarán dos escenarios 

diferenciados: un primer caso ideal sin errores de medición, y un segundo caso que incorporará 

mediciones con ruido estadístico, simulando condiciones más realistas de campo. 

Adicionalmente, se aplicarán en paralelo los algoritmos clásicos más relevantes, llevando a 

cabo un análisis exhaustivo y sistemático de la precisión y eficiencia computacional asociada a 

cada uno de estos métodos, permitiendo así extraer conclusiones fundamentadas y bien 

documentadas sobre las ventajas comparativas del enfoque híbrido planteado. 

También se aplicará el método en un contexto real, compuesto por la cimentación de un edificio 

de gran altura, con el objetivo de validar aún más la efectividad y robustez del enfoque 

metodológico propuesto. 

Se analizará cuidadosamente la viabilidad y adecuación del algoritmo propuesto dentro del 

contexto de un enfoque observacional aplicado en proyectos reales. Para ello, se evaluará cómo 

esta metodología podría integrarse eficazmente dentro del esquema tradicional del enfoque 

observacional mostrado en la Figura 2-1, generando un diagrama detallado que explicite 
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claramente el lugar y rol específico del método propuesto dentro del ciclo iterativo típico del 

método observacional. 

 

Figura 2-1 – Diagrama del enfoque observacional 

 

Finalmente, es importante destacar que este trabajo se centrará exclusivamente en el análisis 

retrospectivo del módulo de elasticidad asociado al asiento instantáneo en suelos granulares, 

quedando explícitamente fuera del alcance del presente estudio los análisis relativos a suelos 

cohesivos y los procesos de consolidación.  
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3. ESTADO DEL ARTE 

3.1 Introducción 

El presente capítulo revisa las principales referencias y avances relacionados con el análisis 

retrospectivo de parámetros geotécnicos a partir de mediciones de asientos y presiones de 

contacto en cimentaciones superficiales. Este análisis es clave para mejorar la caracterización 

del comportamiento del suelo y optimizar el diseño de cimentaciones mediante la 

retroalimentación de datos reales de obra. 

El estado del arte se organiza en bloques temáticos (cada uno correspondiente a un concepto 

o línea de investigación clave). En lugar de seguir un relato histórico lineal de principio a fin, 

se agrupan los temas según su enfoque central en apartados. 

Dentro de cada bloque temático, se realiza una exposición asincrónica por conceptos, no 

obstante, en los apartados 3.4, 3.5 y 3.6 se presentan los estudios en orden cronológico, de 

modo que el lector aprecie la evolución interna de ese concepto. Arrancando con el trabajo 

seminal que introdujo la idea, se continúa con los avances intermedios que la refinaron o 

diversificaron, y concluye con las publicaciones más recientes, destacando tendencias actuales 

y limitaciones pendientes. 

Este doble criterio (primero por conceptos y luego por tiempo) combina la claridad de un mapa 

temático con la perspectiva histórica necesaria para entender cómo ha madurado cada línea 

de investigación antes de mostrar en qué punto se sitúa nuestra propia aportación. 

El estado del arte aborda, en primer lugar, los fundamentos teóricos y metodológicos que 

sustentan los modelos constitutivos del suelo, los cuales son esenciales para la representación 

matemática y estimación del comportamiento mecánico del suelo ante la aplicación de cargas. 

Se analizan tanto los conceptos básicos de la elasticidad, viscoelasticidad lineal y plasticidad 

aplicadas al suelo, como los modelos más relevantes en la literatura: el modelo Hiperbólico de 

Duncan-Chang, el Modified Cam Clay (MCC), el Barcelona Basic Model (BBM) y el Hardening 

Soil (HS). 

A continuación, se profundiza en la determinación del módulo de elasticidad y otros 

parámetros derivados de la curva tensión-deformación, destacando su importancia en la 

estimación de asientos. Se discuten también los factores que condicionan la variabilidad de este 

módulo en función del tipo de suelo y las condiciones de carga. 

Los modelos constitutivos del suelo relacionan las tensiones aplicadas con las deformaciones 

que obtendría el suelo como resultado. A pesar de que la relación entre la deformación y 
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tensión de un suelo no es lineal y que los suelos no presentan un comportamiento puramente 

elástico, ya que experimentan deformaciones irreversibles (plásticas), se pueden estimar 

diferentes módulos de deformación del suelo a partir de la curva tensión-deformación, siendo 

el módulo de elasticidad un parámetro ampliamente utilizado en la predicción de la 

deformación del suelo. 

Posteriormente, se revisa la distribución de tensiones bajo cimentaciones superficiales, 

haciendo énfasis en las soluciones clásicas de la teoría de la elasticidad, como la formulación 

de Boussinesq, así como en las adaptaciones y extensiones a suelos estratificados. Esta sección 

es clave para comprender cómo las cargas transmitidas desde la cimentación afectan la 

magnitud y distribución de los asientos. 

El capítulo también desarrolla las formulaciones más relevantes para el cálculo de asientos 

elásticos o instantáneos en cimentaciones superficiales, incluyendo tanto metodologías 

basadas en la teoría de la elasticidad como enfoques empíricos y semiempíricos.  

Seguidamente, se analiza el concepto de módulo de balasto, el cual mide la relación de los 

elementos anteriores, la tensión bajo una superficie y el asiento experimentado por dicha área. 

Este parámetro es ampliamente utilizado en la modelización de losas y vigas de cimentación, 

pero presenta algunas limitaciones. A lo largo del apartado 3.6 se desarrolla la evolución de las 

teorías del módulo de balasto, principales técnicas para determinarlo y metodologías de uso 

en modelos. 

Finalmente, se presentan los fundamentos del análisis retrospectivo aplicado a problemas 

geotécnicos, describiendo las principales funciones objetivo utilizadas para cuantificar la 

discrepancia entre datos reales y modelos numéricos, y los algoritmos de optimización más 

empleados para resolver problemas inversos, incluyendo métodos tradicionales y enfoques 

basados en inteligencia artificial. 

Con esta revisión, se establece una base sólida para contextualizar y justificar el enfoque 

metodológico desarrollado en el presente trabajo, identificando las principales contribuciones 

de la literatura y las brechas existentes que motivan la investigación. 
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3.2 Modelo constitutivo del suelo 

Los modelos constitutivos del suelo son una representación matemática para estimar su 

comportamiento. Generalmente, los modelos relacionan las tensiones aplicadas con las 

deformaciones que obtendría el suelo como resultado. 

Se desarrollan los conceptos básicos de las teorías de elasticidad, viscoelasticidad lineal y 

plasticidad. 

 

3.2.1 Elasticidad 

De acuerdo con la teoría de la elasticidad, las deformaciones y tensiones están linealmente 

relacionadas. 

 

Figura 3-2 – Relación lineal entre tensión-deformación 

 

De acuerdo con las ecuaciones de Hook, hay 6 tensiones y 6 deformaciones, la matriz que 

relaciona las tensiones con las deformaciones está compuesta por 36 constantes. Considerando 

un estado de deformación plano en un medio isótropo y simétrico, estas 36 constantes se 

reducen a solo 2: el módulo de elasticidad 𝐸 y el coeficiente de Poisson 𝜈. Las ecuaciones son: 

 𝜀𝑥𝑥 =
1

𝐸
(𝜎𝑥𝑥 − 𝑣(𝜎𝑦𝑦 + 𝜎𝑧𝑧)) 

(1) 

 
𝜀𝑦𝑦 =

1

𝐸
(𝜎𝑦𝑦 − 𝑣(𝜎𝑥𝑥 + 𝜎𝑧𝑧)) 

(2) 

 
𝜀𝑧𝑧 =

1

𝐸
(𝜎𝑧𝑧 − 𝑣(𝜎𝑥𝑥 + 𝜎𝑦𝑦)) 

(3) 
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𝜀𝑥𝑦 =

1 + 𝑣

𝐸
𝜏𝑥𝑦 =

𝛾𝑥𝑦

2
 

(4) 

 
𝜀𝑦𝑧 =

1 + 𝑣

𝐸
𝜏𝑦𝑧 =

𝛾𝑦𝑧

2
 

(5) 

 
𝜀𝑧𝑥 =

1 + 𝑣

𝐸
𝜏𝑥𝑧 =

𝛾𝑧𝑥

2
 

(6) 

 

Donde; 

σii: Tensión normal al plano perpendicular a la dirección i 

τij: Tensión tangencial en el plano perpendicular a la dirección i 

εii: Deformación normal al plano perpendicular a la dirección i 

εij: Deformación tangencial asociada a la tensión tangencial τij 

γij: Deformación angular 

E: Módulo de deformación 

ν: Coeficiente de Poisson  

 

Del módulo de deformación E y coeficiente de Poisson ν se obtienen otros módulos de 

elasticidad como el módulo de corte (7), módulo volumétrico (8) o módulo confinado o de 

compresibilidad unidireccional (9). 

 𝐺 =
𝜏𝑥𝑦

𝛾𝑥𝑦
=

𝜏𝑥𝑦

2𝜀𝑥𝑦
=

𝐸

2(1 + 𝑣)
 (7) 

 

𝐾 =
𝜎

∆𝑉 𝑉⁄
=

1
3 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)

𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧
=

𝐸

3(1 − 2𝑣)
 

(8) 

 
𝑀 =

𝜎𝑥𝑥

𝜀𝑥𝑥
=

𝐸(1 − 𝑣)

(1 + 𝑣)(1 − 2𝑣)
 

(9) 
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3.2.2 Viscoelasticidad lineal 

Cuando se aplica una carga a un material elástico lineal, las tensiones, deformaciones y 

desplazamientos ocurren instantáneamente y permanecen constantes con el tiempo. La 

viscoelasticidad introduce la influencia del tiempo en el proceso de deformación (Figura 3-3). 

La viscoelasticidad lineal simplifica aún más este fenómeno al permitir la superposición de la 

deformación elástica y la deformación dependiente del tiempo. 

 

Figura 3-3 – Fluencia y relajación en modelos viscosoelásticos 

 

El comportamiento de la tensión a lo largo del tiempo está relacionado con la deformación 

mediante una función conocida como módulo de relajación G(t), ecuación (10). De manera 

similar, el comportamiento de la deformación a lo largo del tiempo en un material viscoelástico 

se relaciona con la tensión mediante una función denominada función de cumplimiento de la 

fluencia J(t), ecuación (11). 

 𝐺(𝑡) =
𝜎(𝑡)

𝜀0
= 𝑘𝑒

−
𝑡

𝑛 𝑘⁄  
(10) 

 
𝐽(𝑡) =

𝜀(𝑡)

𝜎0
=

1

𝑘
(1 − 𝑒

−
𝑡

𝑛 𝑘⁄ ) 

(11) 

 

De acuerdo con los estudios de Ludwig Boltzmann, en el momento t’1 = 0, una tensión constante 

σ1 es aplicada produciendo una deformación de: 

 𝜀1(𝑡) = 𝐽(𝑡)𝜎1 
(12) 
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Tras un incremento de tiempo hasta t’2, se aplica un incremento en la tensión de (σ2 -σ1), 

incrementando la deformación a: 

 𝜀2(𝑡) = 𝐽(𝑡 − 𝑡′2)(𝜎2 − 𝜎1) 
(13) 

 

Aplicando sucesivos incrementos en la tensión, la deformación total sería de: 

 
𝜀(𝑡) = ∑𝜀𝑖(𝑡)

𝑛

𝑖=1

= ∑𝐽(𝑡 − 𝑡′𝑖)(𝜎𝑖 − 𝜎𝑖−1)

𝑛

𝑖=1

 

(14) 

 

La expresión anterior correspondería a la deformación viscosa, la cual tiene que sumarse a la 

deformación elástica, quedando finalmente: 

 
𝜀𝑖𝑗(𝑡) = 𝜀𝑖𝑗(𝑒𝑙𝑎𝑠𝑡𝑖𝑐) + ∑𝐽(𝑡 − 𝑡′𝑖)(𝜎𝑖 − 𝜎𝑖−1)

𝑛

𝑖=1

 

(15) 

 

De manera similar, para el caso de relajación, la ecuación es: 

 
𝜀𝑖𝑗(𝑡) = 𝜀𝑖𝑗(𝑒𝑙á𝑠𝑡𝑖𝑐𝑜) + ∑𝐺(𝑡 − 𝑡′𝑖)(𝜎𝑖 − 𝜎𝑖−1)

𝑛

𝑖=1

 

(16) 

 

 

Figura 3-4 – Principio de superposición de viscoelasticidad lineal 
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3.2.3 Plasticidad 

La deformación se puede descomponer en una componente elástica y otra plástica. El modelo 

tendría inicialmente un comportamiento elástico, tras retirar la carga, se recuperan las 

deformaciones, pero alcanzado el límite elástico, el suelo seguiría deformándose 

plásticamente, es decir, al desaparecer la carga no se recuperan las deformaciones, hasta 

alcanzar el fallo. 

Una vez alcanzado el límite elástico, el suelo puede endurecerse, ablandarse o comportarse 

como un material perfectamente plástico (Figura 3-5). 

 

Figura 3-5 – Comportamiento plástico 

 

La plasticidad es principalmente una teoría no lineal, por lo que se deben considerar los 

incrementos de deformación en el cálculo de la deformación. 

 𝑑𝜀𝑖𝑗 = 𝑑𝜀𝑖𝑗
𝑒 (𝑒𝑙á𝑠𝑡𝑖𝑐𝑜) + 𝑑𝜀𝑖𝑗

𝑝 (𝑝𝑙á𝑠𝑡𝑖𝑐𝑜) 
(17) 

 

 

3.2.3.1 Criterio de fallo 

En mecánica de suelos, los dos criterios de fallo más comunes son el criterio de Tresca y el 

criterio de Mohr-Coulomb. 

El criterio de Tresca se aplica frecuentemente a suelos finos bajo condiciones no drenadas. Este 

criterio establece que el fallo ocurre cuando la diferencia entre el esfuerzo principal mayor y el 

esfuerzo principal menor alcanza un valor igual a dos veces la resistencia al corte no drenada 

(su): 
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 𝜎1 − 𝜎3 − 2𝑠𝑢 = 0 
(18) 

 

El criterio de Mohr-Coulomb establece que el fallo ocurre cuando el círculo de Mohr toca la 

línea que corresponde a la ecuación de resistencia al corte: 

 𝜏𝑓 − 𝑐′ − 𝜎′ tan𝜑′ = 0 
(19) 

Donde; 

τ: Esfuerzo cortante 

σ: Esfuerzo normal 

c’: Cohesión. Intersección de la línea de fallo con el eje τ. 

φ’: Ángulo de rozamiento interno. Pendiente de la envolvente de fallo. 

 

 

Figura 3-6 – Criterios de fallo de Tresca y Mohr-Coulomb 

 

En el criterio de Mohr-Coulomb, si φ’ = 0, se deduce el criterio de Tresca. 

La ecuación (19) se puede expresar en función de las tensiones principales máxima y mínima: 

 

𝑠𝑒𝑛𝑜 𝜑′ =

𝜎′1 − 𝜎′3
2

𝑐′
tan𝜑′

+
𝜎′1 + 𝜎′3

2

 

(20) 

 𝜎′1 − 𝜎′
3 − 2𝑐′ cos𝜑′ − (𝜎′

1 + 𝜎′
3) 𝑠𝑒𝑛𝑜 𝜑′ = 0 

(21) 
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El círculo de Mohr comienza en un estado de esfuerzos que corresponde al equilibrio in situ 

del suelo. A medida que el suelo es cargado, primero se deforma de manera elástica, hasta que 

el círculo alcanza el criterio de fallo (la ecuación de resistencia al corte). En ese punto, el círculo 

no puede superar la línea de la envolvente de fallo, pero puede crecer a lo largo del mismo 

(endurecimiento por deformación) o disminuir su tamaño a lo largo de la envolvente de fallo 

(ablandamiento por deformación). En el caso de las arenas (c′=0), el criterio de fallo de Mohr-

Coulomb se simplifica a: 

 
𝜎′1
𝜎′3

−
1 + 𝑠𝑒𝑛𝑜 𝜑′

1 − 𝑠𝑒𝑛𝑜 𝜑′
= 0 

(22) 

 

Donde σ’ es la tensión efectiva que, de acuerdo con el principio de tensiones de Terzaghi, es la 

diferencia entre la tensión total σ y la presión de poro u. 
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3.2.4 Principales modelos constitutivos 

A continuación, se presentan algunos de los modelos más relevantes. 

 

3.2.4.1 Modelo Hiperbólico de Duncan-Chang 

Características: 

• Es un modelo elasto-plástico no lineal basado en la relación hiperbólica entre el 

esfuerzo y la deformación axial observada en ensayos triaxiales de suelos granulares. 

• Introduce el concepto de un módulo tangente (Et) y un módulo de confinamiento (K), 

ambos dependientes del nivel de esfuerzo. 

• Representa el comportamiento de suelos en el rango elástico y hasta cerca del punto 

de fallo. 

 

Ecuación: 

 𝜖1 =
𝜎1 − 𝜎3

𝑎 + 𝑏(𝜎1 − 𝜎3)
 (23) 

 

Donde a y b son parámetros dependientes de las condiciones del suelo. 

 

Singularidades: 

• No considera el endurecimiento o ablandamiento por deformación. 

• Se centra en materiales granulares y no cohesivos. 

 

Aplicaciones: 

• Modelado de deformaciones en suelos granulares bajo estructuras como pavimentos y 

terraplenes. 

• Análisis de asientos y estabilidad en cimentaciones superficiales. 
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3.2.4.2 Modified Cam Clay (MCC) 

Características: 

• Es un modelo elasto-plástico desarrollado para describir el comportamiento de suelos 

cohesivos (arcillas), basado en el modelo original de Cam Clay. 

• Utiliza un criterio de cedencia elíptico en el plano q−p′ (esfuerzo desviador y presión 

media efectiva), ajustando la compresibilidad y la dilatancia del suelo. 

• Introduce parámetros como el índice de rigidez (λ) y el parámetro de estado crítico 

(M). 

 

Ecuación: 

 𝑞2 = 𝑀²𝑝′(𝑝′ − 𝑝′𝑐) 
(24) 

 

Donde p’c es la presión de preconsolidación. 

 

Singularidades: 

• Describe bien el comportamiento de suelos cohesivos bajo esfuerzos triaxiales. 

• Es ideal para condiciones drenadas y no drenadas. 

• Considera la historia tensional del suelo (normalmente consolidado o 

sobreconsolidado). 

 

Aplicaciones: 

• Predicción de la resistencia al corte y deformaciones en arcillas. 

• Estimación de consolidación y comportamiento a largo plazo en suelos cohesivos. 
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3.2.4.3 Barcelona Basic Model (BBM) 

Características: 

• Diseñado específicamente para suelos no saturados. 

• Amplía el Modified Cam Clay al incluir un término que considera la succión (s = ua – uw), 

donde ua es la presión del aire y uw  la presión del agua. 

• Describe el comportamiento dependiente del contenido de agua y las interacciones 

entre fases sólida, líquida y gaseosa. 

 

Ecuación: 

 𝐹 = 𝑞2 − 𝑀²𝑝′(𝑝′ − 𝑝′𝑐(𝑠)) 
(25) 

 

Donde p’c(s) es la presión de preconsolidación ajustada a la succión. 

 

Singularidades: 

• Introduce variables específicas para suelos no saturados. 

• Permite modelar fenómenos como colapso estructural y expansión debido a cambios 

en la succión. 

 

Aplicaciones: 

• Diseño de infraestructuras en suelos con variaciones de humedad (terraplenes, presas 

de tierra). 

• Modelado de suelos expansivos y colapsables. 
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3.2.4.4 Modelo Hardening Soil (HS) 

Características: 

• Modelo avanzado que considera endurecimiento por deformación y dependencias del 

módulo elástico con el nivel de esfuerzo. 

• Ideal para describir el comportamiento no lineal de suelos cohesivos y no cohesivos. 

 

Ecuación: 

 𝜖1 =
𝑞

𝐸50
(1 +

𝑞

𝑞𝑓
) 

(26) 

Donde; 

E50: Módulo secante dependiente del confinamiento 

qf: Esfuerzo desviador en el fallo 

 

Singularidades: 

• Considera la dependencia del módulo con el nivel de confinamiento. 

• Introduce el concepto de endurecimiento por deformación 

 

Aplicaciones: 

• Análisis detallados de cimentaciones profundas y estructuras de contención. 

• Modelado de suelos sometidos a presión de confinamiento variable alrededor de 

túneles o excavaciones profundas. 

• Evaluación de deformaciones bajo cargas repetitivas en terraplenes y carreteras. 
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La siguiente figura muestra un ejemplo de la respuesta obtenida mediante varios modelos 

matemáticos al simular un ensayo triaxial. 

 

Figura 3-7 – Comparación de los resultados de una simulación de un ensayo triaxial drenado utilizando 

distintos modelos constitutivos. Extraído de The Hardening Soil Model - A Practical Guidebook, 2018. 
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3.3 Módulo de elasticidad 

La curva que representa la relación entre deformación y tensión de un suelo es no lineal, no 

obstante, la parte inicial es aproximadamente una recta, en la que se puede aplicar la teoría de 

la elasticidad para estimar el comportamiento del suelo. La pendiente de esta línea depende 

del módulo de elasticidad E y el coeficiente de Poisson ν. 

Los suelos no presentan un comportamiento puramente elástico, ya que experimentan 

deformaciones irreversibles (plásticas), incluso ante bajos niveles de esfuerzos. La teoría de la 

elasticidad lineal implica que la relación tensión-deformación es lineal, pero esto no representa 

la realidad en suelos, ya que el comportamiento es no lineal desde etapas tempranas en la curva 

tensión-deformación. 

No obstante, se pueden estimar diferentes módulos de deformación del suelo a partir de la 

curva tensión-deformación, por ejemplo, utilizando líneas secantes desde el origen hasta un 

punto determinado de la curva (módulo secante o inicial) o la pendiente en ciclos de descarga 

y recarga (módulo de recarga), entre otros. 

Es importante señalar que la pendiente de la línea calculada como el incremento de tensión 

dividido por el incremento de deformación no siempre corresponde al módulo de elasticidad. 

Esto solo es cierto si la carga se aplica sin confinamiento, como en un ensayo de compresión no 

confinada. En el caso de un ensayo triaxial, por ejemplo, el módulo se determina mediante la 

siguiente expresión: 

 𝐸 =
𝜎1 − 2𝑣𝜎3

𝜀1
 

(27) 

Donde; 

σ1 & σ3: Tensión normal al plano perpendicular a la dirección 1 y 3. 

ε1: Deformación normal al plano perpendicular a la dirección 1 

E: Módulo de deformación 

ν: Coeficiente de Poisson  

 

En la ecuación (27), el módulo de deformación solo es igual a la pendiente de la relación 

tensión-deformación (σ1/ε1) cuando σ3 es igual a cero. 
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3.3.1 Tipos de módulos de elasticidad 

Como se ha indicado anteriormente, la curva tensión-deformación no es lineal, por lo que 

existen diferentes relaciones o módulos de elasticidad para diferentes fases de carga. En la 

Figura 3-8 se ilustran los principales módulos de elasticidad y, a continuación, se explican los 

usos que tienen cada uno de ellos. 

 

Figura 3-8 – Módulos de deformación. Extraído de Geotechnical engineering: unsaturated and saturated 

soils, 2023 

 

Módulo secante Es, se obtiene de la pendiente que relaciona los puntos 0-A y se emplearía para 

predecir las deformaciones en una fase inicial de carga. 

Módulo tangente Et, se obtiene como la tangente a la curva en el punto A. Se emplea para 

predecir deformaciones a partir de un estado de tensión-deformación dado, por ejemplo, un 

incremento de carga. 

Módulo de descarga Eu, se obtiene a partir de la pendiente que relaciona los puntos A-B. Se 

emplea para estimar la descompresión de un suelo, por ejemplo, tras realizar una excavación. 

Módulo de recarga Er, se obtiene a partir de la pendiente que relaciona los puntos B-D. Se 

emplea para estimar la deformación del suelo tras una fase de descarga, como la indicada en el 

módulo de descarga. 

Módulo cíclico Ec, se obtiene a partir de la pendiente que relaciona los puntos B-C. Se emplea 

para determinar la deformación del suelo ante ciclos de carga. 
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3.3.2 Factores que influyen en el módulo de elasticidad 

A continuación, se enumeran los principales factores que influyen en el módulo de elasticidad: 

➢ Compactación. El módulo de elasticidad tiende a ser mayor en suelos de mayor 

compacidad, es decir, con mayor densidad. 

➢ Organización de las partículas o estructura del suelo. 

➢ Contenido de agua. El contenido de agua tiene un gran impacto en el módulo de 

elasticidad del suelo. A bajos contenidos de agua, el agua une las partículas 

(especialmente en suelos finos) y aumenta la tensión efectiva entre ellas debido al 

fenómeno de succión, lo que incrementa el módulo del suelo. Sin embargo, en suelos 

granulares, un contenido de agua demasiado bajo dificulta su compactación debido a la 

falta de lubricación proporcionada por el agua. En este caso, un contenido de agua muy 

bajo puede llevar a valores reducidos del módulo de elasticidad. A medida que el 

contenido de agua aumenta, la lubricación mejora la compactación y el módulo del 

suelo aumenta. Sin embargo, si el contenido de agua supera un valor óptimo, el agua 

comienza a separar las partículas, lo que incrementa la compresibilidad y reduce el 

módulo. 

➢ Historial de esfuerzos previos. Si el suelo ha estado sometido a esfuerzos previos 

significativos, se dice que está sobreconsolidado. Si el suelo nunca ha experimentado 

esfuerzos mayores a los actuales y se encuentra en equilibrio bajo la carga presente, se 

dice que está normalmente consolidado. Generalmente, un suelo sobreconsolidado 

(OC) tendrá un módulo más alto que un suelo normalmente consolidado (NC), ya que 

el suelo OC se encuentra en la parte de recarga de la curva tensión-deformación, 

mientras que el NC está en su primera fase de carga. Algunos suelos aún están en 

proceso de consolidación bajo su propio peso. 

➢ Cementación debida a agentes naturales como la succión capilar o deposición química 

de minerales, como el calcio. Puede generar un efecto de adhesión significativo entre 

las partículas, simulando una especie de "pegamento temporal". Sin embargo, este 

efecto puede desaparecer si el contenido de agua aumenta o ante un incremento de 

carga. 

➢ Confinamiento. Cuanto mayor es el confinamiento, mayor es la rigidez del suelo. 
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➢ Velocidad de deformación. El suelo puede presentar un comportamiento viscoso, por 

lo que, al aplicarse una carga rápidamente, muestra una mayor rigidez y, en 

consecuencia, un incremento en su módulo. No obstante, este comportamiento no 

siempre se manifiesta de forma consistente, dependiendo del tipo de suelo y de las 

condiciones del ensayo. 

➢ Drenaje del suelo. El coeficiente de Poisson es sensible a la condición de drenaje. Si no 

hay drenaje, en una arcilla es común asumir un coeficiente de Poisson de 0.5 (sin 

cambio de volumen). En contraste, si el drenaje es completo, un valor de 0.35 podría 

ser más apropiado. La diferencia entre los módulos calculados en ambas condiciones 

(drenada y no drenada) representa la diferencia entre el módulo no drenado y el 

módulo drenado. 
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3.3.3 Relación entre el módulo de elasticidad, rigidez y módulo de balasto 

Mientras que el módulo de elasticidad E mide la relación entre tensión y deformación, 

expresándose en unidades de fuerza por unidades de área (KN/m²), la rigidez K mide la 

relación entre una fuerza Q aplicada a un área y la deformación s experimentada por dicha área, 

expresándose en unidades de fuerza por unidades de longitud (KN/m). 

En el caso de una superficie circular de diámetro B, el asiento elástico s se obtiene de la 

siguiente expresión: 

 𝑠 = 𝐼1
𝑄

𝐸𝐵
 

(28) 

 

Donde I1 es una constante. 

Teniendo en cuenta que K = Q/s, sustituyendo en la ecuación (28),   obtenemos que la relación 

entre el módulo de elasticidad E y la rigidez K es la siguiente: 

 𝐾 =
𝐸𝐵

𝐼1
 

(29) 

 

De la ecuación (29) se deduce que, mientras el módulo de elasticidad es una propiedad del 

suelo, la rigidez no solo depende del suelo, también del tamaño del área cargada.  

 

El módulo de balasto k mide la relación entre la presión p aplicada a un área y la deformación 

s experimentada por dicha área, expresándose en unidades de fuerza por unidades de volumen 

(KN/m³). Se emplea tanto el módulo de balasto vertical (cimentaciones superficiales) como 

horizontal (pantallas o cimentaciones profundas). 

Como en el caso anterior, el asiento elástico s en una superficie circular de diámetro B se 

obtiene de la siguiente expresión: 

 𝑠 = 𝐼2
𝑝𝐵

𝐸
 

(30) 
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La relación entre el módulo de elasticidad E y el módulo de balasto es: 

 𝑘 =
𝐸

𝐼2𝐵
 

(31) 

 

De la ecuación (31) se deduce que, como en el caso de la rigidez, el módulo de balasto no solo 

depende del suelo, también del tamaño del área cargada.  
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3.4 Distribución de tensiones bajo cimentaciones superficiales 

La distribución de esfuerzos bajo una cimentación se resuelve mediante la teoría del sólido 

elástico. Esta teoría se basa en los principios de la mecánica de medios continuos y la teoría de 

la elasticidad (véase sección 3.2.1) y permite calcular como las tensiones se distribuyen en el 

suelo debido a la carga aplicada por la cimentación.  

William Thomson (Lord Kelvin) desarrolló en 1948 las primeras ecuaciones que resolvían la 

distribución de una carga puntual Q actuando en un espacio isótropo, elástico e infinito con 

módulo de elasticidad E y coeficiente de Poisson v. 

 𝜎𝑧 =
𝑄

8𝜋(1 − 𝑣)
[
3𝑧³

𝑅5
+

(1 − 2𝑣)𝑧

𝑅³
] 

(32) 

 
𝜎𝑟 =

𝑄

8𝜋(1 − 𝑣)

𝑧

𝑅³
[
3𝑧³

𝑅2
− (1 − 2𝑣)] 

(33) 

 
𝜎𝜃 = −

𝑄(1 − 2𝑣)

8𝜋(1 − 𝑣)

𝑧

𝑅³
 

(34) 

 
𝜃 = −

𝑄

8𝜋(1 − 𝑣)

2(1 + 𝑣)𝑧

𝑅³
 

(35) 

 
𝜏𝑟𝑧 =

𝑄

8𝜋(1 − 𝑣)

𝑧

𝑅³
[
3𝑧³

𝑅2
+ (1 − 2𝑣)] 

(36) 

 
𝑠𝑧 =

𝑄(1 + 𝑣)

8𝜋(1 − 𝑣)𝐸𝑅
[3 − 4𝑣 +

𝑧²

𝑅2
] 

(37) 

 
𝑠𝑟 = −

𝑄(1 + 𝑣)

8𝜋(1 − 𝑣)𝐸

𝑧𝑟

𝑅³
 

(38) 

 

Figura 3-9 – Tensión vertical por carga puntual en espacio infinito 
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Joseph Valentin Boussinesq (1885) resolvió el problema de la distribución de esfuerzos en un 

medio elástico, homogéneo e isótropo, asumiendo un semiespacio elástico donde se cumple la 

teoría lineal de la elasticidad (Ley de Hooke).  

Esta simplificación permitió estimar los esfuerzos verticales σz a una profundidad z para 

diferentes situaciones de carga. 

A continuación, se describen las formulaciones obtenidas por J. Boussinesq y posteriores 

aportaciones de otros autores para casos singulares y multicapas.  

 

3.4.1 Carga puntual Q 

La tensión vertical ejercida por una carga puntual en un semiespacio elástico se obtiene de la 

siguiente ecuación. 

 𝜎𝑧 =
𝑄

𝑧²

3

2𝜋
(

1

1 + (
𝑟
𝑧)

2)

5
2

 
(39) 

 

 

Figura 3-10 – Tensión vertical por carga puntual en semiespacio elástico 

 

3.4.2 Carga lineal uniformemente repartida 

La tensión vertical ejercida por una carga lineal uniformemente repartida en un semiespacio 

elástico se obtiene de la siguiente ecuación. 
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 𝜎𝑧 =
𝑞

𝑧

2

𝜋
(

1

1 + (
𝑟
𝑧
)
2)

2

 
(40) 

 

Figura 3-11 – Tensión vertical por carga lineal uniformemente distribuida en semiespacio 

elástico 

 

3.4.3 Carga en faja lineal uniformemente repartida 

La tensión vertical ejercida por una carga n faja lineal uniformemente repartida en un 

semiespacio elástico se obtiene de la siguiente ecuación. 

 𝜎𝑧 =
𝑞

𝜋
(𝛽 + 𝑠𝑒𝑛(𝛽) · cos (2𝛼 + 𝛽)) 

(41) 

 

Figura 3-12 – Tensión vertical por carga en faja lineal uniformemente distribuida en 

semiespacio elástico 
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3.4.4 Carga bajo centro de carga circular uniformemente repartida 

La tensión vertical ejercida por una carga circular uniformemente repartida en un semiespacio 

elástico se obtiene de la siguiente ecuación. 

 𝜎𝑧 = 𝑞 (1 − (
1

1 + (
𝑟
𝑧)

2)

3/2

) = 𝑞 · (1 − 𝑐𝑜𝑠3𝛼) 
(42) 

 

Figura 3-13 – Tensión vertical por carga circular uniformemente distribuida en semiespacio 

elástico 

 

Egorov (1958) desarrolló posteriormente la fórmula para obtener las tensiones verticales σz 

en cualquier punto del semiespacio bajo una carga circular uniformemente repartida: 

 𝜎𝑧 = 𝑞 {𝐴 −
𝑛

𝜋√𝑛2 + (1 + 𝑡)2
[

𝑛2 − 1 + 𝑡2

𝑛2 + (1 − 𝑡)2
𝐸(𝑘) +

1 − 𝑡

1 + 𝑡
∏ (𝑘, 𝑝)

0
]} (43) 

Donde, 

E(k) y ∏ (𝑘, 𝑝)0  son las integrales elípticas completas de segunda y tercera especie de 

módulos k y parámetro p. 

t = r/α 

n = z/α 

𝑘2 =
4𝑡

𝑛2+(1+𝑡)2
  

𝑝 = −
4𝑡

(1+𝑡)2
  

𝐴 = {

1 𝑠𝑖 𝑡 < 1
1

2
𝑠𝑖 𝑡 = 1

0 𝑠𝑖 𝑡 > 1
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3.4.5 Carga rectangular uniformemente repartida 

3.4.5.1 Steinbrenner (1936) & Fadum (1948) 

Steinbrenner (1936) desarrollo la formulación para calcular las tensiones bajo un vértice del 

rectángulo cargado. Posteriormente, Fadum (1948) desarrolló los métodos propuestos por 

Steinbrenner (1936) mediante la incorporación de factores de influencia más detallados para 

tensiones y asientos, además de representar la ecuación en forma de ábacos.  

 𝜎𝑧 = 𝑞𝐼𝑟 
(44) 

 
𝐼𝑟 =

1

4𝜋
[

2𝑚𝑛√𝑚2+𝑛2+1

𝑚2+𝑛2+𝑚2𝑛2+1
·
𝑚2+𝑛2+2

𝑚2+𝑛2+1
+ 𝑡𝑔−1 2𝑚𝑛√𝑚2+𝑛2+1

𝑚2+𝑛2−𝑚2𝑛2+1
]  

(45) 

Donde; 

n = L/z 

m = B/z 

 

Se destaca que en la formulación anterior se usa la carga q/4, esto es debido a que se considera 

que el elemento infinitesimal bajo el vértice tiene sólo un cuadrante cargado. De esta forma, 

aplicando el principio de superposición, se puede calcular la presión en un punto cualquiera, 

aunque no esté situado justamente bajo el vértice. 

 

Figura 3-14 – Esquema de aplicación de cargas según Fadum (1948) 
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3.4.6 Métodos basados en ábacos para cargas de forma irregular 

3.4.6.1 Ábacos de Newmark (1942) 

Nathan M. Newmark publicó en 1942 los ábacos para calcular la tensión vertical σz en un punto 

a una profundidad dada originada por una carga distribuida sobre la superficie. Estos ábacos, 

basados en la solución de Boussinesq (1885), permiten determinar el coeficiente de influencia 

para formas complejas sin necesidad de cálculos analíticos complejos.  

Para ello, se debe calcular la relación entre la profundidad y las dimensiones de la cimentación 

(z/B), dibujando a escala la cimentación sobre el ábaco correspondiente, como se puede ver en 

la Figura 3-15. El coeficiente de influencia I se obtiene de la relación entre el número de celdas 

del ábaco que quedan dentro del área de la cimentación (n) respecto al número total de celdas 

(N). 

 𝜎𝑧 = 𝑞𝐼𝑟 = 𝑞
𝑛

𝑁
 

(46) 

 

 

 

Figura 3-15 – Ábaco de Newmark, tomado de NEWMARK, Nathan Mortimore. Influence charts 

for computation of stresses in elastic foundations. University of Illinois. Engineering Experiment 

Station. Bulletin; no. 338, 1942. 
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3.4.6.2 Método de las influencias, Jiménez Salas (1948) 

Este método, desarrollado por Jiménez Salas en 1948 es una generalización del método 

propuesto por Newmark, con la ventaja de poder obtener la tensión σz en varios puntos. 

Para un círculo de radio R cargado uniformemente produce una tensión vertical a una 

profundidad z igual al coeficiente de influencia Iz
R, de magnitud aproximada a los valores 

propuestos por Fadum (1948). 

Dado un círculo de radio R+1, ejercerá una influencia IzR+1, por lo que una corona circular 

limitada por los radios R y R+1 ejercerá una influencia a la profundidad z igual a: 

 𝐼𝑅+1
𝑧 − 𝐼𝑅

𝑧 = 𝑐𝑜𝑠3𝜓𝑅 − 𝑐𝑜𝑠3𝜓𝑅+1 = 𝐼𝑅+1,𝑅
𝑧  

(47) 

 

En el caso particular de no encontrarse toda la corona cargada, se considera solo una fracción 

de dicha corona (A%) para la estimación de la tensión vertical producida a la profundidad z. 

Jiménez Salas proporciona en su libro Geotecnia y cimientos II una serie de tablas con las 

influencias para las diferentes coronas con radios comprendidos entre R y R+2 con el fin de 

agilizar la aplicación del método. 

 

Figura 3-16 – Esquema de cargas del método de las influencias, adaptación de JIMÉNEZ 

SALAS, Jose Antonio.; JUSTO, JL de; SERRANO, A. Geotecnia y cimientos II. 1981; página 231, 

figura 3.59. 
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3.4.7 Semiespacio con anisotropía transversal 

Dado un suelo que se extienden infinitamente en las direcciones horizontales (x-y), pero tiene 

propiedades mecánicas diferentes en la dirección vertical (z), en el sistema ejes cartesianos, 

con el eje z como eje de simetría de orden infinito, las ecuaciones de Hooke quedarían de la 

siguiente forma: 

 𝜖𝑥 =
1

𝐸ℎ
(𝜎𝑥 − 𝑣ℎℎ𝜎𝑦) −

𝑣𝑣ℎ

𝐸ℎ
𝜎𝑧 

(48) 

 𝜖𝑦 =
1

𝐸ℎ
(𝜎𝑦 − 𝑣ℎℎ𝜎𝑥) −

𝑣𝑣ℎ

𝐸ℎ
𝜎𝑧 

(49) 

 𝜖𝑧 = −
𝑣𝑣ℎ

𝐸𝑣
(𝜎𝑥 + 𝜎𝑦) +

1

𝐸𝑣
𝜎𝑧 

(50) 

 𝛾𝑦𝑧 =
1

𝐺𝑣
𝜏𝑦𝑧 

(51) 

 𝛾𝑥𝑧 =
1

𝐺𝑣
𝜏𝑥𝑧 

(52) 

 𝛾𝑥𝑦 =
1

𝐺𝑣
𝜏𝑥𝑦 =

2(1 + 𝑣ℎℎ)

𝐸ℎ
𝜏𝑥𝑦 

(53) 

 

Donde; 

Eh y Ev son los módulos de Young para horizontal y vertical, respectivamente.  

𝑣ℎℎ y 𝑣𝑣ℎ son los coeficientes de Poisson horizontal y vertical, respectivamente. 

Gh y Gv son los módulos de rigidez transversal horizontal y vertical, respectivamente.  

 

A continuación, de acuerdo con la bibliografía consultada y siguiendo un orden cronológico, se 

desarrollan las principales teorías de tensión vertical en un semiespacio con anisotropía 

transversal propuestas por varios autores. 
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3.4.7.1 Westergaard (1926) 

Harold M. Westergaard, entre 1926 y 1939, desarrolló un modelo teórico para calcular la 

tensión vertical en un punto de un medio elástico debido a la aplicación de una carga en 

superficie.  

Para una carga puntual Q, Westergaard propone la siguiente ecuación: 

 𝜎𝑧 =
𝑄

𝑧²

1
2𝜋

√1 − 2𝑣
2 − 2𝑣

[(
1 − 2𝑣
2 − 2𝑣

) + (
𝑟
𝑧
)
2
]
3/2

 
(54) 

 

Para el caso de una cimentación rectangular, la presión en una esquina se obtiene de la 

siguiente ecuación: 

 𝜎𝑧 =
𝑞

2𝜋
𝑐𝑜𝑡−1√(

1 − 2𝑣

2 − 2𝑣
) (

1

𝑚²
+

1

𝑛²
) + (

1 − 2𝑣

2 − 2𝑣
)
2

(
1

𝑚²𝑛²
) 

(55) 

 

Donde, 

Q es una carga puntual 

q es una carga distribuida 

v es el módulo de Poisson 

r es la distancia en planta del punto considerado 

z es la profundidad del punto de estudio 

m = L/z 

n = B/z 

L es la longitud de la carga distribuida 

B es el ancho de la carga distribuida 
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3.4.7.2 Lekhnitskii (1963) 

Lekhnitskii (1963) desarrolló formulaciones más generales basadas en las ecuaciones de Hook 

indicadas anteriormente: 

 
𝜎𝑟 = −

𝑝

2𝜋
{

𝑧

(𝑠1−𝑠2)√𝑑
[

𝑠1
3

(𝑟2+𝑠1
2𝑧2)

3/2 −
𝑠2
3

(𝑟2+𝑠2
2𝑧2)

3/2]} +
𝜆

𝑠1−𝑠2

𝑝2

(𝑟2+𝑠1
2𝑧2)

1/2 −
𝑠1
3𝑝1

(𝑟2+𝑠1
2𝑧2)

3/2 −
𝜇

𝑟2  

 

(56) 

 
𝜎𝜃 = −

𝑝

2𝜋

√𝑑

𝑠2−𝑠1
[−

𝑠1
2𝑞1

(𝑟2+𝑠1
2𝑧2)

3/2 +
𝑠2
3𝑞2

(𝑟2+𝑠2
2𝑧2)

3/2] −
𝜆

𝑠1−𝑠2

𝑝2

(𝑟2+𝑠1
2𝑧2)

1/2 −
𝑠1
3𝑝1

(𝑟2+𝑠1
2𝑧2)

3/2 −
𝜇

𝑟2  

 

(57) 

 
𝜎𝑧 = −

𝑝

2𝜋

𝑧

√𝑑(𝑠1 − 𝑠2)
[

𝑠1
3

(𝑟2 + 𝑠1
2𝑧2)3/2

−
𝑠2

3

(𝑟2 + 𝑠2
2𝑧2)3/2

] 

 

(58) 

 
𝜏𝑟𝑧 =

1

2𝜋√𝑑

𝑟

𝑠1 − 𝑠2

[
𝑠1

3

(𝑟2 + 𝑠1
2𝑧2)3/2

−
𝑠2

3

(𝑟2 + 𝑠2
2𝑧2)3/2

] 

 

(59) 

 

Donde,  

 
𝑛 =

𝑎33

𝑎11

=
𝐸ℎ

𝐸𝑣

,  𝑚 =
𝑎44

2(𝑎11 − 𝑎13)
=

𝐺ℎ

𝐺𝑣

 

 

(60) 

 
𝑎 =

𝑎13(𝑎11 + 𝑎12) − 𝜈ℎℎ(1 + 𝜈ℎℎ)

𝑎11𝑎33 − 𝑎13
2 =

−𝜈ℎ𝑣

𝑛 − 𝜈ℎ𝑣

 

 

(61) 

 
𝑐 =

𝑎13(𝑎11 − 𝑎12) + 𝑎11𝑎44

𝑎11𝑎33 − 𝑎13
2 =

(𝑝1 + 𝑝2)

𝑛 − νℎ𝑣

 

 

(62) 

 
𝑑 =

𝑎11
2 − 𝑎12

2

𝑎11𝑎33 − 𝑎13
2 =

1 − νℎℎ
2

𝑛 − νℎ𝑣

 

 

(63) 

 𝑠1 = √𝑎 + 𝑐 + √(𝑎 + 𝑐)2 − 4𝑑

2𝑑
,  𝑠2 = √𝑎 + 𝑐 − √(𝑎 + 𝑐)2 − 4𝑑

2𝑑
 

 

(64) 

 
𝑝1 = 1 − 𝑠1

2,  𝑝2 = 1 − 𝑠2
2 

 
(65) 

 
𝑞1 = (𝑏 − 𝑠1

2)(1 − 𝑠1
2),  𝑞2 = (𝑏 − 𝑠2

2)(1 − 𝑠2
2) 

 
(66) 

 λ =
(𝑏 − 1)√𝑑

𝑎𝑐 − 𝑑
,  μ =

(𝑏 − 1)(𝑎 + √𝑑)

𝑎𝑐 − 𝑑
 

 

(67) 
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3.4.8 Sistemas de varias capas 

3.4.8.1 Endurecimiento del terreno 

En terrenos granulares es común encontrase con un cierto incremento del módulo de 

elasticidad con la profundidad. Este endurecimiento del terreno con la profundidad implica 

una concentración de las tensiones bajo el punto de aplicación de las cargas y una disminución 

de la dispersión lateral. 

Fröhlich (1934) desarrolló un método aproximado que, mediante la variación de un factor de 

concentración, obtiene la distribución de las tensiones. Fröhlich parte de la idea de una 

distribución radial (Figura 3-17). 

 

Figura 3-17 – Tensión vertical por carga puntual en espacio infinito 

 

En el caso de distribución radial y módulo de Poisson v = 0.50, una carga concentrada transmite 

las tensiones de forma rectilínea; no obstante, cuando v no es igual a 0.50, esta propiedad no 

es cierta, pero el error en la práctica no es significante. La tensión se puede expresar con la 

ecuación. 

 𝜎𝑧 = 𝑘
𝑄

𝑧²
𝑐𝑜𝑠𝑛𝜃 = 𝑘

𝑄 · 𝑧𝑐−2

𝑧𝑐
=

𝑐𝑄

2𝜋

𝑧𝑐−2

𝑧𝑐
 

(68) 

 

Donde k y c son parámetros arbitrarios que dependen el uno del otro. Cuando c es igual a 3, la 

distribución coincide con la de Boussinesq. Cuando c es mayor que 3, la distribución implica un 



Estado del arte 

60 

mayor grado de concentración de presiones inmediatamente debajo del punto de aplicación de 

la carga. 

Cuando el módulo de elasticidad E varía con la profundidad, de acuerdo con Holl (1940) se 

puede emplear la siguiente expresión general: 

 𝐸 = 𝐸1𝑧
𝜆 

(69) 

 

Donde E1 es el módulo de elasticidad para una profundidad z igual a 1, donde se deduce que: 

 𝜆 + 2 = 𝑐 − 1 = 1/𝜐 
(70) 

 

En la siguiente figura se pueden ver las distintas leyes de variación del módulo de elasticidad 

E para el semiespacio de Fröhlich en función de c y λ. 

 

Figura 3-18 – Semiespacio de Fröhlich. Adaptación de JIMÉNEZ SALAS, Jose Antonio.; JUSTO, JL 

de; SERRANO, A. Geotecnia y cimientos II. 1981; página 280, figura 3.107. 
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3.4.8.2 Capa elástica con variación del módulo de elasticidad sobre base rígida 

Alternativamente al método del semiespacio de Fröhlich, Mayne y Poulos (1999) desarrollaron 

un método para estimar el asiento tenido en cuenta la rigidez de la cimentación, profundidad 

de empotramiento, variación del módulo de elasticidad con la profundidad y presencia de una 

base rígida.  

 

Figura 3-19 – Parámetros fórmula de Mayne & Poulos (1999) 

 

 

Mayne & Poulos propusieron una serie de factores de influencia o corrección: 

IG: Factor de influencia por la variación del módulo de elasticidad con la profundidad, se 

obtiene de la Figura 3-20. 

IF: Factor de corrección de la rigidez de la cimentación, se obtiene de la ecuación (71) y  

IE: Factor de corrección de la profundidad de empotramiento de la cimentación, se obtiene 

de la ecuación (72). 

 𝐼𝐹 =
𝜋

4
+

1

4.6 + 10(𝐸𝑓/[𝐸𝑜 + (𝐵𝑒/2)𝑘])(2𝑡/𝐵𝑒)
3

 (71) 

 
𝐼𝐸 = 1 −

1

3.5 exp(1.22𝑣 − 0.4)[(𝐵𝑒/𝐷𝑓) + 1.6]
 

(72) 
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Figura 3-20 – Variación de IG en función de β’. Tomado de DAS, Braja M. Advanced soil mechanics. CRC 

press, 2019, p. 621 

 

Figura 3-21 – Variación de IF en función de KF. Tomado de DAS, Braja M. Advanced soil mechanics. CRC 

press, 2019, p. 622 

 



Estado del arte 

63 

 

Figura 3-22 – Variación de IE en función de Df/Be. Tomado de DAS, Braja M. Advanced soil mechanics. CRC 

press, 2019, p. 623 



Estado del arte 

64 

3.4.8.3 Sistema bicapa, E1>E2. Método de Burmister (1943, 1945) 

Donald M. Burmister desarrolló modelos teóricos para describir el comportamiento de suelos 

estratificados en 1943 y 1945, mejorando la precisión en el cálculo de tensiones frente a 

modelos homogéneos. Este método es especialmente práctico en el diseño de pavimentos, 

losas de cimentación y otras estructuras sobre suelos con propiedades variables en 

profundidad. 

Burmister adoptó un sistema de dos capas, donde la capa superior tiene un espesor dado y se 

apoya sobre una capa semiinfinita. El suelo se asume elástico, homogéneo e isótropo.  

Para el caso de carga puntual Q aplicada a una superficie de radio a, que ejerce una tensión 

superficial q (carga puntual Q dividida por superficie de contacto), Burmister propuso el 

siguiente gráfico que relaciona las tensiones verticales en superficie frente a una profundidad 

z para el caso particular en que el radio de la superficie de aplicación de la carga es igual al 

espesor de la capa superior h: 

 

Figura 3-23 – Curvas de influencia según Burmister. Extraído de JIMÉNEZ SALAS, José 

Antonio.; JUSTO, JL de; SERRANO, A. Geotecnia y cimientos II. 1981; página 284, figura 3.112. 

 

Donde, 

a es el radio de la superficie de aplicación de la carga 

E1, E2 son los módulos de elasticidad de las capas 1 y 2 

ν1, ν 2 son los coeficientes de Poisson de las capas 1 y 2 
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Para distintos espesores de la capa superior, se emplea el siguiente gráfico. 

 

Figura 3-24 – Curvas de influencia según Burmister. Extraído de JIMÉNEZ SALAS, José 

Antonio.; JUSTO, JL de; SERRANO, A. Geotecnia y cimientos II. 1981; página 284, figura 3.113. 
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3.4.8.4 Método para sistemas de más de tres capas 

Este método fue desarrollado como una extensión de los enfoques tradicionales para adaptarse 

a situaciones complejas con más de tres capas, donde cada capa tiene diferentes propiedades 

mecánicas. 

El método se basa en la teoría de la elasticidad, donde cada capa presenta propiedades 

mecánicas diferentes. La resolución de las ecuaciones de equilibrio en cada capa relaciona las 

tensiones σ con los desplazamientos u: 

 
𝑑2𝜎

𝑑²𝑧
=

𝐸(𝑧)

1 − 𝑣²

𝑑²𝑢

𝑑𝑧²
 

(73) 

 

Teniendo en cuenta la condición de continuidad entre las capas, se deben cumplir dos 

condiciones: 

• Continuidad de los desplazamientos verticales, los desplazamientos en ui (z) = ui+1 (z). 

• Continuidad de las tensiones: σi (z) = σi+1 (z). 

 

 

Figura 3-25 – Continuidad de desplazamientos y tensiones. Extraído de YUE, Zhong Qi. On 

generalized Kelvin solutions in a multilayered elastic medium. Journal of Elasticity, 1995, vol. 40, 

no 1, p. 1-43. 
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El investigador D. Yue (1995, 1996) propuso un enfoque computacional innovador para 

resolver problemas de carga puntual en medios elásticos multicapa. Este método, basado en 

las transformadas de Hankel, permite convertir ecuaciones diferenciales parciales en 

ecuaciones más manejables. 

El método comienza resolviendo las ecuaciones de elasticidad para cada capa homogénea: 

 ∇2𝜎 +
1

𝐸(𝑧)

𝜕2𝜎

𝜕𝑧2
= 0  (74) 

Donde: 

• σ es el esfuerzo. 

• E(z) es el módulo de elasticidad dependiente de la profundidad z. 

 

La solución se facilita aplicando la transformada de Hankel: 

 𝐻{𝑓(𝑟)} = ∫ 𝑓(𝑟)𝐽0(𝑘𝑟)𝑟
∞

0

 𝑑𝑟  
(75) 

Donde: 

• H{f(r)} es la transformada de Hankel de la función f(r). 

• J0(kr) es la función de Bessel de primera especie y orden cero. 

• k es el número de onda radial. 

 

Al aplicar la transformada, las ecuaciones diferenciales parciales se reducen a un sistema de 

ecuaciones diferenciales ordinarias: 

 
𝑑2𝜎̂

𝑑𝑧2
− 𝑘2𝜎̂ = 0  

(76) 
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La solución general de esta ecuación es: 

 𝜎̂(𝑧) = 𝐴𝑒−𝑘𝑧 + 𝐵𝑒𝑘𝑧 
(77) 

 

Donde, 

𝑘 = √
𝐸𝑖

1−𝑣𝑖
2  

A y B son constantes determinadas por las condiciones de frontera: 

• Continuidad de desplazamientos en las interfaces: ui = ui+1 

• Continuidad de tensiones: σi = σi+1 

 

Una vez resuelto el sistema, se aplica la transformada inversa de Hankel para obtener la 

solución en el dominio espacial: 

 𝜎(𝑟, 𝑧) = ∫ 𝜎̂(𝑘)𝐽0(𝑘𝑟)𝑘 𝑑𝑘
∞

0

 
(78) 

Por otro lado, Vijayakumar, Yacoub y Curran (2000) introdujeron una mejora numérica al 

convertir las integrales de área en integrales de contorno, permitiendo superar las dificultades 

relacionadas con las singularidades inherentes en las soluciones de carga puntual. 

Integral de área original: 

 𝜎 = ∬𝜙(𝑥, 𝑦)
𝐴

 𝑑𝑥 𝑑𝑦 (79) 

 

 Integral convertida en contorno: 

 𝜎 = ∮𝜓(𝑠)
𝐶

 𝑑𝑠 (80) 

Donde: 

a) A es el área de integración. 
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b) C es el contorno que rodea el área A. 

c) ψ(s) es la función de influencia definida en el contorno. 
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3.5 Asientos en cimentaciones superficiales 

El asiento bajo una cimentación depende de la rigidez de la propia cimentación, la magnitud de 

la carga y las características tensodeformacionales del suelo. 

En las siguientes figuras se ilustra la relación entre tensión superficial y asiento que 

experimenta el suelo para los casos teóricos de cimentación rígida o flexible y suelo puramente 

cohesivo o granular. 

 

Figura 3-26 – Tensión-Asiento en cimentación flexible en suelo cohesivo 

 

 

Figura 3-27 – Tensión-Asiento en cimentación rígida en suelo cohesivo 

 

 

Figura 3-28 – Tensión-Asiento en cimentación flexible en suelo granular 

 

 

Figura 3-29 – Tensión-Asiento en cimentación rígida en suelo granular 
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En el análisis de asientos, la distinción entre cimentaciones rígidas y flexibles es esencial, ya 

que afecta tanto la distribución de tensiones como el perfil de deformaciones inducidas en el 

terreno. Según Terzaghi y Peck (1967), una cimentación rígida transfiere mayores esfuerzos 

en los bordes debido a su menor deformabilidad, mientras que una flexible se adapta al terreno 

y tiende a distribuir las cargas de forma más uniforme. Bowles (1988) propone un criterio 

cuantitativo, considerando rígida una cimentación cuando la relación entre el módulo de 

elasticidad del cimiento Ec es al menos diez veces mayor que el del terreno circundante E. 

En la literatura moderna, diversos autores han propuesto criterios cuantitativos para clasificar 

una cimentación como rígida o flexible. Por ejemplo, Poulos (2001) propone el uso de 

relaciones de rigidez adimensionales. 

 𝑘𝑟 =
𝐸𝐼

𝐸𝑠𝐵
4

 
(81) 

Donde; 

E es el módulo de elasticidad de la cimentación 

I es el momento de inercia de la cimentación 

Es es el módulo de elasticidad del terreno 

B es el ancho de la cimentación 

Kr valor adimensional que presenta la rigidez relativa de la cimentación donde: 

 Kr >> 1   Cimentación rígida 

 Kr ≈ 1   Comportamiento intermedio 

 Kr << 1   Cimentación flexible 

 

Mientras que Salas et al. (2012) sugieren que una cimentación puede considerarse rígida si su 

deformación estructural representa menos del 10% de la deformación total del sistema. 

Asimismo, normas como el Eurocódigo 7 (EN 1997-1:2004) permiten asumir una cimentación 

rígida cuando su rigidez frente al terreno es suficiente para justificar una distribución de 

tensiones uniforme. 

De la Figura 3-26 se interpreta que, en cimentaciones flexibles en suelos cohesivos, se 

experimentará un mayor asiento en el centro de la cimentación, lo que permitirá, dada la 
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reducida rigidez del cimiento, una atenuación de las presiones en el centro y las redistribuirá 

hacia los extremos de la cimentación. En el caso de cimentaciones rígidas, como se muestra en 

la Figura 3-27, el asiento será aproximadamente uniforme y de mayor entidad en los bordes 

comparado al asiento en zapatas flexibles, lo que se traduce en un incremento de presiones en 

los extremos. 

En el caso de terreno granulares, la falta de confinamiento en los bordes de la zapata no permite 

el desarrollo de presiones elevadas, como se puede ver en la Figura 3-28 y Figura 3-29, esto 

implica un incremento de las presiones en el centro de la cimentación. 

A lo largo de la próxima sección, se desarrollan las principales teorías de cálculo de asientos 

elásticos en cimentaciones superficiales y suelos granulares. 
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3.5.1 Tipos de asientos 

El asiento total que se produce en una cimentación se puede subdividir en dos subgrupos: (a) 

elástico o inmediato y (b) asiento de consolidación. 

El asiento instantáneo se produce casi al tiempo en que se aplica la carga. Tiene como origen la 

deformación elástica del terreno sin cambios en el contenido de humedad.  

El asiento de consolidación, propio de suelos con presencia de finos y baja permeabilidad, 

origina un retraso en el desarrollo del asiento total. Se subdivide, a su vez, en consolidación 

primaria y secundaria. 

• Asiento de consolidación primaria. Ante la aplicación de una carga constante, es el 

resultado del cambio gradual de volumen de un suelo cohesivo saturado debido a la 

expulsión del agua intersticial (contenida en los poros) a medida que la carga es 

transmitida a su esqueleto sólido. 

• Asiento de consolidación secundaria. Una vez que la consolidación primaria ha drenado 

completamente el agua intersticial, el suelo continúan compactándose por efectos de 

flujo interno, deslizamiento interparticular y reacomodo lento.  

 

El asiento total sería la suma del asiento instantáneo y de consolidación: 

 ST = Se + SC,1 + SC.2 
(82) 

Donde; 

ST: Asiento total 

Se: Asiento elástico o instantáneo 

Sc,1: Asiento de consolidación primaria 

Sc,2: Asiento de consolidación secundaria 

 

Se pueden producir asientos por otros procesos, como la presencia de karsticidades, erosiones 

internas, socavación, deslizamientos del terreno, variaciones en el nivel freático, etc. 
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3.5.2 Método elástico 

El asiento elástico se calcula como: 

 𝑠𝑒 =
∆𝜎 · 𝐻

𝐸𝑠
 

(83) 

Donde; 

Se: Asiento elástico 

∆σ: Incremento de tensión vertical en el centro de la capa compresible  

H: Espesor de la capa compresible 

Es: Módulo de deformación secante o módulo edométrico 

 

En el caso de terrenos estratificados, el asiento total (S) se obtiene sumando los asientos 

parciales de todas las capas n: 

 𝑆 = ∑𝑠𝑒

𝑛

𝑖=1

= ∑
∆𝜎𝑖 · 𝐻𝑖

𝐸𝑠,𝑖

𝑛

𝑖=1

 
(84) 

 

El asiento se asume con un comportamiento elástico lineal. En caso de producirse una 

reducción en la tensión aplicada al suelo, en la ecuación (83) el módulo de deformación secante 

se sustituiría por el módulo de descarga/recarga (Esur) hasta que se alcanzara el nivel de 

tensión previo a la descarga, volviéndose a emplear Es en la ecuación (83). 

 

Figura 3-30 - Módulo de deformación 
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En caso de tenerse en cuenta el efecto tridimensional, la tensión media en cualquier punto es 

el promedio de los componentes volumétricos del esfuerzo: 

 𝜎𝑀 =
1

3
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) 

(85) 

 

El asiento elástico se calcula en base a la deformación de cada subcapa: 

 𝑠𝑒 =
(1 + 𝑣) · ∆𝜎 − 3𝑣 · ∆𝜎𝑀

𝐸
· 𝐻 

(86) 

Donde; 

Se: Asiento elástico 

∆σ: Incremento de tensión vertical en el centro de la capa compresible 

∆σM: Incremento de tensión media 

H: Espesor de la capa compresible 

E: Módulo de Young   →   𝐸 = 𝐸𝑠
(1+𝑣)(1−2𝑣)

1−𝑣
 

ν: Coeficiente de Poisson 

 

 

De las ecuaciones (84) y (86) se deduce la importancia de determinar el incremento de tensión 

vertical en los diferentes estratos. En el anterior apartado se desarrollaron los principales 

métodos para la estimación del incremento de tensión vertical a diferentes profundidades. A 

lo largo del siguiente apartado se desarrollan los principales métodos de cálculo de asiento 

elástico para diferentes escenarios. 
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3.5.3 Métodos para el cálculo de asiento elástico 

Diferentes autores han desarrollado métodos para el cálculo del asiento elástico de 

cimentaciones superficiales en terreno granulares, pudiéndose agrupar los métodos en: 

• Métodos basados en la observación de asientos en estructuras y ensayos a escala. Son 

métodos empíricos que correlacionan los resultados de pruebas de laboratorio o 

campo, como el ensayo de penetración estándar (SPT) o presiómetros (CPT), con el 

asiento. Algunos de los principales métodos son los desarrollados por Terzaghi y Peck 

(1948, 1967), Meyerhof (1956, 1965), Peck y Bazaraa (1969), D’Appolonia (1970)  y 

Burland y Burbidge (1985). 

• Métodos semi-empíricos, combinando observaciones de campo con estudios teóricos. 

Por ejemplo, los métodos desarrollados por Schmertmann (1970), Schmertmann et al. 

(1978) y Akbas & Kulhay (2009). 

• Métodos basados en relaciones teóricas basadas en la teoría de la elasticidad. 
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3.5.4 Métodos basados en observaciones de estructuras y ensayos a escala 

En el presente apartado se exponen algunos de los métodos más relevantes relativos a la 

estimación del asiento elástico en suelos granulares a partir de observaciones de estructuras y 

ensayos a escala. 

 

3.5.4.1 Terzaghi & Peck (1948) 

Terzaghi y Peck (1948) desarrollaron correlaciones empíricas entre el asiento elástico (se) de 

una cimentación de dimensiones BxB con el asiento producido en un ensayo de placa de carga 

(Se(1)) con una placa de dimensiones B1xB1, que generalmente oscilan entre 0.30m y 1m. 

 
𝑠𝑒

𝑠𝑒(1)
=

4

[1 + (𝐵1/𝐵)]2
 (87) 

 

Los autores propusieron una correlación entre la capacidad portante admisible de una 

cimentación cuadrada de ancho B, el asiento elástico y el número de golpeos en el ensayo de 

penetración estándar (SPT) corrigiendo la eficiencia de la energía del martillo (N60).  

 𝑠𝑒(𝑚𝑚) =
3𝑞

𝑁60
(

𝐵

𝐵 + 0.3
)
2

 
(88) 

Donde; 

Se: Asiento elástico en mm 

q: Tensión en KN/m² 

B: Ancho de la cimentación en metros 

N60: Número medio de golpeos en el ensayo de penetración estándar (SPT) hasta una 

profundidad de 3B a 4B y corrigiendo la eficiencia de la energía del martillo 

 

Nótese que la ecuación (88) considera que la carga está aplicada en la superficie, pudiéndose 

aplicar los coeficientes correctores de profundidad (CD) y posición del nivel freático (CW), 

quedando la ecuación (88) de la siguiente forma. 
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 𝑠𝑒(𝑚𝑚) = 𝐶𝑊𝐶𝐷

3𝑞

𝑁60
(

𝐵

𝐵 + 0.3
)
2

 
(89) 

Donde; 

CW: Es el factor de corrección por la posición del nivel freático. Es igual a 1 cuando la 

profundidad del nivel freático es igual o superior a 2B, e igual a 2 cuando la profundidad del 

nivel freático es inferior a B. Para casos intermedios se debe interpolar. 

CD: Es el factor de corrección por la profundidad de empotramiento = 1 − (𝐷𝑓 4𝐵⁄ ) 

Df: Empotramiento de la cimentación 

 

 

3.5.4.2 Meyerhof (1956 & 1965) 

Meyerhof propuso en 1956 las mismas ecuaciones que las indicadas en el método propuesto 

por Terzaghi y Peck (1948); sin embargo, en 1965 llegó a la conclusión que, tras observar los 

asientos producidos en ocho estructuras, la tensión admisible para un asiento elástico dado 

(se) puede incrementarse hasta un 50% comparado con la ecuación (88) propuesta en 1956, 

por lo que propuso las siguientes relaciones. 

 𝑠𝑒(𝑚𝑚) = 𝐶𝑊𝐶𝐷
1.25𝑞

𝑁60
     para B ≤ 1.22m (90) 

y 

 𝑠𝑒(𝑚𝑚) = 𝐶𝑊𝐶𝐷
2𝑞

𝑁60
(

𝐵

𝐵+0.3
)
2

     para B > 1.22m 
(91) 

Donde; 

CW: Es el factor de corrección por la posición del nivel freático. Es igual a 1 cuando la 

profundidad del nivel freático es igual o superior a 2B, e igual a 2 cuando la profundidad del 

nivel freático es inferior a B. Para casos intermedios se debe interpolar. 

CD: Es el factor de corrección por la profundidad de empotramiento = 1 − (𝐷𝑓 4𝐵⁄ ) 

Df: Empotramiento de la cimentación 

q: Tensión en KN/m² 



Estado del arte 

79 

N60: Número medio de golpeos en el ensayo de penetración estándar (SPT) hasta una 

profundidad de 3B a 4B y corrigiendo la eficiencia de la energía del martillo 

 

 

3.5.4.3 Peck & Bazaraa (1969) 

Peck & Bazaraa (1969) estudiaron el método propuesto por Terzaghi & Peck en 1948, 

concluyendo que la ecuación (88) era conservadora, revisándose a la siguiente ecuación (92). 

 𝑠𝑒(𝑚𝑚) = 𝐶𝑊𝐶𝐷

2𝑞

𝑁′60
(

𝐵

𝐵 + 0.3
)
2

 
(92) 

Donde; 

Se: Asiento elástico en mm 

q: Tensión en KN/m² 

B: Ancho de la cimentación en metros 

N’60: Número medio de golpeos en el ensayo de penetración estándar (SPT) corrigiendo la 

eficiencia de la energía del martillo y los efectos de confinamiento. 

 𝑁′60 =
4𝑁60

1+0.04 𝜎′0
   para σ’0 ≤ 75 KN/m² 

𝑁′60 =
4𝑁60

3.25+0.01 𝜎′0
   para σ’0 > 75 KN/m² 

σ0: Tensión total 

σ’0: Tensión efectiva 

CW: Es el factor de corrección por la posición del nivel freático  

 CW =
 𝜎0 𝑎 0.5𝐵 𝑏𝑎𝑗𝑜 𝑧𝑎𝑝𝑎𝑡𝑎

 𝜎′0 𝑎 0.5𝐵 𝑏𝑎𝑗𝑜 𝑧𝑎𝑝𝑎𝑡𝑎
    

CD: Es el factor de corrección por la profundidad de empotramiento  

 CD = 1 − 0.4 (
𝛾𝐷𝑓

𝑞
)
0.5

 

γ: Peso específico aparente del suelo    
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3.5.4.4 Burland & Burdige (1985) 

Burland & Birdige (1985) propusieron un método para calcular el asiento elástico en 

cimentaciones superficiales en terreno granular mediante la correlación con el número de 

golpeos obtenidos en el ensayo de penetración estándar (SPT). 

Los autores proponen las siguientes correcciones al número de golpes obtenidos en campo 

calibrado para la eficiencia de la energía del martillo (N60). 

 

• Gravas o gravas arenosas: 

 𝑁60(𝑎) = 1.25 𝑁60 
(93) 

 

• Arenas y arenas limosas bajo el nivel freático y con N60 > 15: 

 𝑁60(𝑎) = 15 + 0.5 (𝑁60 − 15) (94) 

 

 

Tras corregir el número de golpes, se determina la profundidad de influencia (z’) que tiene la 

tensión bajo la zapata. Para ello, los autores consideran tres posibles casos: 

 

• Caso I: N60(a) es aproximadamente constante: 

 
𝑧′

𝐵𝑅
= 1.4 (

𝐵

𝐵𝑅
)
0.75

 
(95) 

Donde; 

BR: Ancho de referencia, los autores indican que se adopte 0.30m 

B: Ancho de la cimentación en metros 
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• Caso II: N60(a) incrementa con la profundidad. Para la determinación de z’ se usa la 

ecuación (95). 

• Caso III: N60(a) reduce con la profundidad. Z’ es el menor de 2B o la profundidad a la que 

se encuentre la base del estrato flojo (z’’). 

 𝑧′ = 𝑀𝑖𝑛 {2𝐵; 𝑧′′} 
(96) 

 

Una vez determinada la profundidad de influencia, se calcula el siguiente factor de corrección: 

 𝛼 =
𝐻

𝑧′
(2 −

𝐻

𝑧′
) ≤ 1 

(97) 

Donde; 

H: Espesor de la capa compresible 

 

Finalmente, el asiento elástico se calcula mediante las siguientes ecuaciones en función de la 

relación entre la tensión aplicada q y la tensión efectiva de una precarga σ’c: 

a) Suelo virgen 

 
𝑠𝑒

𝐵𝑅
= 0.14 𝛼 {

1.71

[𝑁̅60 𝑜 𝑁̅60(𝑎)]
1.4} [

1.25 (𝐿/𝐵)

0.25 + (𝐿/𝐵)
]
2

(
𝐵

𝐵𝑅
)
0.7

(
𝑞

𝑝𝑎
) (98) 

 

b) Suelo precargado con q ≤ σ’c 

 
𝑠𝑒

𝐵𝑅
= 0.047 𝛼 {

0.57

[𝑁̅60 𝑜 𝑁̅60(𝑎)]
1.4} [

1.25 (𝐿/𝐵)

0.25 + (𝐿/𝐵)
]
2

(
𝐵

𝐵𝑅
)
0.7

(
𝑞

𝑝𝑎
) (99) 

 

c) Suelo precargado con q > σ’c 

 
𝑠𝑒

𝐵𝑅
= 0.14 𝛼 {

0.57

[𝑁̅60 𝑜 𝑁̅60(𝑎)]
1.4} [

1.25 (𝐿/𝐵)

0.25 + (𝐿/𝐵)
]
2

(
𝐵

𝐵𝑅
)
0.7

(
𝑞 − 0.67𝜎′𝑐

𝑝𝑎
) (100) 
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Donde; 

L: Longitud de la cimentación 

pa: Presión atmosférica (≈ 100 KPa) 

𝑁̅60 𝑜 𝑁̅60(𝑎): Promedio de número de golpes corregidos en la profundidad de influencia 
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3.5.5 Métodos semi-empíricos 

En el presente apartado se exponen algunos de los métodos más relevantes relativos a la 

estimación del asiento elástico en suelos granulares a partir de la combinación de 

observaciones de estructuras y ensayos a escala con estudios teóricos. 

 

3.5.5.1 Schmertmann et al. (1978) 

Este método, fundamentado en la teoría de la elasticidad, propone el cálculo de la deformación 

vertical a una profundidad z bajo el centro de una carga circular flexible de diámetro B 

mediante la siguiente ecuación (101). 

 𝜀𝑧 =
𝑞(1 + 𝑣)

𝐸
[(1 − 2𝑣)𝐴′ + 𝐵′] 

(101) 

 

Alternativamente, 

 𝐼𝑧 =
𝜀𝑧𝐸

𝑞
= (1 + 𝑣)[(1 − 2𝑣)𝐴′ + 𝐵′] 

(102) 

Donde; 

A’ & B’ = f(z/B): Longitud de la cimentación 

q: Presión ejercida por la carga 

E: Módulo de elasticidad 

ν: Módulo de Poisson 

Iz: Factor de influencia de la deformación 

 

En la Figura 3-31 se puede apreciar el factor de influencia de la deformación en función de la 

profundidad bajo la carga y ancho del cimiento. 
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Figura 3-31 – Factor de influencia de la deformación propuesto por Schmertmann et al. (1978)  

 

En el caso de cimentaciones cuadradas o circulares: 

 Iz = 0.1 para z = 0m 

 Iz = Iz(peak) para z = zp = 0.5B 

Iz = 0 para z = z0 = 2B 

 

En el caso de cimentaciones corridas donde L/B ≥ 10: 

 Iz = 0.2 para z = 0m 

 Iz = Iz(peak) para z = zp = B 

Iz = 0 para z = z0 = 4B 
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El factor de influencia pico (peak) se calcula mediante la ecuación (103). 

 𝐼𝑧(𝑝𝑒𝑎𝑘) = 0.5 + 0.1 (
𝑞

𝜎′𝑜
)
0.5

 
(103) 

Donde σ’0 es la tensión efectiva a la profundidad en que se produce el factor de influencia pico. 

En cimentaciones con L/B entre 1 y 10, se puede interpolar entre la solución para cimentación 

cuadrada y corrida. 

 

Finamente, el asiento elástico se puede calcular como 

 𝑠𝑒 = 𝐶1𝐶2𝑞 ∑
𝐼𝑧
𝐸

∆𝑧

2𝐵

0

 
(104) 

Donde; 

C1 = 1-0.5(q0/q): Factor de corrección de la profundidad de empotramiento del cimiento 

C2 = 1 + 0.2 log(t/0.1): Factor de corrección para considerar la consolidación, donde t es el 

tiempo en años. 

q: Tensión neta efectiva aplicada en el nivel de apoyo de la cimentación 

q0: Tensión vertical efectiva en el nivel de apoyo de la cimentación 

 

Schmertmann et al. (1978), recomienda las siguientes correlaciones para obtener el módulo de 

deformación: 

• Cimentación cuadrada o circular: 

 𝐸 = 2.5 𝑞𝑐 
(105) 

 

• Cimentación corrida: 

 𝐸 = 3.5 𝑞𝑐 
(106) 
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Donde qc es la resistencia por punta en el CPT. 

Terzahi et al. (1996) propusieron la siguiente relación para cimentaciones rectangulares 

 
𝐸(𝐿/𝐵)

𝐸
(
𝐿
𝐵

=1)

= 1 + 0.4 log (
𝐿

𝐵
) ≤ 1.4 (107) 

 

 

3.5.5.2 Terzaghi et al. (1996) 

A diferencia del diagrama de influencia propuesto por Schmertmann et al. (1978) que se puede 

ver en la Figura 3-31, Terzaghi et al. (1996) propusieron: 

 z = 0   Iz = 0.2 para cualquier valor de L/B 

 z = zp = 0.5B  Iz = 0.6 para cualquier valor de L/B 

z = z0 = 2B  Iz = 0 para L/B = 1 

z = z0 = 4B  Iz = 0 para L/B ≥ 10 

 

Para valores de L/B entre 1 y 10, 

 
𝑧

𝐵
= 2 [1 + log (

𝐿

𝐵
)] 

(108) 

 

El asiento elástico se obtiene de la siguiente expresión 

 𝑠𝑒 = 𝐶𝑑(𝑞)∑
𝐼𝑧
𝐸

∆𝑧 +

𝑧0

0

0.02 [
0.1

∑𝑞𝑐∆𝑧
𝑧0

] 𝑧0 log (
𝑡 𝑑𝑎𝑦

1 𝑑𝑎𝑦
) (109) 

                                           Asiento de consolidación  

 

Donde; 

qc es la resistencia por punta en el CPT en MN/m² 
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E = 3.5 qc    en cimentaciones cuadradas o circulares 

𝐸𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = [1 + 0.4
𝐿

𝐵
] 𝐸𝑐𝑢𝑎𝑑𝑟𝑎𝑑𝑎    en cimentaciones cuadradas o circulares 

Cd: Factor de corrección de la profundidad en función de Df/B 

 

Tabla 3-1 – Factor de corrección de la profundidad 

Df/B Cd 

0.1 

0.2 

0.3 

0.5 

0.7 

1.0 

2.0 

2.0 

1 

0.96 

0.92 

0.86 

0.82 

0.77 

0.68 

0.65 

Según Terzaghi et al. (1996)  

 

 

 

3.5.5.3 Akbas & Kulhawy (2009) 

Akbas & Kulhawy (2009) desarrollado el método L1-L2, basado en los resultados de 167 

pruebas de carga a escala real, donde llegaron a la relación entre asiento y carga aplicada que 

se muestra en la Figura 3-32, pudiéndose dividir en tres regiones principales: 

• Región lineal inicial, comportamiento elástico 

• Región de transición, comportamiento no lineal 

• Región lineal final, cercana al fallo 

 

Los puntos característicos de la curva son: 

L1 es la franja de límite elástico donde la curva deja de ser lineal 

L2 es la franja del umbral de fallo, al inicio de la región lineal final 

QL1 la carga aplicada en la base del cimiento donde se produce el asiento Se(L1) 

QT la carga ejercida al nivel en que se produce el asiento Se(T) 
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QL2 la carga ejercida al nivel en que se produce el asiento Se(L2), que equivale a la capacidad 

última de la cimentación. 

 

 

Figura 3-32 – Método L1-L2, Akbas & Kulhawy (2009). Tomado de DAS, Braja M. Advanced soil mechanics. 

CRC press, 2019, p. 605 

 

Los autores propusieron una relación entre la carga Q y el asiento Se, normalizada respecto a 

la carga QL2 y el ancho de la cimentación B 

 
𝑄

𝑄𝐿2
= 0.69 (

𝑆𝑒

𝐵
)
0.68

+ 1.0 
(110) 

Donde; 

Q: Carga aplicada en KN 

QL2: Carga última de la cimentación 

Se: Asiento en la base de la cimentación en mm 

B: Ancho de la cimentación en m 
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La ecuación (110) debe ajustarse en función del módulo de elasticidad inicial del suelo (EL1), 

para ello, los autores propusieron las siguientes ecuaciones: 

• Cuando  
𝐸𝐿1

𝑝𝑎
> 500, 

 
𝑄

𝑄𝐿2
=

𝑆𝑒 𝐵⁄

0.68(𝑆𝑒 𝐵⁄ ) + 1.18
 

(111) 

 

• Cuando  500 >
𝐸𝐿1

𝑝𝑎
> 250, 

 
𝑄

𝑄𝐿2
=

𝑆𝑒 𝐵⁄

0.72(𝑆𝑒 𝐵⁄ ) + 1.59
 

(112) 

 

• Cuando  
𝐸𝐿1

𝑝𝑎
< 250, 

 
𝑄

𝑄𝐿2
=

𝑆𝑒 𝐵⁄

0.75(𝑆𝑒 𝐵⁄ ) + 1.95
 

(113) 

 

Donde pa es la presión atmosférica (100 KN/m²) 
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3.5.6 Métodos basados en la teoría de la elasticidad 

En el presente apartado se exponen algunos de los métodos más relevantes relativos a la 

estimación del asiento elástico en suelos granulares a partir de relaciones teóricas basadas en 

la teoría de la elasticidad. 

 

3.5.6.1 Métodos clásicos: Schleicher (1926), Steinbrenner (1934) & Fox (1948) 

Para una cimentación de longitud L y ancho B ubicada a una profundidad Df bajo la superficie 

y un estrato indeformable a una profundidad H bajo la superficie, se diferencian tres posibles 

escenarios: 

• Escenario I. El asiento elástico de un punto de una cimentación flexible en un medio 

elástico indefinido (H = ∞) se calcula con la siguiente ecuación. 

 𝑆𝑒(𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒) =
𝑞𝐵

𝐸
(1 − 𝑣²)𝐼 

(114) 

 Donde; 

 q: Presión neta ejercida por la cimentación 

E: Módulo de elasticidad del suelo 

ν: Coeficiente de Poisson 

I: Factor de influencia que depende del punto donde se evalúa el asiento bajo el 

cimiento. Schleicher (1926) determinó la siguiente ecuación para determinar el 

factor de influencia en la esquina de una cimentación flexible:  

 𝐼𝑐𝑜𝑟𝑛𝑒𝑟 =
1

𝜋
[𝑚′𝑙𝑛 (

1 + √𝑚′2 + 1

𝑚′
) + ln (𝑚′ + √𝑚′2 + 1)] 

(115) 

 

Donde m’ = L/B. El factor de influencia en otras posiciones de la cimentación se puede 

determinar subdividiendo la cimentación en 4 partes y aplicado el principio de 

superposición. El factor de influencia en el centro es igual a dos veces el de una esquina. 

Las cimentaciones flexibles ejercen una presión uniforme sobre el terreno, pero el 

asiento no es uniforme bajo la cimentación. Por el contrario, las cimentaciones rígidas 
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no ejercen una presión uniforme sobre el terreno, pero su asiento si es uniforme. De 

acuerdo con Bowles (1987), el asiento en el centro de una cimentación rígida es 

aproximadamente el 93% del de una cimentación flexible. En la Tabla  3-2 se puede ver 

la relación entre el factor de influencia de una cimentación flexible y rígida 

Tabla  3-2 – Relación entre factor de influencia 

de una cimentación rígida y flexible 

M’ =L/B Flexible Rígida 

Circular 

1 

1.5 

2 

3 

5 

10 

100 

0.85 

0.95 

1.20 

1.30 

1.52 

1.82 

2.24 

2.96 

0.79 

0.82 

1.07 

1.21 

1.42 

1.60 

2.00 

3.40 

   

 

• Escenario II. De acuerdo con Bowles (1987), el asiento superficial teniendo en cuenta 

la influencia de un estrato rígido (H ≠ ∞) se obtiene a partir de la ecuación (116). 

 𝑆𝑒(𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒) = 𝑞(𝛼𝐵′)
1 − 𝑣²

𝐸
𝐼𝑠 

(116) 

Donde; 

q: Presión neta ejercida por la cimentación 

E: Valor medio del módulo de elasticidad del suelo hasta una profundidad de z = 4B. 

ν: Coeficiente de Poisson 

B’ = B/2 para la estimación del asiento en el centro de la cimentación o B’ = B para 

la estimación del asiento en una esquina. 

α: Factor que depende del punto de estudio. 

 Para la estimación del asiento en el centro de la cimentación: 

  α = 4 

  𝑚′ =
𝐿

𝐵
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  𝑛′ =
𝐻

𝐵 2⁄
 

Para la estimación del asiento en una esquina de la cimentación: 

  α = 1 

  𝑚′ =
𝐿

𝐵
  

  𝑛′ =
𝐻

𝐵
 

Is: Factor de influencia que depende del punto donde se evalúa el asiento bajo el 

cimiento. Steinbrenner (1934) determinó la siguiente ecuación para determinar el 

factor de influencia: 

 𝐼𝑠 = 𝐹1 +
1 − 2𝑣

1 − 𝑣
𝐹2 

(117) 

Donde; 

 𝐹1 =
1

𝜋
(𝐴0 + 𝐴1)  

(118) 

 𝐹2 =
𝑛′

2𝜋
tan−1 𝐴2  

(119) 

 
 𝐴0 = 𝑚′ ln

(1+√𝑚′2+1)√𝑚′2+𝑛′²

𝑚′(1+√𝑚′2+𝑛′2+1)
   

(120) 

 
𝐴1 = ln

(𝑚′+√𝑚′2+1)√1+𝑛′²

𝑚′√𝑚′2+𝑛′2+1
  

(121) 

 𝐴2 =
𝑚′

𝑛′+√𝑚′2+𝑛′2+1
  

(122) 

 

• Escenario III. El efecto que tiene disponer la cimentación a una profundidad Df bajo la 

superficie implica la modificación de las ecuaciones (114) y (116) de acuerdo con las 

siguientes ecuaciones (123) & (124), respectivamente. 

 𝑆𝑒(𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒) =
𝑞𝐵

𝐸
(1 − 𝑣²)𝐼𝐼𝑓 

(123) 

 
𝑆𝑒(𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒) = 𝑞(𝛼𝐵′)

1 − 𝑣²

𝐸
𝐼𝑠𝐼𝑓 

(124) 
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Donde If es un factor de influencia que varía con Df/B y L/B de acuerdo con las gráficas de la 

siguiente figura. 

 

 

Figura 3-33 – Factor de influencia If. . Tomado de DAS, Braja M. Advanced soil mechanics. CRC press, 

2019, p. 616 
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3.5.6.2 Mayne & Poulos (1999) 

La ecuación (125) propuesta por Mayne y Poulos (1999) tiene en cuenta la rigidez de la 

cimentación, profundidad de empotramiento, variación del módulo de elasticidad con la 

profundidad y presencia de una base rígida. 

 

Figura 3-34 – Parámetros fórmula de Mayne & Poulos (1999) 

 

 𝑆𝑒 =
𝑞𝐵𝑒𝐼𝐺𝐼𝐹𝐼𝐸

𝐸0

(1 − 𝑣²) 
(125) 

Donde; 

q: Presión neta ejercida por la cimentación 

Be: Diámetro equivalente de la cimentación donde 𝐵𝑒 = √
4𝐵𝐿

𝜋
. En caso de tratarse de una 

cimentación circular, Be es igual al diámetro. 

Ig: Factor de influencia por la variación del módulo de elasticidad con la profundidad, se 

obtiene de la Figura 3-35. 

IF: Factor de corrección de la rigidez de la cimentación, se obtiene de la ecuación (126) y  

IE: Factor de corrección de la profundidad de empotramiento de la cimentación, se obtiene 

de la ecuación (127). 
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 𝐼𝐹 =
𝜋

4
+

1

4.6 + 10(𝐸𝑓/[𝐸𝑜 + (𝐵𝑒/2)𝑘])(2𝑡/𝐵𝑒)
3

 (126) 

 
𝐼𝐸 = 1 −

1

3.5 exp(1.22𝑣 − 0.4)[(𝐵𝑒/𝐷𝑓) + 1.6]
 

(127) 

 

 

Figura 3-35 – Variación de IG en función de β’. Tomado de DAS, Braja M. Advanced soil mechanics. CRC 

press, 2019, p. 621 
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Figura 3-36 – Variación de IF en función de KF. Tomado de DAS, Braja M. Advanced soil mechanics. CRC 

press, 2019, p. 622 

 

 

Figura 3-37 – Variación de IE en función de Df/Be. Tomado de DAS, Braja M. Advanced soil mechanics. CRC 

press, 2019, p. 623 
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3.6  Módulo de balasto 

El módulo de balasto k mide la relación entre la presión p aplicada a un área y la deformación 

s experimentada por dicha área, expresándose en unidades de fuerza por unidades de volumen 

(KN/m³). Se emplea tanto el módulo de balasto vertical (cimentaciones superficiales) como 

horizontal (pantallas o cimentaciones profundas). 

 𝑘 =
𝑝

𝑠
 

(128) 

 

 

Figura 3-38 – Representación del módulo de balasto 

 

Winkler (1867) introdujo el concepto de módulo de balasto con el fin de modelar la interacción 

entre el suelo y la estructura. Esta metodología asume que la cimentación se apoya sobre un 

conjunto de muelles elásticos independientes con rigidez k que oponen una resistencia a la 

deformación proporcional al asentamiento local del suelo.  

 

Figura 3-39 – Representación del modelo de Winkler 
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El módulo de balasto no depende únicamente de las propiedades del suelo, de acuerdo con la 

ecuación (129), desarrollada en el apartado 3.3.3, que relaciona el módulo de balasto k con el 

módulo de elasticidad E, el módulo de balasto no solo depende exclusivamente del suelo, 

también del tamaño del área cargada.  

 𝑘 =
𝐸

𝐼 𝐵
 

(129) 

 

Esta idealización de la interacción suelo-estructura es una gran simplificación del 

comportamiento real del suelo, pues en la realidad el terreno es un medio continuo cuyas 

deformaciones se extienden más allá de la zona inmediatamente cargada como se explica en el 

apartado 3.4 Distribución de tensiones bajo cimentaciones superficiales. 

La rigidez de la propia cimentación también influye en la interacción con el suelo y la forma de 

transmitir las tensiones como se ha explicado en apartados anteriores y, por tanto, en el 

módulo de balasto. De acuerdo con el apartado 3.5 y Figura 3-40, se pueden distinguir dos casos 

extremos, cimentación rígida o flexible, siendo el comportamiento de ambos casos 

notablemente diferente, afectando tanto a la distribución de presiones como a los asientos. 

 

Figura 3-40 – Relación tensión-asiento en función de la rigidez del cimiento. Distribución de tensiones en 

sobreado y sin sombrear el asiento. 
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En una cimentación muy rígida, la deformación tiende a ser uniforme, ya que la cimentación 

rigidiza el reparto de cargas. 

En el caso de una carga centrada y una cimentación perfectamente rígida en un suelo 

homogéneo, el asiento sería constante en toda la base de la cimentación. Teóricamente, 

también se daría una presión uniforme bajo la cimentación, pero en la práctica, en función de 

la naturaleza cohesiva o granular del terreno, el comportamiento es diferente. En el caso de 

suelos granulares, un cimiento rígido genera mayores presiones en el centro de la cimentación 

y menores en los bordes, ya que el terreno granular no se adhiere a la cimentación (falta de 

confinamiento en los bordes), originándose un “despegue” en los bordes debido a la propia 

rigidez del cimiento que impide el contacto con el terreno. 

Por el contrario, en el caso de suelos cohesivos, una cimentación rígida muestra mayores 

presiones en los extremos debido a la combinación de adherencia que ejerce el suelo sobre la 

cimentación y la rigidez del propio cimiento, impidiendo acomodarse a las deformaciones del 

suelo. 

En el caso de cimentaciones flexibles, capaces de adaptarse a la deformación del suelo, ante 

cargas puntuales se deformará, hundiéndose bajo las zonas más cargadas. Esto genera una 

mayor presión de contacto bajo los puntos de aplicación de las cargas. Cuanto más flexible sea 

la cimentación, teóricamente, menos uniforme será la distribución de las presiones. 

Sin embargo, la capacidad de redistribución de presiones que tienen las cimentaciones flexibles 

permite evitar picos excesivos, uniformizándose la presión de contacto en un mayor grado que 

en el caso de cimentaciones rígidas. De acuerdo con las observaciones de Leshchinsky y 

Marcozzi (1990), las cimentaciones rígidas presentan una mayor concentración de presiones 

cerca de los bordes, induciendo a fallos locales en los extremos (plastificación del borde), 

mientras que las cimentaciones flexibles distribuyen le presión de una forma más homogénea; 

como consecuencia, las cimentaciones flexibles alcanzan una mayor carga última antes del fallo 

en comparación con las cimentaciones rígidas, pero también un mayor asiento.  

En el caso de losas continuas, debido a la continuación del elemento y la superposición de 

presiones generadas por varias columnas, se identifica una mayor presión de contacto bajo los 

pilares, mientras que en las zonas de mitad de vano las presiones son menores, incluso llegando 

a producirse despegues. En estos casos, no es realista suponer un único módulo de balasto 

constante en toda la cimentación, ya que esto significaría que el suelo ofrece la misma rigidez 

bajo las áreas fuertemente cargadas (pilares) y las zonas de mitad de vano.  
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Figura 3-41 – Relación presión-rigidez en arenas densas. Extraído de LESHCHINSKY, Dov; MARCOZZI, Guy 

F. Bearing capacity of shallow foundations: rigid versus flexible models. Journal of geotechnical 

engineering, 1990, vol. 116, no 11, p. 1750-1756. 

 

En losas de cimentación con múltiples columnas (por ejemplo, cimentaciones de edificios 

altos), se observa un patrón en las tensiones de contacto bajo las columnas, creándose una zona 

de alta presión bajo su área de influencia, mientras que las zonas centrales de la losa tienen 

tensiones considerablemente menores. Si la losa es rígida, la diferencia se atenúa, pero si es 

flexible, las diferencias pueden acentuarse. En algunos casos, pueden aparecer áreas sin 

contacto efectivo con el suelo debido a una distribución de cargas irregular, lo que requiere 

iterar en el cálculo para determinar las zonas de contacto, para ello se realiza un cálculo no 

lineal con el fin de identificar las zonas en que no hay presiones y liberar los muelles 

localmente. 

Una manera práctica de abordar esto (ver apartado 3.6.3) es subdividir la losa en zonas más 

pequeñas, asignando a cada una un coeficiente de balasto acorde a la rigidez del suelo bajo esa 

porción, en lugar de usar un único k global. Este enfoque, conocido como método de áreas 

discretas, recomendado por comités técnicos como ACI Special PPublicacition 152, refleja la 

variación de k a lo largo de una losa de cimentación, obteniendo así una distribución de 

presiones más realista: elevada donde la losa carga más y reducida donde carga menos, 

garantizando un diseño más seguro y económico. 

A lo largo de los siguientes subapartados se enumeran las principales teorías, métodos de 

obtención y metodologías de aplicación en el modelado de cimentaciones superficiales. 
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3.6.1 Evolución de las teorías del módulo de balasto 

El modelo original de Winkler (1867) considera que la deformación, s, es linealmente 

proporcional a la presión de contacto, p, en dicho punto e independiente de los esfuerzos de 

contacto en otros puntos. El suelo se modela como un conjunto de muelles elásticos 

independientes con rigidez k como se muestra en la Figura 3-39. Esta relación se expresa 

mediante la siguiente ecuación: 

 𝑝(𝑥, 𝑦) = 𝑘 𝑠(𝑥, 𝑦) 
(130) 

El modelo de Winkler, a pesar de su utilidad en la representación del comportamiento del suelo 

de una manera tan simplificada, presenta una limitación clave, asume que cada punto de la 

cimentación se apoya sobre resortes independientes, sin considerar la interacción entre áreas 

contiguas. Esta deficiencia llevó al desarrollo de modelos de respuesta del suelo más 

avanzados, conocidos como modelos de dos parámetros. La principal diferencia con Winkler 

es que, en lugar de un único coeficiente de balasto, estos modelos incorporan un segundo 

parámetro elástico que introduce un acoplamiento entre los resortes, reflejando de manera 

más realista la continuidad del suelo. 

 

Figura 3-42 – Representación del modelo de Winkler optimizado 

 

El desarrollo de estos modelos siguió dos enfoques distintos. El primero consiste en extender 

el modelo de Winkler mediante la incorporación de una capa elástica que vincula los muelles 

verticales, lo que permite distribuir las cargas de manera más progresiva. Ejemplos de esta 

línea de investigación incluyen los trabajos de Filonenko-Borodich (1940), Hetényi (1946), 

Pasternak (1954) y Kerr (1964), quienes propusieron distintas maneras de representar la 

interacción entre los elementos tipo muelle, ya sea a través de membranas elásticas, vigas 

continuas o capas sometidas a cortante. En particular, el modelo de Pasternak introdujo un 

parámetro adicional, denominado módulo de rigidez de corte, G, que permite que los 

desplazamientos de un punto del suelo afecten a los puntos vecinos, mejorando la 

representación de la distribución de esfuerzos bajo la cimentación. 
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El segundo enfoque parte directamente de la teoría de la elasticidad continua, evitando la 

discretización en muelles. Investigadores como Reissner (1958), Vlasov y Leontiev (1966) 

adoptaron este método, formulando modelos que parten del comportamiento continuo del 

suelo y simplifican las ecuaciones mediante hipótesis razonables sobre la distribución de 

tensiones, deformaciones y desplazamientos en la base de la cimentación. Posteriormente, 

trabajos como los de Vesic (1963, 1970) desarrollaron ecuaciones que permiten obtener el 

coeficiente de balasto de manera coherente con la teoría de la elasticidad, garantizando que las 

deformaciones y esfuerzos en el terreno sean equivalentes a los obtenidos con un análisis más 

detallado basado en un medio semi-infinito elástico, como el modelo de Boussinesq. 

En los últimos años, la evolución de la interacción suelo-estructura ha llevado a metodologías 

aún más sofisticadas, incluyendo modelos no lineales de Winkler, en los que el módulo de 

balasto varía según la magnitud de la carga o el asentamiento. Estos modelos se calibran con 

datos experimentales obtenidos de ensayos de laboratorio y campo, lo que permite representar 

la variación de la rigidez del suelo con mayor precisión. Además, con el aumento del poder 

computacional, los métodos numéricos avanzados, como el método de elementos finitos (MEF) 

en 3D, han permitido modelar el suelo como un medio continuo, eliminando la necesidad de 

definir inicialmente un coeficiente de balasto. Estos modelos acoplados consideran 

simultáneamente la deformación de la estructura y la respuesta del suelo, incorporando 

modelos constitutivos más avanzados, como formulaciones elasto-plásticas y efectos de 

consolidación. 

A pesar de estos avances, el modelo de Winkler y sus variantes siguen siendo ampliamente 

utilizados en la práctica de la ingeniería, debido a su facilidad de implementación y su 

capacidad para proporcionar resultados razonables en muchos casos. Sin embargo, para 

mejorar su precisión, es recomendable emplear enfoques híbridos, como los modelos de dos 

parámetros o calibraciones basadas en ensayos in situ, que permiten ajustar el coeficiente de 

balasto a las condiciones específicas del suelo y la cimentación. 

A continuación, se describen los principales modelos teóricos para cada uno de los enfoques 

que se han indicado anteriormente, por un lado, los que extienden el modelo de Winkler 

mediante la incorporación de una capa elástica que vincula los resortes verticales, Filonenko-

Borodich (1940), Hetényi (1946) y Pasternak (1954), y por otro, los basados en la teoría de la 

elasticidad Vlasov y Leontiev (1966) y Vesic (1970) 
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3.6.1.1 Filonenko-Borodich (1940) 

El modelo de Filonenko-Borodich (1940) asume que el muelle k propuesto por Winkler se 

conecta a los muelles adyacentes mediante una membrana delgada sometida a una tracción 

constante T. Asumiendo el equilibrio estático de un elemento diferencial del sistema muelle-

membrana, se llega a la conclusión de que en cimentaciones planas (zapatas, losas, etc.) la 

deformación superficial debida a una carga distribuida p se obtiene de la siguiente formulación: 

 𝑝(𝑥, 𝑦) = 𝑘 𝑠(𝑥, 𝑦) − 𝑇∇2(𝑥, 𝑦) 
(131) 

 

Donde ∇2(𝑥, 𝑦) = 𝜕²/𝜕𝑥² + 𝜕²/𝜕𝑦² es el operador diferencial Laplaciano en coordenadas 

cartesianas. En caso de vigas de cimentación, la ecuación queda de la siguiente forma: 

 𝑝(𝑥) = 𝑘 𝑠(𝑥, 𝑦) − 𝑇 𝜕²𝑝/𝜕𝑥²  
(132) 

 

3.6.1.2 Hetenyi (1946) 

El modelo de Hetenyi (1946) asume que el muelle k propuesto por Winkler se conecta a los 

muelles adyacentes mediante una constante D que es función de la rigidez a flexión de la placa 

elástica embebida que conecta los muelles. En cimentaciones planas (zapatas, losas, etc.) la 

deformación superficial debida a una carga distribuida p se obtiene de la siguiente formulación: 

 𝑝(𝑥, 𝑦) = 𝑘 𝑠(𝑥, 𝑦) − 𝐷∇4(𝑥, 𝑦) 
(133) 

 

Donde ∇4(𝑥, 𝑦) = 𝜕4/𝜕𝑥4 + 2𝜕4/(𝜕𝑥²𝜕𝑦²) + 𝜕4/𝜕𝑦4 y 𝐷 = 𝐸𝐼/𝑏 es la rigidez a flexión de la 

placa elástica embebida, I es el momento de inercia de la cimentación y b es el ancho de la viga 

embebida. 

En caso de vigas de cimentación, la ecuación queda de la siguiente forma: 

 𝑝(𝑥) = 𝑘 𝑠(𝑥, 𝑦) −
𝐸𝐼

𝑏
 𝜕4𝑝/𝜕𝑥4  

(134) 
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3.6.1.3 Pasternak (1954) 

Pasternak (1954) propuso una interacción de cortante entre los elementos tipo muelle 

mediante la conexión de dichos muelles a través de una capa de elementos verticales 

incompresibles de grosor unitario (t = 1) que se deforma a cortante puro. Asumiendo el 

comportamiento isotrópico de las capas a cortante en el plano xy con módulos de cortante Gx 

= Gy = Gz, se llega a las siguientes ecuaciones: 

 𝜏𝑥𝑧 = 𝐺𝑝 𝛾𝑥𝑧 = 𝐺𝑝 𝜕𝑝/𝜕𝑥 
(135) 

 𝜏𝑦𝑧 = 𝐺𝑝 𝛾𝑦𝑧 = 𝐺𝑝 𝜕𝑝/𝜕𝑦 
(136) 

 

Aplicando el equilibrio de un elemento diferencial del medio a cortante en el eje Z: 

 𝑝(𝑥, 𝑦) − 𝑘 𝑠(𝑥, 𝑦) − (𝜕𝜏𝑥𝑧/𝜕𝑥 + 𝜕𝜏𝑦𝑧/𝜕𝑦) = 0  
(137) 

 

Reemplazando las ecuaciones (135) y (136) en la ecuación (137): 

 𝑝(𝑥, 𝑦) = 𝑘 𝑠(𝑥, 𝑦) − 𝐺𝑝(𝜕²𝑝/𝜕𝑥² + 𝜕²𝑝/𝜕𝑦²) = 𝑘 𝑠(𝑥, 𝑦) − 𝐺𝑝∇
2𝑝(𝑥, 𝑦)  

(138) 

En el caso particular de vigas de cimentación, la ecuación (137) quedaría de la siguiente forma: 

 𝑝(𝑥, 𝑦) = 𝑘 𝑠(𝑥, 𝑦) − 𝐺𝑝(𝜕²𝑝/𝜕𝑥²) 
(139) 

 

 

3.6.1.4 Vlazov-Leontiev (1966) 

Esta metodología se basa en la teoría de la elasticidad. Los autores desarrollaron una 

formulación similar a la propuesta por Filonenko-Borodich y Pasternak, suponiendo 

deformaciones unitarias en el plano vertical, junto a una restricción en la distribución de las 

deformaciones en un medio elástico semi-infinito. 

 𝑝(𝑥) = 𝑘 𝑠(𝑥, 𝑦) − 𝑡 
𝜕² 𝑝(𝑥)

𝜕𝑥²
  

(140) 

Donde; 
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𝐾 =
(1−𝑣)𝐸𝑠𝑏

(1+𝑣)(1−2𝑣)
∫ (

𝑑𝑔

𝑑𝑧
)
2
𝑑𝑧

𝐻

𝑜
  

𝑡 =
𝐸𝑠𝑏

2(1+𝑣)
∫ 𝑔2𝑑𝑧

𝐻

𝑜
  

b es el ancho de la viga de cimentación 

𝑔(𝑧) =
𝑠𝑒𝑛ℎ 𝜂(𝐻−𝑧)

𝑠𝑒𝑛ℎ 𝜂𝐻
 es el factor de influencia que describe la variación de deformación 

vertical con la profundidad z en un suelo o medio de espesor H, donde 𝜂 es un parámetro 

experimental. En el apartado 3.4 se dan varias referencias para estimar el factor de 

influencia. 

Es es el módulo de elasticidad del terreno 

ν es el coeficiente de Poisson del terreno 

 

 

3.6.1.5 Vesic (1970) 

Vesic basó su modelo en un medio elástico homogéneo semi-infinito en el cual una cimentación 

rígida transmite una presión. El módulo de balasto se obtiene a partir de la solución elástica 

del asentamiento de una placa rígida sobre dicho medio elástico. A partir de este modelo, Vesic 

obtuvo la relación entre la presión de contacto y el asentamiento medio de la cimentación. 

Según la teoría de la elasticidad, el asiento de una cimentación rígida apoyada sobre un suelo 

elástico homogéneo viene dado por: 

 𝑠 =
𝑝𝐵(1 − 𝜈𝑠

2)

𝐸𝑠𝐹
𝑠 

(141) 

donde: 

• s es el asentamiento medio de la cimentación, 

• p es la presión de contacto en la base de la cimentación, 

• B es el ancho característico de la cimentación (diámetro en cimentaciones circulares o 

ancho en zapatas rectangulares), 

• νs es el coeficiente de Poisson del suelo, 
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• Es es el módulo de elasticidad del suelo, 

• F es un coeficiente de forma dependiente de la geometría de la cimentación. 

Tabla  3-3 – Coeficiente de Forma F 

Tipo de cimentación  F 

Cuadrada 

Rectangular (B/L =1:2) 

Rectangular (B/L =1:3) 

Circular 

Losa extensa 

 1.0 

1.12 

1.22 

1.13 

1.5-2.0 

 

A partir de esta ecuación, el módulo de balasto k, definido como la relación entre presión y 

asentamiento unitario (k = p/s), se obtiene como: 

 𝑘 =
𝐸𝑠𝐹

𝐵(1 − 𝜈𝑠
2)

 
(142) 

 

Para cimentaciones situadas a una profundidad D, Vesic propuso un factor de profundidad βD, 

que corrige el valor de k en función de la profundidad de cimentación: 

 𝑘′ = 𝑘𝛽𝐷 = 𝑘 (1 + 0.2
𝐷

𝐵
) 

(143) 

donde: 

• k′ es el módulo de balasto corregido por profundidad, 

• D es la profundidad de cimentación, 

• B es el ancho de la cimentación. 

 

Para el caso de cimentaciones flexibles, el módulo de balasto varía espacialmente. En estos 

casos, Vesic sugirió dividir la cimentación en zonas discretas, asignando diferentes valores de 

k en función de la carga y la deformabilidad de la losa. 

Para losas directamente apoyadas en el terreno (sin pilotes), Vesic recomendó calcular un 

módulo de balasto efectivo promedio ponderado: 
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 𝑘𝑠,𝑒𝑓𝑓 = ∑
𝑘𝑠𝐴𝑖

∑𝐴𝑖
 

(144) 

Donde Ai son las áreas de la cimentación en las que se subdivide la losa. 

 

 

3.6.2 Determinación del módulo de balasto 

La determinación del módulo de balasto es dificultosa, no siendo directamente extrapolable de 

ensayos de campo o laboratorio debido a que su valor depende tanto de la naturaleza del suelo, 

como de la forma y profundidad del área cargada, como se ha explicado anteriormente. 

 

Figura 3-43 – Relación presión-asiento en función del tamaño de la cimentación 

 

 

Figura 3-44 – Relación del bulbo de presiones en función del tamaño de la cimentación  
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La duración de la fase de carga también puede hacer variar el módulo de balasto con el tiempo, 

ya que, en terreno cohesivos, gran parte del asiento se debe a la consolidación y, por lo tanto, 

puede ocurrir durante varios años o incluso toda la vida útil de la estructura. Por ello, en 

terrenos de naturaleza cohesiva, se deben considerar análisis a corto y largo plazo del módulo 

de balasto.  

Por otro lado, el módulo de balasto tampoco será constante para toda la superficie del cimiento, 

ya que la presión de contacto y asiento también varían espacialmente, como se muestra en la 

Figura 3-40. Se trata este tema en el apartado 3.6.3. 

Varios autores han propuesto metodologías para determinar el módulo de balasto. Terzaghi 

(1955) propuso las siguientes ecuaciones para determinar el módulo de balasto ks de una 

cimentación cuadrada de ancho B en base al módulo de balasto ks1 obtenido de un ensayo de 

placa de carga con placa cuadrada de ancho B1. 

Cimentación en suelo cohesivo: 

 𝑘𝑠 = 𝑘𝑠1

𝐵1

𝐵
 

(145) 

 

Cimentación en suelo granular: 

 𝑘𝑠 = 𝑘𝑠1 (
𝐵 + 𝐵1

2𝐵
)
2

 
(146) 

 

Para cimentaciones rectangulares de ancho B y longitud L, ks se multiplica por la siguiente 

relación: 

 𝑘𝑠,𝑟𝑒𝑐𝑡. = 𝑘𝑠,𝑐𝑢𝑎𝑑. (1 +
𝐵

2𝐿
) 

(147) 

 

En el caso de cimentaciones ejecutadas a una profundidad de estudio D, autores como Terzaghi 

(1955) determinaron que el módulo de balasto a la profundidad de estudio ksz puede estimarse 

mediante la siguiente relación: 
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 𝑘𝑠,𝑧 = 𝑘𝑠 (1 + 2
𝐷

𝐵
) 

(148) 

 

Autores como Teng (1962), Vesic (1970) o Bowles (1996) propusieron una corrección a la 

fórmula anterior, indicando un incremento menos pronunciado del módulo de balasto con la 

profundidad, sustituyendo el 2D/B por valores entre 0.2∼0.5 D/B. Se indica a continuación la 

formulación propuesta por Bowles (1996). 

 𝑘𝑠,𝑧 = 𝑘𝑠 (1 + 0.5
𝐷

𝐵
) 

(149) 

 

Biot (1937) desarrolló la siguiente formulación que combinaba las bases del modelo de 

Winkler con la teoría del sólido elástico, particularizada para el conocido caso de viga flotante 

(viga de cimentación). 

 𝑘 =
1.23 𝐸𝑠

𝐵(1 − 𝜈𝑠
2)

[
𝐸𝑠𝐵

4

16𝐶(1 − 𝜈𝑠
2)𝐸𝑏𝐼

]

0.11

 
(150) 

Donde; 

B es el ancho de la cimentación 

νs es el coeficiente de Poisson del suelo 

Es es el módulo de elasticidad del suelo 

Eb es el módulo de elasticidad del material con que se ejecuta la cimentación 

I es la inercia de la cimentación 

C es un coeficiente adimensional que varía en función de la distribución de presiones bajo 

la viga de cimentación. Se toma un valor de 1.0 cuando la distribución de presiones es 

uniforme en el ancho del cimiento y un valor entre 1.0 < C < 1.13 cuando la distribución del 

asiento es uniforme en el ancho del cimiento.   

 

Vesic (1961) realiza varias modificaciones de la formulación propuesta por Biot en 1937, 

quedando la fórmula de la siguiente forma: 



Estado del arte 

110 

 𝑘 =
0.65 𝐸𝑠

𝐵(1 − 𝜈𝑠
2)

√
𝐸𝑠𝐵

4

𝐸𝑏𝐼

12

 
(151) 

 

 

3.6.3 Metodologías de aplicación del módulo de balasto en modelos de cálculo  

Las presiones de contacto y asientos en una cimentación varían espacialmente y, en 

consecuencia, también lo hace el módulo de balasto. En el caso de cimentaciones de pequeño 

tamaño, como zapatas, esta variación espacial puede llegar a ser ignorada, pero en el caso de 

cimentaciones tipo losa o vigas de cimentación, es notable que la relación entre la presión de 

contacto y el asiento puede llegar a variar notablemente. 

En consecuencia, existen varias metodologías para considerar la variación espacial del módulo 

de balasto en los modelos de cálculo. Se exponen a continuación las principales metodologías. 

 

3.6.3.1 Módulo de balasto único 

Se considera un único módulo de balasto en toda la superficie de la cimentación. Esta 

aproximación puede ser razonable cuando la cimentación tiene unas dimensiones moderadas 

y la variación espacial de cargas no es muy significativa. 

Esta metodología no es aconsejable para cimentaciones con dimensiones considerables o 

cargas desiguales, ya que no refleja la verdadera distribución de presiones, asientos y 

esfuerzos. 

 

3.6.3.2 Módulo de balasto variable espacialmente 

Se subdivide la base de la cimentación en áreas más pequeñas, por ejemplo, mallas o paneles 

asociados a los pilares y zonas intermedias. A cada área se le asigna un módulo de balasto 

distinto de acuerdo con la rigidez local de suelo y del propio cimiento. 

Existen varios métodos para realizar la subdivisión y discretización de los parámetros 

considerados en cada zona. Algunos métodos, como los expuestos en ACI 336.2R-88 o algunas 

guías del Eurocódigo 7 (Frank et al. (2004). Designers’ Guide to EN 1997-1 Eurocode 7: 

Geotechnical Design - General Rules), realizan una subdivisión de la cimentación con el fin de 
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asignar un coeficiente de balasto mayor en los bordes; otros métodos realizan una subdivisión 

de acuerdo a las características de las cargas o rigidez relativa de la losa y el suelo. 

A continuación, se exponen los principales métodos de subdivisión y variación del módulo de 

balasto en losas de cimentación. 

 

Metodología propuesta por ACI 336.2R, 1988 

El informe emitido por el comité de ACI número 336.2R-88 recomendaba que se hiciera una 

subdivisión de acuerdo con la Figura 3-45, donde la zona central tendría un tamaño entre un 

30% y un 50% del ancho de la losa (cimentación rígida y flexible, respectivamente), la zona 

intermedia tendría también un tamaño entre un 30% y un 50% del ancho y, finalmente, la zona 

exterior tendría un anchor de aproximadme un 20% el ancho de la losa. El módulo de balasto 

considerado sería de ks en la zona central, 1.5 ks en la zona intermedia y 2 ks en el borde. 

 

Figura 3-45 – Subdivisión de acuerdo con ACI 336.2R-88 

 

Metodología propuesta en Designers’ Guide to EN 1997-1 Eurocode 7: Geotechnical 

Design - General Rules (2004) 

Esta guía del Eurocódigo 7 propone subdividir la losa en 9 zonas de acuerdo con la Figura 3-46 

con distancias de 0.25B y 0.25L desde los bordes de la losa. En las zonas ubicadas en las 

esquinas se incrementaría el módulo de balasto ks un 50%, mientras que en la zona central se 

disminuiría un 50%. 
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Figura 3-46 – Subdivisión de acuerdo con Frank et al. (2004). Designers’ Guide to EN 1997-1 Eurocode 7: 

Geotechnical Design - General Rules 

 

Otras metodologías de subdivisión basadas en la geometría de la losa 

Alipour, Amir (2011) recopiló varias metodologías de subdivisión de la losa siguiendo criterios 

similares al propuesto en ACI 336.2R-88, realizando una subdivisión de la losa que implica un 

mayor coeficiente de balasto en los bordes.  

En las siguientes figuras se exponen tres metodologías de subdivisión del borde. 

 

Figura 3-47 – Subdivisión de acuerdo con recopilación de Alipour, M. (2011) 
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Método de áreas discretas 

Para la discretización de los parámetros considerados en cada zona se realiza un proceso 

iterativo mediante cálculos estructurales, para la obtención de las presiones de contacto, y 

geotécnicos, para la obtención del asentamiento, retroalimentándose hasta obtener un módulo 

de balasto coherente entre el análisis estructural y geotécnico. 

Esta subdivisión permite una representación más precisa de cómo el suelo responde a las 

cargas aplicadas, mejorando la exactitud del análisis estructural. No obstante, tiene un mayor 

costo computacional que los métodos expuestos anteriormente. 

Este enfoque ha sido discutido por diversos autores como Ulrich (1995) y ACI mediante la 

Special Publication SP-152 (1995), o estudios más recientes, como Estephan R. et al. (2021), 

donde se recomiendan diferentes algoritmos para optimizar el proceso. A continuación, se 

indica un algoritmo para realizar la iteración usando los programas comerciales CSI SAFE y 

Rocscience Settle3.  

 

Figura 3-48 – Algoritmo aplicado a método de áreas discretas. Adaptación de Estephan R. et al. (2021) 
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3.6.3.3 Modelos de dos parámetros (Winkler-Pasternak, Hetenyi u otros) 

Algunos programas de cálculo permiten considerar dos parámetros de entrada, además del 

módulo de balasto vertical, se define un segundo coeficiente, módulo de cortante (en algunos 

casos, módulo de balasto horizontal), que simula el acople entre nodos, permitiendo la 

interacción entre muelles contiguos.  

Este enfoque permite una distribución de asientos y presiones de contacto más suave, evitando 

picos aislados. En la práctica, la calibración de este tipo de modelos es más compleja, ya que 

exige calibrar dos parámetros. En ausencia de datos de campo válidos, suelen emplearse 

fórmulas teóricas basadas en la teoría de la elasticidad que relacionan este segundo parámetro 

con el módulo de Poisson del suelo o el espesor de la capa deformable. 

 

3.6.3.4 Modelos de elementos finitos (FEM) 

A pesar de no ser un método que use el módulo de balasto directamente, este tipo de modelos 

se suelen emplear como herramienta de validación o calibración de modelos basados en el 

módulo de balasto.  

En este método, en lugar de usar el coeficiente de balasto explícito, se modela el suelo con 

elementos finitos (como elementos de volumen con comportamiento elasto-plástico para el 

terreno). La cimentación se modela con elementos estructurales (placa o viga) y se vincula al 

suelo mediante la compatibilidad de deformaciones en la interfaz. Este enfoque FEM resuelve 

las ecuaciones de equilibrio en la estructura y el suelo simultáneamente, permitiendo una 

distribución natural de tensiones y deformaciones según las propiedades del suelo y la 

cimentación, sin depender de un módulo de balasto supuesto. También permite considerar 

efectos no lineales, estratificación compleja o el nivel freático, entre otros. 

A pesar de ser una herramienta muy útil y precisa, requiere un mayor costo computacional y 

parámetros de entrada. Para proyectos convencionales, el método de áreas discretas, 

suficientemente calibrado, puede ser suficientemente preciso y manejable para la mayoría de 

los diseños; no obstante, cada día estos modelos son más utilizados, combinado con una mayor 

capacidad computacional de los ordenadores. 
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3.7 Análisis retrospectivo 

El análisis retrospectivo (o backanalysis) en el contexto de este Trabajo de Fin de Master se 

refiere a la identificación de los parámetros del terreno en base a las mediciones observadas, 

principalmente, asientos o presiones ejercidas al terreno. Este proceso se realiza mediante una 

función objetivo y un algoritmo de optimización. 

La función objetivo es una expresión matemática que cuantifica el error o la discrepancia entre 

los valores medidos y los valores estimados por el modelo de cálculo, considerando un 

conjunto de parámetros geotécnicos determinados. 

Por otro lado, el algoritmo de optimización es un método matemático diseñado para identificar 

el conjunto de parámetros geotécnicos que minimiza la función objetivo. Este algoritmo 

explora el espacio de soluciones con el fin de determinar los parámetros que reducen al mínimo 

el error del modelo. 

Existen diferentes funciones objetivo que pueden utilizarse dependiendo de la naturaleza del 

problema y de las propiedades de los datos observados. A continuación (apartado 3.8), se 

presentan las principales funciones objetivo potencialmente aplicables a problemas 

geotécnicos. 

A lo largo del apartado 3.9 se exponen las principales categorías de algoritmos de optimización 

y se explican los principales algoritmos aplicables a este Trabajo de Fin de Master. 
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3.8  Funciones objetivo 

La función objetivo cuantifica la discrepancia entre las mediciones de campo x* y las 

predicciones x(p) del modelo en función de un conjunto de parámetros p a estimar. La mejor 

estimación de los parámetros p será la que minimice la función objetivo. 

A continuación, se exponen varias funciones objetivo que pueden utilizarse en el análisis 

retrospectivo de parámetros geotécnicos dependiendo de la naturaleza del problema y de las 

propiedades de los datos observados. 

 

3.8.1 Método de mínimos cuadrados 

El método más común es adoptar errores independientes con varianza constante, lo que nos 

lleva al criterio de mínimos cuadrados ordinarios. Esta función objetivo se define como la suma 

de los cuadrados de las diferencias entre los valores medidos y calculados. 

 𝐽LS(𝑝) = ∑[𝑥𝑖
∗ − 𝑥𝑖(𝑝)]2

𝑚

𝑖=1

 (152) 

Donde; 

m es el número de observaciones 

 

De acuerdo con Ledesma et al. (1996), la ecuación (152) se puede representar en notación 

matricial de la siguiente forma: 

 𝐽 = (𝑥∗ − 𝑥)𝑇(𝑥∗ − 𝑥) 
(153) 

 

3.8.2 Función de desviación media absoluta 

En lugar de minimizar la suma de los cuadrados de los errores, minimiza la suma de los valores 

absolutos de los errores. Esta función objetivo es más robusta ante valores atípicos y menos 

sensible a errores extremos comparado con la función de mínimos cuadrados.  

 𝐽MAD(𝑝) = ∑|𝑥𝑖
∗ − 𝑥𝑖(𝑝)|

𝑚

𝑖=1

  
(154) 
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3.8.3 Método de mínimos cuadrados ponderados (WLS) 

Es una extensión del método de mínimos cuadrados, pero asignando pesos wi a cada 

observación, considerando su incertidumbre. Es útil cuando las mediciones tienen diferente 

confiabilidad.  

 𝐽WLS(𝑝) = ∑𝑤𝑖[𝑥𝑖
∗ − 𝑥𝑖(𝑝)]2

𝑚

𝑖=1

 
(155) 

 

3.8.4 Método de máxima entropía 

En problemas donde los datos observados son escasos o tienen incertidumbre, la Máxima 

Entropía permite estimar los parámetros que maximizan la dispersión de la distribución de 

probabilidades, asegurando que no se introduzcan sesgos innecesarios. 

La función objetivo se basa en la entropía de Shannon: 

 𝐽ME(𝑝) = −∑𝑃𝑖(𝑝)

𝑖

log𝑃𝑖 (𝑝)  (156) 

 

Donde 𝑃𝑖(𝑝) es la probabilidad de cada observación dada la estimación de parámetros p. Se usa 

en calibración de modelos probabilistas. 

 

3.8.5 Método de Markov 

El método de Markov se basa en la incorporación de dependencias estadísticas entre 

mediciones para mejorar la estimación de parámetros en los problemas inversos. Este método 

es indicado cuando los errores de las observaciones no son independientes, estando 

correlacionados entre ellos, por ejemplo, la acumulación de errores de medición. 

La función de mínimos cuadrados ordinarios supone que los errores en las mediciones son 

independientes y con varianza constante, pero en geotecnia es común que estén 

correlacionados. En estos casos, el método de Markov tiene la ventaja de poder corregir este 

error acumulativo mediante el uso de una matriz de covariancia que modela estas 

correlaciones.   
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Para incorporar la dependencia entre mediciones, se usa un enfoque de Mínimos Cuadrados 

Ponderados (WLS) o Mínimos Cuadrados Generalizados (GLS), donde en lugar de minimizar 

simplemente la suma de los errores al cuadrado, se introduce una matriz de covarianza Cx: 

 𝐽GLS(𝑝) = (𝑥∗ − 𝑥)𝑇𝐶𝑥
−1(𝑥∗ − 𝑥) (157) 

 

La matriz Cx describe la relación entre los errores de medición. Si los errores fueran 

independientes, Cx  sería simplemente una matriz diagonal con las varianzas σi2 en la diagonal. 

Sin embargo, cuando hay correlación, los elementos fuera de la diagonal indican la relación 

entre diferentes mediciones. 

El método de Markov propone modelar Cx como una matriz con estructura Markoviana, es 

decir, una matriz donde los errores están correlacionados según un proceso de ruido 

acumulativo. 

Un modelo típico para la matriz Cx es una estructura Markoviana de primer orden, en la que los 

errores de una medición dependen del error de la medición anterior, con un coeficiente de 

correlación 𝜌: 

 𝐶𝑥 =

[
 
 
 
 

𝜎2 𝜌𝜎2 𝜌2𝜎2

𝜌𝜎2 𝜎2 𝜌𝜎2

𝜌2𝜎2 𝜌𝜎2 𝜎2

⋯

𝜌𝑚−1𝜎2

𝜌𝑚−2𝜎2

𝜌𝑚−3𝜎2

⋮ ⋱ ⋮
𝜌𝑚−1𝜎2 𝜌𝑚−2𝜎2 𝜌𝑚−3𝜎2 ⋯ 𝜎2 ]

 
 
 
 

 (158) 

 

Donde: 

𝜎² es la varianza de los errores de medición. 

𝜌 es el coeficiente de correlación entre mediciones consecutivas. 

𝑚 es el número de mediciones. 

 

3.8.6 Método de máxima verosimilitud 

Dado un conjunto de mediciones 𝑥∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑚
∗ ) y un modelo numérico que predice 

valores x(p), la función de verosimilitud expresa la probabilidad de observar 𝑥∗ dado p: 

 𝐿(𝑝) = 𝑃( 𝑥 ∗∣∣ 𝑝 ) 
(159) 
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El método de máxima verosimilitud consiste en encontrar los valores de p que maximizan L(p). 

Para mayor facilidad de cálculo, en lugar de maximizar L(p), se suele maximizar su logaritmo 

(función log-verosimilitud): 

 ln 𝐿 (𝑝) = ∑ln𝑃 (𝑥𝑖
∗|𝑝)

𝑚

𝑖=1

 
(160) 

 

Dado que en muchos problemas los errores en las mediciones se modelan como distribuciones 

normales, se asume que los errores 𝜀𝑖 = 𝑥𝑖
∗ − 𝑥𝑖(𝑝) siguen una distribución normal 𝒩(0, σ2), 

con varianza σ². Esto nos lleva a definir la función de verosimilitud como: 

 𝐿(𝑝) = ∏
1

√2𝜋𝜎2

𝑚

𝑖=1

exp(−
(𝑥𝑖

∗ − 𝑥𝑖(𝑝))
2

2𝜎2
) 

(161) 

 

Tomando logaritmos: 

 ln 𝐿 (𝑝) = −
𝑚

2
ln(2πσ2) −

1

2σ2
∑(𝑥𝑖

∗ − 𝑥𝑖(𝑝))
2

𝑚

𝑖=1

 
(162) 

 

Dado que ln L(p) crece cuando la suma de cuadrados disminuye, maximizar ln L(p) es 

equivalente a minimizar la función objetivo de Mínimos Cuadrados Generalizados: 

 𝐽ML(𝑝) = (𝑥∗ − 𝑥(𝑝))
𝑇
𝐶𝑥

−1(𝑥∗ − 𝑥(𝑝)) 
(163) 

 

Donde Cx es la matriz de covarianza de los errores. 

 

3.8.7 Método de máxima verosimilitud con información previa (Bayesiana) 

El método de máxima verosimilitud con información previa, también conocida como 

estimación de máximo a posteriori MAP, es una extensión del método de máxima verosimilitud 
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incorporando información previa de los parámetros objetivo. Se basa en la teoría de Bayes, que 

permite actualizar nuestras creencias sobre los parámetros a partir de los datos observados. 

En el método de máxima verosimilitud se buscan los parámetros p que maximicen la 

probabilidad de observar los datos medidos en x*. En el caso de disponer de información previa 

sobre los parámetros objetivo (ensayos de laboratorio, pruebas de campo…), mediante el 

teorema de Bayes, se pueden combinar ambas fuentes con la siguiente ecuación: 

 𝑃(𝑝|𝑥∗) =
𝑃(𝑥∗|𝑝)𝑃(𝑝)

𝑃(𝑥∗)
 

(164) 

 

Donde: 

𝑃(𝑝|𝑥∗)es la probabilidad a posteriori de los parámetros, es decir, la mejor estimación de p 

después de considerar los datos. 

𝑃(𝑥∗|𝑝)es la verosimilitud, que mide qué tan bien los parámetros p explican los datos x∗. 

𝑃(𝑝) es la distribución a priori de los parámetros, basada en conocimientos previos. 

𝑃(𝑥∗) es una constante de normalización. 

 

El método MAP maximiza la probabilidad a posteriori 𝑃(𝑝|𝑥∗) en lugar de sólo la verosimilitud. 

Dado que maximizar 𝑃(𝑝|𝑥∗) es lo mismo que maximizar su logaritmo, aplicando logaritmos: 

 𝑙 𝑛 𝑃 ( 𝑝 ∣∣ 𝑥 ∗ ) = 𝑙 𝑛 𝑃 ( 𝑥 ∗∣∣ 𝑝 ) + 𝑙 𝑛 𝑃 (𝑝) − 𝑙 𝑛 𝑃 (𝑥 ∗). ln 𝑃 (𝑝|𝑥∗) 
(165) 

 

Como 𝑃(𝑥∗) es una constante respecto a p, puede ignorarse en la optimización. Así, la función 

objetivo del método MAP se obtiene como la suma de la función objetivo de máxima 

verosimilitud y un término adicional que penaliza desviaciones respecto a los valores previos 

de p: 

 𝐽MAP(𝑝) = − ln𝑃 (𝑥∗|𝑝) − ln𝑃 (𝑝) 
(166) 

 



Estado del arte 

121 

Suponiendo que los errores en los datos siguen una distribución normal multivariada con 

matriz de covarianza Cx, y que los valores previos de los parámetros también siguen una 

distribución normal con media p0 y matriz de covarianza Cp, entonces: 

 𝑃(𝑥∗|𝑝) =
1

(2𝜋)𝑚/2|𝐶𝑥|
1/2

exp(−
1

2
(𝑥∗ − 𝑥(𝑝))

𝑇
𝐶𝑥

−1(𝑥∗ − 𝑥(𝑝))) 
(167) 

 𝑃(𝑝) =
1

(2𝜋)𝑛/2|𝐶𝑝|
1/2

exp(−
1

2
(𝑝 − 𝑝0)

𝑇𝐶𝑝
−1(𝑝 − 𝑝0)) (168) 

 

Tomando logaritmos y omitiendo constantes, se obtiene la función objetivo a minimizar en el 

método MAP: 

 𝐽MAP(𝑝) = (𝑥∗ − 𝑥(𝑝))
𝑇
𝐶𝑥

−1(𝑥∗ − 𝑥(𝑝)) + (𝑝 − 𝑝0)
𝑇𝐶𝑝

−1(𝑝 − 𝑝0) 
(169) 

 

3.8.8 Función objetivo con error relativo 

La función objetivo con error relativo es una variación del enfoque clásico de mínimos 

cuadrados, en la cual se minimiza la diferencia relativa entre los valores medidos y los valores 

calculados en lugar de la diferencia absoluta. Este método es particularmente útil cuando los 

datos medidos tienen órdenes de magnitud muy diferentes o cuando se desea dar la misma 

importancia relativa a cada medición, independientemente de su magnitud. 

La función objetivo con error relativo se define como: 

 𝐽rel(𝑝) = ∑(
𝑥𝑖

∗ − 𝑥𝑖(𝑝)

𝑥𝑖
∗ )

2𝑚

𝑖=1

 
(170) 

 

En la ecuación anterior, cada término representa el error relativo cuadrático de la medición i, 

es decir, la diferencia entre el valor medido 𝑥𝑖
∗ y el valor calculado xi(p), normalizada por 𝑥𝑖

∗. 

También puede escribirse en términos de error absoluto y error relativo: 
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 𝐽rel(𝑝) = ∑(
𝜀𝑖

𝑥𝑖
∗)

2𝑚

𝑖=1

 
(171) 

 

Donde 𝜀𝑖 = 𝑥𝑖
∗ − 𝑥𝑖(𝑝). 

Si hay diferentes tipos de mediciones, se pueden usar términos ponderados: 

 𝐽rel(𝑝) =
1

𝑁𝑈
∑(

𝑈𝑖
meas − 𝑈𝑖

calc(𝑝)

𝑈𝑖
meas )

2𝑁𝑈

𝑖=1

+
1

𝑁𝑃
∑(

𝑃𝑗
meas − 𝑃𝑗

calc(𝑝)

𝑃𝑗
meas )

2𝑁𝑃

𝑗=1

  
(172) 

Donde: 

Umeas y Pmeas son los valores medidos. 

NU y NP son el número de mediciones de cada tipo. 

 

Este criterio equilibra la importancia de cada medición, sin importar su magnitud. 

 

3.8.9 Método de máxima correlación cruzada 

Este método minimiza la diferencia en la correlación entre los valores medidos y los valores 

calculados, en lugar de los valores absolutos. Su principal aplicación es en problemas donde se 

busca ajustar la tendencia general más que valores puntuales. 

 𝐽XCORR(𝑝) = 1 −
∑(𝑥𝑖

∗ − 𝑥∗̅̅ ̅)(𝑥𝑖(𝑝) − 𝑥̅(𝑝))

𝜎𝑥∗𝜎𝑥
  

(173) 

 

3.8.10 Función objetivo basada en divergencia de Kullback-Leibler (KL) 

Se usa en enfoques probabilistas donde la distribución de los datos estimados P(x∣p) debe 

aproximarse a la distribución de los datos observados P(x∗). Se usa en problemas de 

optimización en modelos probabilísticos. 

 𝐽KL(𝑝) = ∑ 𝑃(𝑥𝑖
∗)𝑖 log

𝑃(𝑥𝑖
∗)

𝑃(𝑥𝑖(𝑝))
  

(174) 
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3.8.11 Función de penalización con regularización de Tikhonov 

En problemas mal condicionados o con un sobreajuste, introduciendo una penalización en la 

magnitud de los parámetros, ayudando a regularizar las soluciones.  

 𝐽Tik(𝑝) = ∑[𝑥𝑖
∗ − 𝑥𝑖(𝑝)]2

𝑚

𝑖=1

+ 𝜆|𝑝|2 
(175) 
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3.9 Algoritmos de optimización 

Los algoritmos de optimización son métodos matemáticos que se emplean para identificar la 

mejor solución a un problema mediante la maximización o minimización de una función 

objetivo con ciertas restricciones.  

Los principales algoritmos de optimización se pueden clasificar en los siguientes tipos, aunque 

esta lista no es exhaustiva: 

• Métodos basados en gradientes. Estos métodos requieren el cálculo de derivadas de la 

función objetivo para determinar la dirección óptima de búsqueda. Se aplican 

principalmente en problemas de optimización continua y diferenciable, como el 

entrenamiento de redes neuronales, la calibración de modelos numéricos y la 

optimización de funciones matemáticas complejas. Son rápidos y eficientes cuando la 

función es convexa, pero pueden quedarse atrapados en mínimos locales en problemas 

con múltiples óptimos. A continuación, se enumeran algunos métodos basados en 

gradientes.  

o Descenso por Gradiente (Gradient Descent - GD) 

o Gradiente Descendente Estocástico (SGD - Stochastic Gradient Descent) 

o Descenso por Gradiente con Momento (Momentum-Based GD) 

o Método de Newton 

o Método de Gauss-Newton 

o Método de Levenberg-Marquardt 

o Gradiente Conjugado 

o Optimización Cuasi-Newton (BFGS, L-BFGS) 

o Adam (Adaptive Moment Estimation) 

o RMSprop (Root Mean Square Propagation) 

o Adagrad / Adadelta 

 

• Métodos basados en derivadas parciales aproximadas. Estos métodos se utilizan 

cuando no es posible calcular el gradiente analíticamente, por lo que se aproximan las 
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derivadas mediante diferencias finitas o técnicas similares. Son útiles en problemas 

donde la función objetivo es implícita, como en simulaciones numéricas y análisis de 

elementos finitos. Sin embargo, pueden ser ineficientes en términos computacionales 

si la evaluación de la función es costosa. A continuación, se enumeran los principales 

métodos. 

o Método de Diferencias Finitas 

o Métodos de Hessiana Aproximada 

 

• Algoritmos heurísticos y metaheurísticos (optimización evolutiva). Estos algoritmos 

están inspirados en procesos biológicos y físicos, como la selección natural, el 

comportamiento de enjambres y la evolución de organismos. Se usan en problemas 

donde no se conoce la forma exacta de la función objetivo o donde los métodos 

tradicionales no son efectivos. No garantizan encontrar el óptimo global, pero exploran 

eficientemente el espacio de soluciones. Estos algoritmos no necesitan el cálculo de 

derivadas y son más adecuados en problemas complejos con múltiples óptimos locales 

o con funciones objetivo no diferenciables. A continuación, se enumeran los principales 

métodos. 

o Algoritmos Genéticos (GA - Genetic Algorithms) 

o Estrategias Evolutivas (ES - Evolution Strategies) 

o Programación Evolutiva (EP - Evolutionary Programming) 

o Optimización por Enjambre de Partículas (PSO - Particle Swarm Optimization) 

o Algoritmos de Colonia de Hormigas (ACO - Ant Colony Optimization) 

o Recocido Simulado (SA - Simulated Annealing) 

o Optimización por Evolución Diferencial (DE - Differential Evolution) 

o Sistemas Inmunológicos Artificiales (AIS - Artificial Immune Systems) 

o Optimización por Enjambre Bacterial (BFO - Bacterial Foraging Optimization) 

o Optimización Evolutiva de Arquitecturas de Redes Neuronales 

(Neuroevolución) 
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o Algoritmos Genéticos aplicados a Machine Learning (AutoML basado en GA) 

o Optimización por Enjambre de Partículas (PSO) en Deep Learning 

 

• Métodos basados en búsqueda directa (sin gradiente). Estos métodos no requieren el 

cálculo de derivadas y se basan en la evaluación secuencial de puntos en el espacio de 

búsqueda. Son útiles cuando la función objetivo es discontinua, ruidosa o difícil de 

modelar, como en procesos industriales, calibración de modelos geotécnicos y 

optimización de sistemas físicos reales. Aunque pueden ser efectivos en problemas no 

diferenciables, suelen ser más lentos en comparación con los métodos basados en 

gradientes. A continuación, se enumeran los principales métodos. 

o Método Nelder-Mead (Simplex) 

o Método de Powell 

o Búsqueda Aleatoria 

 

• Métodos de programación matemática. Engloban técnicas como la programación lineal, 

cuadrática y no lineal, utilizadas en problemas con restricciones bien definidas. Estos 

métodos pueden garantizar la convergencia a la solución óptima bajo ciertas 

condiciones, pero pueden ser computacionalmente exigentes en problemas de alta 

dimensión. Su principal aplicación es la optimización de recursos, logística, 

planificación de infraestructuras y optimización de costos en ingeniería civil. A 

continuación, se enumeran los principales métodos. 

o Programación Lineal (LP - Linear Programming) 

o Programación Entera y Entera Mixta (ILP, MILP) 

o Programación No Lineal (NLP - Nonlinear Programming) 

o Programación Cuadrática (QP - Quadratic Programming) 

o Programación Dinámica 
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• Métodos basados en modelos surrogados (optimización con modelos aproximados). 

Estos métodos construyen una aproximación probabilística de la función objetivo, 

permitiendo optimizar funciones costosas de evaluar, como simulaciones numéricas 

complejas. Se aplican en optimización bayesiana, procesos gaussianos y modelos de 

aprendizaje automático. Son útiles cuando cada evaluación de la función objetivo 

requiere un alto costo computacional. A continuación, se enumeran los principales 

métodos. 

o Optimización Bayesiana (BO - Bayesian Optimization) 

o Procesos Gaussianos (GP - Gaussian Processes) 

o Optimización con Modelos de Superficie de Respuesta (Kriging) 

o Optimización basada en Máquinas de Soporte Vectorial (SVM Optimization) 

o Redes Neuronales como Modelos Surrogados 

 

• Métodos híbridos. Los métodos híbridos combinan dos o más enfoques de optimización 

para mejorar el rendimiento y la precisión. Se utilizan en problemas de optimización 

complejos, donde un método global (como algoritmos genéticos o PSO) busca una 

buena solución inicial, y luego un método local (como descenso por gradiente o 

Levenberg-Marquardt) la refina. A continuación, se enumeran los principales métodos. 

o Combinación de Métodos Deterministas y Evolutivos (GA + Gradient Descent, 

PSO + Levenberg-Marquardt) 

o Optimización Multiobjetivo (NSGA-II, MOEA/D) 

o Hibridación de Procesos Gaussianos con Métodos Evolutivos 

o Optimización de Hiperparámetros con Modelos Surrogados (AutoML con 

Bayesian Optimization + GP) 

 

A lo largo de los siguientes apartados se exponen las bases teóricas de los principales 

algoritmos de optimización considerados en este Trabajo de Fin de Master. 
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3.9.1 Métodos basados en gradientes 

Los métodos basados en gradientes utilizan el gradiente de la función objetivo para guiar la 

búsqueda de soluciones óptimas. Dado que el gradiente representa la dirección de mayor 

cambio de la función, estos métodos lo emplean para actualizar los parámetros en cada 

iteración y acercarse progresivamente a un mínimo (o máximo) óptimo. 

Para poder aplicar estos métodos, la función objetivo debe ser continua y diferenciable en todo 

el dominio de búsqueda con el fin de poder calcular las derivadas y ajustar los objetivos 

adecuadamente. Los métodos basados en gradientes son muy eficaces y convergen 

rápidamente a la solución óptima cuando la función es suave, con pocos óptimos locales y un 

número limitado de parámetros. 

En el caso de funciones menos suaves, donde existen varios mínimos locales o múltiples 

parámetros, los métodos basados en gradientes pueden ser inestables o menos eficientes, ya 

que el gradiente puede llegar a fluctuar de manera abrupta o terminar en objetivos no óptimos.  

Por otro lado, estos algoritmos tienen una fuerte dependencia del valor inicial de los 

parámetros (punto de partida), afectando al rendimiento y eficacia de la solución. Una 

incorrecta elección del valor inicial puede implicar que el algoritmo se atore en un óptimo local 

o incrementando el número de iteraciones necesarias.  

En términos generales, los métodos basados en gradientes siguen un esquema iterativo 

definido por: 

 𝑝𝑘+1 = 𝑝𝑘 + Δ𝑝𝑘 
(176) 

  

donde: 

𝑝𝑘 representa la estimación de los parámetros en la iteración k. 

Δ𝑝𝑘 es el incremento de parámetros, calculado a partir del gradiente de la función objetivo. 

 

El procedimiento de actualización puede variar según la estrategia utilizada para determinar 

Δ𝑝𝑘, lo que da lugar a distintas variantes de métodos de optimización basados en gradientes. 

En los siguientes apartados se presentarán dos de los enfoques más utilizados en la 

optimización numérica: el método de Gauss-Newton y el método de Levenberg-Marquardt, 
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ambos diseñados para mejorar la estabilidad y la eficiencia de estos algoritmos en diferentes 

contextos de optimización. 

 

Figura 3-49 – Ejemplo gráfico del gradiente descenciente dado el punto inicial p0 y pmin 

 

 

3.9.1.1 Método de Gauss-Newton 

El método de Gauss-Newton es una técnica iterativa para resolver problemas de mínimos 

cuadrados no lineales.  

El problema se plantea como la minimización de la función de error cuadrado (véase ecuación 

(152) de los residuos entre los datos y las ecuaciones no lineales. Para ello, se realiza una 

aproximación mediante la expansión en serie de Taylor en primer orden, de forma que se 

pueda usar la teoría de mínimos cuadrado para la obtención de las nuevas estimaciones de los 

parámetros que avanzan en la dirección en que se minimiza el residuo. 

El residual de la observación i es 𝑟𝑖(𝑝) = 𝑥𝑖
∗ − 𝑥𝑖(𝑝) y su vector es 𝑟(𝑝) = [𝑟1, … , 𝑟𝑚]𝑇, por lo 

que se tiene 𝐽(𝑝) = 𝑟(𝑝)𝑇𝑟(𝑝) = ∑ 𝑟𝑖
2

𝑖 . El gradiente y la Hessiana de J son: 



Estado del arte 

130 

 ∇𝐽 = −2𝐽𝑇(𝑝) 𝑟(𝑝) 
(177) 

 𝐻 = 2𝐽𝑇𝐽 + 2∑𝑟𝑖∇
2𝑟𝑖

𝑖

 (178) 

 

Donde J(p) es la matriz Jacobiana con elementos 𝐽𝑖𝑗 = 𝜕𝑟𝑖/𝜕𝑝𝑗 . 

El método Gauss-Newton aproxima 𝐻 ≈ 2𝐽𝑇𝐽, esta simplificación es aplicable cuando los 

residuos son despreciables para la estimación del óptimo o las propias derivadas segundas de 

𝑟𝑖. 

Igualando el gradiente a cero, la condición de estacionariedad 𝐽𝑇𝑟 = 0 da el sistema normal 

linealizado: 

 𝐽𝑇(𝑝𝑘) 𝐽(𝑝𝑘) Δ𝑝 = 𝐽𝑇(𝑝𝑘) [𝑥∗ − 𝑥(𝑝𝑘)] 
(179) 

 

Donde Δ𝑝 = 𝑝𝑘+1 − 𝑝𝑘 es la corrección de parámetros. 

La solución Δ𝑝 = [𝐽𝑇𝐽]−1𝐽𝑇(𝑥∗ − 𝑥) se aplica iterativamente. En esta forma, la ecuación de 

Gauss-Newton es: 

 𝑝𝑘+1 = 𝑝𝑘 + Δ𝑝𝑘 = 𝑝𝑘 − (𝐽𝑇𝐽)−1𝐽𝑇(𝑥∗ − 𝑥(𝑝𝑘)) 
(180) 

 

Esta fórmula minimiza en un paso la suma de cuadrados linealizada en el entorno de 𝑝𝑘. El 

procedimiento se repite hasta convergencia, cuando |Δ𝑝| o la reducción en J están por debajo 

de un criterio aceptable. 

Gauss-Newton hereda la rapidez de Newton cerca del óptimo (convergencia cuadrática local si 

J es bien comportado) pero sin necesidad de calcular segundas derivadas, ya que utiliza 𝐽𝑇𝐽 

como aproximación de la Hessiana. Sin embargo, puede divergir o converger lentamente si la 

estimación inicial está lejos del mínimo o si 𝐽𝑇𝐽 es mal condicionada. En aplicaciones 

geotécnicas, se ha utilizado con éxito para identificar parámetros de modelos constitutivos, 

aunque su rendimiento decae cuando el problema es extremadamente no lineal o los 

parámetros están acoplados de forma compleja. Ledesma et al. (1996) implementaron Gauss-
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Newton en un código de retroanálisis geotécnico, destacando su eficiencia, pero también su 

sensibilidad a valores iniciales y a la presencia de mínimos locales. 

 

3.9.1.2 Método de Levenberg-Marquardt 

El método de Levenberg-Marquardt (LM), también conocido como método de mínimos 

cuadrados amortiguados, es una variante híbrida que combina Gauss-Newton con el método 

de descenso por gradiente para mejorar la robustez de la optimización, a pesar de ser más 

lento. Este método interpola entre ambos métodos introduciendo un factor de 

amortiguamiento λ que regula el paso. El sistema de ecuaciones modificado es: 

 (𝐽𝑇𝐽 + λ𝐼) Δ𝑝 = 𝐽𝑇(𝑥∗ − 𝑥) 
(181) 

 

Donde λ es adaptativo, aumenta (para acercarse a gradiente descendente) si un paso no mejora 

suficientemente J, o se reduce (aproximando Newton puro) cuando nos acercamos al mínimo. 

En términos de región de confianza, λ controla el tamaño de paso confiable para la 

aproximación cuadrática. 

El algoritmo de Levenberg-Marquardt es más robusto que Gauss-Newton, debido a que llega a 

la convergencia incluso con datos de partida muy alejados de mínimo. Valores del factor de 

amortiguamiento alto facilitan el descenso del gradiente en cada iteración, mientras que un 

ajuste con valores de λ cercanos a cero mantiene la rapidez del método Gauss-Newton. 

Diversos estudios indican que el método Levenberg-Marquardt (LM) es capaz de encontrar 

soluciones en situaciones donde el método Gauss-Newton falla o se estanca, aunque 

generalmente requiere un mayor número de iteraciones. Esta diferencia se debe a que LM 

combina la exploración global con la optimización local: inicialmente actúa con cautela similar 

al método del gradiente, y posteriormente ajusta rápidamente como el método de Newton. 

El algoritmo de Levenberg-Marquardt ha sido utilizado para retroanálisis de parámetros de 

suelos cuando J presenta alta no linealidad. Por ejemplo, Chen et al. (1990) aplicaron LM en la 

calibración de modelos elasto-plásticos obteniendo convergencia estable incluso con 

parámetros iniciales alejados. De Santos (2015) señala que Levenberg-Marquardt es “más 

robusto” que Gauss-Newton en problemas con muchos parámetros o datos ruidosos, aunque 

con un costo computacional mayor. En general, LM es recomendable como mejora del Gauss-
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Newton básico, especialmente en la etapa final de convergencia, o como componente de 

algoritmos híbridos global-local. 

 

Figura 3-50 – Influencia del factor de amortiguación. Adaptación de De Santos (2015), Figure 3.2. 

 

Marquardt (1963) propuso el siguiente algoritmo para optimizar el coeficiente de 

amortiguamiento λ a lo largo de proceso de iteración.  

 

Figura 3-51 – Algoritmo de optimización del factor de amortiguación propuesto por Marquardt (1963). 

Adaptación de De Santos (2015), Figure 3.3.  
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3.9.2 Algoritmos heurísticos y metaheurísticos 

En los casos en que los métodos basados en gradientes pueden ser ineficientes o inadecuados, 

los algoritmos heurísticos y metaheurísticos pueden ser una de las técnicas de optimización 

más adecuada. 

Basados en procesos naturales y matemáticos, como la selección natural, evolución biológica, 

el comportamiento de enjambres o el recocido de metales, son aplicables en procesos en que 

la forma exacta de la función no es conocida y los métodos tradicionales no son adecuados. 

A pesar de que estos métodos pueden no encontrar el óptimo global, permiten una exploración 

del espacio de soluciones bastante eficiente.  

Estos algoritmos no requieren el cálculo de derivadas, lo que los hace más apropiados para 

resolver problemas complejos con múltiples óptimos locales o con funciones objetivo no 

diferenciables. 

A continuación, se desarrollan dos métodos, los algoritmos genéticos y la optimización por 

enjambre de partículas.  

 

3.9.2.1 Introducción a los algoritmos genéticos 

Introducidos por John Holland en el año 1975, son un método de búsqueda heurística basado 

en la evolución natural.  

Esta metodología realiza una búsqueda global de todo el espacio de parámetros usando 

cálculos similares a la selección natural, cruce genético y mutación, de forma que es capaz de 

identificar diversas soluciones, candidatas simultáneamente, una población e individuos. 

En un GA, cada posible solución se codifica como una cadena de genes que representan los 

parámetros del problema. Una población inicial evoluciona mediante generaciones 

(iteraciones) aplicando selección, crossover y mutación. La aptitud de cada individuo se mide 

según su desempeño en resolver el problema. Los individuos más aptos tienen mayor 

probabilidad de ser seleccionados para reproducirse, mientras que los menos aptos son 

descartados. Así, la población mejora gradualmente, similar a la evolución según Darwin. 

El Teorema Fundamental de los Algoritmos Genéticos, conocido como el Teorema de los 

Esquemas de Holland (1975), formaliza esta idea. En esencia, establece que los esquemas 
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cortos, de orden bajo y con una medida de aptitud superior al promedio proliferan 

exponencialmente en las sucesivas generaciones. 

Un esquema es un patrón común en algunos cromosomas. El teorema indica que un patrón con 

alta aptitud aumentará rápido en la población gracias a la selección y recombinación. Los 

algoritmos genéticos combinan estos patrones para buscar soluciones óptimas. Así, la 

información genética útil se difunde y combina sin perderse, excepto por mutaciones. 

A continuación, se indica la ecuación del Teorema de los Esquemas: 

 𝑚(𝐻, 𝑡 + 1) ≥ 𝑚(𝐻, 𝑡)
𝑓(𝐻)

𝑓̅
(1 − 𝑃𝑚) (1 − 𝑃𝑐

𝛿(𝐻)

𝑙 − 1
) 

(182) 

 

Donde: 

m(H,t) es un número de individuos con el esquema H en la población en la generación t. 

f(H) es la aptitud promedio de los individuos con el esquema H. 

𝑓 ̅es la aptitud promedio de toda la población. 

Pm es la probabilidad de mutación. 

Pc es la probabilidad de cruce. 

l es la longitud del cromosoma (cantidad de genes). 

δ(H) es el orden del esquema (cantidad de genes fijos en el esquema H). 

 

 

3.9.2.2 Algoritmo genético simple 

Los algoritmos genéticos simples se basan en tres operadores principales, selección, cruce y 

mutación. Mantiene una población de solución y la va mejorando iterativamente mediante 

procesos basados en la evolución biológica. 

En la siguiente figura se muestra la estructura de un algoritmo genético simple. 
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Figura 3-52 – Estructura de algoritmo genético simple. Adaptación de De Santos (2015), Figure 3.5.  

 

El algoritmo genético simple sigue las siguientes fases: 

1) Se comienza estableciendo una población inicial de tamaño N de individuos, 

normalmente de forma aleatoria en el rango de búsqueda acotado a los parámetros. 

Cada individuo representa una posible solución al problema, codificada típicamente en 

forma binaria (secuencias de 0s y 1s) o en alguna codificación adecuada (enteros, 

reales, etc. según el problema). 
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2) Se evalúa la aptitud de cada individuo mediante una función de aptitud que estima la 

calidad de cada individuo como solución. Por ejemplo, mediante la inversa del valor de 

la función objetivo J(p). 

 𝑓(𝑝) = 1/[1 + 𝐽(𝑝)] 
(183) 

3) El criterio de convergencia determina cuando termina el proceso evolutivo. Dado que 

estos algoritmos trabajan con poblaciones de soluciones, son necesarios varios 

parámetros de tolerancia como: número máximo de generaciones, aptitud del mejor 

individuo, aptitud media de la población, número de nuevos individuos por género. 

4) El reemplazo generacional indica el porcentaje de la población que es sustituida por la 

nueva descendencia en cada generación. Por ejemplo, un factor de reemplazo del 100% 

implica que todos los individuos son sustituidos por nuevos individuos, lo que equivale 

al modelo clásico generacional puro. Alternativamente, se pueden reemplazar solo una 

parte de la población, manteniendo los mejores individuos, de forma que no se pierden 

los genes de los mejores individuos.  

5) La selección consiste en elegir a los individuos que se reproducirán. Los individuos con 

mejor aptitud tienen una mayor probabilidad de ser seleccionados. Existen varios 

métodos de selección, se indican los más destacados a continuación: 

a. Ruleta. Estima la probabilidad de seleccionar a un individuo en una generación 

(t) en función de su aptitud (f) con respecto a la aptitud media (𝑓̅) de una 

población con N individuos.  

 𝑃𝑅𝑢𝑙𝑒𝑡𝑎(𝑡) =
𝑓

𝑁 · 𝑓̅
 

(184) 

b. Torneo. Se eligen aleatoriamente un número de individuos y se selecciona el 

que tiene mejor aptitud.  

c. Ranking. Se ordenan las soluciones por aptitud y se otorgan probabilidades de 

selección.  

6) La combinación de dos individuos para generar nuevos individuos se denomina cruce. 

Existen diferentes tipos de cruce, destacándose: 

a. Punto único: se escoge un punto y se intercambian segmentos. 
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b. Dos puntos: se intercambian segmentos en dos puntos. 

c. Uniforme: se elige cada bit aleatoriamente de un progenitor. 

 

Ejemplo de un cruce de un punto para una solución binaria de longitud 7, donde se 

exploran nuevas combinaciones de soluciones de la combinación de los últimos 4 

dígitos: 

 Progenitor 1:   1011010 

 Progenitor 2:  0110011 

 Descendiente 1: 1010011 

 Descendiente 2: 0111010 

 

7) La mutación consiste en la modificación aleatoria de los genes para evitar 

estancamientos en óptimos locales. Existen varios tipos de mutación: 

a. Mutación de Bit, donde se cambia aleatoriamente un bit: 0→1 o 1→0 

b. Mutación Gaussiana. Aplicable a valores reales, se añade un ruido aleatorio. 

 

Ejemplo de mutación en un escenario binario: 

 Original:   1010010 

 Mutado:  1011010 

 

8) La nueva población está formada por los nuevos descendientes y los individuos 

seleccionados de acuerdo con el criterio de reemplazo generacional indicado 

anteriormente. 

9) En los casos en que existan restricciones en las soluciones, se utiliza la siguiente función 

de penalización para castigar a los individuos que no cumplan con dichas restricciones, 

donde gi(p) son las restricciones y λ es un coeficiente de penalización. 

 𝐽𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑑𝑜(𝑝) = 𝐽(𝑝) + 𝜆𝑖 ∑𝑚𝑎𝑥(0, 𝑔𝑖(𝑝)) 
(185) 
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De acuerdo de Santos (2015), Los Algoritmos Genéticos Simples presentan ciertas limitaciones 

que pueden afectar su rendimiento en problemas complejos. Su desempeño depende del 

equilibrio entre explotación (mejorar las soluciones dentro de regiones prometedoras) y 

exploración (buscar nuevas regiones con soluciones potencialmente mejores). Sin embargo, 

este equilibrio no siempre es fácil de alcanzar y depende de varios parámetros como el tamaño 

de la población, el tipo de selección, la probabilidad de cruce Pc y la probabilidad de mutación 

Pm. 

 

3.9.2.3 Algoritmo genético adaptativo 

Los algoritmos genéticos adaptativos son una variante de los algoritmos genéticos simples, con 

la principal ventaja que permiten el ajuste dinámico de los parámetros de evolución como la 

probabilidad de cruce Pc y la probabilidad de mutación Pm en función del estado de la población 

y la etapa del proceso evolutivo.  

De acuerdo con de Santos (2015), a este algoritmo se le incorpora una etapa de mutación 

adaptativa, donde se busque un equilibrio entre exploración de nuevas regiones del espacio de 

búsqueda y explotación para refinar soluciones dentro de regiones potencialmente óptimas.  

En la Figura 3-53 se muestra la estructura del algoritmo genético adaptativo. En los siguientes 

puntos se desarrollan las nuevas fases que se incorporan al algoritmo con respecto al simple 

definido en el apartado anterior.  

A. Evaluación de la diversidad poblacional tras la evaluación de la aptitud de los 

individuos. La diversidad poblacional mide la variabilidad genética que hay en la 

población con el fin de estimar si el algoritmo necesita más exploración o explotación.  

i. Diversidad de población estándar. Mide la variabilidad general de los valores 

de los genes dentro de la población (con n número de genes). Se basa en la 

varianza (σj
2) de cada parámetro en los individuos. 

 𝐷𝑠𝑡𝑑 =
1

𝑛
∑𝜎𝑗

2

𝑛

𝑗=1

 (186) 

Cuando Dstd es alto, implica que hay grandes diferencias entre los individuos 

(alta diversidad), en caso de ser bajo, la población ha convergido a solucione 

similares. 



Estado del arte 

139 

Alternativamente se puede emplear la diversidad basada en la distancia 

Euclidiana que mide la variabilidad individual de cada parámetro en la 

población utilizando la distancia euclidiana entre los valores de los genes de los 

individuos. Esta alternativa es más precisa en representaciones binarias y 

codificaciones más complejas, pero tiene un mayor coste computacional. 

ii. Diversidad de población saludable. Es un umbral dinámico que se calcula en 

función del historial de diversidad de la población durante el proceso evolutivo.  

 𝐷sal = 𝛼 ⋅ 𝐷max + (1 − 𝛼) ⋅ 𝐷min 
(187) 

Donde: 

Dmax es la máxima diversidad observada en generaciones anteriores. 

Dmin  es la mínima diversidad observada en generaciones anteriores. 

α es un coeficiente de ponderación entre 0 y 1 que controla cuánto peso se 

le da a cada valor. 

 

Si la diversidad actual es menor que Dsal, se activa un aumento en la 

mutación para recuperar diversidad. Cuando la diversidad actual está 

cerca o por encima de Dsal, el algoritmo mantiene su enfoque en 

explotación. 

 

B. Selección adaptativa. De acuerdo con la diversidad de la población, se ajusta la 

selección considerando un torneo mayor o r menor para diversidades bajas y altas, 

respectivamente.  

 𝑇𝑇𝑎𝑚𝑎ñ𝑜
𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑣𝑎

= 𝑇𝑇𝑎𝑚𝑎ñ𝑜
𝑀𝑎𝑥 ⋅ (1 − 𝐷std) 

(188) 

 

C. Cruce adaptativo. La probabilidad de cruce Pc se obtiene del ajuste de la función de 

aptitud del individuo f. El cruce será más conservador o agresivo para individuos 

buenos o malos, respectivamente. 
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 𝑃𝑐
𝑎𝑑𝑎𝑝

= 𝑃𝑐
𝑚𝑎𝑥 · (1 −

𝑓𝑚𝑒𝑗𝑜𝑟 − 𝑓𝑖𝑛𝑑

𝑓𝑚𝑒𝑗𝑜𝑟 − 𝑓𝑝𝑟𝑜𝑚𝑒𝑑𝑖𝑜
) 

(189) 

 

D. Mutación adaptativa. La probabilidad de mutación Pm se obtiene del ajuste de la función 

de aptitud del individuo f. Si la población es muy homogénea, se obtendrá un 

incremento en la mutación para recuperar la diversidad, por el contrario, cuando la 

población es muy diversa, se reduce la mutación para evitar ruido. 

 𝑃𝑚
𝑎𝑑𝑎𝑝

= 𝑃𝑚
𝑚𝑎𝑥 · (1 −

𝑓𝑚𝑒𝑗𝑜𝑟 − 𝑓𝑖𝑛𝑑

𝑓𝑚𝑒𝑗𝑜𝑟 − 𝑓𝑝𝑟𝑜𝑚𝑒𝑑𝑖𝑜
) 

(190) 

 

 

Figura 3-53 – Estructura de algoritmo genético adaptativo. Adaptación de De Santos (2015), Figure 3.13.  
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3.9.2.4 Optimización por enjambre de partículas 

La optimización por enjambre de partículas (PSO por sus siglas en inglés), desarrollada por los 

investigadores Kennedy, Eberhart y Shi (1995), es una técnica metaheurística de algoritmo de 

optimización basado en la inteligencia colectiva de sistemas biológicos, como el 

comportamiento de bandadas de pájaros o bancos de peces. Inicialmente fue creado para el 

desarrollo de modelos de comportamientos sociales, pero se comprobó que también es capaz 

de resolver problemas de optimización. 

Este algoritmo optimiza un problema utilizando una población de soluciones candidatas 

llamadas "partículas", moviéndolas por el espacio de búsqueda según reglas matemáticas que 

consideran la posición y velocidad de las partículas. El movimiento de cada partícula se ve 

influido por su mejor posición local encontrada hasta ese momento y por las mejores 

posiciones globales halladas por otras partículas en el espacio de búsqueda. El objetivo teórico 

es hacer que la nube de partículas converja rápidamente hacia las mejores soluciones. 

En el siguiente diagrama se puede ver la estructura del algoritmo. 

 

Figura 3-54 – Estructura de algoritmo de optimización por enjambre de partículas PSO  
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El algoritmo de enjambre de partículas sigue las siguientes fases: 

1) Se comienza estableciendo una población y velocidad inicial de las soluciones 

candidatas llamadas "partículas" de tamaño N de individuos, normalmente de forma 

aleatoria en el rango de búsqueda acotado a los parámetros. Cada partícula representa 

una posible solución al problema. 

2) Se evalúa la mejor posición de cada partícula. Nótese que cada partícula es atraída a su 

mejor posición que ha encontrado en iteraciones anteriores, pero a la vez, también es 

atraída a la mejor posición que ha encontrado el conjunto de partículas en el espacio 

de búsqueda.  

3) El criterio de convergencia determina cuando termina el proceso evolutivo. Dado que 

estos algoritmos trabajan con poblaciones de soluciones, son necesarios varios 

parámetros de tolerancia. 

4) La actualización de la velocidad se realiza con la siguiente ecuación: 

 𝑣𝑖
(𝑡+1)

= 𝜔𝑣𝑖
(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑔 − 𝑥𝑖) 

(191) 

 Donde: 

ω → Factor de inercia, controla la influencia de la velocidad previa y permite que la 

partícula mantenga su dirección de movimiento. Valores altos y bajos indican que la 

partícula explora más lejos o cerca, respectivamente. 

c1 & c2 → Coeficientes de aceleración, controlan la atracción hacia pi y g. 

r1 & r2 → Números aleatorios entre [0,1], introducen aleatoriedad en el movimiento. 

𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) → Es la parte cognitiva de la ecuación (aprendizaje personal), que hace 

que la partícula se aproxime a su mejor posición encontrada y fomenta la 

exploración individual. Valores de c1 altos implican que las partículas confían más 

en sus experiencias. 

𝑐2𝑟2(𝑔 − 𝑥𝑖) → Es la parte social de la ecuación (aprendizaje colectivo), que controla 

que la partícula se dirija hacia la mejor posición global. Esta componente favorece la 

colaboración entre partículas. Valores de c2 altos implican que las partículas siguen 

más al grupo. 
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5) La actualización de la posición se realiza con la siguiente ecuación. 

 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡) + 𝑣𝑖

(𝑡+1)
 

(192) 

 Donde: 

x → Es la posición en cada iteración 

 

Figura 3-55 – Actualización de posición en enjambre de partículas PSO. Fuente: SANCHO CAPARRINI, 

Fernando. Diagrama del algoritmo PSO. En: PSO: Optimización por Enjambres de Partículas. Universidad 

de Sevilla, 2025. Disponible en: https://www.cs.us.es/~fsancho/Blog/posts/PSO.md [Consulta: 

14/03/2025]. 

 

Figura 3-56 – Ejemplo de trayectoria de las partículas en PSO para resolver la función de Mishra Bird para 

diferentes valores de x1 y x2 en la función sobre mapa de soluciones. 
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3.9.3 Método híbrido Global-Local 

La combinación de varios métodos se denomina hibridación. Como se ha indicado 

anteriormente, algunos métodos, como los basados en gradientes, son más eficaces en la 

estimación final de la solución, pero tienen la desventaja de poder atorarse en mínimo locales 

en problemas con múltiples óptimos, por otro lado, los métodos heurísticos y metaheurísticos, 

a pesar de no garantizar encontrar el óptimo global, permiten explorar eficientemente el 

espacio de soluciones. Esta metodología tiene la ventaja de poder utilizar los puntos fuertes de 

varios métodos para agilizar el proceso de búsqueda.  

En el retroanálisis geotécnico, el método híbrido que más interesa consta de dos etapas: una 

búsqueda global mediante un algoritmo metaheurístico (algoritmo genéticos o enjambre de 

partículas) para explorar el espacio de parámetros y encontrar regiones prometedoras cerca 

del óptimo global, seguida de una búsqueda local refinada en esas regiones para converger con 

precisión al mínimo, por ejemplo, mediante los métodos de Gauss-Newton, Levengebr-

Marquardt o gradiente descendiente. Esta combinación permite reducir las posibilidades de 

quedar atrapado en óptimos locales durante la búsqueda global, mientras que se emplea un 

algoritmo con mayor velocidad de convergencia una vez encontrada una buena aproximación. 

Este esquema se denomina algoritmo memético. 

 

3.9.3.1 Búsqueda global 

En la primera etapa, se ejecuta un algoritmo global configurado para priorizar la exploración 

del espacio. Esto implica típicamente permitir bastantes generaciones o partículas, y criterios 

de parada relativamente permisivos, de modo que se identifiquen no sólo una sino varias 

regiones de interés. El resultado de esta etapa es una o varias soluciones de buena calidad 

global. Por ejemplo, considerando un algoritmo genético, tras G1 generaciones, el algoritmo 

entrega como salida el mejor individuo encontrado y quizá otros individuos cercanos en 

aptitud. 

Una práctica común es recoger no solo el óptimo global estimado, sino también los óptimos 

locales significativos detectados. Por ejemplo, si la población final del algoritmo genético 

sugiere dos grupos de individuos de aptitud alta en diferentes zonas del espacio de parámetros, 

se toman representantes de cada grupo. Así, la etapa global mapea el paisaje de la función 

objetivo, localizando valles prometedores. 
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En el caso de un algoritmo genético, se puede usar un criterio de parada relativamente 

temprano si se observa que la población ya se concentró en torno a soluciones buenas. El 

objetivo es no gastar excesivo tiempo afinando con un algoritmo genético lo que se puede 

afinar mejor con el método local. 

 

3.9.3.2 Búsqueda local 

En la segunda etapa, cada solución candidata obtenida de la fase global se utiliza como punto 

de partida para un algoritmo local de alta eficiencia, por ejemplo, Levenberg-Marquardt o 

Gauss-Newton. Este algoritmo refinará la solución, aprovechando que está dentro de la cuenca 

de atracción de un mínimo (idealmente el global). La convergencia local llevará a ajustar los 

parámetros con mayor precisión que la discreción finita de la población mediante un algoritmo 

genético, alcanzando rápidamente una reducción adicional del error. 

En la implementación de De Santos (2014) para túneles, tras el algoritmo genético global se 

iniciaba un proceso de Gauss-Newton (con el programa de elementos finitos Plaxis conectado 

en el bucle) que en pocas iteraciones lograba reducir el error final en un orden de magnitud 

aceptable. Esta sinergia es potente: el algoritmo genético llevaba la solución a una 

aproximación con un error del 5%, y luego Gauss-Newton desde el 5% al error deseado, 

generalmente por debajo del 1%. Si se hubiera usado Gauss-Newton desde el inicio con un 

punto aleatorio, probablemente habría quedado atrapado lejos del óptimo; si se hubiera 

seguido con un algoritmo genético puro, requeriría muchas más generaciones para lograr esa 

precisión sub-1%. 

El método híbrido, por tanto, combina eficiencia computacional con amplia exploración. Su 

desempeño depende de una adecuada interconexión, sabiendo decidir óptimamente cuándo 

pasar de la etapa 1 a la etapa 2. Si se cambia demasiado pronto, el método local podría llevar a 

un óptimo local no global. Si se cambia muy tarde, se habrá malgastado tiempo en el algoritmo 

genético que un método local habría resuelto más rápido. En la práctica, un criterio es pasar 

cuando la mejora en aptitud del GA se desacelera y la diversidad poblacional ya es baja (señal 

de que está explotando en una región). En el estudio de De Santos (2015), se definió una cota 

de error alcanzable por el algoritmo genético, y al llegar a ella, se disparó el refinamiento 

Newtoniano. 
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3.10 Síntesis del estado del arte 

A continuación, se presenta una síntesis ampliada y detallada del estado del arte en el análisis 

de asientos en cimentaciones superficiales en un medio granular y análisis retrospectivo de 

parámetros geotécnicos mediante el uso de algoritmos de optimización. 

Históricamente, los parámetros geotécnicos han sido estimados mediante métodos empíricos 

y modelos analíticos tradicionales, cuya precisión y capacidad para adaptarse a condiciones 

específicas son limitadas. Con la evolución de la geotecnia y la creciente complejidad de las 

estructuras modernas, han surgido necesidades más rigurosas en la modelación del 

comportamiento del terreno, impulsando avances significativos en los modelos constitutivos 

del suelo. Estos modelos han evolucionado desde simplificaciones elásticas lineales hacia 

formulaciones más complejas que reflejan comportamientos no lineales, dependientes del 

tiempo o anisotropía, reconociendo explícitamente la heterogeneidad natural del terreno y las 

limitaciones inherentes a su representación matemática idealizada. 

Dentro de los modelos constitutivos, el módulo de elasticidad E emerge como parámetro 

esencial para caracterizar la respuesta del suelo ante solicitaciones externas. 

Tradicionalmente, el módulo de elasticidad se ha estimado mediante ensayos de laboratorio y 

correlaciones empíricas derivadas de ensayos in situ como el ensayo de penetración estándar, 

ensayos de penetración dinámica o presiómetros, aunque estas correlaciones tienen 

dificultades para reflejar adecuadamente la complejidad y variabilidad real del 

comportamiento del suelo en condiciones diversas.  

A pesar de poderse estimar diferentes módulos de deformación del suelo a partir de la curva 

tensión-deformación, por ejemplo, utilizando líneas secantes desde el origen hasta un punto 

determinado de la curva (módulo secante o inicial) o la pendiente en ciclos de descarga y 

recarga (módulo de recarga), entre otros, la curva tensión-deformación no es lineal, por lo que 

existen diferentes relaciones o módulos de elasticidad para diferentes fases de carga , lo que 

complica aún más la obtención de este parámetro mediante correlaciones empíricas. 

En los últimos años, investigaciones avanzadas han enfocado sus esfuerzos en mejorar la 

representación de fenómenos complejos en los modelos constitutivos, como la anisotropía, la 

respuesta cíclica y dinámica, y efectos multifísicos relacionados con interacciones suelo-agua-

temperatura. Modelos como el Modified Cam Clay (MCC), Hardening Soil (HS) o Hardening Soil 

Small Strain (HSsmall), han permitido representar adecuadamente comportamientos 

dependientes del esfuerzo y pequeñas deformaciones en suelos cohesivos y blandos. Por otro 

lado, el modelo Barcelona Basic Model (BBM) destaca en la representación del 
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comportamiento de suelos parcialmente saturados, especialmente relevante en condiciones 

variables de humedad. 

A pesar de estos avances significativos, aún existen importantes desafíos y necesidades no 

cubiertas en la modelación constitutiva del terreno. Una de las principales carencias 

identificadas es la representación de la anisotropía inducida por la deposición natural y 

compactación del suelo, particularmente en suelos naturales heterogéneos. Asimismo, existe 

una necesidad de incorporar eficazmente el comportamiento reológico a largo plazo, 

incluyendo procesos de fluencia y relajación bajo cargas permanentes. Otro aspecto crítico 

pendiente de resolver es la representación precisa y práctica de procesos multifísicos, como la 

interacción compleja entre suelo, agua y temperatura, enfrentando aún limitaciones debido al 

elevado coste computacional y la dificultad para determinar experimentalmente los 

parámetros asociados. 

La distribución de tensiones bajo cimentaciones superficiales constituye otro aspecto 

fundamental, clásicamente abordado mediante soluciones analíticas como las propuestas por 

Boussinesq y Westergaard. Estas soluciones, aunque útiles en términos educativos y 

conceptuales, presuponen condiciones idealizadas que rara vez coinciden exactamente con la 

realidad práctica de las obras civiles. Por esta razón, el desarrollo de métodos numéricos 

avanzados, particularmente el método de elementos finitos (FEM), ha proporcionado 

herramientas capaces de simular distribuciones de tensiones más realistas, considerando 

adecuadamente la heterogeneidad del terreno, la estratificación y las condiciones de carga 

complejas. Aunque estos métodos presentan ventajas notables en términos de precisión y 

flexibilidad, implican también un mayor coste computacional y complejidad en la obtención de 

parámetros representativos del terreno. 

En estrecha relación con la distribución de tensiones se encuentra el cálculo de los asientos en 

cimentaciones superficiales. La predicción precisa de estos asientos es esencial para garantizar 

la seguridad estructural y funcionalidad de las obras civiles. Los métodos tradicionales, 

basados en teorías clásicas de elasticidad o en enfoques empíricos derivados de observaciones 

directas en obra, a menudo carecen de precisión cuando se enfrentan a condiciones de suelo 

heterogéneas o escenarios de carga complejos. La integración de técnicas avanzadas de 

monitoreo en tiempo real y modelos numéricos más robustos ha proporcionado herramientas 

adicionales para mejorar significativamente la capacidad predictiva respecto a los asientos. 

Dentro de estos análisis cobra especial relevancia el módulo de balasto (k), definido como la 

relación entre la presión aplicada sobre una cimentación y el asiento inducido en el terreno. 
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Este parámetro es crítico para el diseño de estructuras de cimentación como losas. 

Tradicionalmente, su estimación se basa en ensayos de carga directa o correlaciones empíricas, 

aunque estos métodos enfrentan limitaciones inherentes en la representación adecuada de la 

variabilidad espacial del suelo y su comportamiento no lineal. Métodos como el de áreas 

discretas permiten una representación precisa y práctica del comportamiento del suelo frente 

a cargas específicas, ofreciendo precisión suficiente para la mayoría de los proyectos 

convencionales. Sin embargo, para problemas más complejos o sensibles, los modelos basados 

en elementos finitos son cada vez más empleados debido a su capacidad para representar 

fenómenos no lineales, estratificaciones complejas y variaciones del nivel freático, a pesar de 

implicar un mayor esfuerzo computacional. 

Frente a estas necesidades y desafíos, el análisis retrospectivo se presenta como una 

metodología valiosa para calibrar modelos geotécnicos mediante la comparación sistemática 

entre predicciones del modelo y datos observados en campo. En este proceso, la elección 

adecuada de la función objetivo es determinante para garantizar una calibración efectiva y 

significativa del modelo. Funciones clásicas como el error cuadrático medio (MSE) o el 

coeficiente de determinación (R²) son ampliamente utilizadas; sin embargo, en presencia de 

mediciones afectadas por ruido o incertidumbre experimental, otras funciones como el error 

absoluto medio (MAE), funciones robustas como el error absoluto mediano o enfoques 

probabilísticos como la máxima verosimilitud han demostrado ser más apropiadas. No 

obstante, persisten carencias metodológicas en la definición de funciones objetivo que 

manejen adecuadamente la incertidumbre inherente a los datos experimentales, 

representando una línea clara de desarrollo futuro en la investigación geotécnica. 

En paralelo a estos desarrollos metodológicos, los algoritmos de optimización utilizados en 

geotecnia han evolucionado considerablemente, pasando desde métodos deterministas 

basados en gradientes, como Gauss-Newton o Levenberg-Marquardt, hacia técnicas evolutivas 

y metaheurísticas, tales como Algoritmos Genéticos (GA) o Enjambre de Partículas (PSO). 

Recientemente, ha surgido un cierto interés en la ventaja que ofrecen métodos híbridos que 

combinan métodos evolutivos para una fase de búsqueda global, seguidos de una fase de 

optimización local mediante métodos deterministas como Gauss-Newton. Si bien, las 

metodologías híbridas ofrecen grandes ventajas para evitar caer en mínimos locales, estas 

metodologías implican un elevado coste computacional para identificar soluciones óptimas 

con precisión. 
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Precisamente en esta confluencia metodológica se posiciona este Trabajo de Final de Máster, 

cuyo objetivo principal es avanzar en la estimación precisa del módulo de elasticidad mediante 

el desarrollo de un método híbrido innovador. Este método propone una metodología de 

estimación global basada en redes neuronales artificiales, seguida por un refinamiento local 

mediante el método Gauss-Newton o Levenberg-Marquardt. Esta metodología implicaría una 

reducción en el coste computacional para llegar a soluciones precisas. 
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4. DEFINICIÓN DE LA NECESIDAD 

El presente Trabajo de Fin de Máster responde a la necesidad de desarrollar metodologías de 

análisis más precisas, adaptativas y fundamentadas en datos reales (análisis observacional) 

que permitan optimizar el diseño de cimentaciones superficiales en contextos complejos. Esta 

necesidad surge de la combinación de factores técnicos, metodológicos, normativos y 

estratégicos que se detallan a continuación. 

 

A. Dificultades en la calibración de modelos geotécnicos 

A pesar de los avances en modelación numérica, la calibración de parámetros geotécnicos 

continúa siendo una de las tareas más críticas y sensibles. Ajustar los modelos a partir de datos 

reales (asientos, presiones, deformaciones) requiere metodologías capaces de procesar 

información dispersa, potencialmente ruidosa, y que además mantengan coherencia física con 

la mecánica del medio continuo. Esta dificultad se acentúa en proyectos donde los 

requerimientos de precisión son elevados o donde se dispone de datos limitados pero valiosos. 

 

B. Emergencia de la inteligencia artificial en ingeniería geotécnica 

En los últimos años se ha observado una expansión notable del uso de la inteligencia artificial 

en el campo de la geotecnia, particularmente para la predicción de parámetros del terreno a 

partir de datos de campo (data augmentation). Algoritmos como las redes neuronales permiten 

capturar relaciones no lineales complejas y patrones ocultos que resultan inaccesibles a través 

de métodos empíricos tradicionales. Sin embargo, estos modelos carecen frecuentemente de 

control físico y no garantizan la validez mecánica de las estimaciones, lo que limita su 

aplicación directa en el diseño estructural. 

 

C. Necesidad de enfoques híbridos: búsqueda global + ajuste físico 

Para superar las limitaciones anteriores, se requiere una metodología híbrida que combine la 

capacidad predictiva de la inteligencia artificial con herramientas de ajuste físico de alta 

precisión. La presente tesis propone un enfoque que emplea modelos de Machine Learning 

como fase de búsqueda global, seguidos por un ajuste fino mediante métodos de optimización 

local. Esta combinación garantiza que los resultados no solo se ajusten a los datos observados, 

sino que también respeten las leyes fundamentales del comportamiento mecánico del suelo. 
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Además, esta estructura modular ofrece la posibilidad de adaptarse a diferentes tipos de 

cimentaciones y condiciones del terreno, aportando flexibilidad y robustez al procedimiento. 

 

D. Exigencias de aplicabilidad práctica y validación 

La ingeniería geotécnica moderna no puede limitarse a modelos teóricos sofisticados: exige 

soluciones aplicables, replicables y validadas en condiciones reales. La integración de datos 

provenientes de instrumentación moderna y sistemas de monitoreo en tiempo real en el 

proceso de diseño amplía significativamente la capacidad adaptativa frente a condiciones de 

carga cambiantes, contribuyendo a reducir los márgenes de incertidumbre durante la vida útil 

de la infraestructura. La metodología propuesta permite su implementación progresiva en la 

práctica profesional, especialmente en proyectos con datos de auscultación, donde puede 

aprovecharse para mejorar decisiones de diseño o control de calidad. 

 

E. Reconocimiento normativo del enfoque observacional 

Una de las justificaciones más sólidas para el uso de análisis retrospectivo e instrumentación 

es su reconocimiento en normativas de alto nivel. La norma EN 1997-1:2024 (Diseño 

geotécnico) ya contemplaba en su Sección 4 y 10 el uso del Enfoque Observacional 

(Observational Method) como una opción válida en situaciones donde las condiciones del 

terreno no se conocen con precisión suficiente, siempre que se establezca un plan de acción 

adaptativo y se cuente con un sistema de monitoreo fiable. 

Más recientemente, con la revisión de la EN 1990:2023, se afianza esta visión integradora entre 

diseño y evaluación en servicio. El documento reconoce expresamente el uso de datos de 

comportamiento real (monitorización) en el diseño y evaluación estructural y geotécnica, 

incluyendo su aplicación en estructuras existentes, cimentaciones y estructuras sometidas a 

condiciones variables. 

Este enfoque también ha sido reforzado por esfuerzos internacionales como la actualización 

del CIRIA R185 Observational Method Guidance (Project P3295), que proporciona 

recomendaciones prácticas para la aplicación moderna del Enfoque Observacional, 

consolidando su papel como estrategia fiable y respaldada por la comunidad técnica. 

Este reconocimiento normativo abre la puerta al ajuste racional de los coeficientes de 

seguridad, siempre y cuando se utilicen métodos de control y análisis validados. En efecto, 
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aunque los Eurocódigos no proporcionan una reducción explícita y generalizada de 

coeficientes de seguridad por el uso de instrumentación, permiten su ajuste en función del 

nivel de conocimiento del terreno, la calidad del control y la fiabilidad de los métodos de 

cálculo. Así, en casos donde se aplica un enfoque observacional bien planificado y respaldado 

por datos fiables, puede adoptarse un nivel de seguridad parcial más favorable, lo que implica 

beneficios tanto económicos como técnicos. 

 

F. Evolución normativa y necesidad de adaptación 

La evolución reciente del Eurocódigo 7, en particular la actualización del EN 1997-3, refuerza 

la necesidad de adoptar metodologías de diseño geotécnico más integradas, adaptativas y 

basadas en datos. Esta nueva versión (2025) introduce una visión más holística del diseño de 

estructuras de contención, promoviendo una integración más profunda entre la interacción 

suelo-estructura, los modelos específicos del terreno y los estados límite tanto últimos (ULS) 

como de servicio (SLS). 

Se otorga especial importancia a aspectos como la gestión del nivel freático, los efectos del 

cambio climático, el modelado numérico avanzado, y, especialmente, la instrumentación y 

durabilidad, exigiendo la incorporación de planes de inspección y medidas de sostenibilidad 

desde las primeras fases del diseño. 

En este marco normativo emergente, la propuesta de este Trabajo de Final de Máster (que 

integra inteligencia artificial, modelado físico y análisis retrospectivo basado en 

observaciones) se sitúa en consonancia con las directrices de los nuevos Eurocódigos. La 

necesidad de modelos que no solo se adapten al comportamiento observado en campo, sino 

que también optimicen los recursos, promuevan la transparencia documental y favorezcan una 

toma de decisiones informada en condiciones complejas, se alinea directamente con las 

exigencias del EN 1997-3. 

 

G. Contribución a la sostenibilidad y alineación con los Objetivos de Desarrollo Sostenible 

(ODS) 

La metodología propuesta en este Trabajo de Final de Máster no solo responde a la necesidad 

técnica de mejorar la precisión y eficiencia en la estimación de parámetros geotécnicos, sino 

que también se alinea con los principios de sostenibilidad que rigen la ingeniería del siglo XXI. 
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En concreto, se articula con varios de los Objetivos de Desarrollo Sostenible (ODS) establecidos 

por la Agenda 2030 de Naciones Unidas, especialmente en lo relativo a la innovación, la 

eficiencia en el uso de recursos, la resiliencia de las infraestructuras y la mitigación del impacto 

ambiental de los proyectos de ingeniería civil. 

Alineación con ODS específicos: 

• ODS 9: Industria, innovación e infraestructura. El desarrollo de un método híbrido que 

combina inteligencia artificial con fundamentos físicos para estimar parámetros 

geotécnicos representa una clara apuesta por la innovación tecnológica aplicada a la 

infraestructura. Este tipo de avances permite diseñar obras más seguras, inteligentes y 

adaptadas al comportamiento real del terreno, incrementando su resiliencia frente a 

eventos inesperados o condiciones extremas. 

• ODS 11: Ciudades y comunidades sostenibles. Al mejorar la predicción de asientos y 

optimizar el diseño de cimentaciones, la metodología contribuye a la construcción de 

infraestructuras urbanas más duraderas, estables y adaptadas al entorno. Esto reduce 

la necesidad de intervenciones correctivas, minimiza disrupciones urbanas y favorece 

entornos urbanos más sostenibles. 

• ODS 12: Producción y consumo responsables. El enfoque de análisis retrospectivo 

basado en datos reales y optimización permite ajustar los diseños a condiciones 

verificadas, evitando sobreestimaciones de seguridad y, por tanto, el uso innecesario 

de materiales. Esta racionalización del diseño contribuye directamente a una 

utilización más eficiente de recursos como acero, hormigón y energía en las obras. 

• ODS 13: Acción por el clima. La mejora de la eficiencia estructural y la reducción del 

sobredimensionamiento tienen un efecto indirecto en la huella de carbono de los 

proyectos geotécnicos. Optimizar el uso de materiales y reducir los trabajos de 

corrección en obra disminuyen las emisiones asociadas al ciclo de vida de la 

infraestructura. 

 

La estrategia de sostenibilidad implícita en este Trabajo de Final de Máster aborda la 

sostenibilidad en tres dimensiones: 

• Ambiental: mediante la reducción del consumo de recursos y emisiones asociadas a 

sobredimensionamiento y rediseños evitables. 
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• Económica: al permitir diseños más eficientes, ajustados a condiciones reales, lo que se 

traduce en ahorros de materiales, tiempo y costes asociados al ciclo de vida de las 

infraestructuras. 

• Social: al aumentar la fiabilidad de las obras geotécnicas, se incrementa la seguridad 

para los usuarios y comunidades cercanas, y se favorece una mejor gestión del riesgo 

geotécnico. 

 

En resumen, esta tesis se sitúa en la intersección entre el avance tecnológico, la evolución 

normativa y los principios de sostenibilidad que configuran la nueva ingeniería geotécnica. Su 

contribución no solo reside en la mejora de los procedimientos analíticos, sino en la apertura 

hacia un diseño más flexible, informado y conectado con la realidad de campo. 
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5. METODOLOGÍA 

En este capítulo se expone la metodología desarrollada para la estimación del módulo de 

elasticidad del terreno mediante análisis retrospectivo (backanalysis), utilizando datos de 

monitorización de asientos y presiones bajo cimentaciones superficiales.  

La estrategia metodológica se organiza en un algoritmo estructurado en un bucle de cinco fases 

sucesivas, tal como se muestra en la Figura 5-57. Cada una de estas etapas se describe en detalle 

en el apartado 5.1, donde se expone el flujo completo del proceso, desde la caracterización 

inicial del terreno hasta la validación de los parámetros retrocalculados en diferentes fases del 

proyecto. 

 

 

Figura 5-57 – Estructura de algoritmo de análisis retrospectivo 

 

El proceso del análisis retrospectivo se basa en un enfoque de optimización híbrido Global-

Local. En la fase de búsqueda global se emplean modelos de Machine Learning con capacidad 
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de generalización, mientras que en la búsqueda local se recurre a algoritmos clásicos de 

optimización no lineal, como Gauss-Newton o Levenberg-Marquardt, que permiten afinar la 

solución con mayor precisión. 

Con el objetivo de evaluar el rendimiento del algoritmo híbrido (principal contribución de este 

Trabajo de Fin de Máster) y, en particular, de validar la función objetivo, se ha llevado a cabo 

una comparación con diversos algoritmos de optimización ampliamente utilizadas en la 

literatura. Estos algoritmos se enumeran en el apartado 5.2. 

 

5.1 Metodología de análisis retrospectivo 

La estimación del módulo de elasticidad del terreno a partir de ensayos de campo y laboratorio 

presenta un desafío significativo en el cálculo de asientos y esfuerzos en cimentaciones 

superficiales. En este contexto, se propone una metodología basada en el análisis retrospectivo 

que permite ajustar los valores del módulo de elasticidad del suelo mediante la comparación 

entre los resultados de cálculo inicial y los datos obtenidos a partir de la monitorización en 

obra. 

La estrategia desarrollada integra herramientas de Machine Learning, algoritmos de 

optimización híbrida y modelos numéricos de cálculo geotécnico y estructural, lo que permite 

mejorar progresivamente la caracterización del terreno conforme avanza la ejecución del 

proyecto. Este enfoque iterativo busca no solo retrocalcular parámetros con mayor fidelidad, 

sino también generar un marco metodológico aplicable a distintas fases de obra, dotando de 

mayor robustez al diseño y control de las cimentaciones previo a su puesta en servicio. 

La estrategia metodológica que forma el algoritmo de análisis retrospectivo se estructura en 

un bucle formado por cinco fases sucesivas, como se puede ver en la Figura 5-57. 

 

5.1.1 Fase 1 – Creación del modelo de terreno inicial 

Para la creación del modelo inicial del terreno se propone el uso de campañas geotécnicas 

convencionales, complementadas mediante técnicas de expansión de datos (data 

augmentation) que permitan enriquecer el conjunto de información disponible. Esta 

ampliación de datos puede realizarse a partir de correlaciones empíricas reconocidas en la 

literatura, resultados de campañas anteriores, conocimiento geológico y geotécnico de la zona 
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de estudio, así como parámetros derivados de mediciones históricas y otras fuentes 

complementarias disponibles durante la etapa de caracterización. 

Una vez generado este conjunto de datos enriquecido, se emplean algoritmos de Machine 

Learning, en particular redes neuronales artificiales, para construir un modelo predictivo del 

comportamiento del terreno. Este modelo híbrido permite integrar el conocimiento empírico 

y estadístico con los datos obtenidos in situ, ofreciendo una caracterización inicial del terreno 

más robusta y adaptable que la basada exclusivamente en métodos tradicionales. 

Este modelo inicial adquiere una gran relevancia, ya que constituye el punto de partida del 

análisis retrospectivo en fases posteriores. En este contexto, se utiliza como base para la 

búsqueda global dentro del algoritmo de optimización híbrido, que será posteriormente 

refinada mediante técnicas de optimización local. Un modelo inicial mejor calibrado puede 

reducir significativamente el coste computacional y mejorar la eficiencia del proceso de ajuste. 

Asimismo, se recomienda disponer de un conjunto de datos independientes, que no se hayan 

empleado durante el entrenamiento del modelo de Machine Learning, para su uso en la 

evaluación de precisión y capacidad predictiva, con el objetivo de validar su desempeño de 

forma objetiva. 

 

5.1.2 Fase 2 – Análisis estructural y geotécnico 

Se propone la aplicación de esta metodología en el diseño de una cimentación directa. Para ello, 

se realizan dos modelos de cálculo usando los programas CSI SAFE y Rocscience Settle3D, que 

corresponden, de acuerdo con la Figura 5-57, a la fase 2A análisis estructural y fase 2B análisis 

geotécnico, respectivamente. En el programa Rocscience Settle3D se adopta una distribución 

de tensiones de acuerdo con la teoría de Bousinesq y se limita el análisis al asiento instantáneo, 

ignorándose asientos de consolidación dada la naturaleza granular del medio. 

CSI SAFE es un programa de diseño estructural que utiliza como único input del terreno el 

módulo de balasto. Por otro lado, Rocscience Settle3D es un programa de análisis de asientos 

que permite indicar varios datos de entrada diferenciando si es necesario realizar un cálculo 

de asiento instantáneo o de consolidación (primaria y secundaria). En este caso, al limitarse la 

aplicación de esta metodología al estudio de terreno granulares y asientos instantáneos, a parte 

de la presión ejercida por la cimentación (magnitud, forma y rigidez), los parámetros 

geotécnicos de entrada usados en Settle3D son: 
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• Peso específico aparente 

• Peso específico saturado 

• Coeficiente de Poisson 

• Módulo elástico secante Es y de descarga Eu. Véase la Figura 3-8 para mayor aclaración 

de los módulos de deformación utilizados en el programa Rocscience Settle3D. 

 

A partir de la parametrización del terreno obtenida en la fase 1, se construye el modelo 

geotécnico en Settle3D, mediante el cual se calcula un valor inicial del módulo de balasto. Este 

valor se transfiere posteriormente al modelo estructural en CSI SAFE. Ambos programas 

permiten una interconexión iterativa: las presiones transmitidas al terreno, calculadas en 

SAFE, se utilizan como entrada en Settle3D para estimar los asientos, y a su vez, los asientos 

obtenidos se emplean para actualizar el módulo de balasto en SAFE. Este proceso iterativo está 

representado esquemáticamente en el diagrama de la Figura 3-48. 

El módulo de balasto considera una variación espacial conforme al método de áreas discretas 

descrito en el apartado 3.6.3.2. La discretización espacial de los valores del módulo de balasto 

considerados en cada zona se realiza mediante el proceso iterativo indicado previamente, 

buscándose la convergencia de presiones, asiento y módulo de balasto en las diferentes 

subdivisiones de la cimentación. 

Esta subdivisión permite una representación más precisa de cómo el suelo responde a las 

cargas aplicadas, mejorando la exactitud del análisis estructural y variación espacial de los 

asientos y presiones de contacto.  

Una vez generado el modelo estructural, se obtienen los esfuerzos de diseño, presiones 

transmitidas al terreno y asientos finales estimados, entre otros. 

 

5.1.3 Fase 3 – Monitorización 

Durante las diferentes fases de ejecución de la estructura y su puesta en carga, se realiza la 

monitorización mediante sensores de última generación (IoT – Internet of Things) capaces de 

proporcionar datos en tiempo real. 

Es necesario disponer de registros de monitorización de los asientos (en varios puntos de la 

superficie y a diferentes profundidades) y presión transmitida al terreno. Una posible 
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propuesta de instrumentación estaría compuesta por puntos de control topográfico, galgas 

extensométricas, celdas de carga e inclinómetros. 

Estos sensores ayudarían no solo en el análisis retrospectivo, también en la identificación de 

anomalías o patrones que puedan indicar riesgos. Por otro lado, también servirían en la 

creación de gemelos digitales que facilitarían la toma de decisiones durante el mantenimiento 

y futuras construcciones. 

 

5.1.4 Fase 4 – Análisis retrospectivo (búsqueda local) 

El proceso del análisis retrospectivo se basa en un enfoque de optimización híbrido Global-

Local.  

La fase de búsqueda global se realiza en la fase 1 a través de algoritmos de Machine Learning, 

en particular redes neuronales artificiales, que permiten una búsqueda global de los módulos 

de elasticidad en los diferentes estratos.  

En la búsqueda local se recurre a algoritmos clásicos de optimización no lineal basados en 

gradientes, más concretamente, Gauss-Newton o Levenberg-Marquardt, que permiten afinar 

la solución con mayor precisión.  

Los métodos basados en gradientes requieren el cálculo de derivadas de la función objetivo 

para determinar la dirección óptima de búsqueda.  

Tanto Gauss-Newton como Levenberg–Marquardt son algoritmos de ajuste no lineal que, en su 

forma clásica, requiere una función objetivo basada en residuos: 

 𝑟𝑖(𝑥) = 𝑓𝑖(𝑥) − 𝑦𝑖
𝑜𝑏𝑠 

(193) 

Donde 𝑓𝑖(𝑥) es la salida del modelo (asiento calculado) e 𝑦𝑖
𝑜𝑏𝑠 es el valor medido. 

También es necesaria una matriz jacobiana de los residuos respecto a los parámetros de 

entrada: 

 𝐽𝑖𝑗 =
𝜕𝑟𝑖
𝜕𝑥𝑗

 
(194) 
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No obstante, al empleare los programas CSI SAFE y Rocscience Settle3D, no se dispone de una 

función objetivo y, por tanto, sus derivadas. Esto implica una adaptación práctica de la 

metodología mediante la estimación numérica de las derivadas, aproximando la matriz 

jacobiana numéricamente usando diferencias finitas haciendo pequeñas perturbaciones h 

sobre cada parámetro xj.  

 
𝜕𝑟𝑖
𝜕𝑥𝑗

≈
𝑓𝑖(𝑥𝑗 + ℎ) − 𝑓𝑖(𝑥𝑗)

ℎ
 

(195) 

 

Se aplica el algoritmo Gauss-Newton o Levenberg-Marquardt, con la Jacobiana aproximada y 

los residuos, para obtener una nueva estimación de los parámetros. El proceso se repite 

iterativamente hasta alcanzar la convergencia, entendida como la condición en la que el cambio 

relativo entre iteraciones consecutivas en los parámetros estimados o en el valor de la función 

objetivo (error) es menor que un umbral predefinido. 

Este umbral se establece con base en criterios de sensibilidad numérica y precisión práctica: 

por un lado, debe ser lo suficientemente bajo como para garantizar que los parámetros 

convergen a una solución estable y no a una oscilación numérica; por otro, no debe ser 

excesivamente estricto, para evitar un número innecesario de iteraciones que apenas mejoren 

el ajuste. En este trabajo, el valor del umbral se ha fijado empíricamente tras observar la 

estabilización del error y la variación marginal de los parámetros, asegurando así un equilibrio 

entre precisión y eficiencia computacional. 

 

5.1.5 Fase 5 – Convergencia del módulo de elasticidad 

A medida que avanza la ejecución de la estructura y se producen las distintas etapas de carga, 

los datos obtenidos a través de la monitorización son evaluados de forma continua. Con base 

en esta información actualizada, se repite el análisis retrospectivo del módulo de elasticidad, 

adaptándolo a las condiciones reales observadas en cada fase constructiva. 

Este proceso iterativo permite verificar la consistencia y robustez de los parámetros 

retrocalculados, al contrastarlos en diferentes momentos del desarrollo de la obra. De este 

modo, se refuerza la fiabilidad del modelo geotécnico empleado y se mejora progresivamente 

la calibración del comportamiento del terreno. 
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5.2  Algoritmos empleados en el análisis comparativo 

En este apartado se enumeran los diferentes algoritmos de optimización que se han empleado 

a modo de comparación con la metodología expuesta anteriormente. 

 

5.2.1 Basados en gradientes 

• Gauss-Newton 

• Levenberg-Marquardt 

• Multistart con Levenberg-Marquardt 

• Multistart con Gauss-Newton 

• Cuasi-Newton BFGS 

 

5.2.2 Heurísticos y metaheurísticos - Evolutivos 

• Genéticos Simples 

• Genéticos Adaptativos 

• Enjambre de partículas - PSO 

• Evolución Diferencial (DE) 

• Recocido simulado (SA) 

 

5.2.3 Búsqueda Directa  

• Nelder-Mead (Simplex) → Pattern Search o Direct Search 

 

5.2.4 Surrogados  

• Optimización Bayesiana (BO) 

• Procesos Gaussianos (GP) 

• Modelos de superficie de respuesta - Kriging 
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5.2.5 Basados en programación matemática  

• SQP (Sequential Quadratic Programming) - Programación cuadrática 

• Programación No Lineal (NLP - Nonlinear Programming) 

 

5.2.6 Otros  

• Optimización robusta 

• Optimización distribuidamente robusta 

 

5.2.7 Híbridos  

Cada método usa un algoritmo de búsqueda global combinado con una búsqueda local 

mediante Gauss-Newton y Levenberg-Marquardt. 

• Genético simple con GN o LN 

• Genético Adaptativo con GN o LN 

• PSO con GN o LN 

• Evolución Diferencias (DE) con GN o LN 

• Recocido simulado (SA) con GN o LN 

• BO con GN o LN 

• GP con GN o LN 

• Kriging con GN o LN 

• CMA-ES con GN o LN → Estrategias evolutivas 

• Cuckoo Search con GN o LM 

• Grey Wolf Optimizer + GN o LM 

• Shuffled Complex Evolution (SCE) + GN o LM 

• NSGA-II Multiobjetivo + GN o LM 

• SPEA2 Multiobjetivo + GN o LM 
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6. CASO DE ESTUDIO 

El objetivo del presente capítulo es presentar los casos de estudio sobre los que se realizará 

una comparación del coste computacional para llegar a un error dado y desviación de los 

módulos de elasticidad obtenidos del análisis inverso y asientos retrocálculos medidos en 

varios puntos clave que se obtienen mediante la metodología expueste en el apartado 5.1 y los 

algoritmos de optimización enumerados en el apartado 5.2. 

La metodología propuesta se pone en práctica en dos casos de estudio. Uno de ellos sintético, 

donde se conocen los datos y facilita el análisis comparativo de los treinta y dos algoritmos de 

optimización frente al algoritmo propuesto en este trabajo. El segundo caso de estudio consta 

de los datos de monitorización de un proyecto real, pero con ciertas limitaciones en la 

información disponible. En el caso real tan solo se aplica el algoritmo propuesto en este trabajo 

y los principales algoritmos de optimización híbridos.  

 

6.1 Caso de estudio sintético 

El caso de estudio sintético se ilustra en la Figura 6-58. Se considera una cimentación 

superficial de ancho B y largo L que ejerce una presión q constante en toda la superficie. La 

cimentación se apoya en la superficie del terreno, sin empotramiento. Se asume un medio 

granular, con asiento elástico (sin asiento de consolidación), formado por 4 estratos con 

módulo elástico Es,i, de espesor Hi, homogéneos, elásticos e isotrópicos. 

 

Figura 6-58 – Caso de estudio sintético 
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Tabla 6-4 – Valores base adoptados en el caso de estudio 

Parámetro  Valor 

q 

L 

B 

H1 

H2 

H3 

H4 

Es1 

Es2 

Es3 

Es4 

 150.0 KN/m² 

2.50 m 

1.75 m 

2.00 m 

5.50 m 

7.50 m 

15.00 m 

12.5 MPa 

20.0 MPa 

25.0 MPa 

35.0 MPa 

 

No se considera nivel freático en este caso de estudio y, por tanto, variaciones del módulo de 

elasticidad debida a este.  

Se consideran los datos de monitorización del asiento de la cimentación en 8 puntos ubicados 

a varias profundidades en el centro de la cimentación. Estos datos han sido derivados del 

cálculo del asiento considerando los valores del módulo de elasticidad objetivo Esi indicados en 

la Tabla 6-4. 

Con el objetivo de validar la robustez del modelo predictivo frente a la incertidumbre asociada 

a mediciones reales, se ha introducido un ruido sintético a los datos generados numéricamente. 

Esta práctica permite simular condiciones de campo más realistas al considerar errores de 

medición similares a los que se presentan con instrumentación geotécnica. 

El enfoque seguido en la introducción del ruido se fundamenta en la modelización del error 

como una variable aleatoria de distribución normal, con medida cero y desviación estándar σ, 

según se ha planteado en diversos estudios sobre instrumentación y retroanálisis, como los de 

Ledesma (1987, 1996), donde se analizan los errores en mediciones con inclinómetros y otros 

sensores. Esta estrategia representa adecuadamente errores aleatorios (tipo ruido blanco) sin 

introducir sesgo sistemático, lo cual es esencial para evaluar la fidelidad de un modelo 

predictivo ante datos afectados por incertidumbre. 

La formulación general adoptada para la perturbación de las mediciones es la siguiente: 

 𝑠̃𝑖 = 𝑠𝑖 + 𝜖𝑖    con    𝜖𝑖 ~ 𝒩(0, 𝜎𝑖
2) 

(196) 

Donde: 
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• 𝑠̃𝑖  es el valor de asiento simulado con ruido en la profundidad zi 

• 𝑠𝑖  es el valor de asiento original (sin ruido) 

• 𝜖𝑖 es una perturbación aleatoria 

• σi es la desviación estándar del error en la profundidad zi 

 

Se ha considerado que el error de medición es independiente para cada profundidad, y que la 

desviación estándar del error crece ligeramente con la profundidad, para reflejar posibles 

acumulaciones de incertidumbre en sistemas extensométricos multipunto. El modelo 

adoptado para σi es: 

 𝜎𝑖 = 𝜎0 + 𝑘 · 𝑧𝑖  
(197) 

Donde: 

• σo  es igual a 0.05mm y representa la desviación estándar mínima 

• k es igual a 0.01 mm/m y representa el incremento lineal del error con la profundidad 

zi. 

 

Los asientos sintéticos se generaron en distintos niveles de profundidad: 0.0, 0.5, 1.0, 2.0, 3.0, 

5.0, 10.0 y 20.0 m. A cada uno de ellos se le sumó una perturbación aleatoria generada con la 

distribución descrita anteriormente. La generación de estos valores se realizó utilizando la 

función np.random.normal de Python, con media cero y desviación estándar σi en cada caso.  

Este procedimiento permitió obtener el siguiente conjunto de datos con y sin ruido 

incorporado, que imita el comportamiento de mediciones reales afectadas por error 

experimental. Este conjunto se ha utilizado como base para evaluar el desempeño del modelo 

predictivo en condiciones más cercanas a las de campo, comprobando su sensibilidad ante 

variaciones no sistemáticas en los datos de entrada. 

 

Tabla 6-5 – Asientos teóricos con y sin ruido 

Profundidad (m) Asiento teórico 

s (mm) 

Asiento con ruido 

s ruido (mm) 

0.0 23.53 23.31 
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Tabla 6-5 – Asientos teóricos con y sin ruido 

Profundidad (m) Asiento teórico 

s (mm) 

Asiento con ruido 

s ruido (mm) 

0.5 

1.0 

2.0 

3.0 

5.0 

10.0 

20.0 

17.60 

12.52 

6.19 

4.02 

2.14 

0.72 

0.15 

17.81 

12.59 

5.80 

3.85 

2.72 

0.33 

0.10 

 

En la siguiente figura se ilustran los datos de monitorización para ambos casos, con y sin ruido. 

 

Figura 6-59 – Asiento teórico con y sin ruido 
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Para la aplicación del modelo de Machine Learning se consideran los valores del número de 

golpes del ensayo SPT que se presentan en la Figura 6-60, donde se muestra el resultado de 

campo y corregido frente a la profundidad. El perfil obtenido muestra una variación progresiva, 

con golpes más bajos en superficie y un incremento moderado en profundidad. 

La estratigrafía adoptada asume que el terreno está formado por una arena limosa hasta los 

15m de profundidad, seguida de una arena limpia hasta el fondo del sondeo. 

 

 

Figura 6-60 – Resultados ensayo SPT de campo y corregidos (N1,60) 
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6.2 Caso de estudio real 

El presente caso de estudio se basa en la instrumentación y análisis de la losa de cimentación 

de un edificio de gran altura. La cimentación consiste en una losa maciza de hormigón armado 

como se puede ver en la Figura 6-61, cuya geometría en planta se muestra en la Figura 6-62. 

 

Figura 6-61 – Caso de estudio real. Losa de cimentación de edificio de gran altura. Vista 3D 

 

La losa presenta unas dimensiones de 45 m de ancho (B) y 47 m de largo (L), y transmite al 

terreno una presión de contacto aproximadamente uniforme 𝑞, la cual varía a lo largo del 

tiempo conforme avanza el proceso constructivo. El sistema de monitorización implementado 

permite el seguimiento del comportamiento en servicio de la cimentación, concretamente 

mediante la medición de asientos verticales. 

Se dispone de registros de asiento en 16 puntos ubicados sobre la superficie superior de la losa, 

todos ellos a nivel de cimentación. No obstante, no se cuenta con información de 

monitorización en profundidad ni sobre la respuesta del terreno en capas subyacentes. 

Asimismo, las mediciones comenzaron una vez alcanzada una tensión media de contacto de 

aproximadamente 125 KPa, por lo que se ha estimado la deformación acumulada durante la 

primera fase de carga. Adicionalmente, la ubicación exacta de cada punto de medición no está 

documentada, lo que obliga a realizar una hipótesis simplificada sobre la distribución espacial 

de los asientos: se asume que el punto de asiento máximo se localiza en el centro geométrico 

de la losa, mientras que el asiento mínimo corresponde a una de las esquinas. Esta 

aproximación, si bien no reproduce fielmente la distribución real, permite definir un gradiente 

de deformación compatible con el análisis retrospectivo planteado. En la Figura 6-63 se 

ilustran los registros monitorizados. 
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Figura 6-62 – Caso de estudio real. Losa de cimentación de edificio de gran altura. Planta.  

 

 

Figura 6-63 – Caso de estudio real. Evolución asiento en función de la tensión media de contacto  

 

En la Figura 6-64 e presentan los datos de monitorización que serán empleados en el análisis 

retrospectivo, asumiendo que el asiento de mayor magnitud corresponde al centro geométrico 

de la losa, mientras que el de menor magnitud se localiza en la esquina inferior izquierda. 

Puntos de 
monitoreo 
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Figura 6-64 – Caso de estudio real. Evolución asiento en función de la tensión media de contacto 

adoptados en el análisis retrospectivo 

 

Los valores numéricos asociados a cada punto se recogen en la Tabla 6-6. Cabe señalar que 

dichos valores han sido estimados de forma aproximada a partir de la Figura 6-63, mediante 

interpretación visual, por lo que deben considerarse como una adaptación orientativa del 

comportamiento observado dada la limitación de la información disponible para realizar este 

trabajo. 

Tabla 6-6 – Asientos en función de la tensión de contacto 

Presión (KPa) Centro (mm) Esquina (mm) 

0.0 

125.0 

200.0 

300.0 

400.0 

0.00 

14.50 

22.50 

32.50 

46.50 

0.00 

5.00 

8.00 

11.00 

15.00 

 

Para la generación del modelo de Machine Learning se dispone de 18 ensayos presiométricos 

realizados a diferentes profundidades, los cuales se han corregido para estimar el módulo de 

elasticidad E como se ilustra en la Figura 6-65. El perfil obtenido muestra un incremento 

progresivo con la profundidad. Esta información se empleará como base del algoritmo de 

aprendizaje automático. 
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Figura 6-65 – Módulo elasticidad obtenido de ensayos presiométricos 
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7. RESULTADOS 

En este capítulo se presentan los resultados obtenidos tras la aplicación de la metodología de 

análisis retrospectivo desarrollada en este trabajo.  

En el caso de estudio sintético, la finalidad principal es evaluar la capacidad del algoritmo 

propuesto para estimar de forma precisa los módulos de elasticidad de los dos primeros 

estratos del terreno a partir de los datos de monitorización de asientos en distintas 

profundidades, tal y como están presentados en el capítulo 6.1. Se analizan tanto los resultados 

del caso sintético en condiciones ideales como los obtenidos al aplicar errores introducidos 

deliberadamente en los asientos teóricos emulando mediciones ruidosas. El algoritmo 

propuesto se compara con los treinta y dos algoritmos de optimización indicados en el 

apartado 5.2. 

De igual forma, en el caso de estudio real, se realiza un análisis comparativo de la capacidad de 

precisión y coste computacional del algoritmo propuesto frente a los algoritmos híbridos que 

mejor resultado han obtenido en el caso de estudio sintético. 

La comparación entre los asientos generados por el modelo ajustado y los datos de referencia 

permite cuantificar el grado de ajuste y la eficacia de los algoritmos de optimización empleados, 

tanto en su fase global como local. 

Los resultados se organizan en tablas y gráficas para facilitar su interpretación, y se acompañan 

de un análisis técnico que anticipa las conclusiones discutidas en el capítulo siguiente. 

 

7.1 Métricas empleadas 

Las métricas empleadas para valorar la capacidad de cada método son las siguientes: 

• Número de iteraciones necesarias para alcanzar una tolerancia de error igual a 10-5 en 

el asiento en superficie calculado con los módulos de elasticidad retrocalculados. Esta 

métrica permite cuantificar el coste computacional de cada método y su eficiencia en 

el proceso de convergencia, estableciendo un equilibrio entre precisión y coste 

computacional.  

• Recorrido por el mapa de soluciones de los diferentes valores de los parámetros 

objetivo (por ejemplo, E1 e E2 en el caso de estudio sintético) en cada iteración en 

función del error cuadrático normalizado. En el caso de estudio sintético, se representa 

gráficamente la trayectoria seguida por el algoritmo de optimización sobre un mapa de 
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isolíneas del error cuadrático normalizado, calculado entre los módulos de elasticidad 

teóricos y los retrocalculados. Esta visualización permite evaluar la eficiencia del 

método no solo en términos de convergencia, sino también en cuanto a su capacidad 

para explorar zonas del espacio de soluciones con mejor ajuste. Un desplazamiento 

directo y rápido hacia zonas de bajo error sugiere una estrategia de búsqueda eficiente, 

mientras que trayectorias erráticas o estancadas pueden indicar problemas de 

sensibilidad, dependencia del punto inicial o sobreajuste local. 

• Error de predicción de los módulos de deformación retrocalculados respecto a los 

teóricos. Esta comparación permite valorar la precisión del ajuste obtenido, para ello 

se utilizan: 

o Error cuadrático medio (RMSE, por sus siglas en inglés): permite medir la 

magnitud promedio de los errores de predicción, penalizando más los errores 

grandes. Es una métrica robusta y ampliamente utilizada para validar modelos 

numéricos.  

o Coeficiente de determinación (R²): mide el grado de correlación entre los 

módulos de elasticidad calculados y los teóricos. Un valor cercano a 1 indica un 

buen ajuste del modelo. 

• Error de predicción de los asientos respecto a los datos de monitorización: se evalúa la 

desviación entre los asientos teóricos calculados, a partir de los módulos de 

deformación retrocalculados, y los asientos registrados en obra. Esta comparación 

permite valorar la precisión del ajuste obtenido y la capacidad del modelo de estimar 

los potenciales asientos en futuras fases. Como en el caso anterior, se emplea: 

o Error cuadrático medio (RMSE, por sus siglas en inglés): permite medir la 

magnitud promedio de los errores de predicción, penalizando más los errores 

grandes.  

o Coeficiente de determinación (R²): mide el grado de correlación entre los 

asientos calculados y los observados. Un valor cercano a 1 indica un buen ajuste 

del modelo. 

 

Adicionalmente, con el objetivo de dotar de transparencia al modelo de ajuste empleado en el 

análisis retrospectivo del módulo de elasticidad, en el caso de estudio sintético se ha 
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incorporado una técnica de interpretabilidad del tipo XAI (Explainable Artificial Intelligence), 

concretamente el método SHAP (SHapley Additive exPlanations). 

SHAP se fundamenta en la teoría de juegos cooperativos, y en particular en el concepto de 

valores de Shapley. En este contexto, cada variable de entrada del modelo se interpreta como 

un “jugador” cuya aportación marginal al resultado final (la predicción del asiento) puede 

cuantificarse. El algoritmo SHAP traduce esta lógica al ámbito de la modelización predictiva, 

asignando a cada entrada un valor numérico que refleja su contribución individual a la 

predicción realizada por el modelo. De este modo, es posible descomponer la respuesta global 

del modelo en una suma de efectos atribuibles a cada variable. 

En el contexto del análisis inverso propuesto, SHAP permite interpretar el papel que 

desempeña cada parámetro de entrada (E1, E2, etc.) en la estimación final del asiento superficial 

retrocalculado. Este análisis es especialmente útil en un entorno tipo caja negra, donde la 

función de ajuste no es explícita ni derivada analíticamente, como ocurre cuando el modelo 

está gobernado por relaciones numéricas o empíricas integradas en un software de simulación. 

Las ventajas específicas del uso de SHAP en este trabajo son: 

• Identificación de variables clave: permite determinar cuáles de los módulos de 

elasticidad tienen mayor peso en la predicción, lo que puede relacionarse con la 

profundidad o rigidez relativa de los estratos. 

• Coherencia geotécnica: facilita la validación cualitativa del modelo, al verificar si las 

variables más influyentes coinciden con los conocimientos teóricos (por ejemplo, 

mayor sensibilidad del asiento superficial respecto a los módulos de capas someras). 

• Robustez interpretativa: proporciona una base para analizar si el modelo está 

capturando correctamente las interacciones entre parámetros, o si existen posibles 

falsas correlaciones que puedan inducir a conclusiones incorrectas. 

• Aplicabilidad iterativa: al repetir el proceso en distintas fases constructivas, SHAP 

puede evidenciar cómo cambia la sensibilidad del modelo respecto a cada variable 

conforme se acumulan nuevos datos de monitorización. 
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7.2 Resultados numéricos de los algoritmos de optimización 

7.2.1 Caso de estudio sintético 

A continuación, se presentan los resultados numéricos obtenidos tras la aplicación de los 

diferentes algoritmos de optimización considerados en este trabajo. Cada algoritmo se analiza 

según las métricas definidas en el apartado anterior 7.1, con el objetivo de comparar su eficacia, 

precisión y coste computacional en la estimación de los módulos de elasticidad E1 & E2. 

Para realizar una evaluación rigurosa, se analizan el caso de estudio expuesto en el apartado 

6.1, diferenciándose un caso ideal (sin ruido añadido a los asientos de referencia) y, el segundo, 

considerando mediciones con ruido moderado añadido deliberadamente para simular 

incertidumbres realistas que aporten un mayor valor a este caso sintético. Los asientos 

monitorizados con y sin ruido se encuentra en la Tabla 6-5. 

En primer lugar, en la Tabla 7-7 se presentan los resultados obtenidos por cada algoritmo 

indicado en el apartado 5.2, junto a la propuesta metodológica indicada en el apartado 5.1 

(Modelo híbrido de Machine Learning con Gauss-Newton o Levenberg-Marquardt) en la 

predicción de los módulos de elasticidad E1 & E2 para el caso sintético sin ruido. 

Posteriormente, en la Tabla 7-8 se muestran estos mismos resultados, pero considerando la 

presencia de ruido en las mediciones de referencia. 

En ambas tablas se incluyen los siguientes parámetros para una mejor valoración comparativa: 

• Número de iteraciones necesarias para alcanzar un error igual a 10-5 en el asiento en 

superficie calculado a partir de los módulos de elasticidad retrocalculados. Este 

indicador permite evaluar el coste computacional y la eficacia de convergencia de cada 

algoritmo. 

• Valores retrocalculados de los módulos de elasticidad E1 & E2, obtenidos por cada 

método, permitiendo valorar la precisión del proceso de optimización. 

• Error cuadrático medio (RMSE) y coeficiente de determinación (R²) de los módulos 

retrocalculados respecto a los módulos teóricos utilizados como referencia. Estas 

métricas proporcionan una visión cuantitativa del grado de ajuste del modelo numérico 

respecto a la solución esperada. 

 

Finalmente, en la Tabla 7-9  se presentan el error cuadrático medio (RMSE) y el coeficiente de 

determinación (R²) obtenidos al comparar los asientos estimados mediante los módulos de 
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elasticidad retrocalculados con los asientos observados (con y sin ruido). Esto permite evaluar, 

además de la exactitud en la estimación de parámetros geotécnicos, la capacidad predictiva 

real del modelo. 

 

Tabla 7-7 – Número de iteraciones y error de predicción del módulo de elasticidad E1 & E2 
derivados de mediciones sin ruido 

Algoritmo Iteraciones 
E1 

(MPa) 
E2 

(MPa) 
RMSE 
(KPa) R² 

Gauss-Newton (GN) 11 12.500 20.062 44.1 1.000 

Levenberg-Marquardt (LM) 14 12.500 20.000 0.1 1.000 

Multistart con LM 13 12.500 20.002 1.6 1.000 

Multistart con GN 11 12.499 20.014 10.0 1.000 

Cuasi-Newton BFGS 45 12.936 18.026 1429.8 0.855 

Genéticos Simples 54 11.714 26.792 4834.4 -0.662 

Genéticos Adaptativos 57 12.413 18.796 853.3 0.948 

Enjambre de partículas - PSO 59 12.500 20.000 0.2 1.000 

Evolución Diferencial (DE) 119 12.497 20.048 34.2 1.000 

Recocido simulado (SA) 250 12.411 19.442 399.6 0.989 

Nelder-Mead (Simplex) 302 12.500 20.000 0.3 1.000 

Optimización Bayesiana (BO) 200 11.287 28.953 6388.6 -1.902 

Procesos Gaussianos (GP) 300 12.090 19.873 303.4 0.993 

Kriging 300 12.156 20.162 268.5 0.995 

Programación cuadrática (SQP) 45 12.936 18.026 1429.8 0.855 

Programación No Lineal (NLP) 50 12.647 19.174 593.1 0.975 

Optimización robusta 59 12.512 20.089 63.5 1.000 

Optimización distribuidamente robusta 45 12.557 19.779 161.5 0.998 

Genético simple + GN o LM  10+4 12.500 20.241 170.3 0.998 

Genético Adaptativo + GN o LM  10+11 12.500 20.002 1.6 1.000 

PSO + GN o LM  10+7 12.500 20.002 1.6 1.000 

Evolución Diferencial + GN o LM  10+10 12.500 20.002 1.6 1.000 

Recocido simulado + GN o LM  10+9 12.500 20.002 1.6 1.000 

BO + GN o LM  20+18 12.501 19.980 14.3 1.000 

GP + GN o LM  10+10 12.501 19.969 22.2 1.000 

Kriging + GN o LM  10+10 12.500 20.010 7.1 1.000 

CMA-ES + GN o LM 10+13 12.500 20.000 0.3 1.000 

Cuckoo Search + GN o LM  10+11 12.500 20.000 0.3 1.000 

Grey Wolf Optimizer + GN o LM  10+7 12.500 19.996 2.9 1.000 

Shuffled Complex Evolution + GN o LM  10+9 12.498 20.052 37.0 1.000 

NSGA-II Multiobjetivo + GN o LM  10+9 12.502 19.958 29.6 1.000 

SPEA2 Multiobjetivo + GN o LM  10+6 12.499 20.028 19.8 1.000 

Machine Learning + GN 4 12.500 19.997 2.3 1.000 

Machine Learning + LM 10 12.500 20.000 0.1 1.000 
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Tabla 7-8 – Número de iteraciones y error de predicción del módulo de elasticidad E1 & E2 
derivados de mediciones con ruido 

Algoritmo Iteraciones 
E1 

(MPa) 
E2 

(MPa) 
RMSE 
(KPa) R² 

Gauss-Newton (GN) 11 12.339 22.514 1781.4 0.774 

Levenberg-Marquardt (LM) 15 12.502 18.308 1196.4 0.898 

Multistart con LM 13 12.502 18.308 1196.4 0.898 

Multistart con GN 10 12.339 22.515 1781.9 0.774 

Cuasi-Newton BFGS 40 12.492 20.070 50.1 1.000 

Genéticos Simples 53 12.803 16.453 2517.0 0.549 

Genéticos Adaptativos 53 13.483 17.992 1581.2 0.822 

Enjambre de partículas - PSO 59 12.502 18.308 1196.5 0.898 

Evolución Diferencial (DE) 120 12.439 19.723 200.4 0.997 

Recocido simulado (SA) 250 12.723 17.955 1454.7 0.850 

Nelder-Mead (Simplex) 241 12.439 19.725 199.3 0.997 

Optimización Bayesiana (BO) 200 12.558 17.539 1740.7 0.785 

Procesos Gaussianos (GP) 300 12.975 17.008 2142.4 0.674 

Kriging 300 11.911 21.994 1470.3 0.846 

Programación cuadrática (SQP) 40 12.492 20.070 50.1 1.000 

Programación No Lineal (NLP) 48 12.628 19.391 440.0 0.986 

Optimización robusta 64 12.266 21.303 936.4 0.938 

Optimización distribuidamente robusta 78 12.362 22.389 1692.0 0.796 

Genético simple + GN o LM  10+6 12.339 22.514 1781.1 0.774 

Genético Adaptativo + GN o LM  10+13 12.502 18.308 1196.4 0.898 

PSO + GN o LM  10+11 12.502 18.308 1196.4 0.898 

Evolución Diferencial + GN o LM  10+15 12.502 18.308 1196.4 0.898 

Recocido simulado + GN o LM  10+14 12.502 18.308 1196.4 0.898 

BO + GN o LM  10+11 12.339 22.512 1779.9 0.775 

GP + GN o LM  10+13 12.339 22.515 1782.0 0.774 

Kriging + GN o LM  10+18 12.339 22.515 1781.7 0.774 

CMA-ES + GN o LM 10+10 12.339 22.515 1782.3 0.774 

Cuckoo Search + GN o LM  10+14 12.339 22.515 1782.1 0.774 

Grey Wolf Optimizer + GN o LM  10+16 12.339 22.515 1782.2 0.774 

Shuffled Complex Evolution + GN o LM  10+14 12.339 22.515 1782.1 0.774 

NSGA-II Multiobjetivo + GN o LM  10+17 12.339 22.515 1782.3 0.774 

SPEA2 Multiobjetivo + GN o LM  10+16 12.339 22.512 1780.2 0.775 

Machine Learning + GN 6 12.346 22.290 1622.7 0.813 

Machine Learning + LM 13 12.502 18.308 1196.4 0.898 
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Tabla 7-9 – Error de predicción del asiento mediante E1 & E2 retrocalculados 

  Sin ruido   Con ruido 

Algoritmo 
RMSE 
(mm) R²   

RMSE 
(mm) R² 

Gauss-Newton (GN) 0.01 1.000   0.20 0.999 

Levenberg-Marquardt (LM) 0.00 1.000   0.29 0.999 

Multistart con LM 0.00 1.000   0.29 0.999 

Multistart con GN 0.00 1.000   0.20 0.999 

Cuasi-Newton BFGS 0.24 0.999   0.15 1.000 

Genéticos Simples 0.32 0.999   0.32 0.999 

Genéticos Adaptativos 0.23 0.999   0.27 0.999 

Enjambre de partículas - PSO 0.00 1.000   0.29 0.999 

Evolución Diferencial (DE) 0.00 1.000   0.22 0.999 

Recocido simulado (SA) 0.07 1.000   0.24 0.999 

Nelder-Mead (Simplex) 0.00 1.000   0.22 0.999 

Optimización Bayesiana (BO) 0.95 0.988   0.36 0.998 

Procesos Gaussianos (GP) 0.18 1.000   0.31 0.999 

Kriging 0.15 1.000   0.78 0.992 

Programación cuadrática (SQP) 0.24 0.999   0.15 1.000 

Programación No Lineal (NLP) 0.09 1.000   0.15 1.000 

Optimización robusta 0.05 1.000   0.23 0.999 

Optimización distribuidamente robusta 0.03 1.000   0.19 1.000 

Genético simple + GN o LM  0.03 1.000   0.20 0.999 

Genético Adaptativo + GN o LM  0.00 1.000   0.29 0.999 

PSO + GN o LM  0.00 1.000   0.29 0.999 

Evolución Diferencial + GN o LM  0.00 1.000   0.29 0.999 

Recocido simulado + GN o LM  0.00 1.000   0.29 0.999 

BO + GN o LM  0.00 1.000   0.20 0.999 

GP + GN o LM  0.01 1.000   0.20 0.999 

Kriging + GN o LM  0.00 1.000   0.20 0.999 

CMA-ES + GN o LM 0.00 1.000   0.20 0.999 

Cuckoo Search + GN o LM  0.00 1.000   0.20 0.999 

Grey Wolf Optimizer + GN o LM  0.00 1.000   0.20 0.999 

Shuffled Complex Evolution + GN o LM  0.01 1.000   0.20 0.999 

NSGA-II Multiobjetivo + GN o LM  0.01 1.000   0.20 0.999 

SPEA2 Multiobjetivo + GN o LM  0.01 1.000   0.20 0.999 

Machine Learning + GN 0.00 1.000   0.18 1.000 

Machine Learning + LM 0.00 1.000   0.29 0.999 
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7.2.2 Caso de estudio real 

En la Tabla 7-10 se presentan los resultados numéricos obtenidos tras la aplicación de los 

principales algoritmos de optimización frente a la metodología propuesta en este trabajo. 

Se analizan la precisión para estimar el asiento superficial en base al módulo de elasticidad 

retrocalculado y el coste computacional asociado. 

 

  Tabla 7-10 – Error de predicción del asiento mediante parámetros retrocalculados 

Algoritmo de optimización Iteraciones 
RMSE 
(mm) R² 

Genético simple + GN o LM  10+2 0.285 0.998 
 Genético Adaptativo + GN o LM  10+2 0.286 0.998 
PSO + GN o LM  10+2 0.287 0.998 
ML + GN 4 0.285 0.998 
ML + LM 14 0.285 0.998 

 

El error cuadrático medio (RMSE, por sus siglas en inglés) y coeficiente de determinación (R²) 

es similar en todos los casos porque todos los métodos alcanzan la misma solución. No 

obstante, el coste computacional, representado como número de iteraciones, es diferente para 

cada método.  

En el apartado 7.5 se analizan los resultados en detalle, incluyendo gráficas y figuras que 

completan los resultados expuestos anteriormente.  
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7.3 Interpretación del modelo mediante SHAP en el caso de estudio sintético 

Con el objetivo de proporcionar transparencia al modelo empleado en el análisis retrospectivo 

del cao de estudio sintético, se ha aplicado la técnica SHAP (Shapley Additive exPlanations). Los 

resultados obtenidos con esta técnica se presentan en esta sección. 

El análisis mediante SHAP permite interpretar mejor que mediciones de asientos tienen mayor 

relevancia a la predicción de cada módulo de elasticidad E1, E2, E3 y E4.  

Los valores SHAP pueden ser positivos o negativos, lo que indica si una determinada medición 

de asiento contribuye a aumentar o disminuir la predicción del módulo de elasticidad con 

respecto al valor medio del modelo. Esta interpretación direccional permite entender la lógica 

interna del modelo, incluso cuando actúa como una caja negra, y ayuda a verificar si las 

relaciones aprendidas son coherentes con el comportamiento mecánico esperado del suelo. 

Los resultados se muestras en gráficos de tipo SHAP Beeswarm y diagramas de barras, una 

representación gráfica común en la interpretabilidad de modelos de machine learning con 

SHAP. El objetivo de este tipo de gráficas es ilustrar cómo y cuánto influye cada variable 

(feature) en la predicción del modelo, para todos los datos de una manera compacta y visual.  

Las gráficas tipo Beeswarm listan en el eje vertical las variables de entrada (mediciones de 

asiento a distintas profundidades), mientras que el eje horizontal representa los valores SHAP 

de cada observación, los cuales indican el impacto de cada variable en la salida del modelo. Los 

valores de SHAP pueden ser positivos o negativos, lo que indica que la variable de entrada 

contribuya a aumentar o disminuir, respectivamente, la predicción del modelo. Por ejemplo, 

una alta densidad de puntos alejados del eje vertical (alto valor SHAP), especialmente en color 

rojo y en la zona positiva, indica una alta contribución positiva de esa variable en la predicción 

del módulo de elasticidad. 

Los diagramas de barras resumen gráficamente la importancia relativa de cada variable, 

representando el valor medio absoluto de los valores SHAP. En el eje vertical se indican las 

variables de entrada (mediciones de asiento), y el eje horizontal muestra cuánto contribuye 

cada variable, en promedio, a la predicción del modelo, sin importar la dirección del impacto 

(positivo o negativo). 

El análisis realizado mediante SHAP ha permitido entender qué profundidades son más 

determinantes en el cálculo retrospectivo de los módulos de elasticidad del terreno. Las 

mediciones superficiales han demostrado tener un impacto transversal relevante en todos los 

módulos estudiados, especialmente significativo en módulos superficiales (E1 y E2). Por otra 
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parte, mediciones profundas (a partir de 10 m) se vuelven cada vez más críticas conforme se 

calibran módulos correspondientes a capas más profundas (E3 y E4). 

El módulo de elasticidad E1 está claramente asociado con las capas superficiales del terreno. 

De acuerdo con la Figura 7-66 y la Figura 7-67, los valores de SHAP más altos aparecen en 

profundidades superficiales (0.0 m, 0.5 m y 1.0 m), confirmando que estos datos son críticos 

para calibrar correctamente E1. Mediciones más profundas tienen menor impacto, lo que 

corrobora la lógica geotécnica del problema. 

El módulo de elasticidad E2 representa un estrato intermedio (2.0 a 7.5 m). Los gráficos 

correspondientes al módulo de elasticidad del segundo estrato se pueden encontrar en la 

Figura 7-68 y la Figura 7-69. Resulta significativo que tanto las mediciones superficiales (z=0 

m y z=1 m) como las profundas (z=20 m) muestran alta importancia. Esto sugiere que para la 

correcta calibración de E2 es necesario considerar tanto los datos superficiales (posiblemente 

por interacción estructural directa) como profundos (por influencia acumulada). Por otra 

parte, los limitados datos de monitorización por debajo de los 5m de profundidad, limitándose 

a 10m y 20m de profundidad, hacen que el análisis retrospectivo tenga que apoyarse de los 

datos disponibles a mayor profundidad. 

El módulo de elasticidad E3 corresponde a un estrato más profundo (7.5 a 15.0 m). Los gráficos 

correspondientes al módulo de elasticidad del segundo estrato se pueden encontrar en la 

Figura 7-70 y la Figura 7-71. Los resultados indican que los asientos superficiales 

(especialmente z=5.0 m y z=0 m) continúan siendo influyentes, probablemente debido a 

efectos acumulativos, mientras que mediciones intermedias (z=10 m) muestran una influencia 

menor, aunque también importante. La profundidad de 5.0 m muestra la máxima influencia, 

posiblemente por su ubicación cercana al inicio del estrato correspondiente. 

El módulo de elasticidad E4 representa las capas más profundas (15 a 30 m). Los gráficos 

correspondientes al módulo de elasticidad del segundo estrato se pueden encontrar en la 

Figura 7-72 y la Figura 7-73. Resulta llamativo que, aunque se esperaría que profundidades 

grandes fuesen las más determinantes, la superficie (0.0 m) sigue ejerciendo una influencia 

considerable. Las mediciones en 0.0 m y 0.5 m tienen alta relevancia, destacando la importancia 

del efecto acumulativo del asiento superficial en la calibración de módulos muy profundos. 

Mediciones a 10.0 m y 20.0 m también muestran una influencia relevante, pero algo menor, lo 

que es esperable en la lógica geotécnica del problema. 
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Figura 7-66 – SHAP Beeswarm para E1 

 

 

Figura 7-67 – SHAP value para E1 
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Figura 7-68 – SHAP Beeswarm para E2 

 

 

Figura 7-69 – SHAP value para E2 
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Figura 7-70 – SHAP Beeswarm para E3 

 

 

Figura 7-71 – SHAP value para E3 
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Figura 7-72 – SHAP Beeswarm para E4 

 

 

Figura 7-73 – SHAP value para E4 
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Con el fin de sintetizar los resultados obtenidos mediante la técnica SHAP y facilitar su 

interpretación, se ha elaborado la Tabla 7-11, donde se resume la influencia relativa de cada 

medición de asiento en la estimación de los diferentes módulos de elasticidad del terreno (E1, 

E2, E3 y E4). 

La tabla clasifica la importancia de cada profundidad en cuatro niveles cualitativos (muy baja, 

baja, media, alta), en función del valor medio absoluto de SHAP obtenido para cada variable. 

Esta clasificación permite visualizar de forma rápida qué mediciones tienen mayor impacto en 

la predicción de cada parámetro, lo que resulta especialmente útil para orientar decisiones en 

futuras campañas de instrumentación o para priorizar sensores en contextos con limitaciones 

de monitorización. 

Este resumen evidencia, por ejemplo, que las mediciones superficiales (z = 0.0–1.0 m) son 

determinantes en la estimación de E1, mientras que las más profundas (z = 10.0–20.0 m) cobran 

mayor relevancia progresivamente en la predicción de E3 y E4. También permite observar que 

ciertas profundidades intermedias, como z = 5.0 m, mantienen una relevancia transversal en 

todos los módulos, probablemente debido a su ubicación estratégica en la transición entre 

estratos. 

Tabla 7-11 – Resumen influencia SHAP por módulo elástico 

Profundidad (m) E1 E2 E3 E4 

0.0 

0.5 

1.0 

2.0 

3.0 

5.0 

10.0 

20.0 

Alta 

Alta 

Alta 

Media 

Baja 

Baja 

Muy baja 

Muy baja 

Alta 

Media 

Media 

Alta 

Media 

Media 

Media 

Alta 

Media 

Media 

Baja 

Media 

Media 

Alta 

Media 

Media 

Alta 

Media 

Media 

Media 

Baja 

Media 

Media 

Media 

 

Los patrones identificados mediante SHAP proporcionan una base objetiva y visualmente 

interpretativa para discutir la validez y limitaciones del modelo en el capítulo 8 y abren la 

puerta a estudios futuros para explorar los puntos de monitorización óptimos en un análisis 

inverso.  
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7.4  Análisis detallado de los resultados del caso de estudio sintético 

A continuación, se presentan los resultados más relevantes obtenidos tras la aplicación de los 

distintos métodos de optimización en el caso de estudio sintético, poniendo el foco en aquellos 

que han mostrado un comportamiento destacado, ya sea por su eficiencia computacional o por 

la precisión alcanzada en la estimación de los módulos de elasticidad. 

Este apartado incluye una selección representativa de los algoritmos aplicados, con el fin de 

ilustrar los patrones observados y justificar su rendimiento comparativo. Los resultados 

detallados para cada uno de los algoritmos de optimización evaluados, tal como se describen 

en el apartado 5.2, se recogen íntegramente en el ANEJO A. 

 

7.4.1 Métodos basados en gradientes 

La Figura 7-74 y la Figura 7-75 muestran la evolución del error cuadrático medio durante el 

proceso iterativo de los métodos de Gauss-Newton y Levenberg-Marquardt, respectivamente, 

comparando los casos sin ruido (gráfica izquierda) y con ruido (gráfica derecha). 

En el caso de Gauss-Newton, la convergencia ocurre rápidamente en ambos escenarios. Para 

datos sin ruido, el error se reduce casi a cero en la octava iteración, lo que evidencia la alta 

eficiencia del algoritmo en condiciones ideales. En presencia de ruido, el número de iteraciones 

necesarias es similar (once iteraciones), aunque el error residual final es mayor debido a la 

incertidumbre inherente a los datos, lo cual es coherente con lo esperado. 

 

Figura 7-74 – No. Iteraciones para convergencia según Gauss-Newton (sin ruido – con ruido) 
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Figura 7-75 – No. Iteraciones para convergencia según Levenberg-Marquardt (sin ruido – con ruido) 

 

Por su parte, el método de Levenberg-Marquardt requiere más iteraciones para converger. En 

el caso sin ruido, alcanza el criterio de parada en la iteración catorce, mientras que con ruido 

se necesitan hasta quince iteraciones. Al igual que en Gauss-Newton, se observa un error 

residual más elevado en el escenario con ruido, reflejando la sensibilidad del modelo a la 

calidad de los datos de entrada. 

La Figura 7-76 y la Figura 7-77 representan la evolución del proceso de optimización en el 

espacio de soluciones delimitado por los módulos E1 y E2 para los métodos de Gauss-Newton 

y Levenberg-Marquardt, respectivamente. En ambas figuras se muestra tanto el caso sin ruido 

(izquierda) como el con ruido (derecha). 

La trayectoria seguida por los algoritmos parte de un punto inicial (resaltado en azul) y 

progresa iterativamente hasta alcanzar una solución final (círculo verde). La posición del 

mínimo teórico se indica mediante un círculo rojo. 

En ambos métodos se observa un comportamiento estable y dirigido al óptimo, sin evidencia 

de estancamiento en mínimos locales, lo que demuestra una buena capacidad de exploración 

del espacio de búsqueda. No obstante, al introducir ruido en los datos, el punto de convergencia 

se desplaza ligeramente respecto al óptimo ideal, como resultado de la incertidumbre en la 

información observada. Este efecto es coherente con la sensibilidad de los métodos de ajuste 

frente a perturbaciones en las mediciones y refleja la robustez relativa de ambos algoritmos 

ante ruido. 
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Figura 7-76 – Mapa trayectoria E1 y E2 para cada iteración según Gauss-Newton (sin ruido – con ruido) 

 

 

Figura 7-77 – Mapa trayectoria E1 y E2 para cada iteración según Levenberg-Marquardt (sin ruido – con 

ruido) 

 

La Figura 7-78 y la Figura 7-79 muestran la comparación entre los perfiles de deformación 

teóricos y los perfiles ajustados obtenidos mediante el retrocálculo de los módulos de 

elasticidad, tanto para el caso ideal (sin ruido) como para el caso con ruido. En cada figura, se 

presentan los resultados correspondientes al método de Gauss-Newton y Levenberg-

Marquardt, respectivamente. 

Se representa el asiento acumulado frente a la profundidad, comparando la curva obtenida con 

los módulos teóricos (curva negra discontinua) y la generada a partir de los módulos calibrados 

por optimización (curva negra continua). En ambos métodos se observa un ajuste excelente en 
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el caso sin ruido, donde las curvas prácticamente se solapan, lo que valida la capacidad del 

modelo para recuperar los parámetros originales. 

 

Figura 7-78 – Asiento teórico con valores de E1 y E2 retrocalculados según Gauss-Newton (sin ruido – con 

ruido) 

 

Figura 7-79 – Asiento teórico con valores de E1 y E2 retrocalculados según Levenberg-Marquardt (sin 

ruido – con ruido) 
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En el caso con ruido, aunque se aprecia una ligera desviación por debajo de los 5m de 

profundidad, el modelo sigue proporcionando una aproximación razonable, lo que evidencia 

su robustez frente a datos con incertidumbre. Esta visualización permite verificar gráficamente 

la bondad del ajuste global y ofrece una interpretación directa de la coherencia geotécnica del 

retroanálisis realizado. 

 

7.4.2 Heurísticos y metaheurísticos – Evolutivos 

7.4.2.1 Algoritmo Genético Simple 

La aplicación del algoritmo genético simple (SGA) para la calibración de los módulos de 

elasticidad ha permitido evaluar el comportamiento poblacional en distintas generaciones, así 

como analizar la evolución del ajuste a los datos observados en función de la presencia o 

ausencia de ruido. 

El algoritmo considera una población fija de 75 individuos, que evolucionan de manera 

iterativa a través de operadores genéticos clásicos (selección, cruce y mutación). El número de 

generaciones no está predefinido, sino que se prolonga hasta alcanzar un error cuadrático 

medio inferior al umbral adoptado como criterio de convergencia. 

En primer lugar, la Figura 7-80 muestra la evolución del reemplazo generacional hasta alcanzar 

la convergencia. A la izquierda se representa el caso sin ruido y, a la derecha, el caso con ruido. 

En ambas simulaciones se observa un descenso inicial abrupto del reemplazo generacional, 

correspondiente a la fase de convergencia rápida del algoritmo hacia zonas prometedoras del 

espacio de búsqueda. A medida que avanzan las generaciones, el reemplazo se estabiliza en 

torno a un valor medio, señal de que la población ha alcanzado un equilibrio evolutivo. En el 

caso con ruido, el reemplazo tiende a valores más bajos, lo cual indica una mayor dificultad 

para mantener diversidad genética en presencia de incertidumbre. 

La Figura 7-82 (sin ruido) y la Figura 7-83 (con ruido) muestran la evolución de la población 

en el espacio de búsqueda definido por los parámetros E₁ y E₂. Se representan distintas 

generaciones clave (1, 5, 10, 20, 30, 40 y 50), donde cada punto negro corresponde a un 

individuo y el punto rojo representa la solución objetivo (mínimo). Puede observarse que, en 

ambos casos, la población se va concentrando progresivamente en una región óptima del 

espacio. Sin embargo, en presencia de ruido, los individuos presentan una mayor dispersión en 

las generaciones intermedias, reflejo del efecto del ruido sobre la precisión del ajuste. 
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Finalmente, la Figura 7-81 muestra la comparación entre los asientos medidos y los asientos 

calculados con los módulos de elasticidad retrocalculados. A la izquierda se presenta el caso 

sin ruido y a la derecha con ruido. En ambos casos se observa un buen ajuste general, si bien el 

modelo con ruido presenta una ligera desviación en las zonas intermedias de profundidad. Este 

efecto es consistente con el comportamiento observado en otros algoritmos y refuerza la 

necesidad de considerar métodos robustos ante incertidumbre en datos experimentales. 

 

Figura 7-80 – Reemplazo generacional en algoritmo genético simple (sin ruido – con ruido) 

 

 

Figura 7-81 – Asiento teórico con valores de E1 y E2 retrocalculados según algoritmo genético simple (sin 

ruido – con ruido) 
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Figura 7-82 – Evolución población en algoritmo genético simple (sin ruido) 
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Figura 7-83 – Evolución población en algoritmo genético simple (con ruido) 
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7.4.2.2 Algoritmo Genético Adaptativo 

En esta sección se presentan los resultados obtenidos mediante la aplicación del algoritmo 

genético adaptativo, una variante mejorada del enfoque genético clásico que ajusta 

dinámicamente sus parámetros para optimizar el proceso de búsqueda. 

Como en el caso anterior, el algoritmo considera una población fija de 75 individuos, que 

evolucionan de manera iterativa a través de operadores genéticos clásicos (selección, cruce y 

mutación). El número de generaciones no está predefinido, sino que se prolonga hasta alcanzar 

un error cuadrático medio inferior al umbral adoptado como criterio de convergencia. Estas 

bases implican que se priorice la precisión sobre la rapidez computacional. Esta estrategia ha 

demostrado ser particularmente útil en escenarios con incertidumbre, ya que permite una 

adaptación continua sin necesidad de intervención manual. 

La Figura 7-84 muestra la evolución del número de individuos reemplazados en cada 

generación, tanto para el caso sin ruido (izquierda) como con ruido (derecha). Puede 

observarse una tendencia descendente en las primeras generaciones, donde el algoritmo 

explora activamente nuevas soluciones. Posteriormente, el número de reemplazos se 

estabiliza, indicando que la población ha convergido hacia regiones prometedoras del espacio 

de soluciones. En comparación con el algoritmo genético simple, el comportamiento del 

reemplazo es más eficiente y menos oscilante, lo cual sugiere una mayor estabilidad del 

algoritmo adaptativo. 

La evolución de la población en el espacio de soluciones se representa en las Figura 7-86 (sin 

ruido) y Figura 7-87 (con ruido). En ambas se aprecia cómo, a lo largo de las generaciones, los 

individuos se agrupan progresivamente en torno al mínimo global, indicado en rojo. El proceso 

es más eficiente que en el caso anterior: desde las primeras generaciones, se observa una 

concentración de soluciones hacia un entorno muy próximo al mínimo, y esta tendencia se 

mantiene incluso en presencia de ruido, lo que evidencia la robustez del algoritmo frente a 

datos inciertos. 

Por último, la Figura 7-85 compara el perfil de asientos retrocalculado con el perfil teórico, 

tanto en el caso sin ruido (izquierda) como con ruido (derecha). El ajuste logrado es muy 

acertado en ambos escenarios, aunque, como es esperable, el caso con ruido presenta una 

ligera desviación en las mediciones profundas.  
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Figura 7-84 – Reemplazo generacional en algoritmo genético adaptativo (sin ruido – con ruido) 

 

 

Figura 7-85 – Asiento teórico con valores de E1 y E2 retrocalculados según algoritmo genético adaptativo 

(sin ruido – con ruido) 
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Figura 7-86 – Evolución población en algoritmo genético adaptativo (sin ruido) 
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Figura 7-87 – Evolución población en algoritmo genético adaptativo (con ruido) 
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7.4.2.3 Enjambre de partículas 

A continuación, se presentan los resultados obtenidos al aplicar el algoritmo Particle Swarm 

Optimization (PSO – Enjambre de partículas) para la estimación de los módulos de elasticidad. 

Este método utiliza una población de 75 partículas que se desplazan en el espacio de búsqueda 

simulando el comportamiento colectivo de un enjambre. A diferencia de los algoritmos 

genéticos, en PSO no se produce reemplazo generacional, sino que cada partícula ajusta su 

posición y velocidad en función de su experiencia individual y la del conjunto del enjambre, 

permitiendo una exploración continua y cooperativa del espacio de soluciones. 

Las siguientes gráficas muestran la evolución de la posición de las partículas a lo largo de 

distintas iteraciones (Iteración 1, 5, 10, 20, 30, 40 y 50), tanto para el caso ideal (Figura 7-88) 

como para el caso con ruido (Figura 7-89). En ambos escenarios, se observa una rápida 

convergencia hacia la región óptima del espacio de búsqueda, con una reducción progresiva en 

la dispersión de las soluciones. En las primeras generaciones, las partículas exploran un rango 

amplio de valores de E₁ y E₂, pero hacia la generación 20 la mayoría se agrupa en torno al 

mínimo, destacando la eficiencia del algoritmo para identificar regiones prometedoras. 

Incluso en presencia de ruido, el enjambre muestra un comportamiento robusto, aunque se 

detecta una ligera desviación respecto al óptimo teórico, el conjunto de partículas logra 

localizar soluciones próximas al mínimo global sin evidencias de estancamiento prematuro ni 

convergencia hacia óptimos locales irrelevantes. 

En la Figura 7-90 se observa la comparación entre los asientos medidos y los asientos 

calculados con los parámetros óptimos obtenidos. Tanto en el caso sin ruido (izquierda) como 

con ruido (derecha), el algoritmo logra reproducir con alta precisión el perfil teórico de 

deformaciones, especialmente en las zonas más críticas de la curva. El ajuste es 

particularmente bueno en la superficie y los primeros metros de profundidad, se mantiene 

aceptable hasta los 20 metros. 
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Figura 7-88 – Evolución partículas en enjambre de partículas (sin ruido) 
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Figura 7-89 – Evolución partículas en enjambre de partículas (con ruido) 
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Figura 7-90 – Asiento teórico con valores de E1 y E2 retrocalculados según enjambre de partículas (sin 

ruido – con ruido) 

 

 

7.4.3 Métodos híbridos 

7.4.3.1 Algoritmo genético simple y Gauss-Newton 

En este apartado se recogen los resultados del modelo híbrido que combina una búsqueda 

global, mediante un algoritmo genético simple, y una búsqueda local con el método Gauss-

Newton. Los resultados se presentan para ambas etapas. 

De acuerdo con los resultados de los métodos evolutivos expuestos en el punto anterior, la 

evolución de reemplazo generacional hasta alcanzar la convergencia requiere de más de 50 

generaciones. No obstante, como se puede ver en la Figura 7-80, se observa un descenso inicial 

abrupto del reemplazo generacional, correspondiente a la fase de convergencia rápida del 

algoritmo hacia zonas prometedoras del espacio de búsqueda. A medida que avanzan las 

generaciones, el reemplazo se estabiliza en torno a un valor medio, señal de que la población 

ha alcanzado un equilibrio evolutivo. 

La fase de convergencia rápida suele darse en 10 generaciones, por lo que se ha configurado la 

búsqueda global para que el algoritmo genético se ejecuta durante 10 generaciones, empleando 

una población de 50 individuos, lo que permite una exploración amplia del espacio de 
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soluciones. La Figura 7-91 ilustra cómo evoluciona la población a lo largo de las generaciones, 

observándose una clara convergencia hacia una región del espacio de parámetros donde se 

sitúa el mínimo global. Este punto actúa como valor inicial para la segunda fase del modelo. 

 

 

Figura 7-91 – Reemplazo generacional en algoritmo genético simple (sin ruido – con ruido) 

 

La Figura 7-92 (sin ruido) y la Figura 7-93 (con ruido) muestran la evolución de la población 

en el espacio de búsqueda definido por los parámetros E₁ y E₂. Se representan distintas 

generaciones clave (1, 2, 3, 4, 5, 6, 8 y 10), donde cada punto negro corresponde a un individuo 

y el punto rojo representa la solución objetivo (mínimo). Puede observarse que, en ambos 

casos, la población se va concentrando progresivamente en una región óptima del espacio, sin 

alcanzar una convergencia dentro del error admisible. Sin embargo, en presencia de ruido, los 

individuos presentan una mayor dispersión en las generaciones intermedias, reflejo del efecto 

del ruido sobre la precisión del ajuste.  
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Figura 7-92 – Evolución población en algoritmo genético simple (sin ruido) 
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Figura 7-93 – Evolución población en algoritmo genético simple (con ruido) 
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Posteriormente, se aplica el método Gauss-Newton utilizando como punto de partida la mejor 

solución obtenida en la fase evolutiva. Tal y como se muestra en la Figura 7-94, esta fase 

permite una rápida reducción del error cuadrático medio, convergiendo en muy pocas 

iteraciones a una solución óptima.  

La Figura 7-95 resume gráficamente el proceso, donde se observa la evolución del error desde 

el punto inicial (tras la fase genética) hasta la solución final optimizada mediante Gauss-

Newton.  

 

 

Figura 7-94 – No. Iteraciones para convergencia según Gauss-Newton (sin ruido – con ruido) 

 

 

Figura 7-95 – Mapa trayectoria E1 y E2 para cada iteración según Gauss-Newton (sin ruido – con ruido) 
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Finalmente, la Figura 7-96 muestra el excelente ajuste entre los valores medidos de asiento y 

los retrocalculados a partir de los parámetros obtenidos con este enfoque híbrido. 

 

Figura 7-96 – Asiento teórico con valores de E1 y E2 retrocalculados según Genético Simple y Gauss-

Newton (sin ruido – con ruido) 

 

 

7.4.3.2 Algoritmo genético adaptativo y Gauss-Newton 

En esta sección se presentan los resultados del modelo híbrido que integra una primera fase 

de exploración global mediante algoritmo genético adaptativo, seguida de una optimización 

local mediante el método Gauss-Newton. Esta combinación permite beneficiarse de la 

capacidad exploratoria del algoritmo genético adaptativo y de la rápida convergencia del 

método de mínimos cuadrados. 

De acuerdo con los resultados de los métodos evolutivos expuestos en el punto anterior, la 

evolución de reemplazo generacional hasta alcanzar la convergencia requiere de más de 50 

generaciones. No obstante, como se puede ver en la Figura 7-84, se observa un descenso inicial 

abrupto del reemplazo generacional, correspondiente a la fase de convergencia rápida del 

algoritmo hacia zonas prometedoras del espacio de búsqueda. A medida que avanzan las 

generaciones, el reemplazo se estabiliza en torno a un valor medio, señal de que la población 

ha alcanzado un equilibrio evolutivo. 
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La fase de convergencia rápida suele darse en 10 generaciones, por lo que se ha configurado la 

búsqueda global para que el algoritmo genético se ejecuta durante 10 generaciones, empleando 

una población de 50 individuos, lo que permite una exploración amplia del espacio de 

soluciones. La Figura 7-97 ilustra cómo evoluciona la población a lo largo de las generaciones, 

observándose una clara convergencia hacia una región del espacio de parámetros donde se 

sitúa el mínimo global. Este punto actúa como valor inicial para la segunda fase del modelo. 

 

 

Figura 7-97 – Reemplazo generacional en algoritmo genético adaptativo (sin ruido – con ruido) 

 

La Figura 7-98 (sin ruido) y la Figura 7-99 (con ruido) muestran la evolución espacial de la 

población en el plano definido por los parámetros E₁ y E₂. A medida que avanza el proceso 

evolutivo, los individuos tienden a concentrarse en zonas cada vez más cercanas al mínimo 

global. No obstante, el ruido en los datos induce una ligera dispersión adicional en las 

generaciones intermedias, lo que pone de manifiesto la robustez del algoritmo para mantener 

el enfoque en soluciones viables. Se representan distintas generaciones clave (1, 2, 3, 4, 5, 6, 8 

y 10), donde cada punto negro corresponde a un individuo y el punto rojo representa la 

solución objetivo (mínimo).  
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Figura 7-98 – Evolución población en algoritmo genético adaptativo (sin ruido) 
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Figura 7-99 – Evolución población en algoritmo genético adaptativo (con ruido) 
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Concluida la etapa evolutiva, se aplica el método Gauss-Newton tomando como punto inicial el 

mejor individuo obtenido por el algoritmo genético. Como se muestra en la Figura 7-100, la 

convergencia es rápida y eficaz, logrando una reducción significativa del error cuadrático 

medio en nueve iteraciones.  

La Figura 7-101 resume gráficamente el proceso, donde se observa la evolución del error desde 

el punto inicial (tras la fase genética) hasta la solución final optimizada mediante Gauss-

Newton. En ambos escenarios (con y sin ruido), se aprecia una aproximación directa al mínimo, 

con una mejora sustancial respecto al punto de partida. 

 

 

Figura 7-100 – No. Iteraciones para convergencia según Gauss-Newton (sin ruido – con ruido) 

 

 

Figura 7-101 – Mapa trayectoria E1 y E2 para cada iteración según Gauss-Newton (sin ruido – con ruido) 
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Finalmente, la Figura 7-102 evidencia el ajuste entre los valores de asiento medidos y aquellos 

obtenidos con los módulos E₁ y E₂ retrocalculados mediante este modelo híbrido. Tanto en 

condiciones ideales como en presencia de ruido, el ajuste es muy preciso. 

 

Figura 7-102 – Asiento teórico con valores de E1 y E2 retrocalculados según Genético Simple y Gauss-

Newton (sin ruido – con ruido) 

 

 

7.4.3.3 Enjambre de partículas y Gauss-Newton 

En este apartado se presentan los resultados correspondientes a la técnica híbrida que 

combina una exploración global mediante Particle Swarm Optimization (enjambre de 

partículas) y una fase de refinamiento local utilizando el método Gauss-Newton.  

La búsqueda global se realiza con una población de 50 partículas, que actualizan su posición y 

velocidad en función de su mejor experiencia personal y la de sus compañeras. Con base en los 

resultados de este método como único algoritmo de optimización, es necesario realizar 59 

iteraciones hasta alcanzar la convergencia optima, pero el acercamiento al mínimo es más 

significativo en las primeras 20 iteraciones. Con el fin de poder comparar los métodos híbridos 

utilizados, se considera que la búsqueda global está compuesta por 10 iteraciones (como en los 

dos casos anteriores), a pesar de que el resultado de la búsqueda global pueda ser menos 

prometedor que en los casos anteriores. 
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Figura 7-103 – Evolución partículas en enjambre de partículas (sin ruido) 
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Figura 7-104 – Evolución partículas en enjambre de partículas (con ruido) 
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En la Figura 7-103 (sin ruido) y la Figura 7-104 (con ruido) se muestran la evolución de las 

partículas en el espacio de búsqueda definido por los parámetros E₁ y E₂. Se representan 

distintas iteraciones clave (1, 2, 3, 4, 5, 6, 8 y 10), entendidas aquí como instantes discretos de 

actualización colectiva, donde cada punto negro corresponde a una partícula y el punto rojo 

representa la solución objetivo (mínimo). En dichas figuras se observa una progresiva 

concentración de las partículas hacia la región óptima, tanto en el caso sin ruido como con 

ruido, aunque en este último se aprecia mayor dispersión intermedia debido a la incertidumbre 

de los datos. 

El método Gauss-Newton se aplica a continuación, tomando como punto de partida el mejor 

resultado obtenido por el algoritmo evolutivo. La Figura 7-105 muestra la evolución del error 

cuadrático medio durante esta fase. La convergencia es rápida, alcanzándose el mínimo en siete 

iteraciones. En presencia de ruido son necesarias hasta 10 iteraciones, adicionalmente, el error 

final es ligeramente superior, pero sigue siendo aceptable. 

La Figura 7-106 resume gráficamente el proceso, donde se observa la evolución de los módulos 

de elasticidad calculados para cada iteración desde el punto inicial (tras la fase de búsqueda 

global) hasta la solución final optimizada mediante Gauss-Newton. En ambos escenarios (con 

y sin ruido), se aprecia una aproximación directa al mínimo, con una mejora sustancial respecto 

al punto de partida. 

 

 

Figura 7-105 – No. Iteraciones para convergencia según Gauss-Newton (sin ruido – con ruido) 
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Figura 7-106 – Mapa trayectoria E1 y E2 para cada iteración según Gauss-Newton (sin ruido – con ruido) 

 

Finalmente, la Figura 7-107 compara los perfiles de asentamiento medidos y retrocalculados a 

partir de los valores estimados de los módulos de elasticidad. En ambos casos (sin ruido y con 

ruido), el modelo reproduce con gran precisión el comportamiento del terreno, destacando el 

buen acoplamiento de esta técnica híbrida. En comparación con otros enfoques, este método 

ha demostrado un mejor ajuste final que la combinación genética simple + Gauss-Newton o 

incluso genética adaptativa + Gauss-Newton. 

 

Figura 7-107 – Asiento teórico con valores de E1 y E2 retrocalculados según enjambre de partículas y 

Gauss-Newton (sin ruido – con ruido) 
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7.4.3.4 Machine Learning y Gauss-Newton o Levenberg-Marquardt 

En este apartado se presentan los resultados obtenidos con la metodología híbrida propuesta 

en este Trabajo Final de Máster, la cual constituye una de las principales contribuciones del 

trabajo. A diferencia de los enfoques híbridos expuestos anteriormente, los cuales combinan 

algoritmos evolutivos en la fase de búsqueda global, se plantea aquí una estrategia basada en 

la combinación de técnicas de Machine Learning (redes neuronales artificiales) para la 

búsqueda global, junto con el método de Gauss-Newton o Levenberg-Marquardt como 

optimización local. 

Esta propuesta se fundamenta en la capacidad de los modelos neuronales para capturar 

relaciones complejas entre variables geotécnicas, proporcionando un punto de partida 

robusto, y de bajo coste computacional, para la fase de ajuste local. 

A nivel conceptual, la diferencia fundamental respecto a metodologías previas radica en que el 

modelo inicial no se define arbitrariamente ni mediante búsquedas aleatorias, sino que se 

entrena con datos de campo y sintéticos generados mediante correlaciones empíricas entre los 

resultados del ensayo SPT corregido N1,60, la profundidad del estrato, la distribución 

granulométrica y el módulo de elasticidad E.  

Se emplea una red neuronal tipo Multilayer Perceptron (MLP), con una configuración tipo 

feedforward de una única capa oculta con 10 neuronas. La función de activación empleada en 

la capa oculta es la función sigmoide, mientras que en la capa de salida se emplea una función 

lineal, habitual en modelos de regresión. 

El modelo se ha entrenado empleando como datos de entrada el número de golpes corregido 

del ensayo SPT (N1,60) y el tipo de suelo (arenas limosas, arenas limpias o arenas con gravas). 

La variable de salida del modelo es el módulo de elasticidad. Para ello se ha utilizado el 

algoritmo Levenberg-Marquardt, particularmente útil en redes pequeñas y con conjuntos de 

datos de tamaño moderado, como es el caso de estudio. 

La división del conjunto de datos se realiza automáticamente por MATLAB en tres 

subconjuntos: 

• 70% para entrenamiento 

• 15% para validación (Control del sobreajuste durante el entrenamiento) 

• 15% para test (evaluación independiente de rendimiento) 
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Este reparto permite evitar sobreajuste y comprobar que el modelo mantiene su capacidad 

predictiva con datos no vistos durante el entrenamiento. 

En la Figura 7-108 se presenta la evolución del error cuadrático medio (MSE) a lo largo de las 

69 épocas empleadas durante el entrenamiento de la red neuronal mediante el algoritmo 

Levenberg-Marquardt. El gráfico muestra los errores correspondientes a los conjuntos de 

entrenamiento (azul), validación (verde) y prueba (rojo), así como la mejor iteración del 

modelo (línea discontinua vertical y círculo). Se observa que el modelo converge rápidamente 

en las primeras épocas, alcanzando una región estable de error mínimo en torno a la época 61, 

momento en el cual se registra el mejor rendimiento de validación con un MSE ≈ 0.03. La curva 

de validación se mantiene por debajo de la de entrenamiento durante la mayor parte del 

proceso, lo que indica una buena capacidad de generalización del modelo y ausencia de 

sobreajuste. El error de prueba permanece también próximo al de entrenamiento, lo que 

sugiere que el modelo tiene un comportamiento coherente sobre datos no vistos. 

 

 

Figura 7-108 – Curva de aprendizaje red neuronal 

 

En la Figura 7-109 se representa el histograma del error de predicción de la red neuronal para 

los tres subconjuntos (entrenamiento, validación y prueba). La distribución es simétrica y 
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centrada en torno al error cero, con una alta concentración de errores pequeños, lo que indica 

un buen ajuste general del modelo en todas las fases.  

 

 

Figura 7-109 – Histograma del error de predicción de la red neuronal 

 

En la Figura 7-111 se ilustran las curvas de evolución del gradiente, el parámetro de 

actualización μ del algoritmo Levenberg-Marquardt, y el número de fallos de validación. El 

descenso del gradiente y la estabilización de μ indican que el modelo ha aprendido 

progresivamente hasta alcanzar la convergencia. Los fallos de validación son escasos, lo cual 

valida aún más la estabilidad del modelo. 

En la Figura 7-111 se representa la comparación entre los valores reales del módulo de 

elasticidad y las estimaciones proporcionadas por el modelo para todo el conjunto de datos. La 

nube de puntos sigue fielmente la bisectriz, lo que indica una alta precisión del modelo y la 

ausencia de sesgos sistemáticos relevantes. 
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Figura 7-110 – Curvas de gradiente, parámetro de ajuste y fallos de validación  

 

 

Figura 7-111 – Comparación valores reales y estimados por red neuronal 
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En la Figura 7-112 se muestra una visión desglosada del ajuste entre datos reales y predichos 

para cada subconjunto (entrenamiento, validación, test y conjunto completo), con las 

correspondientes rectas de regresión. En todos los casos se obtienen coeficientes de 

correlación superiores a 0.97, lo cual indica un alto grado de ajuste en todas las fases. 

 

 

Figura 7-112 – Representación de correlación por subconjuntos 

 

Finalmente, la Figura 7-113 muestra un análisis de sensibilidad en el que se evalúa la respuesta 

del modelo ante variaciones de N1,60 para un tipo de suelo fijo (arena limosa). Se observa una 

relación creciente prácticamente lineal, coherente con las correlaciones empleadas para el 

entrenamiento, lo que valida la capacidad del modelo para generalizar correctamente. 
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Figura 7-113 – Sensibilidad modelo red neuronal respecto a N1,60 

 

El modelo entrenado ha sido utilizado para estimar el módulo de elasticidad del caso de estudio 

sintético. Los valores de entrada utilizados fueron los siguientes: 

• Valores de N1,60  

• Profundidad: entre 1 y 30m 

• Tipo de suelo: clasificado como arena limosa (primeros 15m) o arena limpia (por 

debajo de 15m). 

 

Los valores del número de golpes del ensayo SPT se presentan en la Figura 7-114, donde se 

muestra el resultado de campo y corregido frente a la profundidad. El perfil obtenido muestra 

una variación progresiva, con golpes más bajos en superficie (arena limosa) y un incremento 

moderado en profundidad (arena limpia). 
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Figura 7-114 – Resultados ensayo SPT de campo y corregidos (N1,60) 

 

El resultado de esta predicción se presenta en la Figura 7-115, donde se muestra el perfil del 

módulo de elasticidad estimado frente a la profundidad. El perfil obtenido muestra una 

variación progresiva, con módulos más bajos en superficie (arena limosa) y un incremento 

moderado en profundidad (arena limpia). 

Este perfil se emplea como base para la creación del modelo inicial del terreno en el análisis 

retrospectivo, adoptando los valores indicados por la línea roja discontinua para cada estrato. 
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Figura 7-115 – Resultados módulos elasticidad obtenidos del modelo de Machine Learning 

 

El método Gauss-Newton o Levenberg-Marquardt se aplica a continuación, tomando como 

punto de partida los módulos de elasticidad obtenidos por el modelo de redes neuronales. La 

Figura 7-116 y la Figura 7-117 muestran la evolución del error cuadrático medio durante esta 

fase. La convergencia es rápida, alcanzándose el mínimo en cuatro iteraciones en el caso de 

Gauss-Newton y diez iteraciones en el caso de Levenberg-Marquardt. En presencia de ruido 

son necesarias hasta 6 y 13 iteraciones, adicionalmente, el error final es ligeramente superior, 

pero sigue siendo aceptable. 
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Figura 7-116 – No. Iteraciones para convergencia según Gauss-Newton (sin ruido – con ruido) 

 

 

Figura 7-117 – No. Iteraciones para convergencia según Levenberg-Marquardt (sin ruido – con ruido) 

 

La Figura 7-118 y la Figura 7-119 resumen gráficamente el proceso, donde se observa la 

evolución de los módulos de elasticidad calculados para cada iteración desde el punto inicial 

(tras la fase de búsqueda global) hasta la solución final optimizada mediante Gauss-Newton o 

Levenberg-Marquardt. En ambos escenarios (con y sin ruido), se aprecia una aproximación 

directa al mínimo, con una mejora sustancial respecto al punto de partida. 
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Figura 7-118 – Mapa trayectoria E1 y E2 para cada iteración según Gauss-Newton (sin ruido – con ruido) 

 

 

Figura 7-119 – Mapa trayectoria E1 y E2 para cada iteración según Levenberg-Marquardt (sin ruido – con 

ruido) 

 

Finalmente, la Figura 7-120 y la Figura 7-121 comparan los perfiles de asentamiento medidos 

y retrocalculados a partir de los valores estimados de los módulos de elasticidad. En ambos 

casos (sin ruido y con ruido), el modelo reproduce con gran precisión el comportamiento del 

terreno, destacando el buen acoplamiento de esta técnica híbrida.  
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Figura 7-120 – Asiento teórico con valores de E1 y E2 retrocalculados según red neuronal y Gauss-Newton 

(sin ruido – con ruido) 

 

 

 

Figura 7-121 – Asiento teórico con valores de E1 y E2 retrocalculados según red neuronal y Levenberg-

Marquardt (sin ruido – con ruido) 
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7.5 Análisis detallado de los resultados del caso de estudio real 

A continuación, se exponen los resultados más relevantes obtenidos tras aplicar las distintas 

estrategias de optimización al caso de estudio real. El análisis pone un énfasis especial en 

aquellos algoritmos que han evidenciado un desempeño sobresaliente, ya sea por la rapidez 

con la que convergen y, por ende, el ahorro computacional asociado, o por la precisión 

alcanzada al retrocalcular los módulos de elasticidad en el escenario sintético diseñado como 

banco de pruebas. 

La interpretación de los datos disponibles presentaba dos restricciones fundamentales. Por un 

lado, existen incertidumbres en la posición exacta de los puntos de monitorización; por otro, 

se dispone únicamente de mediciones de asientos superficiales, sin información procedente de 

niveles más profundos. Esta doble limitación impide plantear un modelo inverso que parta de 

un terreno estratificado con suficientes grados de libertad para capturar la variabilidad vertical 

del subsuelo. 

Ante este escenario, se adoptó una formulación simplificada del módulo de elasticidad, 

asumiendo una ley lineal con la profundidad: 

 𝐸(𝑧) = 𝐴 + 𝐵𝑧 
(198) 

Donde,  

𝐸 es el módulo de elasticidad (MPa) 

𝐴 representa la rigidez inicial en la superficie (MPa)  

𝐵 indica la tasa de incremento por metro de profundidad (MPa/m) 

z es la profundidad (m) 

 

Esta aproximación, aun siendo deliberadamente sencilla, respeta la tendencia esperada de 

aumento de rigidez con la profundidad reflejada en la estratigrafía regional y, al mismo tiempo, 

se ajusta al alcance real de la información disponible. De esta forma se logra un equilibrio 

pragmático entre fidelidad geotécnica y robustez numérica, permitiendo comparar de manera 

homogénea la eficacia de los distintos métodos de optimización evaluados. 
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7.5.1 Métodos híbridos 

7.5.1.1 Algoritmo genético simple y Gauss-Newton o Levenberg-Marquardt 

En este apartado se presentan los hallazgos obtenidos con la estrategia híbrida que combina 

una fase de exploración global, mediante un Algoritmo Genético simple, y una etapa de 

refinamiento local con los métodos de Gauss-Newton y Levenberg-Marquardt. A diferencia del 

ejercicio sintético, la configuración y la interpretación de los resultados se han adaptado a las 

características particulares del caso real. 

 

I. Exploración global (Algoritmo Genético) 

Se mantuvo el número de generaciones en 10 y la población en 50 individuos para asegurar un 

balance adecuado entre diversidad y coste computacional, pero los rangos iniciales de 

búsqueda para 𝐴 y 𝐵 se ampliaron ligeramente con respecto al estudio sintético para 

incorporar la mayor incertidumbre observacional. 

Las Figura 7-122 ilustran la evolución de la población en el plano (𝐴, 𝐵). En las generaciones 1, 

2, 3, 4, 5, 6, 8 y 10 puede apreciarse cómo los individuos se desplazan desde una dispersión 

inicial hasta concentrarse en un corredor bien definido, aunque sin alcanzar todavía el umbral 

de error preestablecido. 

Esta fase identifica un subconjunto de soluciones prometedoras que actúan como punto de 

origen para la optimización local. 

 

II. Afinado local (Gauss-Newton y Levenberg-Marquardt) 

Tomando como punto de partida el mejor individuo de la fase genética, se ejecutan en paralelo 

los esquemas GN y LM con idénticos criterios de parada, lo que permite contrastar su robustez 

frente a la elevada no linealidad del problema. 

La Figura 7-123 muestra la rápida caída del error cuadrático medio en ambas variantes: GN 

converge en dos iteraciones, mientras que LM requiere tan solo una, pero ofrece un resultado 

algo más desacertado, posiblemente al caer en un mínimo local. 

En la Figura 7-124 se resume la trayectoria completa del error, desde la solución 

proporcionada por el algoritmo genético hasta la convergencia fina del bloque local, 

destacando la sinergia entre exploración global y explotación local. 
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Figura 7-122 – Evolución población en algoritmo genético simple 
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Figura 7-123 – No. Iteraciones para convergencia según Gauss-Newton y Levenberg-Marquardt, 

respectivamente 

 

 

Figura 7-124 – Mapa trayectoria A y B para cada iteración según Gauss-Newton y Levenberg-Marquardt, 

respectivamente 

 

III. Validación del ajuste 

Finalmente, la Figura 7-125 compara los asientos medidos en superficie con los 

retrocalculados a partir de los parámetros optimizados. El ajuste refleja una desviación media 

inferior al 3 %, confirmando la capacidad del enfoque híbrido para capturar la rigidez creciente 

con la profundidad a pesar de la limitada información disponible. 
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Figura 7-125 – Asiento teórico con valores de E1 y E2 retrocalculados según Genético Simple y Gauss-

Newton o Levenberg-Marquardt 
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7.5.1.2 Algoritmo genético adaptativo y Gauss-Newton o Levenberg-Marquardt 

En este apartado se documenta el desempeño del enfoque mixto que aúna la exploración global 

mediante un Algoritmo Genético Adaptativo (AGA) y el pulido local con los algoritmos de 

Gauss-Newton (GN) y Levenberg-Marquardt (LM). El rasgo distintivo del Algoritmo  Genético 

Adaptativo radica en que las probabilidades de cruce y mutación se ajustan dinámicamente 

conforme progresa la búsqueda, permitiendo intensificar o diversificar la exploración según la 

dispersión de la población. 

 

I. Exploración global (Algoritmo Genético Adaptativo) 

Al igual que en la fase sintética, se ejecutaron 10 generaciones con 50 individuos; no obstante, 

los operadores genéticos se autorregulan: la tasa de mutación se incrementa cuando la 

diversidad decrece y se reduce cuando la población vuelve a dispersarse, evitando 

convergencias prematuras. 

La Figura 7-126 plasma la evolución de la población sobre el plano (𝐴, 𝐵) para las generaciones 

1, 2, 3, 4, 5, 6, 8 y 10. La nube inicial, ampliamente dispersa, se transforma en un cúmulo bien 

delimitado que rodea la cuenca del mínimo global con mayor rapidez que en el algoritmo 

genético simple, a pesar de no alcanzar todavía el umbral de error objetivo. 

 

II. Afinado local (GN y LM) 

Con el mejor individuo del AGA como arranque, se lanzaron GN y LM en paralelo. 

La Figura 7-127 evidencia un descenso vertiginoso del error cuadrático medio: GN alcanza la 

tolerancia en sólo dos iteraciones, mientras que LM lo hace en una. En este caso concreto, LM 

detecta que el punto de partida se halla prácticamente en el mínimo y ejecuta una corrección 

marginal sobre 𝐴, dejando 𝐵 inalterado. 

La trayectoria completa del error, mostrada en la Figura 7-128, subraya la complementariedad 

del esquema: el Algoritmo Genético Adaptativo sitúa la solución dentro de la “cuenca de 

atracción” correcta y los métodos de mínimos cuadrados aseguran la llegada a la convergencia 

en pocas iteraciones. 
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Figura 7-126 – Evolución población en Algoritmo Genético Adaptativo 
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Figura 7-127 – No. Iteraciones para convergencia según Gauss-Newton y Levenberg-Marquardt, 

respectivamente 

 

 

 

Figura 7-128 – Mapa trayectoria A y B para cada iteración según Gauss-Newton y Levenberg-Marquardt, 

respectivamente 

 

III. Validación del ajuste 

En la Figura 7-129se contraponen los asientos superficiales medidos con los retrocalculados a 

partir del módulo de elasticidad optimizado. El desajuste medio se sitúa por debajo del 2,8 %, 

ligeramente mejor que el obtenido con el algoritmo genético simple, reflejando la ventaja de la 

adaptación dinámica para sortear valles locales sin comprometer la precisión final. 
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Figura 7-129 – Asiento teórico con valores de A y B retrocalculados según Genético Adaptativo y Gauss-

Newton y Levenberg-Marquardt, respectivamente 
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7.5.1.3 Enjambre de partículas y Gauss-Newton o Levenberg-Marquardt 

En este epígrafe se describen los resultados obtenidos con la estrategia mixta que combina un 

rastreo a gran escala mediante la optimización por enjambre de partículas (PSO) y un ajuste 

local con los métodos de Gauss-Newton (GN) y Levenberg-Marquardt (LM). El PSO actúa como 

mecanismo de “sondeo colectivo”: cada partícula ajusta su velocidad atendiendo a su mejor 

experiencia individual y a la mejor experiencia compartida por el enjambre, de modo que la 

nube de soluciones va migrando de forma cooperativa hacia regiones prometedoras del 

espacio (𝐴, 𝐵). 

 

I. Fase global (Enjambre de Partículas) 

Se liberó un enjambre de 50 partículas durante 10 pasos de actualización, se mantienen, así, la 

dimensión poblacional y el número de iteraciones empleados en los apartados previos para 

asegurar comparabilidad directa. La Figura 7-130 muestra la proyección de las trayectorias en 

las iteraciones clave (1, 2, 3, 4, 5, 6, 8 y 10). El patrón revela una rápida atracción inicial hacia 

un corredor de mínimos; sin embargo, el enjambre conserva cierta dispersión en la última 

iteración, reflejo de su tendencia a mantener diversidad para evitar mínimos locales. 

 

II. Búsqueda local (GN o LM). 

La partícula con el menor error tras el PSO se tomó como punto de arranque para los esquemas 

de mínimos cuadrados. La Figura 7-131 recoge la caída del error cuadrático medio: 

• Gauss-Newton alcanza la tolerancia en dos iteraciones, ejecutando correcciones 

simultáneas sobre 𝐴 y 𝐵. 

• Levenberg-Marquardt finaliza en una iteración; al identificar que el punto inicial ya se 

encuentra dentro de la cuenca de atracción del mínimo, sólo introduce un ajuste 

marginal en 𝐴. 

 

La Figura 7-132 ilustra, de forma compacta, la evolución de los parámetros desde la solución 

preliminar del PSO hasta la convergencia fina de GN y LM, subrayando cómo el refinamiento 

local reduce la dispersión residual que aún mantenía el enjambre. 
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Figura 7-130 – Evolución partículas en enjambre de partículas 
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Figura 7-131 – No. Iteraciones para convergencia según Gauss-Newton y Levenberg-Marquardt, 

respectivamente 

 

 

Figura 7-132 – Mapa trayectoria A y B para cada iteración según Gauss-Newton y Levenberg-Marquardt, 

respectivamente 

 

III. Validación del modelo inverso. 

Por último, la Figura 7-133superpone los asientos superficiales medidos y los retrocalculados 

con los parámetros optimizados. El desajuste medio queda por debajo del 3 %, resultado que 

sitúa a la combinación PSO + GN/LM en un rango de precisión equiparable y, en términos de 

velocidad de convergencia local, ligeramente peor al de las configuraciones genéticas 

ensayadas previamente. 
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Figura 7-133 – Asiento teórico con valores de A y B retrocalculados según enjambre de partículas y 

Gauss-Newton y Levenberg-Marquardt 
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7.5.1.4 Machine Learning y Gauss-Newton o Levenberg-Marquardt 

El método que se describe a continuación constituye la aportación principal de este trabajo, 

una estrategia híbrida en dos fases que sustituye la búsqueda global aleatoria por un modelo 

de aprendizaje automático y conserva el refinamiento determinista con Gauss-Newton (GN) o 

Levenberg-Marquardt (LM). 

A diferencia de los algoritmos evolutivos empleados en apartados previos, aquí el punto de 

partida se obtiene entrenando un modelo sobre ensayos presiométricos propios y valores 

publicados para los suelos de la zona de estudio. De este modo se incorpora información de 

campo real antes de iniciar la fase de optimización local. 

En ausencia de un número suficiente de ensayos in situ para entrenar un modelo más 

sofisticado, se optó por el esquema de Machine Learning más elemental, una regresión lineal, 

para estimar la ley 𝐸(𝑧) = 𝐴 + 𝐵𝑧. Aunque se trata de un aprendizaje “ligero”, sigue todas las 

etapas básicas de un proceso de Machine Learning: recopilación de datos, entrenamiento, 

validación y uso posterior de los resultados como información previa para la optimización 

numérica. 

Los datos de partida constan de 20 ensayos presiométricos y 38 registros bibliográficos. En la 

Figura 7-134 se representan los resultados de los ensayos presiométricos y la correspondiente 

recta de regresión obtenida. 

 

Figura 7-134 – Representación de correlación del módulo presiométrico vs profundidad 

 



Resultados 

242 

La recta de ajuste alcanza un coeficiente de determinación R² igual a 0.447, lo que indica una 

correlación moderada entre rigidez y profundidad.  

Para iniciar la búsqueda global se definió una ventana limitada a A = 130±25 MPa y B = 9.0±3.0 

MPa/m. Con ello se redujo drásticamente el dominio de cálculo, manteniendo, no obstante, la 

posibilidad de encontrar soluciones alejadas de la línea de regresión gracias a la incorporación 

explícita de la dispersión observada en los datos. 

Finalmente, la búsqueda global mediante la regresión lineal establece que el punto de partida 

de la búsqueda local es A = 134 MPa y B = 7.0 MPa/m. 

El método Gauss-Newton o Levenberg-Marquardt se aplica a continuación. La Figura 7-135 

muestra la evolución del error cuadrático medio durante esta fase. La convergencia es rápida 

para el método de Gauss-Newton, alcanzándose el mínimo en cuatro iteraciones en el caso de 

Gauss-Newton y catorce iteraciones en el caso de Levenberg-Marquardt.  

 

Figura 7-135 – No. Iteraciones para convergencia según Gauss-Newton & Levenberg-Marquardt 

 

La Figura 7-136 resume gráficamente el proceso, donde se observa la evolución de los 

parámetros A y B calculados para cada iteración desde el punto inicial (tras la fase de búsqueda 

global) hasta la solución final optimizada mediante Gauss-Newton o Levenberg-Marquardt. En 

ambos escenarios se aprecia una aproximación directa al mínimo, con una mejora sustancial 

respecto al punto de partida. Ambas metodologías alcanzan un resultado de A y B muy similar 

entre ellas.  
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Figura 7-136 – Mapa trayectoria A y B para cada iteración según Gauss-Newton & Levenberg-Marquardt 

 

Finalmente, la Figura 7-137 comparan los perfiles de asentamiento medidos y retrocalculados 

a partir de los valores estimados de los módulos de elasticidad. En ambos casos (GN y LM), el 

modelo reproduce con gran precisión el comportamiento del terreno, destacando el buen 

acoplamiento de esta técnica híbrida.  

 

 

Figura 7-137 – Asiento teórico con valores de A y B retrocalculados según ML y GN o LM 
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8. DISCUSIÓN DE LOS RESULTADOS 

El presente capítulo profundiza en el análisis crítico de los resultados obtenidos en el capítulo 

anterior, con el objetivo de valorar la eficacia, robustez y utilidad práctica de los diferentes 

algoritmos aplicados al análisis retrospectivo del módulo de elasticidad del terreno a partir de 

mediciones de asiento. Para ello, se realiza una comparación detallada entre métodos clásicos 

basados en gradientes, heurísticos, híbridos y el enfoque propuesto basado en Machine 

Learning combinado con algoritmos de optimización local. La discusión se estructura según los 

siguientes ejes: precisión en la estimación, coste computacional, sensibilidad al ruido y 

capacidad de interpretación e integración en entornos reales. 

 

8.1 Precisión en la estimación de parámetros geotécnicos 

Uno de los principales objetivos de este trabajo ha sido evaluar la capacidad de los diferentes 

algoritmos para estimar con precisión los módulos de elasticidad a partir de datos sintéticos 

de asientos, tanto en condiciones ideales como en presencia de ruido. La comparación de los 

errores cuadráticos medios (RMSE) y los coeficientes de determinación (R²) entre métodos 

permite extraer conclusiones claras. 

En condiciones sin ruido, los métodos basados en gradientes como Gauss-Newton (GN) y 

Levenberg-Marquardt (LM) destacan por su elevada precisión: se obtienen valores de RMSE 

inferiores a 1 KPa y coeficientes R² prácticamente iguales a 1.000. Los métodos heurísticos 

puros, como los algoritmos genéticos simples y la optimización bayesiana, presentan errores 

mucho mayores (hasta RMSE > 6000 kPa en algunos casos), lo que evidencia su baja precisión 

cuando se utilizan de forma aislada. 

Por el contrario, los enfoques híbridos que combinan métodos globales con ajustes locales 

muestran una mejora significativa en la precisión. En particular, los híbridos que combinan 

algoritmos evolutivos (como evolución diferencia, enjambre de partículas o genéticos 

adaptativos) con Levenberg-Marquardt o Gauss-Newton reducen drásticamente el error final, 

situándose en muchos casos por debajo de RMSE = 2 KPa. Este efecto sinérgico se explica por 

el hecho de que los algoritmos globales permiten una exploración amplia del espacio de 

búsqueda, mientras que los métodos de mínimos cuadrados refinan la solución en una etapa 

posterior. 

Sin embargo, el resultado más destacable lo aporta el enfoque híbrido propuesto en este 

trabajo, basado en Machine Learning (ML) como fase global y Gauss-Newton o Levenberg-
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Marquardt como fase local. En todos los casos del ejemplo sintético, este método alcanzó un 

RMSE prácticamente nulo (entre 0.0 y 2.3 kPa) y valores de R² de 1.000. Esto evidencia una 

capacidad superior del modelo para predecir los módulos con gran exactitud, especialmente 

en comparación con métodos evolutivos puros o incluso híbridos tradicionales. 

En el caso de estudio real, las distintas metodologías empleadas conducen a soluciones 

prácticamente coincidentes, lo que indica que todas ellas alcanzan una precisión adecuada y 

coherente entre sí. No obstante, el número de iteraciones necesarias para llegar a dicha 

solución varía significativamente entre los métodos, como se analiza en el siguiente apartado. 

 

8.2 Comportamiento computacional y número de iteraciones 

Otro criterio clave en la evaluación de los métodos es su eficiencia computacional, medida en 

términos del número de iteraciones necesarias para alcanzar la convergencia con un umbral 

de error de 10-5 en el asiento superficial. 

En el caso de estudio sintético, los métodos clásicos como Gauss-Newton (11 iteraciones) y 

Levenberg-Marquardt (14 iteraciones) destacan por su rapidez, lo que refuerza su idoneidad 

como técnica de refinamiento local. En cambio, métodos heurísticos como Simulated Annealing 

(250 iteraciones), Bayesian Optimization (200 iteraciones) y Kriging (300 iteraciones) 

requieren tiempos computacionales significativamente mayores, lo que limita su aplicabilidad 

práctica en entornos donde la eficiencia es crítica. 

Los métodos híbridos, al tener dos fases, acumulan iteraciones: típicamente impuestas 10 

iteraciones en la búsqueda global más entre 7 y 13 en la fase local. No obstante, el número total 

sigue siendo inferior al de muchas técnicas heurísticas puras y, lo que es más importante, con 

una mejora notable en la calidad de los resultados. No obstante, se recalca el alto coste 

computacional para realizar 10 iteraciones con poblaciones/partículas de 50 elementos en 

cada caso, esto implica realizar 500 análisis tan solo en la fase global. 

En este contexto, el modelo propuesto de Machine Learning + Gauss-Newton requiere 

solamente 4 iteraciones en la fase local tras el entrenamiento inicial, lo que representa una 

ventaja muy relevante. El coste computacional del entrenamiento del modelo ML se amortiza 

al ser utilizado en múltiples retroanálisis, y su capacidad de proporcionar buenos puntos de 

partida reduce significativamente el esfuerzo de ajuste posterior. 
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En el caso de estudio real, la fase de búsqueda local tras el modelo de Machine Learning 

requiere de 4 iteraciones en el caso de Gauss-Newton y 14 si el refinamiento local se realiza 

con Levenberg-Marquardt. La fase de búsqueda local en los métodos híbridos necesita tan solo 

2 iteraciones, por lo que se duplica el número de iteraciones necesarias, no obstante, el coste 

computacional de la fase de búsqueda global es significativamente menor, siendo el método 

propuesto significativamente mejor en términos de coste computacional. 

 

8.3 Robustez frente al ruido y estabilidad de los algoritmos 

La introducción de ruido simulado en las mediciones representa un escenario más realista, 

donde los algoritmos deben lidiar con incertidumbres similares a las de campo. Bajo estas 

condiciones, la mayoría de los algoritmos muestran un aumento esperable en el RMSE y una 

ligera reducción del R². Sin embargo, la magnitud de esta degradación es indicativa de la 

robustez del método. 

Métodos clásicos como Gauss-Newton y Levenberg-Marquardt conservan una aceptable 

robustez, aunque el RMSE puede incrementarse hasta 1700–1800 KPa. Algunos algoritmos 

heurísticos sufren degradaciones importantes: por ejemplo, los algoritmos genéticos simples 

presentan un RMSE > 2500 kPa y un R² tan bajo como 0.549. 

Se destacan los buenos resultados de los métodos de búsqueda directa (Nelder-Mead), basados 

en programación matemática (cuadrática y no lineal) y optimización robusta por su gran ajuste 

en presencia de ruido, a pesar de tener un coste computacional muy superior. 

En cambio, los híbridos presentan un comportamiento mucho más estable. Las combinaciones 

evolutivas + Gauss-Newton o Levenberg-Marquardt suelen mantenerse por debajo de RMSE = 

1800 KPa y R² > 0.774. El modelo propuesto de Machine Learning + Gauss-Newton mantiene 

un RMSE de 1622.7 kPa y un R² de 0.813, ligeramente mejor a otros híbridos con búsqueda 

evolutiva. No obstante, este resultado sigue siendo competitivo y destaca por la rapidez con la 

que se alcanza la convergencia. 

Por el contrario, el modelo propuesto de Machine Learning + Lavenberg-Marquardt, a pesar de 

necesitar hasta 13 iteraciones en el caso de estudio con ruido, obtiene un RMSE de 

aproximadamente 1200 KPa y un R² de 0.898. Esto es debido a la mejor precisión del algoritmo 

local Lavenberg-Marquardt en presencia de ruido. 
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Por tanto, en presencia de ruido, el método propuesto ofrece un compromiso equilibrado entre 

precisión, velocidad y estabilidad en comparación con los otros algoritmos analizados. 

 

8.4  Interpretabilidad y validez geotécnica mediante SHAP 

La integración de técnicas de interpretabilidad mediante SHAP permite analizar qué variables 

de entrada (profundidades de medición) influyen más en la predicción de cada módulo de 

elasticidad. 

Los resultados obtenidos en el caso de estudio sintético indican una distribución coherente con 

los principios de la mecánica del suelo. Las mediciones superficiales (0.0 m a 1.0 m) son 

determinantes para E1, mientras que E2 se ve influido por datos más intermedios (2.0 m a 7.5 

m) y profundos (hasta 20.0 m), esto se explica por los limitados datos de monitorización por 

debajo de los 5m de profundidad (nótese que el estrato dos llega hasta los 7.5m), limitándose 

a 10m y 20m, lo que implica que el análisis retrospectivo de E2 tenga que apoyarse de los datos 

disponibles a mayor profundidad. E3 y E4 muestran una dependencia creciente de mediciones 

a mayores profundidades (10 m, 20 m), con una influencia transversal de z = 5.0 m como punto 

de transición entre estratos. 

Este tipo de análisis no solo refuerza la validez geotécnica del modelo, sino que permite tomar 

decisiones fundamentadas en cuanto a la planificación de instrumentación en campo. Se puede 

priorizar la instalación de sensores en profundidades estratégicas según su impacto real en la 

estimación de parámetros, lo que mejora la relación coste-beneficio del monitoreo. 

 

8.5  Relevancia práctica y ventajas del modelo propuesto 

El enfoque híbrido basado en Machine Learning y Gauss-Newton o Levenberg-Marquardt no 

solo ofrece alta precisión y velocidad de convergencia, sino que también permite incorporar 

conocimiento empírico a través del entrenamiento con datos reales o generados 

sintéticamente. Esta característica le proporciona una capacidad de generalización que lo 

distingue del resto de métodos, especialmente cuando se considera su potencial de 

escalabilidad a modelos con mayor número de parámetros o estratos. 

Además, la estructura modular del modelo facilita su adaptación a problemas más complejos, 

como la estimación simultánea de otros parámetros, la inclusión de condiciones no elásticas 
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(e.g., plastificación, anisotropía) o su integración en flujos de trabajo BIM o sistemas de 

monitoreo en tiempo real. 

 

8.6  Síntesis comparativa y limitaciones observadas 

A modo de resumen, se puede establecer la siguiente clasificación cualitativa: 

Tabla 8-12 – Síntesis comparativa de los resultados 

Método 

Precisión 

(sin ruido) 

Precisión 

(con ruido) 

Coste 

computacional Robustez 

Gradientes 

Evolutivos 

Búsqueda Dir. 

Surrogados 

Prog. Matemát. 

Otros 

Híbridogs 

ML + GN/LM 

Alta 

Media 

Muy alta 

Media 

Alta 

Muy alta 

Muy alta 

Muy alta 

Media 

Baja 

Muy alta 

Media 

Muy alta 

Alta 

Alta 

Alta 

Muy bajo 

Alto 

Muy alto 

Muy alto 

Medio 

Medio 

Medio-Bajo 

Muy bajo 

Media 

Baja 

Muy alta 

Media 

Muy alta 

Alta 

Alta 

Alta 

 

Cabe mencionar que el enfoque propuesto requiere una etapa previa de entrenamiento que 

implica su propia carga computacional, y depende de la calidad de los datos de entrada para el 

modelo de Machine Learning. Asimismo, la sensibilidad al tipo de red neuronal y sus 

hiperparámetros podría influir en la generalización del modelo en otros casos no tratados. 

A pesar de estas limitaciones, los resultados obtenidos validan la propuesta como una 

alternativa robusta, precisa e interpretativa para el análisis retrospectivo de parámetros 

geotécnicos, con un potencial claro de aplicación en obra real. 
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9. CONCLUSIONES 

En este Trabajo de Fin de Máster se desarrolló y puso a prueba una metodología híbrida de 

análisis retrospectivo de parámetros geotécnicos mediante el uso de técnicas de Machine 

Learning en la fase de búsqueda global y métodos de optimización local como Gauss-Newton y 

Levenberg-Marquardt. Esta metodología permite encontrar soluciones prometedoras 

mediante algoritmos de inteligencia artificial, para que posteriormente sean refinadas 

mediante técnicas deterministas. 

Esta propuesta híbrida ha proporcionado un ajuste satisfactorio en los casos de estudio 

expuestos en este trabajo, empleando tanto mediciones con como sin ruido, con una alta 

correlación entre los resultados estimados y los datos observados. En concreto, en el caso de 

estudio sintético se obtuvo un RMSE de 2.3 kPa y 1623 kPa para los casos sin ruido y con ruido, 

respectivamente, así como un coeficiente de determinación R² del asiento retrocalculado en 

superficie de 1.000 y 0.898 en cada caso. En el caso de estudio real el coeficiente de 

determinación R² alcanzó un valor de 0.998. Estos resultados confirman la validez de la 

metodología propuesta para problemas de cálculo inverso en ingeniería geotécnica. 

No obstante, deben señalarse ciertas limitaciones en el alcance del estudio. El enfoque se ha 

aplicado exclusivamente a cimentaciones superficiales sobre suelos granulares, considerando 

únicamente el comportamiento elástico del terreno, es decir, asiento instantáneo. Esto implica 

que no se han abordado los fenómenos de consolidación propios de suelos cohesivos, ni se ha 

evaluado la respuesta de cimentaciones profundas u otras soluciones de cimentación. 

Asimismo, se asume que el terreno se subdivide en estratos homogéneos, elásticos e 

isotrópicos.  

Aunque el modelo se comporta de forma robusta frente a datos limpios, se ha observado que 

su precisión disminuye cuando se introduce ruido en las mediciones de campo. En estas 

circunstancias, el algoritmo requiere un mayor número de iteraciones para converger y puede 

llegar a desviarse del valor real en su intento por ajustarse a los datos contaminados, como es 

esperable en cualquier proceso inverso, aun así, ofrece resultados aceptables en comparación 

con los otros algoritmos analizados, siendo solamente superado en precisión (pero no en coste 

computacional) por los algoritmos de búsqueda directa o basados en programación 

matemática. 

Una de las principales ventajas del enfoque propuesto respecto a los métodos tradicionales de 

optimización es su eficiencia computacional. Si bien, la precisión obtenida ha sido comparable 

a la de treinta y dos métodos clásicos como se puede ver en la Tabla 7-7 y la Tabla 7-8, el 
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número de iteraciones necesarias para alcanzar una solución óptima ha sido notablemente 

menor, lo que representa una mejora importante en términos de tiempo de cálculo y coste de 

simulación. A pesar de obtenerse un menor coste computacional (medido como número de 

iteraciones) en los casos de estudio tratados, cabe mencionar que el enfoque propuesto 

requiere una etapa previa de entrenamiento que implica su propia carga computacional, y 

depende de la calidad de los datos de entrada para el modelo de Machine Learning. Asimismo, 

la sensibilidad al tipo de red neuronal y sus hiperparámetros podría influir en la generalización 

del modelo en otros casos no tratados. En cualquier caso, el modelo de Machine Learning puede 

ser extrapolado de casos anteriores, incorporando nuevos datos de campo para validar y 

ensayar los resultados ofrecidos por la red neuronal.  

En términos de implementación, la metodología puede automatizarse de forma significativa. 

Su desarrollo en entornos como MATLAB o Python permite la integración con software de 

cálculo comercial mediante Interfaces de Programación de Aplicaciones (API - Application 

Programming Interface por sus siglas en inglés), facilitando flujos de trabajo ágiles y 

reproducibles. No obstante, en aquellos programas que aún no disponen de interfaces abiertas, 

la automatización debe completarse con pasos manuales, lo cual puede ralentizar el proceso, 

aunque previsiblemente estas limitaciones se irán resolviendo con la evolución de los 

softwares dada la tendencia actual de incorporar API para facilitar el intercambio de datos, 

funcionalidades y servicios entre entornos como MATLAB, Python y otros programas 

comerciales de análisis geotécnico y estructural.  

El método propuesto demuestra un alto potencial de generalización y escalabilidad. Su 

estructura modular lo hace adaptable a otros problemas de cálculo retrospectivo geotécnico, 

como la estimación de parámetros en túneles, estructuras de contención, taludes o 

cimentaciones profundas. Además, puede ser alimentado con datos sintéticos o reales, lo que 

le permite ajustarse tanto a condiciones idealizadas como a escenarios de obra más complejos. 

Esta flexibilidad se traduce en una herramienta versátil, con capacidad para integrarse en 

procesos de ingeniería del terreno con distintos grados de incertidumbre. 

Desde el punto de vista práctico, la metodología propuesta puede incorporarse en las fases de 

control de obra y seguimiento del comportamiento geotécnico y estructural. Su capacidad para 

calibrar los modelos de cálculo con base en datos reales permite una toma de decisiones 

adaptativa, basada en la evolución observada del terreno, lo cual incrementa la seguridad 

operativa y permite optimizar recursos. Asimismo, su integración con estrategias BIM, 

mediante la actualización de modelos digitales a partir de datos de instrumentación, abre 
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nuevas posibilidades para la gestión integral del ciclo de vida de la infraestructura, desde la 

fase de diseño hasta la operación y el mantenimiento. 

Este trabajo también está en concordancia con un enfoque de diseño geotécnico basado en 

datos, es decir, en un enfoque observacional (Observational Method), al basar las decisiones en 

mediciones reales, y no únicamente en hipótesis conservadoras o parámetros estimados. 

De esta forma, esta propuesta metodológica se alinea con la tendencia de la nueva generación 

de Eurocódigos, en particular la actualización del EN 1997-3 2025 refuerza la necesidad de 

adoptar metodologías de diseño geotécnico más integradas, adaptativas y basadas en datos, y 

anticipando el tipo de herramientas que serán necesarias para implementar de forma eficiente 

el enfoque observacional.  

En este marco normativo emergente, la propuesta de este Trabajo de Final de Máster (que 

integra inteligencia artificial, modelado físico y análisis retrospectivo basado en 

observaciones) se sitúa en consonancia con las directrices de los nuevos Eurocódigos. La 

necesidad de modelos que no solo se adapten al comportamiento observado en campo, sino 

que también optimicen los recursos, promuevan la transparencia documental y favorezcan una 

toma de decisiones informada en condiciones complejas, alineándose directamente con las 

exigencias del EN 1997-3 2025. 

Además de su valor técnico y normativo, la propuesta desarrollada en este TFM se alinea con 

los principios de sostenibilidad que definen la práctica de la ingeniería del siglo XXI. En 

particular, guarda una estrecha relación con varios de los Objetivos de Desarrollo Sostenible 

(ODS) establecidos por la Agenda 2030 de Naciones Unidas. El uso de modelos calibrados en 

función del comportamiento real del terreno permite reducir sobredimensionamientos, 

optimizar el uso de materiales y minimizar el impacto ambiental asociado a la construcción 

(ODS 12: Producción y consumo responsables). La integración de tecnologías digitales y 

modelos predictivos también promueve la innovación en infraestructuras (ODS 9: Industria, 

innovación e infraestructura), contribuyendo a un entorno construido más resiliente, eficiente 

y adaptado a condiciones cambiantes. En este contexto, la metodología no solo constituye una 

aportación técnica sólida, sino que también representa un avance en la dirección de una 

ingeniería civil más sostenible, fundamentada en el conocimiento y la evidencia. 
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10. RECOMENDACIONES Y ESTUDIOS FUTUROS 

Finalmente, se identifican diversas líneas futuras de investigación que permitirían ampliar y 

consolidar el trabajo realizado. 

I. Aplicación en otros casos reales, preferiblemente con cimentaciones de diferentes 

dimensiones en planta, presiones de contacto y una progresión gradual de la carga a lo 

largo del tiempo. Esta extensión permitiría evaluar la robustez y aplicabilidad del 

modelo en diversas condiciones de campo, caracterizadas por una mayor 

heterogeneidad en el comportamiento del terreno, presencia de estratigrafías 

complejas y mediciones inevitablemente afectadas por ruido instrumental y 

condiciones ambientales. La validación en situaciones reales ofrecería una prueba 

crítica de la capacidad del algoritmo para identificar con precisión los parámetros 

geotécnicos en contextos no controlados, así como para adaptarse a cargas progresivas 

que simulan el comportamiento real de estructuras durante las fases de construcción y 

operación.  

II. Integración de modelos numéricos más avanzados, como el método de elementos 

finitos y modelos constitutivos tipo Hardening Soil. A pesar de que el método de áreas 

discretas ofrece un buen resultado en el diseño de losas de cimentación, el enfoque FEM 

resuelve las ecuaciones de equilibrio en la estructura y el suelo simultáneamente, 

permitiendo una distribución natural de tensiones y deformaciones según las 

propiedades del suelo y la cimentación, sin depender de un módulo de balasto 

supuesto. También permite considerar efectos no lineales, estratificación compleja o el 

nivel freático, entre otros. 

III. Explorar otras hibridaciones que, partiendo de un modelo de Machine Learning para la 

búsqueda global, incorporen algoritmos de mayor precisión en la fase de búsqueda 

local, especialmente en contextos con mediciones ruidosas. Los resultados obtenidos 

indican que los métodos deterministas utilizados (como Gauss-Newton o Levenberg-

Marquardt) presentan una menor precisión en escenarios sintéticos con ruido, en 

comparación con enfoques de búsqueda directa o métodos basados en programación 

matemática. Si bien la metodología propuesta destaca por su bajo coste computacional, 

una línea de investigación futura podría consistir en evaluar nuevas combinaciones 

híbridas que integren técnicas de búsqueda local más robustas frente al ruido, 

analizando el posible incremento del coste computacional asociado y su compensación 

en términos de precisión. 
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IV. Extensión de la metodología a suelos cohesivos, incorporando mediciones de asientos 

de consolidación en función del tiempo, abriendo la puerta al cálculo retrospectivo de 

parámetros como el índice de compresión cc, el índice de recompresión cr o coeficiente 

de compresibilidad mv, entre otros. La adaptación del modelo requeriría incorporar 

funciones de respuesta dependientes del tiempo y, posiblemente, ajustar los algoritmos 

de optimización para tener en cuenta el carácter no instantáneo de la respuesta del 

terreno. Esta línea de trabajo ampliaría significativamente el alcance de la metodología, 

permitiendo su aplicación en proyectos sobre arcillas blandas, precargas, depósitos 

naturales y otras situaciones donde la consolidación primaria o secundaria condiciona 

el comportamiento geotécnico a medio y largo plazo. 

V. Ampliar la aplicación del método al análisis retrospectivo de parámetros en suelos 

tratados o mejorados, como en el caso de técnicas de mejora mediante precarga, 

columnas de grava o inclusiones rígidas. La metodología propuesta, centrada hasta 

ahora en suelos granulares no tratados, podría adaptarse para evaluar la evolución de 

parámetros geotécnicos en suelos cuyo comportamiento ha sido modificado 

artificialmente. En particular, la aplicación de técnicas como la precarga con o sin 

drenes verticales induce una modificación progresiva del módulo de deformación, que 

puede ser monitoreada e interpretada mediante mediciones de asentamiento y presión 

intersticial. Integrar estos efectos en el modelo de retroanálisis permitiría no solo 

calibrar los parámetros iniciales, sino también caracterizar el proceso de mejora y 

optimizar su diseño y seguimiento en campo. Esta línea de investigación representa 

una oportunidad para extender el uso del enfoque híbrido a contextos donde la 

variación temporal de las propiedades del terreno es un factor clave en el diseño y 

control de la obra. 

VI. Extrapolar la metodología a otra tipología de cálculos. Se destaca la potencial aplicación 

en estructuras de contención o túneles. Aunque el presente trabajo se ha basado en 

cimentaciones superficiales, la metodología de análisis inverso propuesta es 

extrapolable a otros contextos donde se disponga de mediciones de campo y exista 

incertidumbre en los parámetros geotécnicos. El caso de estructuras de contención es 

especialmente interesante, dado que es ideal para un enfoque observacional y presenta 

más oportunidades de optimización con la evolución de la construcción. 

VII. Aplicación en un caso real bajo un enfoque observacional, desarrollando una 

metodología que tome como premisa la automatización del cálculo restrospectivo. Una 
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línea especialmente prometedora consiste en implementar el modelo propuesto 

dentro de un proyecto real que utilice el método observacional, permitiendo la 

actualización continua de los parámetros geotécnicos a medida que avanza la obra y se 

obtienen nuevos datos de instrumentación. Esta aproximación permitiría validar la 

utilidad del modelo en un entorno operativo, así como evaluar su capacidad para 

integrarse en flujos de trabajo donde la toma de decisiones debe adaptarse a la 

evolución del comportamiento real del terreno. Para ello, sería necesario desarrollar 

una arquitectura automatizada que conecte directamente las lecturas de campo (por 

ejemplo, asientos y tensiones de contacto) con el modelo de cálculo inverso, generando 

recomendaciones de ajuste de parámetros en tiempo cuasi-real. Esta línea de trabajo 

contribuiría directamente a la implementación práctica de los principios del diseño 

geotécnico adaptativo recogidos en los nuevos Eurocódigos, reforzando la trazabilidad, 

eficiencia y sostenibilidad del proceso constructivo. Asimismo, esta aplicación 

permitiría valorar la posible optimización de recursos frente a un cálculo convencional 

y sería posible cuantificar si la optimización de la solución (respaldada por el 

monitoreo y el ajuste continuo) se traduce en un ahorro significativo de materiales y 

costes de ejecución, y si dicho ahorro compensa, en términos económicos y operativos, 

el esfuerzo adicional requerido para implementar el modelo de cálculo automatizado. 

VIII. Evaluar el impacto de distintos esquemas de monitorización en la eficacia del análisis 

retrospectivo aplicado a cimentaciones o estructuras de contención. Una posible línea 

de investigación podría consistir en analizar cómo el tipo de variable medida (asientos, 

presiones, deformaciones), su ubicación, frecuencia de toma de datos y número de 

puntos instrumentados afectan la capacidad del modelo para identificar con precisión 

los parámetros del terreno. Esta evaluación permitiría no solo mejorar la fiabilidad del 

retroanálisis, sino también optimizar el diseño de sistemas de instrumentación, 

priorizando configuraciones que aporten el mayor valor informativo con el menor 

coste posible. 

 

Estas direcciones representan una oportunidad para seguir perfeccionando el método 

propuesto y ampliar su aplicabilidad a diferentes tipos de suelos, otras tipologías de 

estructuras o análisis, así como a casos reales de mayor complejidad geotécnica y mediciones 

ruidosas. Su desarrollo futuro permitirá consolidar la metodología como una herramienta 
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versátil, adaptable y útil tanto en fases de diseño como en toma de decisiones durante la 

ejecución y seguimiento de obras geotécnicas.   
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12. ANEJO A 

En el presente anejo se incluyen las gráficas con los resultados de todos los algoritmos de 

optimización empleados en el caso de estudio sintético expuesto en el apartado 6.1. 
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12.1 Anejo A1. Métodos basados en gradientes 

12.1.1 Gauss-Newton – Sin ruido 

 

Figura A-138 – Error cuadrático vs Iteración. Gauss-Newton sin ruido 

 

 

Figura A-139 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido 
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Figura A-140 – Perfil asiento retrocalculado. Gauss-Newton sin ruido 

 

12.1.2 Gauss-Newton – Con ruido 

 

Figura A-141 – Error cuadrático vs Iteración. Gauss-Newton con ruido 
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Figura A-142 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido 

 

 

Figura A-143 – Perfil asiento retrocalculado. Gauss-Newton con ruido 
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12.1.3 Levenberg-Marquardt – Sin ruido 

 

Figura A-144 – Error cuadrático vs Iteración. Mutistart Levenberg-Marquardt sin ruido 

 

 

Figura A-145 – Mapa de soluciones y trayectoria de optimización. Mutistart Levenberg-Marquardt sin 

ruido 
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Figura A-146 – Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt sin ruido 

 

12.1.4 Levenberg-Marquardt – Con ruido 

 

Figura A-147 – Error cuadrático vs Iteración. Mutistart Levenberg-Marquardt con ruido 
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Figura A-148 – Mapa de soluciones y trayectoria de optimización. Mutistart Levenberg-Marquardt sin 

ruido 

 

 

Figura A-149 – Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt con ruido 
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12.1.5 Multistart con Levenberg-Marquardt – Sin ruido 

Se consideran 50 inicios aleatorios 

 

Figura A-150 – Mapa de soluciones y trayectoria de optimización. Mutistart Levenberg-Marquardt sin 

ruido 

 

Figura A-151 – Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt sin ruido 
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12.1.6 Multistart con Levenberg-Marquardt – con ruido 

 

Figura A-152 – Mapa de soluciones y trayectoria de optimización. Mutistart Levenberg-Marquardt con 

ruido 

 

 

Figura A-153 – Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt con ruido 
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12.1.7 Multistart con Gauss-Newton – Sin ruido 

 

Figura A-154 – Mapa de soluciones y trayectoria de optimización. Mutistart Gauss-Newton sin ruido 

 

 

Figura A-155 – Mapa de soluciones y trayectoria de optimización. Mutistart Gauss-Newton sin ruido 
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Figura A-156 – Perfil asiento retrocalculado. Mutistart Gauss-Newton sin ruido 

 

12.1.8 Multistart con Gauss-Newton – Con ruido 

 

Figura A-157 – Error cuadrático vs Iteración. Mutistart Gauss-Newton con ruido 
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Figura A-158 – Mapa de soluciones y trayectoria de optimización. Mutistart Gauss-Newton con ruido 

 

 

Figura A-159 – Perfil asiento retrocalculado. Mutistart Gauss-Newton con ruido 
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12.1.9 Cuasi-Newton BFGS – Sin ruido 

 

Figura A-160 – Error cuadrático vs Iteración. Cuasi-Newton BFGS sin ruido 

 

 

Figura A-161 – Mapa de soluciones y trayectoria de optimización. Cuasi-Newton BFGS sin ruido 
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Figura A-162 – Perfil asiento retrocalculado. Cuasi-Newton BFGS sin ruido 

 

12.1.10 Cuasi-Newton BFGS – Con ruido 

 

Figura A-163 – Error cuadrático vs Iteración. Cuasi-Newton BFGS con ruido 

 



ANEJO A 

274 

 

Figura A-164 – Mapa de soluciones y trayectoria de optimización. Cuasi-Newton BFGS con ruido 

 

 

Figura A-165 – Perfil asiento retrocalculado. Cuasi-Newton BFGS con ruido 
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12.2 Anejo A2. Métodos heurísticos y metaheurísticos - Evolutivos 

12.2.1 Algoritmos Genéticos Simples – Sin ruido 

Población de 75 individuos y número de generaciones necesarias para alcanzar error indicado. 

 

Figura A-166 – Reemplazo generacional. Algoritmo genético simple sin ruido 

 

Figura A-167 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 1 
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Figura A-168 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 5 

 

 

Figura A-169 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 10 
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Figura A-170 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 20 

 

 

Figura A-171 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 30 
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Figura A-172 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 40 

 

 

Figura A-173 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 50 
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Figura A-174 – Evolución E1-E4. Algoritmo genético simple sin ruido 

 

 

Figura A-175 – Perfil asiento retrocalculado. Algoritmo genético simple sin ruido  
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12.2.2 Algoritmos Genéticos Simples – Con ruido 

 

Figura A-176 – Reemplazo generacional. Algoritmo genético simple con ruido 

 

 

Figura A-177 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 1 
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Figura A-178 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 5 

 

 

Figura A-179 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 10 
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Figura A-180 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 20 

 

 

Figura A-181 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 30 
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Figura A-182 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 40 

 

 

Figura A-183 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 50 
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Figura A-184 – Evolución E1-E4. Algoritmo genético simple con ruido 

 

 

Figura A-185 – Perfil asiento retrocalculado. Algoritmo genético simple con ruido  

 



ANEJO A 

285 

12.2.3 Algoritmo Genéticos Adaptativos – Sin ruido 

Población de 75 individuos y número de generaciones necesarias para alcanzar error indicado. 

 

Figura A-186 – Reemplazo generacional. Algoritmo genético adaptativo sin ruido  

 

Figura A-187 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 1 
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Figura A-188 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 5 

 

 

Figura A-189 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 10 
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Figura A-190 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 20 

 

 

Figura A-191 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 30 
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Figura A-192 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 40 

 

 

Figura A-193 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 50 
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Figura A-194 – Evolución E1-E4. Algoritmo genético adaptativo sin ruido 

 

 

Figura A-195 – Perfil asiento retrocalculado. Algoritmo genético adaptativo sin ruido  
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12.2.3.1 Algoritmo Genético Adaptativo – Con ruido 

 

Figura A-196 – Reemplazo generacional. Algoritmo genético adaptativo con ruido  

 

 

Figura A-197 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 1 
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Figura A-198 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 5 

 

 

Figura A-199 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 10 
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Figura A-200 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 20 

 

 

Figura A-201 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 30 
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Figura A-202 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 40 

 

 

Figura A-203 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 50 
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Figura A-204 – Evolución E1-E4. Algoritmo genético adaptativo con ruido 

 

 

Figura A-205 – Perfil asiento retrocalculado. Algoritmo genético adaptativo con ruido  
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12.2.4  Enjambre de partículas – Sin ruido 

Se consideran también partículas en la búsqueda. 

 

Figura A-206 – Evolución de la actualización de posición. Enjambre de partículas sin ruido  

 

Figura A-207 – Evolución E1-E4. Enjambre de partículas sin ruido 
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Figura A-208 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas sin ruido. 

Iteración 1 

 

 

Figura A-209 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas sin ruido. 

Iteración 5 
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Figura A-210 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas sin ruido. 

Iteración 10 

 

 

Figura A-211 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas sin ruido. 

Iteración 20 
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Figura A-212 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas sin ruido. 

Iteración 30 

 

 

Figura A-213 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas sin ruido. 

Iteración 40 
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Figura A-214 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas sin ruido. 

Iteración 50 

 

 

Figura A-215 – Perfil asiento retrocalculado. Enjambre de partículas sin ruido 
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12.2.5 Enjambre de Partículas – Sin ruido 

 

Figura A-216 – Evolución de la actualización de posición. Enjambre de partículas con ruido  

 

 

Figura A-217 – Evolución E1-E4. Enjambre de partículas con ruido 
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Figura A-218 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 1 

 

 

Figura A-219 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 5 
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Figura A-220 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 10 

 

 

Figura A-221 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 20 
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Figura A-222 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 30 

 

 

Figura A-223 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 40 
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Figura A-224 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 50 

 

 

Figura A-225 – Mapa de soluciones y trayectoria de optimización. Enjambre de partículas con ruido. 

Iteración 50 
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Figura A-226 – Perfil asiento retrocalculado. Enjambre de partículas con ruido 
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12.2.6 Evolución Diferencial (DE) – Sin ruido 

Se adopta una población de 50, un factor de escalado de 0.8 y tasa de cruce de 0.9. Se 

implementan tantas iteraciones como sea necesario para alcanzar el error objetivo o 250, lo 

que sea menor. 

 

Figura A-227 – Evolución del mejor valor. Evolución diferencial sin ruido 

 

Figura A-228 – Evolución E1-E2. Evolución diferencial sin ruido 
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Figura A-229 – Mapa de soluciones. Evolución diferencial sin ruido 

 

 

Figura A-230 – Perfil asiento retrocalculado. Evolución diferencial sin ruido 
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12.2.7 Evolución Diferencial (DE) – Con ruido 

 

Figura A-231 – Evolución del mejor valor. Evolución diferencial con ruido 

 

 

Figura A-232 – Evolución E1-E2. Evolución diferencial con ruido 
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Figura A-233 – Mapa de soluciones. Evolución diferencial con ruido 

 

 

Figura A-234 – Perfil asiento retrocalculado. Evolución diferencial con ruido 
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12.2.8 Recocido simulado (SA) – Sin ruido 

Se considera una temperatura inicial de 1 y un factor de enfriamiento de 0.95. Se adoptan 

tantas iteraciones como sean necesarias para alcanzar el error objetivo o 250, lo que sea menor. 

 

Figura A-235 – Evolución del mejor valor. Recocido simulado sin ruido 

 

Figura A-236 – Evolución E1-E2. Recocido simulado sin ruido 
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Figura A-237 – Mapa de soluciones. Recocido simulado sin ruido 

 

 

Figura A-238 – Perfil asiento retrocalculado. Recocido simulado sin ruido 
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12.2.9 Recocido simulado (SA) – Sin ruido 

 

Figura A-239 – Evolución del mejor valor. Recocido simulado con ruido 

 

 

Figura A-240 – Evolución E1-E2. Recocido simulado con ruido 
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Figura A-241 – Mapa de soluciones. Recocido simulado con ruido 

 

 

Figura A-242 – Perfil asiento retrocalculado. Recocido simulado con ruido 
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12.3 Anejo A3. Métodos de Búsqueda Directa  

12.3.1 Nelder-Mead (Simplex) – Sin ruido 

Se adopta una tolerancia de 0.10 para la malla y salto.  

 

Figura A-243 – Evolución E1-E2. Nelder-Mead sin ruido 

 

Figura A-244 – Evolución del mejor valor. Nelder-Mead sin ruido 
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Figura A-245 – Mapa de soluciones. Nelder-Mead sin ruido 

 

 

Figura A-246 – Perfil asiento retrocalculado. Nelder-Mead sin ruido 
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12.3.2 Nelder-Mead (Simplex) – Con ruido 

 

Figura A-247 – Evolución mejor valor. Nelder-Mead con ruido 

 

 

Figura A-248 – Evolución E1-E2. Nelder-Mead con ruido 
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Figura A-249 – Mapa de soluciones. Nelder-Mead con ruido 

 

 

Figura A-250 – Perfil asiento retrocalculado. Nelder-Mead con ruido 
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12.4 Anejo A4. Métodos surrogados  

12.4.1 Optimización Bayesiana (BO) – Sin ruido 

 

Figura A-251 – Número de evaluaciones por iteración. Optimización Bayesiana sin ruido 

 

Figura A-252 – Evolución E1-E4. Optimización Bayesiana sin ruido 
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Figura A-253 – Mapa de soluciones. Optimización Bayesiana sin ruido 

 

12.4.2 Optimización Bayesiana (BO) – Con ruido 

 

Figura A-254 – Número de evaluaciones por iteración. Optimización Bayesiana con ruido  
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Figura A-255 – Evolución E1-E4. Optimización Bayesiana con ruido 

 

 

Figura A-256 – Mapa de soluciones. Optimización Bayesiana con ruido 
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12.4.3 Procesos Gaussianos (GP) – Sin ruido 

Se adopta un máximo de iteraciones 300 y 30 puntos iniciales. 

 

Figura A-257 – Evolución E1-E4. Proceso Gaussiano sin ruido 

 

Figura A-258 – Mapa de soluciones. Proceso Gaussiano sin ruido 
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Figura A-259 – Perfil asiento retrocalculado. Proceso Gaussiano sin ruido 

 

12.4.4 Procesos Gaussianos (GP) – Con ruido 

 

Figura A-260 – Evolución E1-E4. Proceso Gaussiano con ruido 
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Figura A-261 – Mapa de soluciones. Proceso Gaussiano con ruido 

 

 

Figura A-262 – Perfil asiento retrocalculado. Proceso Gaussiano con ruido 
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12.4.5 Modelos de superficie de respuesta (Kriging) – Sin ruido 

Se consideran un máximo de 300 iteraciones y 30 puntos iniciales. 

 

Figura A-263 – Evolución mejor resultado. Kriging sin ruido 

 

 

Figura A-264 – Evolución E1-E4. Kriging sin ruido 
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Figura A-265 – Mapa de soluciones. Kriging sin ruido 

 

 

Figura A-266 – Perfil asiento retrocalculado. Kriging sin ruido 
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12.4.6 Modelos de superficie de respuesta (Kriging) – Con ruido 

 

Figura A-267 – Evolución mejor resultado. Kriging con ruido 

 

 

Figura A-268 – Evolución E1-E4. Kriging con ruido 
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Figura A-269 – Mapa de soluciones. Kriging con ruido 

 

 

Figura A-270 – Perfil asiento retrocalculado. Kriging con ruido 
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12.5 Anejo A5. Métodos basados en programación matemática  

12.5.1 Programación cuadrática – Sin ruido 

 

Figura A-271 – Evolución mejor resultado. Programación matemática sin ruido 

 

Figura A-272 – Mapa de soluciones. Programación matemática sin ruido 

 



ANEJO A 

329 

 

Figura A-273 – Perfil asiento retrocalculado. Programación matemática sin ruido  

 

12.5.2 Programación cuadrática – Con ruido 

 

Figura A-274 – Evolución mejor resultado. Programación matemática con ruido 
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Figura A-275 – Mapa de soluciones. Programación matemática con ruido 

 

 

Figura A-276 – Perfil asiento retrocalculado. Programación matemática con ruido  
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12.5.3 Programación No Lineal – Sin ruido 

 

Figura A-277 – Evolución mejor resultado. Programación no lineal sin ruido 

 

 

Figura A-278 – Mapa de soluciones. Programación no lineal sin ruido 
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Figura A-279 – Perfil asiento retrocalculado. Programación no lineal sin ruido  

 

12.5.4 Programación No Lineal – Con ruido 

 

Figura A-280 – Evolución mejor resultado. Programación no lineal con ruido 
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Figura A-281 – Mapa de soluciones. Programación no lineal con ruido 

 

 

Figura A-282 – Perfil asiento retrocalculado. Programación no lineal con ruido 
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12.6 Anejo A5. Otros métodos 

12.6.1 Optimización robusta – Sin ruido 

Se consideran 20 escenarios con una perturbación del 5%. 

 

Figura A-283 – Perfil asiento retrocalculado. Optimización robusta sin ruido 
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12.6.2 Optimización robusta – Con ruido 

 

Figura A-284 – Perfil asiento retrocalculado. Optimización robusta con ruido 
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12.6.3 Optimizacion distribuidamente robusta – Sin ruido 

Se adoptan 100 muestras con una perturbación del 2.5% (desviación estándar). 

 

 

Figura A-285 – Perfil asiento retrocalculado. Optimización distribuidamente robusta sin ruido  
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12.6.4 Optimizacion distribuidamente robusta – Con ruido 

 

 

Figura A-286 – Perfil asiento retrocalculado. Optimización distribuidamente robusta con ruido  
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12.7 Anejo A6. Métodos híbridos  

12.7.1 Genético simple con GN – Sin ruido 

El algoritmo de búsqueda global considera una población de 50 individuos con un máximo de 

10 generaciones, seguido del refinamiento en la fase local. 

 

Figura A-287 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 1 

 

Figura A-288 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 2 
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Figura A-289 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 3 

 

Figura A-290 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 4 
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Figura A-291 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 5 

 

Figura A-292 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 6 
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Figura A-293 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 7 

 

Figura A-294 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 8 

 



ANEJO A 

342 

 

Figura A-295 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 9 

 

Figura A-296 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 10 
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Figura A-297 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 

 

 

Figura A-298 – Perfil de asiento retrocalculado. Algoritmo híbrido GS+GN sin ruido. 
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12.7.2 Genético simple con GN – Con ruido 

 

Figura A-299 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 1 

 

Figura A-300 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 2 
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Figura A-301 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 3 

 

 

Figura A-302 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 4 
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Figura A-303 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 5 

 

 

Figura A-304 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 6 
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Figura A-305 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 7 

 

 

Figura A-306 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 8 
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Figura A-307 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 9 

 

 

Figura A-308 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple con ruido. 

Generación 10 
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Figura A-309 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-310 – Perfil de asiento retrocalculado. Híbrido GS+GN con ruido. 
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12.7.3 Genético simple con LM – Sin ruido 

 

Figura A-311 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 1 

 

Figura A-312 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 2 
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Figura A-313 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 3 

 

 

Figura A-314 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 4 
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Figura A-315 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 5 

 

 

Figura A-316 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 6 
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Figura A-317 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 7 

 

 

Figura A-318 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 8 
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Figura A-319 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 9 

 

 

Figura A-320 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético simple sin ruido. 

Generación 10 
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Figura A-321 – Mapa de soluciones y trayectoria de optimización. LM sin ruido. 

 

 

Figura A-322 – Perfil de asiento retrocalculado. Híbrido GS + LM sin ruido.  
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12.7.4  Genético Adaptativo con GN o LN – Sin ruido 

El algoritmo de búsqueda global considera una población de 50 individuos con un máximo de 

50 generaciones, seguido del refinamiento en la fase local. 

 

Figura A-323 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 1 

 

Figura A-324 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 5 
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Figura A-325 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo sin 

ruido. Generación 10 

 

 

Figura A-326 – Mapa de soluciones y trayectoria de optimización. GN sin ruido. 
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Figura A-327 – Mapa de soluciones y trayectoria de optimización. LM sin ruido. 

 

 

Figura A-328 – Perfil de asiento retrocalculado. Híbrido GA + GN sin ruido.  
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12.7.5 Genético Adaptativo con GN o LN – Con ruido 

 

Figura A-329 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 1 

 

 

Figura A-330 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 5 



ANEJO A 

360 

 

Figura A-331 – Mapa de soluciones y trayectoria de optimización. Algoritmo genético adaptativo con 

ruido. Generación 10 

 

 

Figura A-332 – Mapa de soluciones y trayectoria de optimización. GN con ruido. 
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Figura A-333 – Perfil de asiento retrocalculado. Híbrido GA + GN con ruido.  
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12.7.6 Enjambre de partículas (PSO) con GN o LN – Sin ruido 

El algoritmo de búsqueda global considera una población de 50 partículas con un máximo de 

10 generaciones, seguido del refinamiento en la fase local. 

 

Figura A-334 – Mapa de soluciones y trayectoria de optimización. PSO sin ruido. Generación 10  

 

Figura A-335 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-336 – Mapa de soluciones y trayectoria de optimización. LM sin ruido. 

 

 

Figura A-337 – Perfil de asiento retrocalculado. Algoritmo híbrido PSO+GN sin ruido.  

 



ANEJO A 

364 

12.7.7 Enjambre de partículas (PSO) con GN o LN – Con ruido 

 

Figura A-338 – Mapa de soluciones y trayectoria de optimización. PSO con ruido. Generación 10  

 

 

Figura A-339 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 
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Figura A-340 – Perfil de asiento retrocalculado. Algoritmo híbrido PSO+GN con ruido.  
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12.7.8 Evolución Diferencias (DE) con GN o LN – Sin ruido 

La fase global considera una población con un tamaño de 10, un máximo de 10 generaciones, 

un factor de mutación de 0.8 y probabilidad de cruce de 0.9. La fase local considera la mejor 

posición de la búsqueda global. 

 

Figura A-341 – Mapa de soluciones y trayectoria de optimización. DE sin ruido. Generación 10  

 

Figura A-342 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-343 – Mapa de soluciones y trayectoria de optimización. LM sin ruido. 

 

 

Figura A-344 – Perfil de asiento retrocalculado. Algoritmo híbrido DE+GN sin ruido.  

 



ANEJO A 

368 

12.7.9 Evolución Diferencias (DE) con GN o LN – Con ruido 

 

Figura A-345 – Mapa de soluciones y trayectoria de optimización. DE con ruido. Generación 10  

 

 

Figura A-346 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 
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Figura A-347 – Perfil de asiento retrocalculado. Algoritmo híbrido DE+GN con ruido.  
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12.7.10 Recocido simulado (SA) con GN o LN – Sin ruido 

Fase global de 10 iteraciones con temperatura inicial de 1 y factor de enfriamiento Alpha de 

0.95. 

 

Figura A-348 – Mapa de soluciones y trayectoria de optimización. SA sin ruido. Iteración 10  

 

Figura A-349 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-350 – Mapa de soluciones y trayectoria de optimización. LM sin ruido. 

 

 

Figura A-351 – Perfil de asiento retrocalculado. Algoritmo híbrido SA+GN sin ruido.  
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12.7.11 Recocido simulado (SA) con GN o LN – Con ruido 

 

Figura A-352 – Mapa de soluciones y trayectoria de optimización. SA con ruido. Iteración 10 

 

 

Figura A-353 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 
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Figura A-354 – Perfil de asiento retrocalculado. Algoritmo híbrido SA+GN con ruido.  
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12.7.12 Optimización Bayesiana (BO) con GN o LN – Sin ruido 

 

Figura A-355 – Mapa de soluciones y trayectoria de optimización. BO sin ruido. Iteración 10  

 

 

Figura A-356 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-357 – Perfil de asiento retrocalculado. Algoritmo híbrido BO+GN sin ruido.  

 

12.7.13 Optimización Bayesiana (BO) con GN o LN – Con ruido 

 

Figura A-358 – Mapa de soluciones y trayectoria de optimización. BO con ruido. Iteración 10  
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Figura A-359 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-360 – Perfil de asiento retrocalculado. Algoritmo híbrido BO+GN con ruido.  
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12.7.14 Procesos Gaussianos (GP) con GN o LN – Sin ruido 

 

Figura A-361 – Mapa de soluciones y trayectoria de optimización. GP sin ruido. Iteración 10  

 

 

Figura A-362 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-363 – Perfil de asiento retrocalculado. Algoritmo híbrido GP+GN sin ruido.  

 

12.7.15 Procesos Gaussianos (GP) con GN o LN – Con ruido 

 

Figura A-364 – Mapa de soluciones y trayectoria de optimización. GP con ruido. Iteración 10 
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Figura A-365 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-366 – Perfil de asiento retrocalculado. Algoritmo híbrido GP+GN con ruido. 
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12.7.16 Kriging con GN o LN – Sin ruido 

 

Figura A-367 – Mapa de soluciones y trayectoria de optimización. Kriging sin ruido. Iteración 20  

 

 

Figura A-368 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-369 – Mapa de soluciones y trayectoria de optimización. LM sin ruido. 

 

 

Figura A-370 – Perfil de asiento retrocalculado. Algoritmo híbrido Kriging+GN sin ruido.  
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12.7.17 Kriging con GN o LN – Con ruido 

 

Figura A-371 – Mapa de soluciones y trayectoria de optimización. Kriging con ruido. Iteración 20 

 

 

Figura A-372 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 
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Figura A-373 – Perfil de asiento retrocalculado. Algoritmo híbrido Kriging+GN con ruido. 
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12.7.18 Estrategias evolutivas (CMA-ES) con GN o LN – Sin ruido 

 

Figura A-374 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 

 

 

Figura A-375 – Perfil de asiento retrocalculado. Algoritmo híbrido CMA-ES+GN sin ruido. 
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12.7.19 Estrategias evolutivas (CMA-ES) con GN o LN – Con ruido 

 

Figura A-376 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-377 – Perfil de asiento retrocalculado. Algoritmo híbrido CMA-ES+GN con ruido. 
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12.7.20 Cuckoo Search con GN o LM – Sin ruido 

Se considersa en la búsqueda global (Cuckoo Search) 10 nidos y 10 iteraciones con una 

probailidad de abandono de 0.25 

 

Figura A-378 – Mapa de soluciones y trayectoria de optimización. Cuckoo Search sin ruido. Iteración 10 

 

Figura A-379 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-380 – Perfil de asiento retrocalculado. Algoritmo híbrido Cuckoo+GN sin ruido.  

 

12.7.21 Cuckoo Search con GN o LM – Con ruido 

 

Figura A-381 – Mapa de soluciones y trayectoria de optimización. Cuckoo Search con ruido. Iteración 10 
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Figura A-382 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-383 – Perfil de asiento retrocalculado. Algoritmo híbrido Cuckoo+GN con ruido.  
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12.7.22 Grey Wolf Optimizer + GN o LM – Sin ruido 

 

Figura A-384 – Mapa de soluciones y trayectoria de optimización. Grey Wolf sin ruido. Iteración 10 

 

 

Figura A-385 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-386 – Perfil de asiento retrocalculado. Algoritmo híbrido Grey Wolf+GN sin ruido. 

 

12.7.23 Grey Wolf Optimizer + GN o LM – Con ruido 

 

Figura A-387 – Mapa de soluciones y trayectoria de optimización. Grey Wolf con ruido. Iteración 10  
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Figura A-388 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-389 – Perfil de asiento retrocalculado. Algoritmo híbrido Grey Wolf+GN con ruido.  
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12.7.24 Shuffled Complex Evolution (SCE) + GN o LM – Sin ruido 

 

Figura A-390 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 

 

 

Figura A-391 – Perfil de asiento retrocalculado. Algoritmo híbrido SCE+GN sin ruido.  
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12.7.25 Shuffled Complex Evolution (SCE) + GN o LM – Con ruido 

 

Figura A-392 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-393 – Perfil de asiento retrocalculado. Algoritmo híbrido SCE+GN con ruido. 
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12.7.26 NSGA-II Multiobjetivo + GN o LM – Sin ruido 

 

Figura A-394 – Mapa de soluciones NSGA-II sin ruido. 

 

 

Figura A-395 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 
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Figura A-396 – Perfil de asiento retrocalculado. Algoritmo híbrido NSGA-II +GN sin ruido. 

 

12.7.27 NSGA-II Multiobjetivo + GN o LM – Con ruido 

 

Figura A-397 – Mapa de soluciones NSGA-II con ruido. 
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Figura A-398 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-399 – Perfil de asiento retrocalculado. Algoritmo híbrido NSGA-II +GN con ruido. 
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12.7.28 SPEA2 Multiobjetivo + GN o LM – Sin ruido 

 

Figura A-400 – Mapa de soluciones SPEA2 sin ruido. 

 

 

Figura A-401 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton sin ruido. 

 



ANEJO A 

398 

 

Figura A-402 – Perfil de asiento retrocalculado. Algoritmo híbrido SPEA2+GN sin ruido.  

 

12.7.29 SPEA2 Multiobjetivo + GN o LM – Con ruido 

 

Figura A-403 – Mapa de soluciones SPEA2 con ruido. 
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Figura A-404 – Mapa de soluciones y trayectoria de optimización. Gauss-Newton con ruido. 

 

 

Figura A-405 – Perfil de asiento retrocalculado. Algoritmo híbrido SPEA2+GN con ruido.  

 


