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Resumen

RESUMEN

Este Trabajo de Fin de Master propone una metodologia innovadora de andlisis retrospectivo
de parametros geotécnicos aplicada al disefio de cimentaciones superficiales, mas
concretamente, en la estimacion del modulo de elasticidad en suelos granulares. Frente a las
limitaciones de los enfoques tradicionales, dependientes de un elevado nimero de ensayos in
situ, hipotesis simplificadas y andlisis iterativos costosos, se plantea un esquema hibrido que
combina el potencial exploratorio del aprendizaje automatico con la precision de métodos
deterministas. El objetivo es ofrecer una herramienta robusta, eficiente y adaptable a contextos

reales de obra civil y edificacion.

En primer lugar, se implementa un médulo de busqueda global que, gracias a técnicas de
Machine Learning, ofrece estimaciones preliminares del médulo de elasticidad y otros
pardmetros esenciales. A continuacidn, estas estimaciones se refinan mediante un algoritmo
de optimizacion que integra los métodos de Gauss-Newton o Levenberg-Marquardt,
garantizando una convergencia rapida y estable. Este enfoque asegura no solo la precisién en
la prediccion de respuestas tensionales y deformacionales, sino también una drastica

reduccion en el namero de iteraciones necesarias.

La metodologia se valida exhaustivamente en dos escenarios: un caso sintético (con y sin
introduccién de ruido estadistico) y un proyecto real de cimentacién en un edificio de gran
altura. En el primer caso, se alcanzé un error medio cuadratico (RMSE) de apenas 2.3 kPa
(R?=1.00) en condiciones ideales y 1,623.0 kPa (R?=0.898) con ruido; en el segundo, la
correlacién con los datos reales obtuvo un R?=0.998. Estos resultados se han contrastado con
treinta y dos métodos clasicos de andlisis inverso, ofreciendo el método propuesto no solo una
eficiencia computacional notablemente inferior, sino que también demuestran una elevada

precisién en los parametros retrocalculados.

Ademas, la arquitectura modular de la propuesta facilita su integraciéon con sistemas de
monitorizacion en tiempo real (10T) y herramientas de inteligencia artificial, adaptandose a los
nuevos Eurocddigos (EN 1997-1:2024, EN 1997-3:2025) y contribuyendo al cumplimiento de
los Objetivos de Desarrollo Sostenible de la Agenda 2030. En definitiva, este estudio ofrece una
herramienta robusta y escalable, capaz de transformar la practica profesional en disefio y

control de cimentaciones, reduciendo costes y tiempos sin sacrificar fiabilidad ni seguridad.
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Abstract

ABSTRACT

This Master's Thesis proposes an innovative backanalysis methodology for the calibration of
geotechnical parameters applied to the design of shallow foundations, specifically focusing on
the estimation of the elastic modulus in granular soils. In contrast to the limitations of
traditional approaches, typically reliant on a large number of in situ tests, simplified
assumptions, and computationally expensive iterative analyses, this work introduces a hybrid
framework that combines the exploratory power of machine learning with the precision of
deterministic methods. The aim is to deliver a robust, efficient, and adaptable tool for real-

world civil engineering and building projects.

First, a global search module is implemented using machine learning techniques to provide
preliminary estimates of the elastic modulus and other key soil parameters. These estimates
are then refined through an optimization algorithm that incorporates either the Gauss-Newton
or Levenberg-Marquardt methods, ensuring rapid and stable convergence. This dual-stage
approach guarantees not only accurate predictions of stress and deformation responses, but

also a significant reduction in the number of iterations required.

The proposed methodology is thoroughly validated in two scenarios: a synthetic case (both
with and without added statistical noise) and a real-world foundation project for a high-rise
building. In the synthetic case, a root mean square error (RMSE) of just 2.3 kPa (R? = 1.00) was
achieved under ideal conditions, and 1,623.0 kPa (R? = 0.898) with noise. In the real project,
the correlation with monitored data reached R? = 0.998. These results were benchmarked
against thirty-two conventional inverse analysis methods, with the proposed approach
demonstrating not only superior computational efficiency but also high accuracy in the back-

calculated parameters.

Moreover, the modular architecture of the methodology facilitates integration with real-time
monitoring systems (1oT) and artificial intelligence tools. It aligns with the requirements of the
new Eurocodes (EN 1997-1:2024, EN 1997-3:2025) and contributes to the achievement of the
Sustainable Development Goals of the 2030 Agenda. In summary, this study presents a robust
and scalable solution with the potential to transform professional practice in the design and
monitoring of foundations, reducing both costs and execution time without compromising

reliability or safety.
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Introduccidn

1. INTRODUCCION

Mucho antes del desarrollo formal de la mecénica de suelos, civilizaciones antiguas como los
egipcios, griegos o romanos ya conocian la importancia del terreno y la necesidad de
proporcionar una cimentacién adecuada para prolongar la vida ttil de sus estructuras. Estas
culturas empleaban métodos empiricos basados en la observacion directa del comportamiento
del suelo: realizaban pruebas de carga rudimentarias para estimar la capacidad portante y los
asientos potenciales, estudiaban la vegetacidon para evaluar la humedad y naturaleza del

terreno, o realizaban catas para detectar la presencia de agua subterranea.

Durante la Edad Media, estas practicas empiricas se complementaron con técnicas como las
pruebas de absorcion de agua en el terreno natural, que permitian identificar materiales
cohesivos y anticipar posibles riesgos o incertidumbres para la cimentacion. A lo largo de la
historia, la observacién del comportamiento del suelo y los ensayos de campo han sido la base
para el disefio de cimentaciones y siguen siendo, hasta hoy, herramientas esenciales para la

caracterizacion del medio geotécnico.

Los trabajos realizados por el ingeniero francés Jean-Rodolphe Perronet en el siglo XVIII,
destacandose la construccion de puentes como el Pont de Neuilly en Paris (1772-1774),
aplicaban metodologias observacionales pioneras para la evaluaciéon y monitorizacién del
comportamiento del terreno durante la construccion. En sus registros detallados, Perronet
documentaba cuidadosamente el asentamiento de las cimentaciones y adaptaba el disefio
conforme a las observaciones obtenidas durante la ejecucion, ejemplificando tempranamente

el enfoque que actualmente conocemos como andlisis observacional (Peck, 1969).

Esta metodologia de monitoreo sistematico y adaptacién constructiva ante comportamientos
inesperados del suelo seria posteriormente formalizada por Ralph B. Peck en su influyente
trabajo "Advantages and Limitations of the Observational Method in Applied Soil Mechanics"
(1969), consolidando el analisis observacional como una estrategia fundamental en la practica

geotécnica moderna.

Estas referencias historicas demuestran cémo el andlisis observacional ha estado
implicitamente presente en la ingenieria geotécnica desde hace siglos, evolucionando
significativamente hasta convertirse en una metodologia clave respaldada por normativas
internacionales contemporaneas como los Eurocddigos, especialmente en la ultima

generacion.
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Introduccidn

El desarrollo de la mecanica de suelos como disciplina cientifica ha permitido establecer
modelos mas rigurosos para describir la interaccidn entre cimentacién y terreno. Sin embargo,
incluso con la consolidacion de estos modelos, el enfoque observacional sigue siendo
fundamental, no solo para validar teorias y modelos numéricos, sino también para ajustar las

predicciones de comportamiento a las condiciones reales de cada obra.

En este contexto, la irrupcion de la Inteligencia Artificial (IA) y la sensorizacién avanzada (1oT)
ha impulsado la evolucion de los métodos de andlisis observacional, permitiendo aprovechar
grandes volimenes de datos en tiempo real. Estas herramientas ofrecen un enorme potencial
para optimizar la toma de decisiones, calibrar modelos numéricos con datos reales y reducir la
incertidumbre asociada a la modelizacion del terreno. La combinacién de sistemas de
monitoreo mediante sensores de Ultima generacion y algoritmos de IA facilita una evaluacién
mas precisa del comportamiento del suelo durante la fase de construccién, permitiendo
identificar desviaciones respecto al disefio previsto, minimizar riesgos y optimizar las

soluciones de cimentacion.

La caracterizacién y modelizacién del comportamiento del suelo, junto con los métodos
utilizados para evaluar los asientos, son elementos clave para comprender la interaccion entre
la cimentacién y el terreno. Para mejorar la precision de los modelos empleados por el
disenador, es necesario implementar enfoques hibridos que combinen modelos fisicos clasicos
con técnicas de andlisis de datos, permitiendo ajustar los parametros geotécnicos a las

condiciones reales del suelo mediante sistemas de monitoreo continuo.
En cualquier caso, un andlisis riguroso debe contemplar tres etapas esenciales:

e Laobservacion del medio, que proporciona la informacion basica sobre las condiciones

reales del terreno;

e Lacreacion del problema, que implica la formulacién de un modelo te6rico o numérico

basado en los principios de la mecanica de suelos y los datos observados;

e El contraste del modelo con la realidad, mediante la comparacién de las predicciones
del modelo con los datos obtenidos in situ, ajustando asi los parametros o planteando

nuevas hipotesis si es necesario.

Este enfoque ciclico, donde la observacion, la modelizacién y la validacién se retroalimentan,

es la base para avanzar hacia soluciones mas eficaces y adaptativas, especialmente en un
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contexto donde las tecnologias de monitoreo y las herramientas de inteligencia artificial estan

redefiniendo la forma en que se entiende y gestiona la construccion.

El objetivo del presente trabajo es integrar estos enfoques cldsicos y modernos para
desarrollar una metodologia de andlisis retrospectivo que permita, a partir de mediciones
reales de asientos y presiones de contacto, calibrar pardmetros geotécnicos clave y optimizar

el disefio de cimentaciones superficiales en funcién de las condiciones especificas del terreno.

La metodologia propuesta en este Trabajo de Final de Master no solo responde a la necesidad
técnica de mejorar la precisiéon y eficiencia en la estimacidn de parametros geotécnicos, sino
que también se alinea con los principios de sostenibilidad que rigen la ingenieria del siglo XXI.
En concreto, se articula con varios de los Objetivos de Desarrollo Sostenible (ODS) establecidos
por la Agenda 2030 de Naciones Unidas, especialmente en lo relativo a la innovacion, la
eficiencia en el uso de recursos, la resiliencia de las infraestructuras y la mitigacién del impacto

ambiental de los proyectos de ingenieria civil.
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2. OBJETIVOS

El presente Trabajo de Final de Master tiene como objetivo el desarrollo de una metodologia
de andlisis retrospectivo de parametros geotécnicos, especificamente enfocado en el médulo
de elasticidad, con la finalidad de optimizar el disefio estructural y geotécnico de cimentaciones
superficiales en suelos granulares. Esta metodologia pretende ayudar a reducir las
incertidumbres inherentes a las predicciones realizadas mediante modelos numéricos
tradicionales y analisis convencionales frente al comportamiento real observado del terreno y

la estructura durante su fase operativa.

Para alcanzar este objetivo, se llevard a cabo en primer lugar una revisién exhaustiva del estado
del arte, abordando en detalle las bases tedricas relacionadas con el calculo de asientos en
cimentaciones superficiales sobre terrenos granulares. Este andlisis incluird un estudio
profundo sobre la teoria de elasticidad aplicada a suelos, los modelos constitutivos mas
relevantes y utilizados en la practica actual, y los principales métodos para la determinacion
de la distribucién de tensiones bajo cimentaciones superficiales. Asimismo, se profundizara en
las funciones objetivo mas utilizadas y en los algoritmos de optimizacién existentes con el fin
de identificar las metodologias mas prometedoras. Posteriormente, se realizara una evaluacion
sistemdtica y comparativa entre estas técnicas y el método propuesto en este trabajo,

aplicandolas a un caso de estudio sintético especificamente disefiado para tal propésito.

El algoritmo de optimizacidn propuesto consistira en una implementacion hibrida, integrando
métodos de buisqueda global fundamentados en técnicas de aprendizaje automatico (Machine
Learning), con algoritmos deterministas clasicos de busqueda local, tales como Gauss-Newton
o Levenberg-Marquardt. Esta combinacién tiene como objetivo mejorar la precisiéon de la
estimacidon de parametros geotécnicos, al mismo tiempo que reducir el coste computacional
asociado a los métodos tradicionales. Ademas, este algoritmo hibrido se integrara dentro de un
flujo de trabajo claramente estructurado, compuesto por modelos fisicos fundamentados en
los principios esenciales de la mecanica de suelos y del andlisis estructural, buscando asi

equilibrar precisién y rigor fisico con capacidad predictiva basada en datos empiricos.

El propdsito central de este enfoque hibrido es crear un modelo flexible capaz de aprender
patrones complejos directamente a partir de datos reales obtenidos en campo, incorporando
simultineamente bases estructurales y geotécnicas esenciales para una correcta
interpretacion fisica de los resultados. Se espera que este modelo mejore de forma significativa

a medida que evoluciona la construccion, ofreciendo predicciones cada vez mas precisas del
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comportamiento real del terreno, reduciendo asi las incertidumbres iniciales de disefio y

permitiendo optimizar progresivamente la estructura.

Adicionalmente, se estudiara en profundidad la influencia que tiene el punto de partida elegido
para realizar el andlisis retrospectivo. Este analisis explorarad la manera en que la seleccién
inicial de parametros afecta el nimero total de iteraciones requeridas hasta alcanzar una
solucién convergente. El objetivo es desarrollar una metodologia clara para orientar
adecuadamente el algoritmo hacia puntos iniciales 6ptimos, logrando asi una reduccién
significativa en el nimero de iteraciones y, en consecuencia, del consumo computacional global

requerido.

El anélisis retrospectivo planteado se basara en mediciones realizadas en tiempo real mediante
el uso de instrumentacién de tltima generacion. En este contexto, se abordara el desarrollo de
un procedimiento automatizado de calculo inverso, que permita integrar directamente los
datos generados por el sistema de monitorizaciéon con el modelo numérico. El objetivo dltimo
de esta automatizacion es ofrecer recomendaciones de ajuste de parametros practicamente en
tiempo real, minimizando la intervencién humana y manteniendo un coste computacional

razonablemente bajo.

Con la intencidn de validar la metodologia propuesta, esta sera aplicada a un caso de estudio
sintético especificamente desarrollado para este trabajo. Se consideraran dos escenarios
diferenciados: un primer caso ideal sin errores de medicion, y un segundo caso que incorporara
mediciones con ruido estadistico, simulando condiciones mas realistas de campo.
Adicionalmente, se aplicaran en paralelo los algoritmos clasicos mas relevantes, llevando a
cabo un analisis exhaustivo y sistematico de la precision y eficiencia computacional asociada a
cada uno de estos métodos, permitiendo asi extraer conclusiones fundamentadas y bien

documentadas sobre las ventajas comparativas del enfoque hibrido planteado.

También se aplicard el método en un contexto real, compuesto por la cimentacidn de un edificio
de gran altura, con el objetivo de validar atin mas la efectividad y robustez del enfoque

metodolégico propuesto.

Se analizara cuidadosamente la viabilidad y adecuacién del algoritmo propuesto dentro del
contexto de un enfoque observacional aplicado en proyectos reales. Para ello, se evaluara cémo
esta metodologia podria integrarse eficazmente dentro del esquema tradicional del enfoque

observacional mostrado en la Figura 2-1, generando un diagrama detallado que explicite
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claramente el lugar y rol especifico del método propuesto dentro del ciclo iterativo tipico del

meétodo observacional.

Generacion del
modelo geotécnico

E inicial

Modulo de elasticidad
de calculo (E)

<&

Andlisis geotécnico v
Desarrollo modelo E ret lculad
1 STR-GEO retrocalculaao
Analisis estructural
Y
Monitorizacion Nueva iteracidon

y

Aporte de este TFM Andlisis retrospectivo

A

Convergencia entre
modulo de elasticidad NO.
y analisis de asiento

Figura 2-1 — Diagrama del enfoque observacional

Finalmente, es importante destacar que este trabajo se centrara exclusivamente en el analisis
retrospectivo del mddulo de elasticidad asociado al asiento instantaneo en suelos granulares,
quedando explicitamente fuera del alcance del presente estudio los analisis relativos a suelos

cohesivos y los procesos de consolidacion.
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3. ESTADO DEL ARTE
3.1Introduccion

El presente capitulo revisa las principales referencias y avances relacionados con el analisis
retrospectivo de parametros geotécnicos a partir de mediciones de asientos y presiones de
contacto en cimentaciones superficiales. Este andlisis es clave para mejorar la caracterizaciéon
del comportamiento del suelo y optimizar el diseno de cimentaciones mediante la

retroalimentacion de datos reales de obra.

El estado del arte se organiza en bloques tematicos (cada uno correspondiente a un concepto
o linea de investigacion clave). En lugar de seguir un relato histérico lineal de principio a fin,

se agrupan los temas segin su enfoque central en apartados.

Dentro de cada bloque tematico, se realiza una exposicion asincrénica por conceptos, no
obstante, en los apartados 3.4, 3.5 y 3.6 se presentan los estudios en orden cronolégico, de
modo que el lector aprecie la evolucion interna de ese concepto. Arrancando con el trabajo
seminal que introdujo la idea, se contintia con los avances intermedios que la refinaron o
diversificaron, y concluye con las publicaciones mas recientes, destacando tendencias actuales

y limitaciones pendientes.

Este doble criterio (primero por conceptos y luego por tiempo) combina la claridad de un mapa
tematico con la perspectiva histérica necesaria para entender como ha madurado cada linea

de investigacion antes de mostrar en qué punto se sitlia nuestra propia aportacion.

El estado del arte aborda, en primer lugar, los fundamentos tedricos y metodoldgicos que
sustentan los modelos constitutivos del suelo, los cuales son esenciales para la representacion
matematica y estimacion del comportamiento mecanico del suelo ante la aplicacién de cargas.
Se analizan tanto los conceptos basicos de la elasticidad, viscoelasticidad lineal y plasticidad
aplicadas al suelo, como los modelos mas relevantes en la literatura: el modelo Hiperbdlico de
Duncan-Chang, el Modified Cam Clay (MCC), el Barcelona Basic Model (BBM) y el Hardening
Soil (HS).

A continuacidn, se profundiza en la determinaciéon del moédulo de elasticidad y otros
parametros derivados de la curva tensién-deformacion, destacando su importancia en la
estimacion de asientos. Se discuten también los factores que condicionan la variabilidad de este

modulo en funcidn del tipo de suelo y las condiciones de carga.

Los modelos constitutivos del suelo relacionan las tensiones aplicadas con las deformaciones

que obtendria el suelo como resultado. A pesar de que la relaciéon entre la deformacién y
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tensién de un suelo no es lineal y que los suelos no presentan un comportamiento puramente
elastico, ya que experimentan deformaciones irreversibles (plasticas), se pueden estimar
diferentes mdédulos de deformacion del suelo a partir de la curva tensiéon-deformacién, siendo
el modulo de elasticidad un parametro ampliamente utilizado en la prediccion de la

deformacion del suelo.

Posteriormente, se revisa la distribucién de tensiones bajo cimentaciones superficiales,
haciendo énfasis en las soluciones clasicas de la teoria de la elasticidad, como la formulacién
de Boussinesq, asi como en las adaptaciones y extensiones a suelos estratificados. Esta seccion
es clave para comprender cémo las cargas transmitidas desde la cimentacién afectan la

magnitud y distribuci6n de los asientos.

El capitulo también desarrolla las formulaciones mas relevantes para el calculo de asientos
elasticos o instantdneos en cimentaciones superficiales, incluyendo tanto metodologias

basadas en la teoria de la elasticidad como enfoques empiricos y semiempiricos.

Seguidamente, se analiza el concepto de mo6dulo de balasto, el cual mide la relacién de los
elementos anteriores, la tensién bajo una superficie y el asiento experimentado por dicha area.
Este parametro es ampliamente utilizado en la modelizacién de losas y vigas de cimentacion,
pero presenta algunas limitaciones. A lo largo del apartado 3.6 se desarrolla la evolucion de las
teorias del modulo de balasto, principales técnicas para determinarlo y metodologias de uso

en modelos.

Finalmente, se presentan los fundamentos del andlisis retrospectivo aplicado a problemas
geotécnicos, describiendo las principales funciones objetivo utilizadas para cuantificar la
discrepancia entre datos reales y modelos numéricos, y los algoritmos de optimizacién mas
empleados para resolver problemas inversos, incluyendo métodos tradicionales y enfoques

basados en inteligencia artificial.

Con esta revisién, se establece una base sélida para contextualizar y justificar el enfoque
metodolodgico desarrollado en el presente trabajo, identificando las principales contribuciones

de la literatura y las brechas existentes que motivan la investigacion.
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3.2Modelo constitutivo del suelo

Los modelos constitutivos del suelo son una representaciéon matematica para estimar su
comportamiento. Generalmente, los modelos relacionan las tensiones aplicadas con las

deformaciones que obtendria el suelo como resultado.

Se desarrollan los conceptos basicos de las teorias de elasticidad, viscoelasticidad lineal y

plasticidad.

3.2.1 Elasticidad

De acuerdo con la teoria de la elasticidad, las deformaciones y tensiones estan linealmente

relacionadas.

Loading slope

-
L

€

Figura 3-2 — Relacidn lineal entre tensidn-deformacion

De acuerdo con las ecuaciones de Hook, hay 6 tensiones y 6 deformaciones, la matriz que
relaciona las tensiones con las deformaciones esta compuesta por 36 constantes. Considerando
un estado de deformacién plano en un medio isétropo y simétrico, estas 36 constantes se

reducen a solo 2: el médulo de elasticidad E y el coeficiente de Poisson v. Las ecuaciones son:

Exx = %(O'xx - v(ayy + O'ZZ)) ()
1 (2)

&y =% (ny — V(0xx + Uzz))
(3)

1
Epy = E (O’ZZ - v(crxx + O'yy))
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4
1+v Yxy (4)

Exy = E Txy 2
5
1+4+v Vyz ()

Syz = E TyZ 2
6
1+v Vax (6

Ezx = E Txz = 2

Donde;
oii: Tensiéon normal al plano perpendicular a la direccién i
Tii: Tension tangencial en el plano perpendicular a la direccion i
&ii: Deformacion normal al plano perpendicular a la direccion i
&i: Deformacion tangencial asociada a la tensién tangencial T
vij: Deformacién angular
E: Médulo de deformacion

v: Coeficiente de Poisson

Del médulo de deformacién E y coeficiente de Poisson v se obtienen otros mdédulos de

elasticidad como el moédulo de corte (7), médulo volumétrico (8) o médulo confinado o de

compresibilidad unidireccional (9).

R - 7)
Yxy 28y 2(1+v)
1 (8)
K = o _g(o-xx+o-yy+o-zz) _ E
CAVIV O eyt ey, te,  3(1-2v)
(9)

M_Uxx_ E(l_v)
Ty (A+v)(1-2v)
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3.2.2 Viscoelasticidad lineal

Cuando se aplica una carga a un material eldstico lineal, las tensiones, deformaciones y
desplazamientos ocurren instantdneamente y permanecen constantes con el tiempo. La

viscoelasticidad introduce la influencia del tiempo en el proceso de deformacién (Figura 3-3).

La viscoelasticidad lineal simplifica ain mas este fendmeno al permitir la superposicién de la

deformacién elastica y la deformacion dependiente del tiempo.

(0] (0]
A A
€ incrementa con el € reduce con el
tiempo con o = cte tiempo con ¢ = cte
----------- -
'
'
'
'
'
L[ ]
Fluencia S Relajacion 3

Figura 3-3 — Fluencia y relajacion en modelos viscosoelasticos

El comportamiento de la tensién a lo largo del tiempo esta relacionado con la deformacion
mediante una funcién conocida como mddulo de relajaciéon G(t), ecuaciéon (10). De manera
similar, el comportamiento de la deformacién a lo largo del tiempo en un material viscoelastico
se relaciona con la tensiéon mediante una funciéon denominada funcién de cumplimiento de la

fluencia J(t), ecuacién (11).

o) = 2 e (10)
€o
(11)
t
g, k

De acuerdo con los estudios de Ludwig Boltzmann, en el momento t’; = 0, una tensién constante

o1 es aplicada produciendo una deformacién de:

(0 = J()o 12
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Tras un incremento de tiempo hasta t’;, se aplica un incremento en la tensién de (o2 -01),

incrementando la deformacién a:

, (13)
&) =]t —t'3) (0, — 01)
Aplicando sucesivos incrementos en la tensién, la deformacién total seria de:
n n (14)
e(t) = Z g(t) = Z](t —t')(o; — 0i—1)
i=1 i=1

La expresion anterior corresponderia a la deformacién viscosa, la cual tiene que sumarse a la

deformacién elastica, quedando finalmente:

n (15)
£1j(6) = ey (elastic) + Y ]t = ¢')(0; — 0i1)
i=1
De manera similar, para el caso de relajacién, la ecuacion es:
(16)

n
Sij(t) = eij(eléstico) + Z G(t - t’i)(o-i - Ui—l)
i=1

0;

5

s
—+
o
-+
e
v
[

Figura 3-4 — Principio de superposicidn de viscoelasticidad lineal
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3.2.3 Plasticidad

La deformacidén se puede descomponer en una componente elastica y otra plastica. El modelo
tendria inicialmente un comportamiento elastico, tras retirar la carga, se recuperan las
deformaciones, pero alcanzado el limite elastico, el suelo seguiria deformandose
plasticamente, es decir, al desaparecer la carga no se recuperan las deformaciones, hasta

alcanzar el fallo.

Una vez alcanzado el limite elastico, el suelo puede endurecerse, ablandarse o comportarse

como un material perfectamente plastico (Figura 3-5).

o o o

F 3 -~ r 3

Endurecimiento € Perfectamente € Relajacién €
plastico

Figura 3-5 — Comportamiento plastico

La plasticidad es principalmente una teoria no lineal, por lo que se deben considerar los

incrementos de deformacion en el calculo de la deformacion.

(17)
de;j = defj(elastico) + de, (plastico)

3.2.3.1 Criterio de fallo

En mecanica de suelos, los dos criterios de fallo mas comunes son el criterio de Tresca y el

criterio de Mohr-Coulomb.

El criterio de Tresca se aplica frecuentemente a suelos finos bajo condiciones no drenadas. Este
criterio establece que el fallo ocurre cuando la diferencia entre el esfuerzo principal mayory el

esfuerzo principal menor alcanza un valor igual a dos veces la resistencia al corte no drenada

(su):
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(18)
04 —03—25,=0

El criterio de Mohr-Coulomb establece que el fallo ocurre cuando el circulo de Mohr toca la

linea que corresponde a la ecuacién de resistencia al corte:

(19)
7r—c —o'tang =0

Donde;
1: Esfuerzo cortante
o: Esfuerzo normal
c’: Cohesion. Interseccion de la linea de fallo con el eje t.

@’: Angulo de rozamiento interno. Pendiente de la envolvente de fallo.

Envolvente de fallo
Envolvente de fallo

)

v

>
Ll
L} 1

O; 0. © O3 0, )

Figura 3-6 — Criterios de fallo de Tresca y Mohr-Coulomb

En el criterio de Mohr-Coulomb, si ¢’ = 0, se deduce el criterio de Tresca.

La ecuacidn (19) se puede expresar en funcion de las tensiones principales maxima y minima:

(20)
o', —0a'5
r_ 2
senog = c o'1+0'3
tan ¢’ Tt/
(21)

!

0'1—ad'3—=2c"cosp’' —(6'1+0d'3)senop’ =0
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El circulo de Mohr comienza en un estado de esfuerzos que corresponde al equilibrio in situ
del suelo. A medida que el suelo es cargado, primero se deforma de manera elastica, hasta que
el circulo alcanza el criterio de fallo (la ecuacion de resistencia al corte). En ese punto, el circulo
no puede superar la linea de la envolvente de fallo, pero puede crecer a lo largo del mismo
(endurecimiento por deformacién) o disminuir su tamafio a lo largo de la envolvente de fallo
(ablandamiento por deformacion). En el caso de las arenas (c'=0), el criterio de fallo de Mohr-

Coulomb se simplifica a:

o'y 1+ senoq’ _ 0 (22)
o's 1—senog

Donde o’ es la tension efectiva que, de acuerdo con el principio de tensiones de Terzaghi, es la

diferencia entre la tension total o y la presién de poro u.
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3.2.4 Principales modelos constitutivos

A continuacion, se presentan algunos de los modelos mas relevantes.

3.2.4.1 Modelo Hiperbdlico de Duncan-Chang

Caracteristicas:

e Es un modelo elasto-plastico no lineal basado en la relacion hiperbdlica entre el

esfuerzo y la deformacion axial observada en ensayos triaxiales de suelos granulares.

e Introduce el concepto de un médulo tangente (E:) y un mddulo de confinamiento (K),

ambos dependientes del nivel de esfuerzo.

e Representa el comportamiento de suelos en el rango elastico y hasta cerca del punto

de fallo.

Ecuacién:

01— 03 (23)

1= a+ b(o; — 03)

Donde ay b son pardmetros dependientes de las condiciones del suelo.

Singularidades:
e No considera el endurecimiento o ablandamiento por deformacién.

e Se centra en materiales granulares y no cohesivos.

Aplicaciones:

e Modelado de deformaciones en suelos granulares bajo estructuras como pavimentos y

terraplenes.

e Andlisis de asientos y estabilidad en cimentaciones superficiales.
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3.2.4.2 Modified Cam Clay (MCC)

Caracteristicas:

Es un modelo elasto-plastico desarrollado para describir el comportamiento de suelos

cohesivos (arcillas), basado en el modelo original de Cam Clay.

Utiliza un criterio de cedencia eliptico en el plano g-p’ (esfuerzo desviador resion
p p q-p yp

media efectiva), ajustando la compresibilidad y la dilatancia del suelo.

Introduce pardmetros como el indice de rigidez (A) y el parametro de estado critico

(M).

Ecuacion:

7N ' 24
> =M*p'(p' -p',) (24)

Donde p’c es la presién de preconsolidacidn.

Singularidades:

Describe bien el comportamiento de suelos cohesivos bajo esfuerzos triaxiales.

Es ideal para condiciones drenadas y no drenadas.

e (Considera la historia tensional del suelo (normalmente consolidado
sobreconsolidado).
Aplicaciones:

Prediccion de la resistencia al corte y deformaciones en arcillas.

Estimacién de consolidacion y comportamiento a largo plazo en suelos cohesivos.
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3.2.4.3 Barcelona Basic Model (BBM)

Caracteristicas:
e Disefiado especificamente para suelos no saturados.

e Amplia el Modified Cam Clay al incluir un término que considera la succion (s = ua — uw),

donde u, es la presion del aire y uw la presion del agua.

e Describe el comportamiento dependiente del contenido de agua y las interacciones

entre fases solida, liquida y gaseosa.

Ecuacién:

F=q?—M*'(p' —p'c(s)) (25)

Donde p’c(s) es la presién de preconsolidacién ajustada a la succion.

Singularidades:
e Introduce variables especificas para suelos no saturados.

e Permite modelar fenémenos como colapso estructural y expansiéon debido a cambios

en la succién.

Aplicaciones:

e Disefio de infraestructuras en suelos con variaciones de humedad (terraplenes, presas

de tierra).

e Modelado de suelos expansivos y colapsables.
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3.2.4.4 Modelo Hardening Soil (HS)

Caracteristicas:

e Modelo avanzado que considera endurecimiento por deformacién y dependencias del

modulo elastico con el nivel de esfuerzo.

o Ideal para describir el comportamiento no lineal de suelos cohesivos y no cohesivos.

Ecuacién:

e =L <1 N i) (26)

Donde;
Eso: Mddulo secante dependiente del confinamiento

gr: Esfuerzo desviador en el fallo

Singularidades:
e Considera la dependencia del médulo con el nivel de confinamiento.

e Introduce el concepto de endurecimiento por deformacién

Aplicaciones:
e Andlisis detallados de cimentaciones profundas y estructuras de contencion.

e Modelado de suelos sometidos a presién de confinamiento variable alrededor de

tuneles o excavaciones profundas.

e Evaluacién de deformaciones bajo cargas repetitivas en terraplenes y carreteras.
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La siguiente figura muestra un ejemplo de la respuesta obtenida mediante varios modelos

matematicos al simular un ensayo triaxial.
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Figura 3-7 — Comparacion de los resultados de una simulacidn de un ensayo triaxial drenado utilizando
distintos modelos constitutivos. Extraido de The Hardening Soil Model - A Practical Guidebook, 2018.
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3.3Modulo de elasticidad

La curva que representa la relacién entre deformacion y tensiéon de un suelo es no lineal, no
obstante, la parte inicial es aproximadamente una recta, en la que se puede aplicar la teoria de
la elasticidad para estimar el comportamiento del suelo. La pendiente de esta linea depende

del médulo de elasticidad E y el coeficiente de Poisson v.

Los suelos no presentan un comportamiento puramente eldstico, ya que experimentan
deformaciones irreversibles (plasticas), incluso ante bajos niveles de esfuerzos. La teoria de la
elasticidad lineal implica que la relacion tensién-deformacion es lineal, pero esto no representa
larealidad en suelos, ya que el comportamiento es no lineal desde etapas tempranas en la curva

tension-deformacion.

No obstante, se pueden estimar diferentes médulos de deformaciéon del suelo a partir de la
curva tension-deformacion, por ejemplo, utilizando lineas secantes desde el origen hasta un
punto determinado de la curva (médulo secante o inicial) o la pendiente en ciclos de descarga

y recarga (médulo de recarga), entre otros.

Es importante sefalar que la pendiente de la linea calculada como el incremento de tension
dividido por el incremento de deformacién no siempre corresponde al médulo de elasticidad.
Esto solo es cierto si la carga se aplica sin confinamiento, como en un ensayo de compresion no
confinada. En el caso de un ensayo triaxial, por ejemplo, el médulo se determina mediante la

siguiente expresion:

g1 — 27]0-3 (27)
&1

Donde;
01 & o3: Tension normal al plano perpendicular a la direccién 1y 3.
€1: Deformacion normal al plano perpendicular a la direccion 1
E: Médulo de deformacién

v: Coeficiente de Poisson

En la ecuacién (27), el médulo de deformaciéon solo es igual a la pendiente de la relacion

tension-deformacion (o1/€1) cuando o3 es igual a cero.
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3.3.1 Tipos de mddulos de elasticidad

Como se ha indicado anteriormente, la curva tensidon-deformacién no es lineal, por lo que
existen diferentes relaciones o médulos de elasticidad para diferentes fases de carga. En la
Figura 3-8 se ilustran los principales médulos de elasticidad y, a continuacién, se explican los

usos que tienen cada uno de ellos.
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Figura 3-8 — Mddulos de deformacién. Extraido de Geotechnical engineering: unsaturated and saturated
soils, 2023

Médulo secante Eg, se obtiene de la pendiente que relaciona los puntos 0-A y se emplearia para

predecir las deformaciones en una fase inicial de carga.

Modulo tangente E;, se obtiene como la tangente a la curva en el punto A. Se emplea para
predecir deformaciones a partir de un estado de tensiéon-deformaciéon dado, por ejemplo, un

incremento de carga.

Modulo de descarga E,, se obtiene a partir de la pendiente que relaciona los puntos A-B. Se

emplea para estimar la descompresién de un suelo, por ejemplo, tras realizar una excavacion.

Médulo de recarga E., se obtiene a partir de la pendiente que relaciona los puntos B-D. Se
emplea para estimar la deformacién del suelo tras una fase de descarga, como la indicada en el

modulo de descarga.

Modulo ciclico E., se obtiene a partir de la pendiente que relaciona los puntos B-C. Se emplea

para determinar la deformacidn del suelo ante ciclos de carga.
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3.3.2 Factores que influyen en el modulo de elasticidad

A continuacién, se enumeran los principales factores que influyen en el médulo de elasticidad:

» Compactacion. El médulo de elasticidad tiende a ser mayor en suelos de mayor

compacidad, es decir, con mayor densidad.
» Organizacion de las particulas o estructura del suelo.

» Contenido de agua. El contenido de agua tiene un gran impacto en el moédulo de
elasticidad del suelo. A bajos contenidos de agua, el agua une las particulas
(especialmente en suelos finos) y aumenta la tensidn efectiva entre ellas debido al
fendmeno de succiodn, lo que incrementa el médulo del suelo. Sin embargo, en suelos
granulares, un contenido de agua demasiado bajo dificulta su compactaciéon debido a la
falta de lubricacién proporcionada por el agua. En este caso, un contenido de agua muy
bajo puede llevar a valores reducidos del médulo de elasticidad. A medida que el
contenido de agua aumenta, la lubricacién mejora la compactacion y el médulo del
suelo aumenta. Sin embargo, si el contenido de agua supera un valor 6ptimo, el agua
comienza a separar las particulas, lo que incrementa la compresibilidad y reduce el

modulo.

» Historial de esfuerzos previos. Si el suelo ha estado sometido a esfuerzos previos
significativos, se dice que esta sobreconsolidado. Si el suelo nunca ha experimentado
esfuerzos mayores a los actuales y se encuentra en equilibrio bajo la carga presente, se
dice que estd normalmente consolidado. Generalmente, un suelo sobreconsolidado
(OC) tendra un médulo mas alto que un suelo normalmente consolidado (NC), ya que
el suelo OC se encuentra en la parte de recarga de la curva tension-deformacion,
mientras que el NC esta en su primera fase de carga. Algunos suelos aun estan en

proceso de consolidacidn bajo su propio peso.

» Cementacion debida a agentes naturales como la succion capilar o deposiciéon quimica
de minerales, como el calcio. Puede generar un efecto de adhesion significativo entre
las particulas, simulando una especie de "pegamento temporal”. Sin embargo, este
efecto puede desaparecer si el contenido de agua aumenta o ante un incremento de

carga.

» Confinamiento. Cuanto mayor es el confinamiento, mayor es la rigidez del suelo.
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» Velocidad de deformacion. El suelo puede presentar un comportamiento viscoso, por
lo que, al aplicarse una carga rapidamente, muestra una mayor rigidez y, en
consecuencia, un incremento en su médulo. No obstante, este comportamiento no
siempre se manifiesta de forma consistente, dependiendo del tipo de suelo y de las

condiciones del ensayo.

» Drenaje del suelo. El coeficiente de Poisson es sensible a la condicion de drenaje. Si no
hay drenaje, en una arcilla es comin asumir un coeficiente de Poisson de 0.5 (sin
cambio de volumen). En contraste, si el drenaje es completo, un valor de 0.35 podria
ser mas apropiado. La diferencia entre los mddulos calculados en ambas condiciones
(drenada y no drenada) representa la diferencia entre el modulo no drenado y el

modulo drenado.
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3.3.3 Relacion entre el modulo de elasticidad, rigidez y médulo de balasto

Mientras que el médulo de elasticidad E mide la relacion entre tension y deformacion,
expresandose en unidades de fuerza por unidades de area (KN/m?), la rigidez K mide la
relacion entre una fuerza Q aplicada a un area y la deformacion s experimentada por dicha area,

expresandose en unidades de fuerza por unidades de longitud (KN/m).
En el caso de una superficie circular de didmetro B, el asiento elastico s se obtiene de la

siguiente expresion:

0 (28)
s = Ilﬁ

Donde I; es una constante.
Teniendo en cuenta que K = Q/s, sustituyendo en la ecuacién (28), obtenemos que la relacion

entre el médulo de elasticidad E y la rigidez K es la siguiente:

EB (29)

De la ecuacién (29) se deduce que, mientras el médulo de elasticidad es una propiedad del

suelo, la rigidez no solo depende del suelo, también del tamafio del area cargada.

El médulo de balasto k mide la relacion entre la presion p aplicada a un area y la deformacion
s experimentada por dicha area, expresandose en unidades de fuerza por unidades de volumen
(KN/m?). Se emplea tanto el mdédulo de balasto vertical (cimentaciones superficiales) como

horizontal (pantallas o cimentaciones profundas).

Como en el caso anterior, el asiento elastico s en una superficie circular de didmetro B se

obtiene de la siguiente expresion:

pB (30)
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La relacion entre el médulo de elasticidad E y el médulo de balasto es:

E
po £ (31)
I,B

De la ecuacion (31) se deduce que, como en el caso de la rigidez, el m6dulo de balasto no solo

depende del suelo, también del tamafio del area cargada.
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3.4Distribucion de tensiones bajo cimentaciones superficiales

La distribucion de esfuerzos bajo una cimentacién se resuelve mediante la teoria del sélido
elastico. Esta teoria se basa en los principios de la mecanica de medios continuos y la teoria de
la elasticidad (véase seccion 3.2.1) y permite calcular como las tensiones se distribuyen en el

suelo debido a la carga aplicada por la cimentacidn.

William Thomson (Lord Kelvin) desarroll6 en 1948 las primeras ecuaciones que resolvian la
distribuciéon de una carga puntual Q actuando en un espacio isétropo, elastico e infinito con

modulo de elasticidad E'y coeficiente de Poisson v.

B Q 322 (1-2v)z (32)
%= sma-v)|R° R ]
33
B Q z [32° 19 33
" ga-wre ke 1T
. Q(1-2v) z 34)
% = T 8r(1-v) R
f = Q 2(1+v)z (33)
~ 8m(1-v) R®
36
3 Q z [323 o (36)
" =g —wre R T
37,
Q1 +v) 34 z* 37
S =g —wvER|> TRz
Q(l+v) zr (58)

T (1 -v)ER

Sz

Figura 3-9 - Tension vertical por carga puntual en espacio infinito
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Joseph Valentin Boussinesq (1885) resolvio el problema de la distribucién de esfuerzos en un
medio elastico, homogéneo e is6tropo, asumiendo un semiespacio elastico donde se cumple la

teoria lineal de la elasticidad (Ley de Hooke).

Esta simplificaciéon permitié estimar los esfuerzos verticales o, a una profundidad z para

diferentes situaciones de carga.

A continuacién, se describen las formulaciones obtenidas por ]. Boussinesq y posteriores

aportaciones de otros autores para casos singulares y multicapas.

3.4.1 Carga puntual Q

La tension vertical ejercida por una carga puntual en un semiespacio elastico se obtiene de la

siguiente ecuacion.

N

1 (39)

O:

Figura 3-10 - Tension vertical por carga puntual en semiespacio elastico

3.4.2 Carga lineal uniformemente repartida

La tensidn vertical ejercida por una carga lineal uniformemente repartida en un semiespacio

elastico se obtiene de la siguiente ecuacidn.
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q?2 1
q

(40)

0
| J/

L]
r P

O,

Figura 3-11 - Tension vertical por carga lineal uniformemente distribuida en semiespacio

elastico

3.4.3 Carga en faja lineal uniformemente repartida

La tension vertical ejercida por una carga n faja lineal uniformemente repartida en un

semiespacio elastico se obtiene de la siguiente ecuacidn.

o, = a (B + sen(B) - cos 2a + B))

VA

Figura 3-12 - Tension vertical por carga en faja lineal uniformemente distribuida en

semiespacio elastico

(41)
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3.4.4 Carga bajo centro de carga circular uniformemente repartida

La tension vertical ejercida por una carga circular uniformemente repartida en un semiespacio

elastico se obtiene de la siguiente ecuacién.

3/2

=q-(1—cos3a) (42)

0

Figura 3-13 - Tension vertical por carga circular uniformemente distribuida en semiespacio

elastico

Egorov (1958) desarrollé posteriormente la férmula para obtener las tensiones verticales o,

en cualquier punto del semiespacio bajo una carga circular uniformemente repartida:

n n%—1+t? 1-t
0, = q{A - B+ 3] | p)]} “

ﬂ\/m n?+ (1—1t)2
Donde,

E(kK) y [Io(k,p) son las integrales elipticas completas de segunda y tercera especie de

modulos k y parametro p.

t=r/a
n=z/a
2 4t
T n24+(1+t)?2
— At
P= "oz
1sit<1
A={isit=1
Osit>1
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3.4.5 Cargarectangular uniformemente repartida

3.4.5.1 Steinbrenner (1936) & Fadum (1948)

Steinbrenner (1936) desarrollo la formulacién para calcular las tensiones bajo un vértice del
rectdngulo cargado. Posteriormente, Fadum (1948) desarroll6 los métodos propuestos por
Steinbrenner (1936) mediante la incorporacién de factores de influencia mas detallados para

tensiones y asientos, ademas de representar la ecuacién en forma de abacos.

— (44)
o, = qly
(45)
=1 2mnvm2+n2+1 m2+n2+2+t —1 2mnVm2+n2+1
T 4m |m24n2+m2n2+1 m2+nZ+1 R -
Donde;
n=L/z
m=B/z

Se destaca que en la formulacién anterior se usa la carga q/4, esto es debido a que se considera
que el elemento infinitesimal bajo el vértice tiene s6lo un cuadrante cargado. De esta forma,
aplicando el principio de superposicidn, se puede calcular la presiéon en un punto cualquiera,

aunque no esté situado justamente bajo el vértice.

"_III_""_I_’I
g
X
4—|V—b4—||—bJ
—]
4—|V—I~4—||—DI

+—1il et IV ™ L—III—"“‘—I‘\r’—"‘

Figura 3-14 - Esquema de aplicacion de cargas segun Fadum (1948)
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3.4.6 Métodos basados en abacos para cargas de forma irregular

3.4.6.1 Abacos de Newmark (1942)

Nathan M. Newmark public6 en 1942 los dbacos para calcular la tensién vertical o, en un punto
a una profundidad dada originada por una carga distribuida sobre la superficie. Estos dbacos,
basados en la solucién de Boussinesq (1885), permiten determinar el coeficiente de influencia

para formas complejas sin necesidad de calculos analiticos complejos.

Para ello, se debe calcular la relacion entre la profundidad y las dimensiones de la cimentacion
(z/B), dibujando a escala la cimentacién sobre el &baco correspondiente, como se puede ver en
la Figura 3-15. El coeficiente de influencia I se obtiene de la relacidn entre el nimero de celdas

del dbaco que quedan dentro del drea de la cimentacion (n) respecto al nimero total de celdas

(\).

(46)

]

W F o e

7
&
ErBTSLe 55 comouTed

—

£

2

Figura 3-15 - Abaco de Newmark, tomado de NEWMARK, Nathan Mortimore. Influence charts
for computation of stresses in elastic foundations. University of Illinois. Engineering Experiment

Station. Bulletin; no. 338, 1942.
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3.4.6.2 Método de las influencias, Jiménez Salas (1948)

Este método, desarrollado por Jiménez Salas en 1948 es una generalizaciéon del método

propuesto por Newmark, con la ventaja de poder obtener la tensidn o, en varios puntos.

Para un circulo de radio R cargado uniformemente produce una tensiéon vertical a una
profundidad z igual al coeficiente de influencia Iz, de magnitud aproximada a los valores

propuestos por Fadum (1948).

Dado un circulo de radio R+1, ejercera una influencia Iz.1, por lo que una corona circular
limitada por los radios R y R+1 ejercera una influencia a la profundidad z igual a:

I241 — 12 = cos®Pg — €053 Ppy1 = [Z41p (47)

En el caso particular de no encontrarse toda la corona cargada, se considera solo una fraccion

de dicha corona (A%) para la estimacidén de la tensidn vertical producida a la profundidad z.

Jiménez Salas proporciona en su libro Geotecnia y cimientos Il una serie de tablas con las
influencias para las diferentes coronas con radios comprendidos entre R y R+2 con el fin de

agilizar la aplicacién del método.

Figura 3-16 - Esquema de cargas del método de las influencias, adaptacién de JIMENEZ
SALAS, Jose Antonio.; JUSTO, JL de; SERRANO, A. Geotecnia y cimientos Il. 1981; pdgina 231,
figura 3.59.
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3.4.7 Semiespacio con anisotropia transversal

Dado un suelo que se extienden infinitamente en las direcciones horizontales (x-y), pero tiene
propiedades mecanicas diferentes en la direccién vertical (z), en el sistema ejes cartesianos,
con el eje z como eje de simetria de orden infinito, las ecuaciones de Hooke quedarian de la

siguiente forma:

1 Vvh 48
€Ex = E—h(O'x — Uth'y) - ELhO-Z ( )

1 Vyn (49)
Gy = Eh (O'y vth'x) Eh g,

Vyn 1 (50)
€, =——\(0x +0y)+—0
z Ev ( X 3’) Ev z
1 (51)
Yyz = G_VTyZ
1 52
Vxz = G_VTxZ 52)
1 2(1 + vpp) (53)
Yxy = G_Txy = E Txy
v h

Donde;
En y Ey son los m6dulos de Young para horizontal y vertical, respectivamente.
Vnn ¥ Vyn Son los coeficientes de Poisson horizontal y vertical, respectivamente.

Gh y Gy son los modulos de rigidez transversal horizontal y vertical, respectivamente.

A continuacion, de acuerdo con la bibliografia consultada y siguiendo un orden cronoldgico, se
desarrollan las principales teorias de tensién vertical en un semiespacio con anisotropia

transversal propuestas por varios autores.
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3.4.7.1 Westergaard (1926)

Harold M. Westergaard, entre 1926 y 1939, desarroll6 un modelo teérico para calcular la
tensién vertical en un punto de un medio elastico debido a la aplicacién de una carga en

superficie.

Para una carga puntual Q, Westergaard propone la siguiente ecuacién:

1 [i—2v
Q 2N\ 2 - 2v (54)

=0

g, =

Para el caso de una cimentacidon rectangular, la presiéon en una esquina se obtiene de la

siguiente ecuacion:

. q (-1 (1—217)(1 +1)+(1—2v)2< 1 ) (55)
92 =57 2—2v)\m? n? 2 —2v) \m?*n?

Donde,
Q es una carga puntual
g es una carga distribuida
v es el modulo de Poisson
r es la distancia en planta del punto considerado
z es la profundidad del punto de estudio
m=L/z
n=B/z
L es la longitud de la carga distribuida

B es el ancho de la carga distribuida

57



Estado del arte

3.4.7.2 Lekhnitskii (1963)

Lekhnitskii (1963) desarrollé formulaciones mas generales basadas en las ecuaciones de Hook

indicadas anteriormente:

3 3 3
- _Pr z 51 _ S3 A P2 5ip1 _®
Oy = Zn{(sl—sz)\/ﬁ (r2+s222)"72 (T2+S§22)3/z]}+s1 S 22)1/2 (r2rs2z2) 17 (56)
PO— siq1 s34z _ 2 P2 I ¢ 57
27 $2-51 (r2+szzz) 3/ (r2+s§zz)3/2 5152 (r2+sfzz)1/2 (r2+sfzz)3/2 r? (57)
4 z S1 S2

0, =—— -
z 2A[d(s, —s,) |(r? + 5£22)3/2  (r2 + s%22)3/? (58)
1 r S7 S5 59

Tpy = -
" 2mld s =5 |07 + ST (% 55 %)
Donde,
a; B’ 2(a;1 —ai3) Gy
~ay3(ayy +ap) = V(L + Vi) Vi (61)
11033 — i3 n = Vhy
_agz(ayg —agp) tagnde, (pr+p2) (62)
a11as3 — af; n =V

2 2 2

aj,—a 1-v
g T hh (63)

2
1033 — 053 M —Vpy

Sl:\/a+c+ (a+c)2—4d, Sz:\/a+c—w/(a+c)2—4d (64)

2d 2d
pr=1-5sf, p,=1-5s3 (65)
Q1:(b_51)(1_5 Q2:(b_522)(1_522 (66)

_G-DVvd - _(G-Da+Vd) (67)

’

ac—d ac—d
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3.4.8 Sistemas de varias capas

3.4.8.1 Endurecimiento del terreno

En terrenos granulares es comun encontrase con un cierto incremento del médulo de
elasticidad con la profundidad. Este endurecimiento del terreno con la profundidad implica
una concentracion de las tensiones bajo el punto de aplicacion de las cargas y una disminucién

de la dispersion lateral.

Frohlich (1934) desarroll6 un método aproximado que, mediante la variacién de un factor de
concentracion, obtiene la distribuciéon de las tensiones. Frohlich parte de la idea de una

distribucion radial (Figura 3-17).

O;

— > eo P
r

Figura 3-17 - Tension vertical por carga puntual en espacio infinito

En el caso de distribucion radial y moédulo de Poisson v = 0.50, una carga concentrada transmite
las tensiones de forma rectilinea; no obstante, cuando v no es igual a 0.50, esta propiedad no
es cierta, pero el error en la practica no es significante. La tensién se puede expresar con la

ecuacion.

k Q . ZC—2 B ﬂzc—z (68)
z¢ T2 z€

o, =k—cos"0 =
z

Donde k y ¢ son pardmetros arbitrarios que dependen el uno del otro. Cuando c es igual a 3, la

distribucion coincide con la de Boussinesq. Cuando c es mayor que 3, la distribucién implica un
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mayor grado de concentracién de presiones inmediatamente debajo del punto de aplicacién de

la carga.

Cuando el moédulo de elasticidad E varia con la profundidad, de acuerdo con Holl (1940) se

puede emplear la siguiente expresion general:

E =E;z* (65)
Donde E; es el mddulo de elasticidad para una profundidad z igual a 1, donde se deduce que:
(70)

A+2=c—-1=1/v

En la siguiente figura se pueden ver las distintas leyes de variacién del médulo de elasticidad

E para el semiespacio de Frohlich en funcién de c y A.

A=0 A=1 O<k<1
c=3 E c=4 E 3<c<4 E
Z 4 Z Z

Figura 3-18 - Semiespacio de Frohlich. Adaptacion de JIMENEZ SALAS, Jose Antonio.; JUSTO, JL
de; SERRANO, A. Geotecnia y cimientos II. 1981; pdgina 280, figura 3.107.

60



Estado del arte

3.4.8.2 Capa elastica con variacion del mdédulo de elasticidad sobre base rigida

Alternativamente al método del semiespacio de Frohlich, Mayne y Poulos (1999) desarrollaron
un método para estimar el asiento tenido en cuenta la rigidez de la cimentacién, profundidad
de empotramiento, variaciéon del moédulo de elasticidad con la profundidad y presencia de una

base rigida.

E=E,+kz

RRRERREERRRER RIS

Estrato incompresible

~N o<

Figura 3-19 — Parametros formula de Mayne & Poulos (1999)

Mayne & Poulos propusieron una serie de factores de influencia o correccion:

Ig: Factor de influencia por la variacion del médulo de elasticidad con la profundidad, se

obtiene de la Figura 3-20.
Ig: Factor de correccion de la rigidez de la cimentacion, se obtiene de la ecuacién (71) y

[g: Factor de correccion de la profundidad de empotramiento de la cimentacion, se obtiene

de la ecuacion (72).

="y ! (71)
"4 4.6+ 10(E/[E, + (B./2)k])(2t/B.)?

1 (72)
IE == 1

~ 3.5exp(1.22v — 0.4)[(B./Dy) + 1.6]
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Figura 3-20 — Variacién de I en funcidn de B’. Tomado de DAS, Braja M. Advanced soil mechanics. CRC

press, 2019, p. 621

100 — TTTT T T TT]
0.95 —
0.90 —

0.85 —

0.80 K = Ell:a [ﬁr
’ E(,+7ek e

I

= Flexibility factor
0.75 —

T T1T]

T

0.70 AN T T T N TN T N N A O 0

00012 4 0.01 0.1 1

K

100

Figura 3-21 — Variacion de Ir en funcion de Kr. Tomado de DAS, Braja M. Advanced soil mechanics. CRC

press, 2019, p. 622
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3.4.8.3 Sistema bicapa, E1>E,. Método de Burmister (1943, 1945)

Donald M. Burmister desarroll6 modelos tedricos para describir el comportamiento de suelos
estratificados en 1943 y 1945, mejorando la precisién en el calculo de tensiones frente a
modelos homogéneos. Este método es especialmente practico en el disefio de pavimentos,
losas de cimentaciéon y otras estructuras sobre suelos con propiedades variables en

profundidad.

Burmister adopté un sistema de dos capas, donde la capa superior tiene un espesor dado y se

apoya sobre una capa semiinfinita. El suelo se asume elastico, homogéneo e is6tropo.

Para el caso de carga puntual Q aplicada a una superficie de radio a, que ejerce una tensién
superficial g (carga puntual Q dividida por superficie de contacto), Burmister propuso el
siguiente grafico que relaciona las tensiones verticales en superficie frente a una profundidad
z para el caso particular en que el radio de la superficie de aplicacion de la carga es igual al

espesor de la capa superior h:

0,/q
0,8 10 ¢

>

ONTACTO

CAPA 2

Figura 3-23 - Curvas de influencia segiin Burmister. Extraido de /IMENEZ SALAS, José
Antonio.; JUSTO, JL de; SERRANO, A. Geotecnia y cimientos 1. 1981; pdgina 284, figura 3.112.

Donde,
a es el radio de la superficie de aplicacion de la carga
E1, E2 son los mddulos de elasticidad de las capas 1y 2

v1, V2 son los coeficientes de Poisson de las capas 1y 2
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Para distintos espesores de la capa superior, se emplea el siguiente grafico.

1,0

€,/ 2-1/
ESQ) /" 2

(BOUSSIN
0.8

=h

2

LA,
W /AP
W/

7

n

w

2.
)

Figura 3-24 - Curvas de influencia segiin Burmister. Extraido de JIMENEZ SALAS, José

Antonio.; JUSTO, JL de; SERRANO, A. Geotecnia y cimientos Il. 1981; pdgina 284, figura 3.113.
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3.4.8.4 Método para sistemas de mas de tres capas

Este método fue desarrollado como una extension de los enfoques tradicionales para adaptarse
a situaciones complejas con mas de tres capas, donde cada capa tiene diferentes propiedades

mecanicas.

El método se basa en la teoria de la elasticidad, donde cada capa presenta propiedades
mecanicas diferentes. La resolucion de las ecuaciones de equilibrio en cada capa relaciona las

tensiones o con los desplazamientos u:

d’c  E(2) d*u (73)

A’z 1-v*dz?

Teniendo en cuenta la condiciéon de continuidad entre las capas, se deben cumplir dos

condiciones:
e Continuidad de los desplazamientos verticales, los desplazamientos en u; (z) = uj.1 (z).

e Continuidad de las tensiones: oi (z) = 0i+1 (2).

o M, Vi, B Xary
Ha -
I 13, ¥i, K
H; Py ¥, M
2 12, W2, ha
H- L
3 Lz, W b
H: ;
d
.z
! Met Whets P
Hi.i _\J :
K o Fu [T
H, ;
Kl / H Bt Vit by Bt
Hiss : |
L5 [,
i Mass Viie i
H,
o T z [TRNE AT |

Figura 3-25 - Continuidad de desplazamientos y tensiones. Extraido de YUE, Zhong Qi. On
generalized Kelvin solutions in a multilayered elastic medium. Journal of Elasticity, 1995, vol. 40,

no 1, p. 1-43.
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El investigador D. Yue (1995, 1996) propuso un enfoque computacional innovador para
resolver problemas de carga puntual en medios eldsticos multicapa. Este método, basado en
las transformadas de Hankel, permite convertir ecuaciones diferenciales parciales en

ecuaciones mas manejables.

El método comienza resolviendo las ecuaciones de elasticidad para cada capa homogénea:

1 9%
2 — =0 (74)
Vit E(z) 0z2

Donde:
e o es el esfuerzo.

e E(z) es el modulo de elasticidad dependiente de la profundidad z.

La solucion se facilita aplicando la transformada de Hankel:

H{F ()} = fo £ o(kr)r dr (75)

Donde:
e H{f(r)} es la transformada de Hankel de la funcién f(r).
e Jo(kr) esla funcion de Bessel de primera especie y orden cero.

¢ kesel nimero de onda radial.
Al aplicar la transformada, las ecuaciones diferenciales parciales se reducen a un sistema de
ecuaciones diferenciales ordinarias:

d?é (76)
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La solucidn general de esta ecuacion es:

6(z) = Ae %% 4+ Bek? (77)

Ay B son constantes determinadas por las condiciones de frontera:
e Continuidad de desplazamientos en las interfaces: u; = U1

e Continuidad de tensiones: o; = Gi+1

Una vez resuelto el sistema, se aplica la transformada inversa de Hankel para obtener la

solucion en el dominio espacial:

[oe]

o(r,z) = f (K)o (kr)k dk (78)
0

Por otro lado, Vijayakumar, Yacoub y Curran (2000) introdujeron una mejora numérica al
convertir las integrales de drea en integrales de contorno, permitiendo superar las dificultades

relacionadas con las singularidades inherentes en las soluciones de carga puntual.

Integral de area original:

0=f£¢(x,y) dx dy (79)

Integral convertida en contorno:

o= i Y(s) ds (80)

Donde:

a) Aeselareadeintegracion.
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b) Ces el contorno que rodea el area A.

c) Y(s) eslafuncion de influencia definida en el contorno.
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3.5Asientos en cimentaciones superficiales

El asiento bajo una cimentacién depende de la rigidez de la propia cimentacion, la magnitud de

la carga y las caracteristicas tensodeformacionales del suelo.

En las siguientes figuras se ilustra la relacién entre tension superficial y asiento que

experimenta el suelo para los casos tedricos de cimentacidn rigida o flexible y suelo puramente

L JL

Figura 3-26 - Tension-Asiento en cimentacion flexible en suelo cohesivo

cohesivo o granular.

Asiento

Figura 3-27 - Tension-Asiento en cimentacion rigida en suelo cohesivo

g Eisisnnina \/—\'ﬁ,&siento

Figura 3-28 - Tension-Asiento en cimentacion flexible en suelo granular

+— Asiento

Figura 3-29 - Tension-Asiento en cimentacion rigida en suelo granular
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En el andlisis de asientos, la distincion entre cimentaciones rigidas y flexibles es esencial, ya
que afecta tanto la distribucién de tensiones como el perfil de deformaciones inducidas en el
terreno. Segiin Terzaghi y Peck (1967), una cimentacion rigida transfiere mayores esfuerzos
en los bordes debido a su menor deformabilidad, mientras que una flexible se adapta al terreno
y tiende a distribuir las cargas de forma mas uniforme. Bowles (1988) propone un criterio
cuantitativo, considerando rigida una cimentacién cuando la relacién entre el médulo de

elasticidad del cimiento E. es al menos diez veces mayor que el del terreno circundante E.

En la literatura moderna, diversos autores han propuesto criterios cuantitativos para clasificar
una cimentaciéon como rigida o flexible. Por ejemplo, Poulos (2001) propone el uso de

relaciones de rigidez adimensionales.

El (81)
E;B*

Donde;
E es el mddulo de elasticidad de la cimentacion
I es el momento de inercia de la cimentacion
Es es el modulo de elasticidad del terreno
B es el ancho de la cimentacion

K, valor adimensional que presenta la rigidez relativa de la cimentacién donde:

Kr>>1 Cimentacion rigida
K-~1 Comportamiento intermedio
K, <<1 Cimentacion flexible

Mientras que Salas et al. (2012) sugieren que una cimentacion puede considerarse rigida si su
deformacién estructural representa menos del 10% de la deformacién total del sistema.
Asimismo, normas como el Euroc6digo 7 (EN 1997-1:2004) permiten asumir una cimentacién
rigida cuando su rigidez frente al terreno es suficiente para justificar una distribucién de

tensiones uniforme.

De la Figura 3-26 se interpreta que, en cimentaciones flexibles en suelos cohesivos, se

experimentara un mayor asiento en el centro de la cimentacién, lo que permitira, dada la
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reducida rigidez del cimiento, una atenuacién de las presiones en el centro y las redistribuira
hacia los extremos de la cimentacién. En el caso de cimentaciones rigidas, como se muestra en
la Figura 3-27, el asiento serd aproximadamente uniforme y de mayor entidad en los bordes
comparado al asiento en zapatas flexibles, lo que se traduce en un incremento de presiones en

los extremos.

En el caso de terreno granulares, la falta de confinamiento en los bordes de la zapata no permite
el desarrollo de presiones elevadas, como se puede ver en la Figura 3-28 y Figura 3-29, esto

implica un incremento de las presiones en el centro de la cimentacion.

Alo largo de la préxima seccion, se desarrollan las principales teorias de calculo de asientos

elasticos en cimentaciones superficiales y suelos granulares.
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3.5.1 Tipos de asientos

El asiento total que se produce en una cimentacién se puede subdividir en dos subgrupos: (a)

elastico o inmediato y (b) asiento de consolidacion.

El asiento instantaneo se produce casi al tiempo en que se aplica la carga. Tiene como origen la

deformacion elastica del terreno sin cambios en el contenido de humedad.

El asiento de consolidacién, propio de suelos con presencia de finos y baja permeabilidad,
origina un retraso en el desarrollo del asiento total. Se subdivide, a su vez, en consolidaciéon

primaria y secundaria.

e Asiento de consolidacion primaria. Ante la aplicaciéon de una carga constante, es el
resultado del cambio gradual de volumen de un suelo cohesivo saturado debido a la
expulsion del agua intersticial (contenida en los poros) a medida que la carga es

transmitida a su esqueleto sdlido.

e Asiento de consolidacion secundaria. Una vez que la consolidaciéon primaria ha drenado
completamente el agua intersticial, el suelo contintian compactandose por efectos de

flujo interno, deslizamiento interparticular y reacomodo lento.

El asiento total seria la suma del asiento instantaneo y de consolidacidn:

Sr=8e+Sc1+ Scz (82)

Donde;
St: Asiento total
Se: Asiento elastico o instantaneo
Sc1: Asiento de consolidacién primaria

S¢2: Asiento de consolidacion secundaria

Se pueden producir asientos por otros procesos, como la presencia de karsticidades, erosiones

internas, socavacion, deslizamientos del terreno, variaciones en el nivel freatico, etc.
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3.5.2 Método elastico

El asiento elastico se calcula como:

_ Ao -H (83)

Donde;
Se: Asiento elastico
Ao: Incremento de tensién vertical en el centro de la capa compresible
H: Espesor de la capa compresible

Es: Médulo de deformacion secante o médulo edométrico

En el caso de terrenos estratificados, el asiento total (S) se obtiene sumando los asientos

parciales de todas las capas n:

Ag; - H; (84)

Es,i

=33

n n
i=1 =1

El asiento se asume con un comportamiento elastico lineal. En caso de producirse una
reduccion en la tension aplicada al suelo, en la ecuacién (83) el médulo de deformacién secante
se sustituiria por el mddulo de descarga/recarga (Esur) hasta que se alcanzara el nivel de

tensién previo a la descarga, volviéndose a emplear Es en la ecuacion (83).

g

-~

Loading
Slope = E, Unload/Reload
Slope = E,,

Figura 3-30 - Mddulo de deformacion
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En caso de tenerse en cuenta el efecto tridimensional, la tensién media en cualquier punto es

el promedio de los componentes volumétricos del esfuerzo:
1 (85)
Oy = § (axx + Oyy + JZZ)
El asiento elastico se calcula en base a la deformacién de cada subcapa:

(1+v) -Ac—3v-Agy (86)
Se = I -H

Donde;
Se: Asiento elastico
Ao: Incremento de tension vertical en el centro de la capa compresible
Aowm: Incremento de tension media

H: Espesor de la capa compresible

(1+v)(1-2v)
1-v

E: Médulo de Young — E = E;

v: Coeficiente de Poisson

De las ecuaciones (84) y (86) se deduce la importancia de determinar el incremento de tension
vertical en los diferentes estratos. En el anterior apartado se desarrollaron los principales
métodos para la estimacién del incremento de tension vertical a diferentes profundidades. A
lo largo del siguiente apartado se desarrollan los principales métodos de calculo de asiento

elastico para diferentes escenarios.
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3.5.3 Métodos para el calculo de asiento elastico

Diferentes autores han desarrollado métodos para el calculo del asiento elastico de

cimentaciones superficiales en terreno granulares, pudiéndose agrupar los métodos en:

Métodos basados en la observacion de asientos en estructuras y ensayos a escala. Son
métodos empiricos que correlacionan los resultados de pruebas de laboratorio o
campo, como el ensayo de penetracion estandar (SPT) o presiémetros (CPT), con el
asiento. Algunos de los principales métodos son los desarrollados por Terzaghi y Peck
(1948, 1967), Meyerhof (1956, 1965), Peck y Bazaraa (1969), D’Appolonia (1970) y
Burland y Burbidge (1985).

Métodos semi-empiricos, combinando observaciones de campo con estudios tedricos.
Por ejemplo, los métodos desarrollados por Schmertmann (1970), Schmertmann et al.

(1978) y Akbas & Kulhay (2009).

Métodos basados en relaciones tedricas basadas en la teoria de la elasticidad.
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3.5.4 Métodos basados en observaciones de estructuras y ensayos a escala

En el presente apartado se exponen algunos de los métodos mas relevantes relativos a la
estimacion del asiento elastico en suelos granulares a partir de observaciones de estructuras y

ensayos a escala.

3.5.4.1 Terzaghi & Peck (1948)

Terzaghi y Peck (1948) desarrollaron correlaciones empiricas entre el asiento elastico (s.) de
una cimentacién de dimensiones BxB con el asiento producido en un ensayo de placa de carga
(Se(y) con una placa de dimensiones B1xB1, que generalmente oscilan entre 0.30m y 1m.

Se 4 (87)

Secry  [1+ (By/B)]?

Los autores propusieron una correlacion entre la capacidad portante admisible de una
cimentacién cuadrada de ancho B, el asiento elastico y el nimero de golpeos en el ensayo de

penetracion estandar (SPT) corrigiendo la eficiencia de la energia del martillo (Neo).

(mmy = SL(_ )2 (58)
Setmim) =N \B+03

Donde;
Se: Asiento elastico en mm
q: Tension en KN/m?
B: Ancho de la cimentacién en metros

Neo: Nimero medio de golpeos en el ensayo de penetracion estandar (SPT) hasta una

profundidad de 3B a 4B y corrigiendo la eficiencia de la energia del martillo

Nétese que la ecuacién (88) considera que la carga esta aplicada en la superficie, pudiéndose
aplicar los coeficientes correctores de profundidad (Cp) y posicion del nivel freatico (Cw),

quedando la ecuacion (88) de la siguiente forma.
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3¢/ B \? (89)
Se(mm) = CwCp y (B +0 3)

Donde;

Cw: Es el factor de correccién por la posicién del nivel freatico. Es igual a 1 cuando la
profundidad del nivel freatico es igual o superior a 2B, e igual a 2 cuando la profundidad del

nivel freatico es inferior a B. Para casos intermedios se debe interpolar.
Cp: Es el factor de correccion por la profundidad de empotramiento = 1 — (Df/4B)

D¢: Empotramiento de la cimentacion

3.5.4.2 Meyerhof (1956 & 1965)

Meyerhof propuso en 1956 las mismas ecuaciones que las indicadas en el método propuesto
por Terzaghi y Peck (1948); sin embargo, en 1965 llegé a la conclusidn que, tras observar los
asientos producidos en ocho estructuras, la tensiéon admisible para un asiento elastico dado
(se) puede incrementarse hasta un 50% comparado con la ecuacién (88) propuesta en 1956,

por lo que propuso las siguientes relaciones.

Se(mm) = Cy,Cp % paraB<1.22m (90)
y
2
Se(mm) = Cy, Cp ;_Z)(Bfos) para B> 1.22m (51)
Donde;

Cw: Es el factor de correccién por la posicidn del nivel freatico. Es igual a 1 cuando la
profundidad del nivel freatico es igual o superior a 2B, e igual a 2 cuando la profundidad del

nivel freatico es inferior a B. Para casos intermedios se debe interpolar.
Cp: Es el factor de correccidon por la profundidad de empotramiento = 1 — (Df/4B)
Df: Empotramiento de la cimentacién

q: Tension en KN/m?
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Neo: Numero medio de golpeos en el ensayo de penetraciéon estandar (SPT) hasta una

profundidad de 3B a 4B y corrigiendo la eficiencia de la energia del martillo

3.5.4.3 Peck & Bazaraa (1969)

Peck & Bazaraa (1969) estudiaron el método propuesto por Terzaghi & Peck en 1948,

concluyendo que la ecuacidn (88) era conservadora, revisdndose a la siguiente ecuacién (92).

2q [ B \? (92)
Se(mm) = Cw Cp i (B +0 3)

Donde;
Se: Asiento elastico en mm
q: Tensién en KN/m?
B: Ancho de la cimentacién en metros

N’¢o: Numero medio de golpeos en el ensayo de penetraciéon estandar (SPT) corrigiendo la

eficiencia de la energia del martillo y los efectos de confinamiento.

4Nggo ) 2
N'gg = ——=>— paraoc’o<75KN/m
60 = 1100407, P 0 /
4N,
N'¢o = ——2>— parac’o>75KN/m?
3.25+0.01 a7,

oo: Tension total
0’o: Tensioén efectiva

Cw: Es el factor de correccién por la posicion del nivel freatico

09 a 0.5B bajo zapata

CW:

glg a 0.5B bajo zapata

Cp: Es el factor de correccion por la profundidad de empotramiento

Co=1—-0.4 (VTDJ“)O'5

v: Peso especifico aparente del suelo
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3.5.4.4 Burland & Burdige (1985)

Burland & Birdige (1985) propusieron un método para calcular el asiento elastico en
cimentaciones superficiales en terreno granular mediante la correlaciéon con el niimero de

golpeos obtenidos en el ensayo de penetracién estdndar (SPT).

Los autores proponen las siguientes correcciones al nimero de golpes obtenidos en campo

calibrado para la eficiencia de la energia del martillo (Neo).

e (Gravaso gravas arenosas:

93
Neocay = 1.25 Neo (93)

e Arenasy arenas limosas bajo el nivel freatico y con Ngo > 15:

Neo( = 15 + 0.5 (Ngo — 15) (94)

Tras corregir el nimero de golpes, se determina la profundidad de influencia (z’) que tiene la

tension bajo la zapata. Para ello, los autores consideran tres posibles casos:

e (Caso I: Neo(a) es aproximadamente constante:

2 a2 55

Donde;
Br: Ancho de referencia, los autores indican que se adopte 0.30m

B: Ancho de la cimentacion en metros
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e (Caso II: Neo) incrementa con la profundidad. Para la determinacidn de z’ se usa la

ecuacion (95).

e (Caso III: Neo) reduce con la profundidad. Z’ es el menor de 2B o la profundidad a la que

se encuentre la base del estrato flojo (z”).

2" = Min {2B; 2"} (96)

Una vez determinada la profundidad de influencia, se calcula el siguiente factor de correccién:

a=i(2—§)£1 (97)

Donde;

H: Espesor de la capa compresible

Finalmente, el asiento elastico se calcula mediante las siguientes ecuaciones en funcién de la

relacién entre la tension aplicada q y la tensién efectiva de una precarga o’c:

a) Suelo virgen

Se _ o4 { 1.71 } 1.25 (L/B) Z(B)O'7(q> (98)
BR [N6O 0 IVGO(a)]lA‘ 025 + (L/B) BR pa
b) Suelo precargado conq < 0o’.
2 0.7
Se 0.047 { 0.57 }[ 1.25(L/B) ] (B ) ( q ) (99)
BR [N6O 0 N60(a)]1.4 025 + (L/B) BR pa

c) Suelo precargado con q> o’

Bp

S _ 0144 { 0.57 }[ 1.25 (L/B) ]2 (;3R>°-7 (q - 0.67a’c> (100)

— — 14 B.
[NBO 0 N60(a)] 0.25+ (L/B) Pa
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Donde;
L: Longitud de la cimentacién
Pa: Presion atmosférica (x 100 KPa)

Ngo 0 N6O(a): Promedio de nimero de golpes corregidos en la profundidad de influencia
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3.5.5 Métodos semi-empiricos

En el presente apartado se exponen algunos de los métodos mas relevantes relativos a la
estimacion del asiento eldstico en suelos granulares a partir de la combinacién de

observaciones de estructuras y ensayos a escala con estudios tedricos.

3.5.5.1 Schmertmann et al. (1978)

Este método, fundamentado en la teoria de la elasticidad, propone el calculo de la deformacién
vertical a una profundidad z bajo el centro de una carga circular flexible de diametro B

mediante la siguiente ecuacion (101).

1+v 101
£, = % [(1-2v)A" + B'] (101)
Alternativamente,
&, E
I, = ZT = (1+ v)[(1 - 2v)4’ + B'] (102)
Donde;

A’ & B’ = f(z/B): Longitud de la cimentacién
q: Presién ejercida por la carga

E: Mddulo de elasticidad

v: Médulo de Poisson

I: Factor de influencia de la deformaciéon

En la Figura 3-31 se puede apreciar el factor de influencia de la deformacién en funcion de la

profundidad bajo la carga y ancho del cimiento.
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Iaipmk]

Figura 3-31 — Factor de influencia de la deformacién propuesto por Schmertmann et al. (1978)

En el caso de cimentaciones cuadradas o circulares:
[,=0.1paraz=0m
IZ = Iz(peak] para Z= Zp = O.SB

[,=0paraz=2z0=2B

En el caso de cimentaciones corridas donde L/B = 10:
[,=0.2paraz=0m
I, = Iz(peak) paraz =17z, = B

[,=0paraz=z9=4B
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El factor de influencia pico (peak) se calcula mediante la ecuacion (103).

q\%° 103
Iz(peak) = 05 + 01 (O” ) ( )
o

Donde ¢’y es la tension efectiva a la profundidad en que se produce el factor de influencia pico.

En cimentaciones con L/B entre 1y 10, se puede interpolar entre la solucién para cimentacién

cuadrada y corrida.

Finamente, el asiento elastico se puede calcular como

2B
I, (104)
Se = C1C5q Z EAZ
0

Donde;
C1=1-0.5(qo/q): Factor de correccién de la profundidad de empotramiento del cimiento

C2=1+ 0.2 log(t/0.1): Factor de correccién para considerar la consolidacion, donde t es el

tiempo en anos.
g: Tensidn neta efectiva aplicada en el nivel de apoyo de la cimentacion

go: Tension vertical efectiva en el nivel de apoyo de la cimentacion

Schmertmann et al. (1978), recomienda las siguientes correlaciones para obtener el médulo de

deformacion:
e Cimentacion cuadrada o circular:

E=25q, (105)

e (Cimentacion corrida:

E=35¢, (106)
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Donde q. es la resistencia por punta en el CPT.

Terzahi et al. (1996) propusieron la siguiente relacidon para cimentaciones rectangulares

E L

B — 1 4 0.410g (E) <14 (107)

E
G=D

3.5.5.2 Terzaghi et al. (1996)

A diferencia del diagrama de influencia propuesto por Schmertmann et al. (1978) que se puede

ver en la Figura 3-31, Terzaghi et al. (1996) propusieron:

z=0 [, = 0.2 para cualquier valor de L./B
z=17,=0.5B [, = 0.6 para cualquier valor de L./B
z=170=2B [,=0paralL/B=1

z=70=4B [,=0paralL/B=10

Para valores de L/B entre 1y 10,

521+ (5)] "

El asiento elastico se obtiene de la siguiente expresion

Zo
I 0.1 t day
Se = Cd(q)ZEZAZ-I_OOZ m Zy log(m> (109)
c
0 —_—
2o

Asiento de consolidacion

Donde;

q. es la resistencia por punta en el CPT en MN/m?
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E=3.5q9c. encimentaciones cuadradas o circulares
L . . .
Erectangular = [1 + 0.4 E] E.uadrada €D cimentaciones cuadradas o circulares

Ca: Factor de correccion de la profundidad en funcién de D¢/B

Tabla 3-1 - Factor de correccién de la profundidad

D¢/B Ca
0.1 1
0.2 0.96
0.3 0.92
0.5 0.86
0.7 0.82
1.0 0.77
2.0 0.68
2.0 0.65

Segun Terzaghi et al. (1996)

3.5.5.3 Akbas & Kulhawy (2009)

Akbas & Kulhawy (2009) desarrollado el método L1-L2, basado en los resultados de 167
pruebas de carga a escala real, donde llegaron a la relacién entre asiento y carga aplicada que

se muestra en la Figura 3-32, pudiéndose dividir en tres regiones principales:
e Region lineal inicial, comportamiento elastico
e Regién de transicidn, comportamiento no lineal

e Region lineal final, cercana al fallo

Los puntos caracteristicos de la curva son:
L1 es la franja de limite elastico donde la curva deja de ser lineal
L2 es la franja del umbral de fallo, al inicio de la region lineal final
Q1 1a carga aplicada en la base del cimiento donde se produce el asiento Se(1)

Qr la carga ejercida al nivel en que se produce el asiento Se(r)
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Q12 la carga ejercida al nivel en que se produce el asiento Se(.2), que equivale a la capacidad

ultima de la cimentacion.

Q| —
2 [ e
Qr L S .
' /' Final linear region
L ' ;
. '\
! ./ aps .
+ - Transition region
'E Is
S !/
—
Qf—. Initial linear region
0 . 1 .
0 SNL]] SL‘( 8 S(‘{LZ}
Settlement

Figura 3-32 — Método L1-L2, Akbas & Kulhawy (2009). Tomado de DAS, Braja M. Advanced soil mechanics.
CRC press, 2019, p. 605

Los autores propusieron una relacién entre la carga Q y el asiento Se, normalizada respecto a

la carga Qi2 y el ancho de la cimentacién B

Q S 0.68

— =0.69 (—e) + 1.0
QLZ B

(110)

Donde;
Q: Carga aplicada en KN
Qi2: Carga ultima de la cimentacién
Se: Asiento en la base de la cimentacion en mm

B: Ancho de la cimentaciéon en m
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La ecuacion (110) debe ajustarse en funciéon del médulo de elasticidad inicial del suelo (Ev1),

para ello, los autores propusieron las siguientes ecuaciones:

e Cuando it > 500,

Pa

Q

Se/B (111)

0., 0.68(S./B) + 1.18

e Cuando 500 > 2L > 250,

Pa

Q

Se/B (112)

QL  072(S./B) + 1.59

e Cuando i1 < 250,

Pa

Q

Se/B (113)

QL 075(S./B) + 1.95

Donde p, es la presion atmosférica (100 KN/m?)
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3.5.6 Métodos basados en la teoria de la elasticidad

En el presente apartado se exponen algunos de los métodos mas relevantes relativos a la
estimacion del asiento elastico en suelos granulares a partir de relaciones teéricas basadas en

la teoria de la elasticidad.

3.5.6.1 Métodos clasicos: Schleicher (1926), Steinbrenner (1934) & Fox (1948)

Para una cimentacion de longitud L y ancho B ubicada a una profundidad D¢ bajo la superficie
y un estrato indeformable a una profundidad H bajo la superficie, se diferencian tres posibles

escenarios:
e Escenario I. El asiento elastico de un punto de una cimentacion flexible en un medio

elastico indefinido (H = o) se calcula con la siguiente ecuacion.

qB (114)
Se(flexible) = N (1 -vAI

Donde;
q: Presion neta ejercida por la cimentacién
E: Modulo de elasticidad del suelo
v: Coeficiente de Poisson

[: Factor de influencia que depende del punto donde se evalta el asiento bajo el
cimiento. Schleicher (1926) determiné la siguiente ecuacién para determinar el

factor de influencia en la esquina de una cimentacion flexible:

(115)

Icorner -

1 1+VmZ+1
m'ln — +ln(m'+ m’2+1)

Donde m’ = L./B. El factor de influencia en otras posiciones de la cimentacion se puede
determinar subdividiendo la cimentacién en 4 partes y aplicado el principio de

superposicion. El factor de influencia en el centro es igual a dos veces el de una esquina.

Las cimentaciones flexibles ejercen una presién uniforme sobre el terreno, pero el

asiento no es uniforme bajo la cimentacién. Por el contrario, las cimentaciones rigidas
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no ejercen una presién uniforme sobre el terreno, pero su asiento si es uniforme. De
acuerdo con Bowles (1987), el asiento en el centro de una cimentacion rigida es
aproximadamente el 93% del de una cimentacion flexible. En la Tabla 3-2 se puede ver

la relacidn entre el factor de influencia de una cimentacion flexible y rigida

Tabla 3-2 — Relacién entre factor de influencia
de una cimentacién rigida y flexible

M’ =L/B Flexible Rigida
Circular 0.85 0.79
1 0.95 0.82
1.5 1.20 1.07
2 1.30 1.21
3 1.52 1.42
5 1.82 1.60
10 2.24 2.00
100 2.96 3.40

e Escenario II. De acuerdo con Bowles (1987), el asiento superficial teniendo en cuenta

la influencia de un estrato rigido (H # o) se obtiene a partir de la ecuaciéon (116).

1—v? (116)
E Is

Se(flexiviey = q(aB’)
Donde;
q: Presién neta ejercida por la cimentacion
E: Valor medio del mé6dulo de elasticidad del suelo hasta una profundidad de z = 4B.
v: Coeficiente de Poisson

B’ = B/2 para la estimacion del asiento en el centro de la cimentacién o B’ = B para

la estimacidn del asiento en una esquina.
a: Factor que depende del punto de estudio.
Para la estimacion del asiento en el centro de la cimentacidn:

a=4
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Para la estimacion del asiento en una esquina de la cimentacién:

a=1
m =%
B
n =2
B

Is: Factor de influencia que depende del punto donde se evalda el asiento bajo el
cimiento. Steinbrenner (1934) determin la siguiente ecuacién para determinar el

factor de influencia:

1—-2v 117,
IS - Fl + F2 ( )
Donde;
1 118
Fy=2(Ao+4) (118
) (119)
F, = ;l—ntan‘1 A,
(120)
A =m'In (1-+Vm2+1)m'2 +n?
0~ mr(1+Vm’Z4n’2+1)
(121)
A =In (mr+vm'2+1)y/ 1+ns?
1 mNmZ+n’2+1
mr (122)

Ao =—m—
2 n'+vm'2+n’2+1

Escenario III. El efecto que tiene disponer la cimentacién a una profundidad D¢ bajo la
superficie implica la modificacion de las ecuaciones (114) y (116) de acuerdo con las

siguientes ecuaciones (123) & (124), respectivamente.

qB (123)
Se(flexible) = (1 = vd)II;

124
1—v? (129

E

Se(flexible) = q(aB’) Islf
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Donde It es un factor de influencia que varia con D¢/B y L./B de acuerdo con las graficas de la

siguiente figura.

—

(a)

(cl

0,95 -

0,540

.80

0,70 4

0,50

.50 4

045

L0

0.9

0.8

0.7

(i3

05

vu L3

01

(LI

04 060810

0 1B

. 0.5 ; — .
20 01 02 04 060810 20
(b) D (B
1.0 4

0.9 ~

1.8 -

- u.l:'l =
v=[L5
1 T L L} 1 L D-S T L] L} 1 1 1
ol 0.2 04 06081, 2.0 0.1 0.2 d 0608 1.0 2.0
D/ {d} Dy

Figura 3-33 — Factor de influencia Ir. . Tomado de DAS, Braja M. Advanced soil mechanics. CRC press,

2019, p. 616
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3.5.6.2 Mayne & Poulos (1999)

La ecuacién (125) propuesta por Mayne y Poulos (1999) tiene en cuenta la rigidez de la
cimentacién, profundidad de empotramiento, variacién del médulo de elasticidad con la

profundidad y presencia de una base rigida.

Estrato incompresible

N4

Figura 3-34 — Parametros férmula de Mayne & Poulos (1999)

BI:1:1
Se=q eEGFE(l_UZ) (125)
0

Donde;

q: Presion neta ejercida por la cimentacion

. . . C ’4BL
Be: Diametro equivalente de la cimentacién donde B, = — En caso de tratarse de una

cimentacién circular, Be es igual al didmetro.

Ig: Factor de influencia por la variacion del mddulo de elasticidad con la profundidad, se

obtiene de la Figura 3-35.
Ip: Factor de correccion de la rigidez de la cimentacion, se obtiene de la ecuaciéon (126) y

[g: Factor de correccion de la profundidad de empotramiento de la cimentacién, se obtiene

de la ecuacion (127).
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T[ 1
Ky 10(Ef/[E, + (B./2)k])(2t/B,)?

1
" 35exp(1.22v — 0.4)[(B./Dy) + 1.6]

IE:1

W77 T T T T TT] 1

>30 10.0
5.0
0.8H—
2.0
0.6 — 1.0

10

L1
001 2 4 6 0.1

100

(126)

(127)

Figura 3-35 — Variacion de I en funcidn de B’. Tomado de DAS, Braja M. Advanced soil mechanics. CRC

press, 2019, p. 621
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100 — I I I B

0.95 —
0.90 —

0.85 —

K - E¢ (ﬂ]j
0.80 —
E + % k B

o

I

= Flexibility factor
0.75 —

0.70 I A A O 0 I A B B O B B N B A

00012 4 0.01 0.1 1
k’F

10

100

Figura 3-36 — Variacion de If en funcion de Kr. Tomado de DAS, Braja M. Advanced soil mechanics. CRC

press, 2019, p. 622

1.00
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v=0.5

Ig

0.85

0.4

0.3

0.2

0.80

0.1

0.75

0.70 I l I
0

20

Figura 3-37 — Variacion de Ie en funcidn de D¢/Be. Tomado de DAS, Braja M. Advanced soil mechanics. CRC

press, 2019, p. 623
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3.6 Modulo de balasto

El moédulo de balasto k mide la relacion entre la presion p aplicada a un area y la deformacion

s experimentada por dicha area, expresandose en unidades de fuerza por unidades de volumen

(KN/m?). Se emplea tanto el médulo de balasto vertical (cimentaciones superficiales) como

horizontal (pantallas o cimentaciones profundas).

v |

P a ,

Comportamiento real ‘

(128)

rd
ra
A \ Modelacion lineal
.

fnp

£ -
L7 As

- -1 k, = Ap/As

v

Figura 3-38 — Representacion del mddulo de balasto

Winkler (1867) introdujo el concepto de mddulo de balasto con el fin de modelar la interaccién

entre el suelo y la estructura. Esta metodologia asume que la cimentacion se apoya sobre un

conjunto de muelles elasticos independientes con rigidez k que oponen una resistencia a la

deformacién proporcional al asentamiento local del suelo.

p

; S

l ll /—Muelle de rigidez K
l Yv ‘Hrvl /

N AN AN AN N AN NN NRANN

Figura 3-39 — Representacion del modelo de Winkler
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El médulo de balasto no depende Uinicamente de las propiedades del suelo, de acuerdo con la
ecuacion (129), desarrollada en el apartado 3.3.3, que relaciona el médulo de balasto k con el
médulo de elasticidad E, el médulo de balasto no solo depende exclusivamente del suelo,

también del tamafio del area cargada.

i (129)

k=13

Esta idealizacién de la interaccién suelo-estructura es una gran simplificacion del
comportamiento real del suelo, pues en la realidad el terreno es un medio continuo cuyas
deformaciones se extienden mas alla de la zona inmediatamente cargada como se explica en el

apartado 3.4 Distribucidn de tensiones bajo cimentaciones superficiales.

Larigidez de la propia cimentacién también influye en la interaccién con el suelo y la forma de
transmitir las tensiones como se ha explicado en apartados anteriores y, por tanto, en el
modulo de balasto. De acuerdo con el apartado 3.5 y Figura 3-40, se pueden distinguir dos casos
extremos, cimentacion rigida o flexible, siendo el comportamiento de ambos casos

notablemente diferente, afectando tanto a la distribuciéon de presiones como a los asientos.

B e N\ R
O fee——"—2] Asiento o Asiento
Flexible - Cohesivo Rigida - Cohesivo

\\ _ / _ TN i / f//‘"'
Olgiinns]  Aslento SN[ Asiento

Flexible - Granular Rigida - Granular

Figura 3-40 — Relacion tensidn-asiento en funcion de la rigidez del cimiento. Distribucién de tensiones en
sobreado y sin sombrear el asiento.
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En una cimentaciéon muy rigida, la deformacién tiende a ser uniforme, ya que la cimentacién

rigidiza el reparto de cargas.

En el caso de una carga centrada y una cimentacién perfectamente rigida en un suelo
homogéneo, el asiento seria constante en toda la base de la cimentacién. Tedricamente,
también se daria una presion uniforme bajo la cimentacion, pero en la practica, en funcion de
la naturaleza cohesiva o granular del terreno, el comportamiento es diferente. En el caso de
suelos granulares, un cimiento rigido genera mayores presiones en el centro de la cimentacién
y menores en los bordes, ya que el terreno granular no se adhiere a la cimentacién (falta de
confinamiento en los bordes), originandose un “despegue” en los bordes debido a la propia

rigidez del cimiento que impide el contacto con el terreno.

Por el contrario, en el caso de suelos cohesivos, una cimentacién rigida muestra mayores
presiones en los extremos debido a la combinacién de adherencia que ejerce el suelo sobre la
cimentacioén y la rigidez del propio cimiento, impidiendo acomodarse a las deformaciones del

suelo.

En el caso de cimentaciones flexibles, capaces de adaptarse a la deformacion del suelo, ante
cargas puntuales se deformard, hundiéndose bajo las zonas mas cargadas. Esto genera una
mayor presion de contacto bajo los puntos de aplicacion de las cargas. Cuanto mas flexible sea

la cimentacidn, teéricamente, menos uniforme sera la distribucién de las presiones.

Sin embargo, la capacidad de redistribucién de presiones que tienen las cimentaciones flexibles
permite evitar picos excesivos, uniformizandose la presion de contacto en un mayor grado que
en el caso de cimentaciones rigidas. De acuerdo con las observaciones de Leshchinsky y
Marcozzi (1990), las cimentaciones rigidas presentan una mayor concentracion de presiones
cerca de los bordes, induciendo a fallos locales en los extremos (plastificaciéon del borde),
mientras que las cimentaciones flexibles distribuyen le presiéon de una forma mas homogénea;
como consecuencia, las cimentaciones flexibles alcanzan una mayor carga ultima antes del fallo

en comparacion con las cimentaciones rigidas, pero también un mayor asiento.

En el caso de losas continuas, debido a la continuacién del elemento y la superposicion de
presiones generadas por varias columnas, se identifica una mayor presion de contacto bajo los
pilares, mientras que en las zonas de mitad de vano las presiones son menores, incluso llegando
a producirse despegues. En estos casos, no es realista suponer un tnico médulo de balasto
constante en toda la cimentacion, ya que esto significaria que el suelo ofrece la misma rigidez

bajo las areas fuertemente cargadas (pilares) y las zonas de mitad de vano.
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FLEXIBLE RIGID

e

Contact Pressure ©

— D/B=0
~=ee= D/B>0

Figura 3-41 — Relacién presidn-rigidez en arenas densas. Extraido de LESHCHINSKY, Dov; MARCOZZI, Guy
F. Bearing capacity of shallow foundations: rigid versus flexible models. Journal of geotechnical
engineering, 1990, vol. 116, no 11, p. 1750-1756.

En losas de cimentacién con miultiples columnas (por ejemplo, cimentaciones de edificios
altos), se observa un patrén en las tensiones de contacto bajo las columnas, creandose una zona
de alta presion bajo su area de influencia, mientras que las zonas centrales de la losa tienen
tensiones considerablemente menores. Si la losa es rigida, la diferencia se atentia, pero si es
flexible, las diferencias pueden acentuarse. En algunos casos, pueden aparecer areas sin
contacto efectivo con el suelo debido a una distribucion de cargas irregular, lo que requiere
iterar en el calculo para determinar las zonas de contacto, para ello se realiza un célculo no
lineal con el fin de identificar las zonas en que no hay presiones y liberar los muelles

localmente.

Una manera practica de abordar esto (ver apartado 3.6.3) es subdividir la losa en zonas mas
pequeifias, asignando a cada una un coeficiente de balasto acorde a la rigidez del suelo bajo esa
porcion, en lugar de usar un Unico k global. Este enfoque, conocido como método de areas
discretas, recomendado por comités técnicos como ACI Special PPublicacition 152, refleja la
variacion de k a lo largo de una losa de cimentacion, obteniendo asi una distribucién de
presiones mas realista: elevada donde la losa carga mas y reducida donde carga menos,

garantizando un disefio mas seguro y econémico.

A lo largo de los siguientes subapartados se enumeran las principales teorias, métodos de

obtencion y metodologias de aplicacion en el modelado de cimentaciones superficiales.
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3.6.1 Evolucion de las teorias del modulo de balasto

El modelo original de Winkler (1867) considera que la deformacion, s, es linealmente
proporcional a la presién de contacto, p, en dicho punto e independiente de los esfuerzos de
contacto en otros puntos. El suelo se modela como un conjunto de muelles elasticos
independientes con rigidez k como se muestra en la Figura 3-39. Esta relacién se expresa

mediante la siguiente ecuacion:

p(x,y) = ks(x,) (130

El modelo de Winkler, a pesar de su utilidad en la representacién del comportamiento del suelo
de una manera tan simplificada, presenta una limitacién clave, asume que cada punto de la
cimentacién se apoya sobre resortes independientes, sin considerar la interaccién entre areas
contiguas. Esta deficiencia llevd al desarrollo de modelos de respuesta del suelo mas
avanzados, conocidos como modelos de dos parametros. La principal diferencia con Winkler
es que, en lugar de un unico coeficiente de balasto, estos modelos incorporan un segundo
parametro elastico que introduce un acoplamiento entre los resortes, reflejando de manera

mas realista la continuidad del suelo.

Muelle de rigidez K

y

Figura 3-42 — Representacién del modelo de Winkler optimizado

El desarrollo de estos modelos sigui6 dos enfoques distintos. El primero consiste en extender
el modelo de Winkler mediante la incorporacién de una capa elastica que vincula los muelles
verticales, lo que permite distribuir las cargas de manera mas progresiva. Ejemplos de esta
linea de investigacion incluyen los trabajos de Filonenko-Borodich (1940), Hetényi (1946),
Pasternak (1954) y Kerr (1964), quienes propusieron distintas maneras de representar la
interaccion entre los elementos tipo muelle, ya sea a través de membranas elasticas, vigas
continuas o capas sometidas a cortante. En particular, el modelo de Pasternak introdujo un
parametro adicional, denominado médulo de rigidez de corte, G, que permite que los
desplazamientos de un punto del suelo afecten a los puntos vecinos, mejorando la

representacion de la distribucidn de esfuerzos bajo la cimentacion.
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El segundo enfoque parte directamente de la teoria de la elasticidad continua, evitando la
discretizacién en muelles. Investigadores como Reissner (1958), Vlasov y Leontiev (1966)
adoptaron este método, formulando modelos que parten del comportamiento continuo del
suelo y simplifican las ecuaciones mediante hipotesis razonables sobre la distribucion de
tensiones, deformaciones y desplazamientos en la base de la cimentacién. Posteriormente,
trabajos como los de Vesic (1963, 1970) desarrollaron ecuaciones que permiten obtener el
coeficiente de balasto de manera coherente con la teoria de la elasticidad, garantizando que las
deformaciones y esfuerzos en el terreno sean equivalentes a los obtenidos con un analisis mas

detallado basado en un medio semi-infinito elastico, como el modelo de Boussinesq.

En los ultimos afios, la evolucidn de la interaccién suelo-estructura ha llevado a metodologias
aun mas sofisticadas, incluyendo modelos no lineales de Winkler, en los que el médulo de
balasto varia segtiin la magnitud de la carga o el asentamiento. Estos modelos se calibran con
datos experimentales obtenidos de ensayos de laboratorio y campo, lo que permite representar
la variacion de la rigidez del suelo con mayor precision. Ademas, con el aumento del poder
computacional, los métodos numéricos avanzados, como el método de elementos finitos (MEF)
en 3D, han permitido modelar el suelo como un medio continuo, eliminando la necesidad de
definir inicialmente un coeficiente de balasto. Estos modelos acoplados consideran
simultidneamente la deformacién de la estructura y la respuesta del suelo, incorporando
modelos constitutivos mas avanzados, como formulaciones elasto-plasticas y efectos de

consolidacién.

A pesar de estos avances, el modelo de Winkler y sus variantes siguen siendo ampliamente
utilizados en la practica de la ingenieria, debido a su facilidad de implementacién y su
capacidad para proporcionar resultados razonables en muchos casos. Sin embargo, para
mejorar su precision, es recomendable emplear enfoques hibridos, como los modelos de dos
parametros o calibraciones basadas en ensayos in situ, que permiten ajustar el coeficiente de

balasto a las condiciones especificas del suelo y la cimentacién.

A continuacidn, se describen los principales modelos tedricos para cada uno de los enfoques
que se han indicado anteriormente, por un lado, los que extienden el modelo de Winkler
mediante la incorporacion de una capa elastica que vincula los resortes verticales, Filonenko-
Borodich (1940), Hetényi (1946) y Pasternak (1954), y por otro, los basados en la teoria de la
elasticidad Vlasov y Leontiev (1966) y Vesic (1970)
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3.6.1.1 Filonenko-Borodich (1940)

El modelo de Filonenko-Borodich (1940) asume que el muelle k propuesto por Winkler se
conecta a los muelles adyacentes mediante una membrana delgada sometida a una traccion
constante T. Asumiendo el equilibrio estatico de un elemento diferencial del sistema muelle-
membrana, se llega a la conclusiéon de que en cimentaciones planas (zapatas, losas, etc.) la

deformacién superficial debida a una carga distribuida p se obtiene de la siguiente formulacion:

p(x,y) =k s(x,y) — TV?(x,y) (131)

Donde V2(x,y) = d*/0x*+ */dy* es el operador diferencial Laplaciano en coordenadas

cartesianas. En caso de vigas de cimentacion, la ecuacién queda de la siguiente forma:

p(x) =k s(x,y) — T 0°p/0x? (132)

3.6.1.2 Hetenyi (1946)

El modelo de Hetenyi (1946) asume que el muelle k propuesto por Winkler se conecta a los
muelles adyacentes mediante una constante D que es funcién de la rigidez a flexion de la placa
elastica embebida que conecta los muelles. En cimentaciones planas (zapatas, losas, etc.) la

deformacién superficial debida a una carga distribuida p se obtiene de la siguiente formulacidn:

p(x,y) = k s(x,y) — DV*(x,y) (133)

Donde V*(x,y) = 0*/dx* + 20*/(0x*0y*) + 3*/dy* y D = El /b es la rigidez a flexion de la
placa elastica embebida, I es el momento de inercia de la cimentacién y b es el ancho de la viga

embebida.

En caso de vigas de cimentacidn, la ecuaciéon queda de la siguiente forma:

p(x) = ks(x,y) — = d*p/ox* (134)
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3.6.1.3 Pasternak (1954)

Pasternak (1954) propuso una interacciéon de cortante entre los elementos tipo muelle
mediante la conexiéon de dichos muelles a través de una capa de elementos verticales
incompresibles de grosor unitario (t = 1) que se deforma a cortante puro. Asumiendo el
comportamiento isotrépico de las capas a cortante en el plano xy con médulos de cortante Gy

= Gy = Gy, se llega a las siguientes ecuaciones:

135,
Txz = Gp VYxz = Gp dp/ox (135)
(136)
Tyz = Gp Yyz = Gp dp/dy
Aplicando el equilibrio de un elemento diferencial del medio a cortante en el eje Z:
137,
P(x,y) — k 5(5,¥) = (9T45/0x + 07,/dy) = 0 (137)
Reemplazando las ecuaciones (135) y (136) en la ecuacion (137):
(138)

p(x,y) =k s(x,y) — Gp(8p/0x* + 9°p/0y*) = k s(x,y) — G,V*p(x,¥)
En el caso particular de vigas de cimentacidn, la ecuacion (137) quedaria de la siguiente forma:

p(x,y) = k s(x,) — G,(8%p/3x?) (139)

3.6.1.4 Vlazov-Leontiev (1966)

Esta metodologia se basa en la teoria de la elasticidad. Los autores desarrollaron una
formulacién similar a la propuesta por Filonenko-Borodich y Pasternak, suponiendo
deformaciones unitarias en el plano vertical, junto a una restriccion en la distribucion de las

deformaciones en un medio elastico semi-infinito.

p(x) = k s(x,y) — t 22 (140

Donde;
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_ (1-v)Esb  (H (dg\?
T +v)(1-2v) fo (E) dz

_ Eb H ,
t_2(1+v)fo gdz

b es el ancho de la viga de cimentacién

senhn(H-z . . . Y .7
g(z) = #nh’) es el factor de influencia que describe la variacién de deformacion

vertical con la profundidad z en un suelo o medio de espesor H, donde 1 es un parametro
experimental. En el apartado 3.4 se dan varias referencias para estimar el factor de

influencia.
Es es el modulo de elasticidad del terreno

v es el coeficiente de Poisson del terreno

3.6.1.5Vesic (1970)

Vesic basé sumodelo en un medio elastico homogéneo semi-infinito en el cual una cimentacién
rigida transmite una presion. El médulo de balasto se obtiene a partir de la solucién elastica
del asentamiento de una placa rigida sobre dicho medio elastico. A partir de este modelo, Vesic

obtuvo la relacidn entre la presion de contacto y el asentamiento medio de la cimentacién.

Segun la teoria de la elasticidad, el asiento de una cimentacién rigida apoyada sobre un suelo

elastico homogéneo viene dado por:
_pBa—v) (141)
EF
donde:
e seselasentamiento medio de la cimentacion,
e peslapresion de contacto en la base de la cimentacidn,

e Besel ancho caracteristico de la cimentacion (didmetro en cimentaciones circulares o

ancho en zapatas rectangulares),

e vses el coeficiente de Poisson del suelo,
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e Eseselmoédulo de elasticidad del suelo,
e Fesun coeficiente de forma dependiente de la geometria de la cimentacién.

Tabla 3-3 — Coeficiente de Forma F

Tipo de cimentacién F
Cuadrada 1.0
Rectangular (B/L =1:2) 1.12
Rectangular (B/L =1:3) 1.22
Circular 1.13
Losa extensa 1.5-2.0

A partir de esta ecuacidn, el mdédulo de balasto k, definido como la relacién entre presién y

asentamiento unitario (k = p/s), se obtiene como:

EsF (142)

k= B(l—v)

Para cimentaciones situadas a una profundidad D, Vesic propuso un factor de profundidad f3p,

que corrige el valor de k en funcidn de la profundidad de cimentacién:

=y = ke (1+02 %) (143)

donde:
e k' es el mddulo de balasto corregido por profundidad,
e Deslaprofundidad de cimentacién,

e Beselancho dela cimentacién.

Para el caso de cimentaciones flexibles, el médulo de balasto varia espacialmente. En estos
casos, Vesic sugiri6 dividir la cimentacion en zonas discretas, asignando diferentes valores de

k en funcién de la carga y la deformabilidad de la losa.

Para losas directamente apoyadas en el terreno (sin pilotes), Vesic recomendé calcular un

modulo de balasto efectivo promedio ponderado:
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i _ ksAi (144)
seff — ZAi

Donde A; son las areas de la cimentacion en las que se subdivide la losa.

3.6.2 Determinacion del modulo de balasto

La determinacion del modulo de balasto es dificultosa, no siendo directamente extrapolable de
ensayos de campo o laboratorio debido a que su valor depende tanto de la naturaleza del suelo,

como de la forma y profundidad del area cargada, como se ha explicado anteriormente.

p r

s

Figura 3-43 — Relacién presidn-asiento en funcidn del tamafio de la cimentacion

o=0.104g,

Figura 3-44 — Relacion del bulbo de presiones en funcidn del tamafio de la cimentacion
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La duracién de la fase de carga también puede hacer variar el médulo de balasto con el tiempo,
ya que, en terreno cohesivos, gran parte del asiento se debe a la consolidacion y, por lo tanto,
puede ocurrir durante varios afios o incluso toda la vida ttil de la estructura. Por ello, en
terrenos de naturaleza cohesiva, se deben considerar andlisis a corto y largo plazo del mddulo

de balasto.

Por otro lado, el médulo de balasto tampoco sera constante para toda la superficie del cimiento,
ya que la presidn de contacto y asiento también varian espacialmente, como se muestra en la

Figura 3-40. Se trata este tema en el apartado 3.6.3.

Varios autores han propuesto metodologias para determinar el m6dulo de balasto. Terzaghi
(1955) propuso las siguientes ecuaciones para determinar el médulo de balasto ks de una
cimentacién cuadrada de ancho B en base al médulo de balasto ks; obtenido de un ensayo de

placa de carga con placa cuadrada de ancho Bs.

Cimentacion en suelo cohesivo:

B, (145)
ks = ks B
Cimentacion en suelo granular:
B + B;\? (146)
ks = ksa ( 2B )

Para cimentaciones rectangulares de ancho B y longitud L, ks se multiplica por la siguiente

relacion:

(147)

B
Ko roct. = K (1 —)
s,rect. s,cuad. + 2L

En el caso de cimentaciones ejecutadas a una profundidad de estudio D, autores como Terzaghi
(1955) determinaron que el médulo de balasto a la profundidad de estudio ks, puede estimarse

mediante la siguiente relacion:

108



Estado del arte

(148)

Autores como Teng (1962), Vesic (1970) o Bowles (1996) propusieron una correccion a la
férmula anterior, indicando un incremento menos pronunciado del médulo de balasto con la
profundidad, sustituyendo el 2D/B por valores entre 0.2~0.5 D/B. Se indica a continuacién la

formulacién propuesta por Bowles (1996).

D
ks, = kg (1 + 0.5§) (149)

Biot (1937) desarrollé la siguiente formulacién que combinaba las bases del modelo de
Winkler con la teoria del sélido elastico, particularizada para el conocido caso de viga flotante

(viga de cimentacion).

1.23 E, E,B* 011 (150)
B —v)|16C(1 —v2)E,I

Donde;
B es el ancho de la cimentacion
Vs es el coeficiente de Poisson del suelo
Es es el modulo de elasticidad del suelo
E, es el modulo de elasticidad del material con que se ejecuta la cimentacion
[ es la inercia de la cimentacién

C es un coeficiente adimensional que varia en funcién de la distribucién de presiones bajo
la viga de cimentacién. Se toma un valor de 1.0 cuando la distribucién de presiones es
uniforme en el ancho del cimiento y un valor entre 1.0 < C < 1.13 cuando la distribucién del

asiento es uniforme en el ancho del cimiento.

Vesic (1961) realiza varias modificaciones de la formulacién propuesta por Biot en 1937,

quedando la formula de la siguiente forma:
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_ 0.65E 1 E.B* (151)
 B(1—v2) | Epl

3.6.3 Metodologias de aplicacion del mdédulo de balasto en modelos de calculo

Las presiones de contacto y asientos en una cimentacién varian espacialmente y, en
consecuencia, también lo hace el moédulo de balasto. En el caso de cimentaciones de pequefio
tamafio, como zapatas, esta variacidn espacial puede llegar a ser ignorada, pero en el caso de
cimentaciones tipo losa o vigas de cimentacion, es notable que la relacidn entre la presion de

contacto y el asiento puede llegar a variar notablemente.

En consecuencia, existen varias metodologias para considerar la variacién espacial del médulo

de balasto en los modelos de calculo. Se exponen a continuacion las principales metodologias.

3.6.3.1 Modulo de balasto tinico

Se considera un dnico médulo de balasto en toda la superficie de la cimentacién. Esta
aproximacion puede ser razonable cuando la cimentacion tiene unas dimensiones moderadas

y la variacion espacial de cargas no es muy significativa.

Esta metodologia no es aconsejable para cimentaciones con dimensiones considerables o
cargas desiguales, ya que no refleja la verdadera distribucion de presiones, asientos y

esfuerzos.

3.6.3.2 M6dulo de balasto variable espacialmente

Se subdivide la base de la cimentacién en areas mas pequefias, por ejemplo, mallas o paneles
asociados a los pilares y zonas intermedias. A cada area se le asigna un médulo de balasto

distinto de acuerdo con la rigidez local de suelo y del propio cimiento.

Existen varios métodos para realizar la subdivisién y discretizacion de los parametros
considerados en cada zona. Algunos métodos, como los expuestos en ACI 336.2R-88 o algunas
guias del Eurocédigo 7 (Frank et al. (2004). Designers’ Guide to EN 1997-1 Eurocode 7:

Geotechnical Design - General Rules), realizan una subdivision de la cimentacion con el fin de

110



Estado del arte

asignar un coeficiente de balasto mayor en los bordes; otros métodos realizan una subdivisién

de acuerdo a las caracteristicas de las cargas o rigidez relativa de la losa y el suelo.

A continuacion, se exponen los principales métodos de subdivision y variacion del médulo de

balasto en losas de cimentacion.

Metodologia propuesta por ACI 336.2R, 1988

El informe emitido por el comité de ACI nimero 336.2R-88 recomendaba que se hiciera una
subdivisién de acuerdo con la Figura 3-45, donde la zona central tendria un tamafio entre un
30% y un 50% del ancho de la losa (cimentacién rigida y flexible, respectivamente), la zona
intermedia tendria también un tamafo entre un 30% y un 50% del ancho y, finalmente, la zona
exterior tendria un anchor de aproximadme un 20% el ancho de la losa. El médulo de balasto

considerado seria de k; en la zona central, 1.5 ks en la zona intermedia y 2 k; en el borde.

LZona central: k,

Zona intermedia: 1.5k,

Zona exterior: 2k,

¥

L L

Figura 3-45 — Subdivisién de acuerdo con ACI 336.2R-88

Metodologia propuesta en Designers’ Guide to EN 1997-1 Eurocode 7: Geotechnical
Design - General Rules (2004)

Esta guia del Eurocodigo 7 propone subdividir la losa en 9 zonas de acuerdo con la Figura 3-46
con distancias de 0.25B y 0.25L desde los bordes de la losa. En las zonas ubicadas en las
esquinas se incrementaria el médulo de balasto ks un 50%, mientras que en la zona central se

disminuiria un 50%.
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o I T
+50% k, : Zona intermedia: k. 1 +50% k,
- e e et r- _____
I I
I I
I I
| I
| I
Zona | Zona
B interm. ! Zona central: I interm,
ko -50%k, 'k
I I
I I
I I
I I
______ T T
+50% k. | Zona intermedia: k, | +50% k.
x_ X 1
L . J

Figura 3-46 — Subdivisién de acuerdo con Frank et al. (2004). Designers’ Guide to EN 1997-1 Eurocode 7:
Geotechnical Design - General Rules

Otras metodologias de subdivision basadas en la geometria de la losa

Alipour, Amir (2011) recopil6 varias metodologias de subdivisién de la losa siguiendo criterios
similares al propuesto en ACI 336.2R-88, realizando una subdivision de la losa que implica un

mayor coeficiente de balasto en los bordes.

En las siguientes figuras se exponen tres metodologias de subdivision del borde.

+—B
SECCION A-A & B-B
S R A) ‘ I
k. 2k,
E i I‘—G.ZSB"’I
Latl —!+

: : i ‘ :
i : k, 2k,
E E L0.13J
B [ c : l

B k. #

6 , ko.18

Figura 3-47 — Subdivisién de acuerdo con recopilacién de Alipour, M. (2011)
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Método de areas discretas

Para la discretizacion de los parametros considerados en cada zona se realiza un proceso
iterativo mediante calculos estructurales, para la obtencidon de las presiones de contacto, y
geotécnicos, para la obtencidn del asentamiento, retroalimentandose hasta obtener un médulo

de balasto coherente entre el andlisis estructural y geotécnico.

Esta subdivisién permite una representaciéon mas precisa de cdmo el suelo responde a las
cargas aplicadas, mejorando la exactitud del andlisis estructural. No obstante, tiene un mayor

costo computacional que los métodos expuestos anteriormente.

Este enfoque ha sido discutido por diversos autores como Ulrich (1995) y ACI mediante la
Special Publication SP-152 (1995), o estudios mas recientes, como Estephan R. et al. (2021),
donde se recomiendan diferentes algoritmos para optimizar el proceso. A continuacién, se
indica un algoritmo para realizar la iteraciéon usando los programas comerciales CSI SAFE y

Rocscience Settle3.

! Analisis estructural \ ! Analisis geotécnico A

Modelo estructural
(CSI SAFE)

h 4

Y

Obtencién de
presiones

> Importar geometria y
tensiones a Settle3

Y

(Rocscience Settle3)

Y

Importar nuevo
modulo de balasto

Exportar médulo de
balasto

A

Y

Convergencia entre
modulos de balasto y
tensiones

|
|
|
|
|
|
|
|
|
\
|
|
|
|
|
| Andlisis de asiento
|
I
|
I
|
I
1
|
|
|
|
|
|
|
|

Figura 3-48 — Algoritmo aplicado a método de areas discretas. Adaptacién de Estephan R. et al. (2021)
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3.6.3.3 Modelos de dos parametros (Winkler-Pasternak, Hetenyi u otros)

Algunos programas de calculo permiten considerar dos parametros de entrada, ademas del
médulo de balasto vertical, se define un segundo coeficiente, médulo de cortante (en algunos
casos, mdodulo de balasto horizontal), que simula el acople entre nodos, permitiendo la

interaccién entre muelles contiguos.

Este enfoque permite una distribucién de asientos y presiones de contacto mas suave, evitando
picos aislados. En la practica, la calibracion de este tipo de modelos es mas compleja, ya que
exige calibrar dos parametros. En ausencia de datos de campo vdlidos, suelen emplearse
férmulas tedricas basadas en la teoria de la elasticidad que relacionan este segundo pardmetro

con el mddulo de Poisson del suelo o el espesor de la capa deformable.

3.6.3.4 Modelos de elementos finitos (FEM)

A pesar de no ser un método que use el médulo de balasto directamente, este tipo de modelos
se suelen emplear como herramienta de validacién o calibraciéon de modelos basados en el

modulo de balasto.

En este método, en lugar de usar el coeficiente de balasto explicito, se modela el suelo con
elementos finitos (como elementos de volumen con comportamiento elasto-plastico para el
terreno). La cimentacion se modela con elementos estructurales (placa o viga) y se vincula al
suelo mediante la compatibilidad de deformaciones en la interfaz. Este enfoque FEM resuelve
las ecuaciones de equilibrio en la estructura y el suelo simultdneamente, permitiendo una
distribuciéon natural de tensiones y deformaciones segin las propiedades del suelo y la
cimentacion, sin depender de un médulo de balasto supuesto. También permite considerar

efectos no lineales, estratificaciéon compleja o el nivel freatico, entre otros.

A pesar de ser una herramienta muy util y precisa, requiere un mayor costo computacional y
parametros de entrada. Para proyectos convencionales, el método de areas discretas,
suficientemente calibrado, puede ser suficientemente preciso y manejable para la mayoria de
los disefios; no obstante, cada dia estos modelos son mas utilizados, combinado con una mayor

capacidad computacional de los ordenadores.
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3.7 Analisis retrospectivo

El analisis retrospectivo (o backanalysis) en el contexto de este Trabajo de Fin de Master se
refiere a la identificacion de los parametros del terreno en base a las mediciones observadas,
principalmente, asientos o presiones ejercidas al terreno. Este proceso se realiza mediante una

funcién objetivo y un algoritmo de optimizacion.

La funcién objetivo es una expresiéon matematica que cuantifica el error o la discrepancia entre
los valores medidos y los valores estimados por el modelo de calculo, considerando un

conjunto de pardmetros geotécnicos determinados.

Por otro lado, el algoritmo de optimizacién es un método matematico disefiado para identificar
el conjunto de pardmetros geotécnicos que minimiza la funcién objetivo. Este algoritmo
explora el espacio de soluciones con el fin de determinar los parametros que reducen al minimo

el error del modelo.

Existen diferentes funciones objetivo que pueden utilizarse dependiendo de la naturaleza del
problema y de las propiedades de los datos observados. A continuacién (apartado 3.8), se
presentan las principales funciones objetivo potencialmente aplicables a problemas

geotécnicos.

Alo largo del apartado 3.9 se exponen las principales categorias de algoritmos de optimizacion

y se explican los principales algoritmos aplicables a este Trabajo de Fin de Master.
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3.8 Funciones objetivo

La funcién objetivo cuantifica la discrepancia entre las mediciones de campo x* y las
predicciones x(p) del modelo en funcién de un conjunto de parametros p a estimar. La mejor

estimacion de los parametros p sera la que minimice la funcién objetivo.

A continuacion, se exponen varias funciones objetivo que pueden utilizarse en el analisis
retrospectivo de parametros geotécnicos dependiendo de la naturaleza del problema y de las

propiedades de los datos observados.

3.8.1 Método de minimos cuadrados

El método mas comun es adoptar errores independientes con varianza constante, lo que nos
lleva al criterio de minimos cuadrados ordinarios. Esta funcién objetivo se define como la suma

de los cuadrados de las diferencias entre los valores medidos y calculados.

m

Jis®) = ) ki = u(@)F (152)

i=1

Donde;

m es el nimero de observaciones

De acuerdo con Ledesma et al. (1996), la ecuacion (152) se puede representar en notacion

matricial de la siguiente forma:

J =@ -0 =) 153

3.8.2 Funcion de desviacion media absoluta

Enlugar de minimizar la suma de los cuadrados de los errores, minimiza la suma de los valores
absolutos de los errores. Esta funciéon objetivo es mas robusta ante valores atipicos y menos

sensible a errores extremos comparado con la funcién de minimos cuadrados.

(154)

Jvap (@) = lei* —x;(p)|
i=1
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3.8.3 Método de minimos cuadrados ponderados (WLS)

Es una extensiéon del método de minimos cuadrados, pero asignando pesos w; a cada
observacion, considerando su incertidumbre. Es ttil cuando las mediciones tienen diferente

confiabilidad.

(155)

Jans@®) = Y wilxi = @)
i=1

3.8.4 Método de maxima entropia

En problemas donde los datos observados son escasos o tienen incertidumbre, la Maxima
Entropia permite estimar los parametros que maximizan la dispersion de la distribucion de

probabilidades, asegurando que no se introduzcan sesgos innecesarios.

La funcidn objetivo se basa en la entropia de Shannon:

Jue(@) = — Z P;(p) log P; (p) (156)

Donde P;(p) es la probabilidad de cada observacion dada la estimacion de parametros p. Se usa

en calibracion de modelos probabilistas.

3.8.5 Método de Markov

El método de Markov se basa en la incorporaciéon de dependencias estadisticas entre
mediciones para mejorar la estimacion de parametros en los problemas inversos. Este método
es indicado cuando los errores de las observaciones no son independientes, estando

correlacionados entre ellos, por ejemplo, la acumulacién de errores de medicion.

La funcién de minimos cuadrados ordinarios supone que los errores en las mediciones son
independientes y con varianza constante, pero en geotecnia es comun que estén
correlacionados. En estos casos, el método de Markov tiene la ventaja de poder corregir este
error acumulativo mediante el uso de una matriz de covariancia que modela estas

correlaciones.
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Para incorporar la dependencia entre mediciones, se usa un enfoque de Minimos Cuadrados
Ponderados (WLS) o Minimos Cuadrados Generalizados (GLS), donde en lugar de minimizar

simplemente la suma de los errores al cuadrado, se introduce una matriz de covarianza Cy:

Jas®@) = (x* —0)TC7 M (x* — x) (157)

La matriz Cx describe la relacién entre los errores de medicidn. Si los errores fueran
independientes, C, seria simplemente una matriz diagonal con las varianzas o2 en la diagonal.
Sin embargo, cuando hay correlacion, los elementos fuera de la diagonal indican la relacién

entre diferentes mediciones.

El método de Markov propone modelar Cx como una matriz con estructura Markoviana, es
decir, una matriz donde los errores estdn correlacionados segin un proceso de ruido

acumulativo.

Un modelo tipico para la matriz C; es una estructura Markoviana de primer orden, en la que los
errores de una medicion dependen del error de la medicién anterior, con un coeficiente de

correlacion p:

O.2 paz ,020'2 pm—lo.z
paz 0.2 paz pm—zaz (158)
Cx = pzo.z p0'2 0.2 pm—3o.2
pm—lo.z pm—.zo.z pm—3o.2 0.2

Donde:
o” es la varianza de los errores de medicion.
p es el coeficiente de correlacion entre mediciones consecutivas.

m es el ndmero de mediciones.

3.8.6 Método de maxima verosimilitud

Dado un conjunto de mediciones x* = (x7,x3, ..., X;,) ¥ un modelo numérico que predice

valores x(p), la funcién de verosimilitud expresa la probabilidad de observar x* dado p:

L) = P(x +Ip) (159)
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El método de maxima verosimilitud consiste en encontrar los valores de p que maximizan L(p).
Para mayor facilidad de calculo, en lugar de maximizar L(p), se suele maximizar su logaritmo

(funcién log-verosimilitud):

(160)

InL (@) = ) InP (x;1p)

Dado que en muchos problemas los errores en las mediciones se modelan como distribuciones
normales, se asume que los errores g; = x; — x;(p) siguen una distribucién normal (0, 62),

con varianza o2. Esto nos lleva a definir la funcién de verosimilitud como:

L) =1_[ eXp( (x; 2%(1?))) (161)

g2

Tomando logaritmos:

(162)

1 m
InL (p) = —%IH(ZT[O'Z) — 2_0'22(xl* - xi(p))z
i=1

Dado que In L(p) crece cuando la suma de cuadrados disminuye, maximizar In L(p) es

equivalente a minimizar la funcidn objetivo de Minimos Cuadrados Generalizados:

Jm(@) = (x* - x(p))TCx—l(x* —x(p)) (163)

Donde Cy es la matriz de covarianza de los errores.

3.8.7 Método de maxima verosimilitud con informacion previa (Bayesiana)

El método de maxima verosimilitud con informaciéon previa, también conocida como

estimacion de maximo a posteriori MAP, es una extension del método de maxima verosimilitud
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incorporando informacion previa de los parametros objetivo. Se basa en la teoria de Bayes, que

permite actualizar nuestras creencias sobre los parametros a partir de los datos observados.

En el método de maxima verosimilitud se buscan los parametros p que maximicen la
probabilidad de observar los datos medidos en x*. En el caso de disponer de informacién previa
sobre los parametros objetivo (ensayos de laboratorio, pruebas de campo...), mediante el

teorema de Bayes, se pueden combinar ambas fuentes con la siguiente ecuacion:

_ P&"Ip)P(p) (164)
- P(xY)

P(plx™)
Donde:

P(p|x™)es la probabilidad a posteriori de los parametros, es decir, la mejor estimacion de p

después de considerar los datos.
P(x*|p)es la verosimilitud, que mide qué tan bien los parametros p explican los datos x*.
P(p) es la distribucion a priori de los parametros, basada en conocimientos previos.

P(x™) es una constante de normalizacion.

El método MAP maximiza la probabilidad a posteriori P(p|x*) en lugar de sélo la verosimilitud.

Dado que maximizar P(p|x*) es lo mismo que maximizar su logaritmo, aplicando logaritmos:

InP(plx*)=InP(x*Ip)+InP(p)—IlnP(x*).InP(p|x*) (165)

Como P(x™) es una constante respecto a p, puede ignorarse en la optimizacidn. Asi, la funcion
objetivo del método MAP se obtiene como la suma de la funcién objetivo de maxima
verosimilitud y un término adicional que penaliza desviaciones respecto a los valores previos

de p:

Jmap®@) = —InP (x*|p) —InP (p) (166)
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Suponiendo que los errores en los datos siguen una distribucién normal multivariada con
matriz de covarianza C, y que los valores previos de los parametros también siguen una

distribuciéon normal con media py y matriz de covarianza C,, entonces:

1 1
P(x*lp) = Wexp <_§ (x* _ x(p))TCx—l(x* _ x(p))> (167)
P(p) = ;exp (—l(p —po)TCy (p — p0)> (168)
@ome|c 2\ 2 P

Tomando logaritmos y omitiendo constantes, se obtiene la funcién objetivo a minimizar en el

método MAP:

Juar®) = (" = x@)) €1 (x" = x(@)) + @ — o) (P — po) (169

3.8.8 Funcion objetivo con error relativo

La funcién objetivo con error relativo es una variacion del enfoque clasico de minimos
cuadrados, en la cual se minimiza la diferencia relativa entre los valores medidos y los valores
calculados en lugar de la diferencia absoluta. Este método es particularmente ttil cuando los
datos medidos tienen 6rdenes de magnitud muy diferentes o cuando se desea dar la misma

importancia relativa a cada medicidn, independientemente de su magnitud.

La funcidn objetivo con error relativo se define como:

_ (x5 — @)Y (170)
Jra(P) = Z —

i=1 t

En la ecuacién anterior, cada término representa el error relativo cuadratico de la medicién i,

es decir, la diferencia entre el valor medido x; y el valor calculado xi(p), normalizada por x;.

También puede escribirse en términos de error absoluto y error relativo:
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m

2
Jre(p) = z <%) (171)

i=1 V¢

Donde ¢; = x; — x;(p).

Si hay diferentes tipos de mediciones, se pueden usar términos ponderados:

Nu meas calc 2 Np meas calc 2
1 U™ — Ui (p) 1 P — Pr(p) (172)
]rel(p) = N_U [ meas + N_P pmeas
i =1 Ji

i=1

Donde:
Umeas y Pmeas son los valores medidos.

Nyy Npson el nimero de mediciones de cada tipo.

Este criterio equilibra la importancia de cada medicion, sin importar su magnitud.

3.8.9 Método de maxima correlacion cruzada

Este método minimiza la diferencia en la correlacion entre los valores medidos y los valores
calculados, en lugar de los valores absolutos. Su principal aplicacién es en problemas donde se

busca ajustar la tendencia general mas que valores puntuales.

Y(xf —x9)(x;(p) — %(p)) (173)

Oy Oy

Jxcorr(@) =1 —

3.8.10 Funcion objetivo basada en divergencia de Kullback-Leibler (KL)

Se usa en enfoques probabilistas donde la distribucion de los datos estimados P(xI|p) debe
aproximarse a la distribuciéon de los datos observados P(x*). Se usa en problemas de

optimizaciéon en modelos probabilisticos.

P(xf) (174)
P(xi(p))

Jx(p) = X P(x;) log
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3.8.11 Funcion de penalizacion con regularizacion de Tikhonov

En problemas mal condicionados o con un sobreajuste, introduciendo una penalizacién en la

magnitud de los pardmetros, ayudando a regularizar las soluciones.

m

Fre®) = ) [xi = @) + Alpl?

i=1

(175)
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3.9Algoritmos de optimizacion

Los algoritmos de optimizaciéon son métodos matematicos que se emplean para identificar la
mejor solucién a un problema mediante la maximizacién o minimizacién de una funcién

objetivo con ciertas restricciones.

Los principales algoritmos de optimizacién se pueden clasificar en los siguientes tipos, aunque

esta lista no es exhaustiva:

e Métodos basados en gradientes. Estos métodos requieren el calculo de derivadas de la
funcién objetivo para determinar la direccién o6ptima de busqueda. Se aplican
principalmente en problemas de optimizacién continua y diferenciable, como el
entrenamiento de redes neuronales, la calibracién de modelos numéricos y la
optimizacién de funciones matematicas complejas. Son rapidos y eficientes cuando la
funcidn es convexa, pero pueden quedarse atrapados en minimos locales en problemas
con multiples 6ptimos. A continuacién, se enumeran algunos métodos basados en

gradientes.
o Descenso por Gradiente (Gradient Descent - GD)
o Gradiente Descendente Estocastico (SGD - Stochastic Gradient Descent)
o Descenso por Gradiente con Momento (Momentum-Based GD)
o Método de Newton
o Método de Gauss-Newton
o Método de Levenberg-Marquardt
o Gradiente Conjugado
o Optimizacién Cuasi-Newton (BFGS, L-BFGS)
o Adam (Adaptive Moment Estimation)
o RMSprop (Root Mean Square Propagation)

o Adagrad / Adadelta

e Métodos basados en derivadas parciales aproximadas. Estos métodos se utilizan

cuando no es posible calcular el gradiente analiticamente, por lo que se aproximan las
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derivadas mediante diferencias finitas o técnicas similares. Son utiles en problemas
donde la funcién objetivo es implicita, como en simulaciones numéricas y analisis de
elementos finitos. Sin embargo, pueden ser ineficientes en términos computacionales
si la evaluacion de la funcién es costosa. A continuacién, se enumeran los principales

meétodos.
o Método de Diferencias Finitas

o Métodos de Hessiana Aproximada

Algoritmos heuristicos y metaheuristicos (optimizacién evolutiva). Estos algoritmos
estdn inspirados en procesos biologicos y fisicos, como la seleccién natural, el
comportamiento de enjambres y la evolucién de organismos. Se usan en problemas
donde no se conoce la forma exacta de la funcién objetivo o donde los métodos
tradicionales no son efectivos. No garantizan encontrar el 6ptimo global, pero exploran
eficientemente el espacio de soluciones. Estos algoritmos no necesitan el calculo de
derivadas y son mas adecuados en problemas complejos con multiples 6ptimos locales
o con funciones objetivo no diferenciables. A continuacién, se enumeran los principales

métodos.
o Algoritmos Genéticos (GA - Genetic Algorithms)
o Estrategias Evolutivas (ES - Evolution Strategies)
o Programacion Evolutiva (EP - Evolutionary Programming)
o Optimizacién por Enjambre de Particulas (PSO - Particle Swarm Optimization)
o Algoritmos de Colonia de Hormigas (ACO - Ant Colony Optimization)
o Recocido Simulado (SA - Simulated Annealing)
o Optimizacién por Evoluciéon Diferencial (DE - Differential Evolution)
o Sistemas Inmunoldgicos Artificiales (AIS - Artificial Inmune Systems)
o Optimizacién por Enjambre Bacterial (BFO - Bacterial Foraging Optimization)

o Optimizacién Evolutiva de Arquitecturas de Redes Neuronales

(Neuroevolucién)
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o Algoritmos Genéticos aplicados a Machine Learning (AutoML basado en GA)

o Optimizacion por Enjambre de Particulas (PSO) en Deep Learning

Métodos basados en buisqueda directa (sin gradiente). Estos métodos no requieren el
calculo de derivadas y se basan en la evaluacién secuencial de puntos en el espacio de
busqueda. Son ttiles cuando la funcién objetivo es discontinua, ruidosa o dificil de
modelar, como en procesos industriales, calibracién de modelos geotécnicos y
optimizacion de sistemas fisicos reales. Aunque pueden ser efectivos en problemas no
diferenciables, suelen ser mas lentos en comparacién con los métodos basados en

gradientes. A continuacion, se enumeran los principales métodos.
o Método Nelder-Mead (Simplex)
o Método de Powell

o Busqueda Aleatoria

Métodos de programacion matematica. Engloban técnicas como la programacioén lineal,
cuadratica y no lineal, utilizadas en problemas con restricciones bien definidas. Estos
métodos pueden garantizar la convergencia a la solucién dptima bajo ciertas
condiciones, pero pueden ser computacionalmente exigentes en problemas de alta
dimension. Su principal aplicacion es la optimizaciéon de recursos, logistica,
planificacién de infraestructuras y optimizacién de costos en ingenieria civil. A

continuacion, se enumeran los principales métodos.
o Programacioén Lineal (LP - Linear Programming)
o Programacién Entera y Entera Mixta (ILP, MILP)
o Programacion No Lineal (NLP - Nonlinear Programming)
o Programacién Cuadratica (QP - Quadratic Programming)

o Programacién Dinamica
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e Métodos basados en modelos surrogados (optimizaciéon con modelos aproximados).
Estos métodos construyen una aproximacién probabilistica de la funcién objetivo,
permitiendo optimizar funciones costosas de evaluar, como simulaciones numéricas
complejas. Se aplican en optimizacién bayesiana, procesos gaussianos y modelos de
aprendizaje automatico. Son utiles cuando cada evaluaciéon de la funcién objetivo
requiere un alto costo computacional. A continuacién, se enumeran los principales

métodos.
o Optimizaciéon Bayesiana (BO - Bayesian Optimization)
o Procesos Gaussianos (GP - Gaussian Processes)
o Optimizacion con Modelos de Superficie de Respuesta (Kriging)
o Optimizacién basada en Maquinas de Soporte Vectorial (SVM Optimization)

o Redes Neuronales como Modelos Surrogados

e Métodos hibridos. Los métodos hibridos combinan dos o mas enfoques de optimizacion
para mejorar el rendimiento y la precisidn. Se utilizan en problemas de optimizacién
complejos, donde un método global (como algoritmos genéticos o PSO) busca una
buena solucion inicial, y luego un método local (como descenso por gradiente o

Levenberg-Marquardt) la refina. A continuacion, se enumeran los principales métodos.

o Combinacién de Métodos Deterministas y Evolutivos (GA + Gradient Descent,

PSO + Levenberg-Marquardt)
o Optimizacién Multiobjetivo (NSGA-II, MOEA/D)
o Hibridaciéon de Procesos Gaussianos con Métodos Evolutivos

o Optimizacién de Hiperparametros con Modelos Surrogados (AutoML con

Bayesian Optimization + GP)

A lo largo de los siguientes apartados se exponen las bases tedricas de los principales

algoritmos de optimizacién considerados en este Trabajo de Fin de Master.
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3.9.1 Métodos basados en gradientes

Los métodos basados en gradientes utilizan el gradiente de la funcién objetivo para guiar la
busqueda de soluciones 6ptimas. Dado que el gradiente representa la direccion de mayor
cambio de la funcién, estos métodos lo emplean para actualizar los parametros en cada

iteracidn y acercarse progresivamente a un minimo (0 maximo) 6ptimo.

Para poder aplicar estos métodos, la funcién objetivo debe ser continua y diferenciable en todo
el dominio de buisqueda con el fin de poder calcular las derivadas y ajustar los objetivos
adecuadamente. Los métodos basados en gradientes son muy eficaces y convergen
rapidamente a la solucién 6ptima cuando la funciéon es suave, con pocos éptimos locales y un

numero limitado de parametros.

En el caso de funciones menos suaves, donde existen varios minimos locales o multiples
parametros, los métodos basados en gradientes pueden ser inestables o menos eficientes, ya

que el gradiente puede llegar a fluctuar de manera abrupta o terminar en objetivos no éptimos.

Por otro lado, estos algoritmos tienen una fuerte dependencia del valor inicial de los
pardmetros (punto de partida), afectando al rendimiento y eficacia de la soluci6n. Una
incorrecta eleccion del valor inicial puede implicar que el algoritmo se atore en un éptimo local

o incrementando el niumero de iteraciones necesarias.

En términos generales, los métodos basados en gradientes siguen un esquema iterativo

definido por:

176,
Pk+1 = Pk T Apk (176)

donde:
Dy representa la estimacion de los parametros en la iteracion k.

Apy, es el incremento de parametros, calculado a partir del gradiente de la funcidn objetivo.

El procedimiento de actualizacién puede variar segun la estrategia utilizada para determinar
Apy, 1o que da lugar a distintas variantes de métodos de optimizacion basados en gradientes.
En los siguientes apartados se presentardn dos de los enfoques mads utilizados en la

optimizacion numérica: el método de Gauss-Newton y el método de Levenberg-Marquardt,

128



Estado del arte

ambos disefiados para mejorar la estabilidad y la eficiencia de estos algoritmos en diferentes

contextos de optimizacion.

20 "= T [ T

20 : <l :
-20 10 0 10 20

Figura 3-49 — Ejemplo grafico del gradiente descenciente dado el punto inicial poy pmin

3.9.1.1 Método de Gauss-Newton

El método de Gauss-Newton es una técnica iterativa para resolver problemas de minimos

cuadrados no lineales.

El problema se plantea como la minimizacién de la funcién de error cuadrado (véase ecuacion
(152) de los residuos entre los datos y las ecuaciones no lineales. Para ello, se realiza una
aproximacion mediante la expansion en serie de Taylor en primer orden, de forma que se
pueda usar la teoria de minimos cuadrado para la obtencién de las nuevas estimaciones de los

parametros que avanzan en la direccién en que se minimiza el residuo.

El residual de la observacion i es r;(p) = x; — x;(p) y su vector es r(p) = [ry, ..., i ]", por lo

que se tiene /(p) = r(p)Tr(p) = ¥; r2. El gradiente y la Hessiana de | son:

129



Estado del arte

v/ = —2/"(p) r(p) (177)

H=2]T]+ zzrivzn (178)
i

Donde J(p) es la matriz Jacobiana con elementos J;; = dr;/0p;.

El método Gauss-Newton aproxima H =~ 2J7], esta simplificacién es aplicable cuando los
residuos son despreciables para la estimacidn del 6ptimo o las propias derivadas segundas de

1.

Igualando el gradiente a cero, la condicién de estacionariedad J7r = 0 da el sistema normal

linealizado:

JT i) ) i) Ap = JT () [x* — x(pi0)] (175)

Donde Ap = p,1 — px €s la correccion de parametros.

La solucién Ap = [JTJ]71JT(x* — x) se aplica iterativamente. En esta forma, la ecuacién de

Gauss-Newton es:

Pk+1 = Pr + Apr = o — TN "YT(x* — x(py)) (180

Esta formula minimiza en un paso la suma de cuadrados linealizada en el entorno de py. El
procedimiento se repite hasta convergencia, cuando |Ap| o la reduccion en ] estan por debajo

de un criterio aceptable.

Gauss-Newton hereda la rapidez de Newton cerca del 6ptimo (convergencia cuadratica local si
] es bien comportado) pero sin necesidad de calcular segundas derivadas, ya que utiliza J7]
como aproximacion de la Hessiana. Sin embargo, puede divergir o converger lentamente si la
estimacién inicial estd lejos del minimo o si JTJ es mal condicionada. En aplicaciones
geotécnicas, se ha utilizado con éxito para identificar parametros de modelos constitutivos,
aunque su rendimiento decae cuando el problema es extremadamente no lineal o los

parametros estan acoplados de forma compleja. Ledesma et al. (1996) implementaron Gauss-
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Newton en un cédigo de retroandlisis geotécnico, destacando su eficiencia, pero también su

sensibilidad a valores iniciales y a la presencia de minimos locales.

3.9.1.2 Método de Levenberg-Marquardt

El método de Levenberg-Marquardt (LM), también conocido como método de minimos
cuadrados amortiguados, es una variante hibrida que combina Gauss-Newton con el método
de descenso por gradiente para mejorar la robustez de la optimizacion, a pesar de ser mas
lento. Este método interpola entre ambos métodos introduciendo un factor de

amortiguamiento A que regula el paso. El sistema de ecuaciones modificado es:

JT]+AD Ap = JT(x* — x) (181)

Donde A es adaptativo, aumenta (para acercarse a gradiente descendente) si un paso no mejora
suficientemente J, o se reduce (aproximando Newton puro) cuando nos acercamos al minimo.
En términos de region de confianza, A controla el tamafio de paso confiable para la

aproximacion cuadratica.

El algoritmo de Levenberg-Marquardt es mas robusto que Gauss-Newton, debido a que llega a
la convergencia incluso con datos de partida muy alejados de minimo. Valores del factor de
amortiguamiento alto facilitan el descenso del gradiente en cada iteracidn, mientras que un

ajuste con valores de A cercanos a cero mantiene la rapidez del método Gauss-Newton.

Diversos estudios indican que el método Levenberg-Marquardt (LM) es capaz de encontrar
soluciones en situaciones donde el método Gauss-Newton falla o se estanca, aunque
generalmente requiere un mayor ndmero de iteraciones. Esta diferencia se debe a que LM
combina la exploracion global con la optimizacién local: inicialmente acttia con cautela similar

al método del gradiente, y posteriormente ajusta rapidamente como el método de Newton.

El algoritmo de Levenberg-Marquardt ha sido utilizado para retroandlisis de pardmetros de
suelos cuando ] presenta alta no linealidad. Por ejemplo, Chen et al. (1990) aplicaron LM en la
calibracion de modelos elasto-plasticos obteniendo convergencia estable incluso con
pardmetros iniciales alejados. De Santos (2015) sefiala que Levenberg-Marquardt es “maés
robusto” que Gauss-Newton en problemas con muchos parametros o datos ruidosos, aunque

con un costo computacional mayor. En general, LM es recomendable como mejora del Gauss-
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Newton basico, especialmente en la etapa final de convergencia, o como componente de

algoritmos hibridos global-local.

P A

, P

Figura 3-50 — Influencia del factor de amortiguacion. Adaptacion de De Santos (2015), Figure 3.2.

Marquardt (1963) propuso el siguiente algoritmo para optimizar el coeficiente de

amortiguamiento A a lo largo de proceso de iteracién.

FIN

f

Criterio de
convergencia

J
o Jgsd s> A1 = A Nerq — A
A = APk = g Pk = 1 = P k+H1 Pt
r Y
lteracion K
NO—>f A = Acp Ner1 = A Tp

Jk
A = Ap = dyet”

NO
Criterio de W * 0k
convergencia Mo =M P
STOP

Figura 3-51 — Algoritmo de optimizacién del factor de amortiguacion propuesto por Marquardt (1963).
Adaptacion de De Santos (2015), Figure 3.3.
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3.9.2 Algoritmos heuristicos y metaheuristicos

En los casos en que los métodos basados en gradientes pueden ser ineficientes o inadecuados,
los algoritmos heuristicos y metaheuristicos pueden ser una de las técnicas de optimizacién

mas adecuada.

Basados en procesos naturales y matematicos, como la seleccion natural, evolucién bioldgica,
el comportamiento de enjambres o el recocido de metales, son aplicables en procesos en que

la forma exacta de la funcién no es conocida y los métodos tradicionales no son adecuados.

A pesar de que estos métodos pueden no encontrar el dptimo global, permiten una exploracién

del espacio de soluciones bastante eficiente.

Estos algoritmos no requieren el calculo de derivadas, lo que los hace mas apropiados para
resolver problemas complejos con multiples dptimos locales o con funciones objetivo no

diferenciables.

A continuacion, se desarrollan dos métodos, los algoritmos genéticos y la optimizacién por

enjambre de particulas.

3.9.2.1 Introduccidon a los algoritmos genéticos

Introducidos por John Holland en el afio 1975, son un método de biisqueda heuristica basado

en la evolucién natural.

Esta metodologia realiza una busqueda global de todo el espacio de parametros usando
calculos similares a la seleccion natural, cruce genético y mutacion, de forma que es capaz de

identificar diversas soluciones, candidatas simultineamente, una poblacién e individuos.

En un GA, cada posible solucion se codifica como una cadena de genes que representan los
parametros del problema. Una poblacién inicial evoluciona mediante generaciones
(iteraciones) aplicando seleccidn, crossover y mutacion. La aptitud de cada individuo se mide
segin su desempefio en resolver el problema. Los individuos mas aptos tienen mayor
probabilidad de ser seleccionados para reproducirse, mientras que los menos aptos son

descartados. Asi, la poblacion mejora gradualmente, similar a la evolucion segtin Darwin.

El Teorema Fundamental de los Algoritmos Genéticos, conocido como el Teorema de los

Esquemas de Holland (1975), formaliza esta idea. En esencia, establece que los esquemas
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cortos, de orden bajo y con una medida de aptitud superior al promedio proliferan

exponencialmente en las sucesivas generaciones.

Un esquema es un patrén comun en algunos cromosomas. El teorema indica que un patrdén con
alta aptitud aumentara rapido en la poblacién gracias a la seleccién y recombinacién. Los
algoritmos genéticos combinan estos patrones para buscar soluciones dptimas. Asi, la

informacién genética ttil se difunde y combina sin perderse, excepto por mutaciones.

A continuacion, se indica la ecuacion del Teorema de los Esquemas:

f(H) §(H) (182)
‘1-1

Donde:
m(H,t) es un nimero de individuos con el esquema H en la poblacién en la generacién t.
f(H) es la aptitud promedio de los individuos con el esquema H.
f es la aptitud promedio de toda la poblacién.
P es la probabilidad de mutacion.
P. es la probabilidad de cruce.
I es lalongitud del cromosoma (cantidad de genes).

6(H) es el orden del esquema (cantidad de genes fijos en el esquema H).

3.9.2.2 Algoritmo genético simple

Los algoritmos genéticos simples se basan en tres operadores principales, seleccién, cruce y
mutacién. Mantiene una poblacién de solucién y la va mejorando iterativamente mediante

procesos basados en la evolucion bioldgica.

En la siguiente figura se muestra la estructura de un algoritmo genético simple.
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Funci

on de

penalizacién

4

A 4

Poblacién inicial

Y

Evaluacioén de la aptitud

A 4

Criterio de convergencia

— FIN

Y

Reemplazo generacional

Y

Seleccion individuos

Mutacion

Y

Reemplazo de poblacién

A

Figura 3-52 — Estructura de algoritmo genético simple. Adaptacidon de De Santos (2015), Figure 3.5.

El algoritmo genético simple sigue las siguientes fases:

1) Se comienza estableciendo una poblacidén inicial de tamafio N de individuos,

normalmente de forma aleatoria en el rango de busqueda acotado a los parametros.

Cada individuo representa una posible solucién al problema, codificada tipicamente en

forma binaria (secuencias de Os y 1s) o en alguna codificaciéon adecuada (enteros,

reales, etc. seglin el problema).
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2)

3)

4)

5)

6)

Se evalua la aptitud de cada individuo mediante una funcién de aptitud que estima la
calidad de cada individuo como solucién. Por ejemplo, mediante la inversa del valor de

la funcidén objetivo J(p).

£(p) = 1/[1 +J ()] (183)

El criterio de convergencia determina cuando termina el proceso evolutivo. Dado que
estos algoritmos trabajan con poblaciones de soluciones, son necesarios varios
pardmetros de tolerancia como: nimero maximo de generaciones, aptitud del mejor

individuo, aptitud media de la poblacién, nimero de nuevos individuos por género.

El reemplazo generacional indica el porcentaje de la poblacién que es sustituida por la
nueva descendencia en cada generacion. Por ejemplo, un factor de reemplazo del 100%
implica que todos los individuos son sustituidos por nuevos individuos, lo que equivale
al modelo clasico generacional puro. Alternativamente, se pueden reemplazar solo una
parte de la poblacién, manteniendo los mejores individuos, de forma que no se pierden

los genes de los mejores individuos.

La seleccién consiste en elegir a los individuos que se reproduciran. Los individuos con
mejor aptitud tienen una mayor probabilidad de ser seleccionados. Existen varios

métodos de seleccion, se indican los mas destacados a continuacion:

a. Ruleta. Estima la probabilidad de seleccionar a un individuo en una generacion
(t) en funcién de su aptitud (f) con respecto a la aptitud media (ﬂ de una

poblacién con N individuos.

f
Pruieta(t) = N_f_ (184)

b. Torneo. Se eligen aleatoriamente un nimero de individuos y se selecciona el

que tiene mejor aptitud.

c. Ranking. Se ordenan las soluciones por aptitud y se otorgan probabilidades de

seleccion.

La combinacién de dos individuos para generar nuevos individuos se denomina cruce.

Existen diferentes tipos de cruce, destacandose:

a. Punto Unico: se escoge un punto y se intercambian segmentos.
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7)

8)

9)

b. Dos puntos: se intercambian segmentos en dos puntos.

c. Uniforme: se elige cada bit aleatoriamente de un progenitor.

Ejemplo de un cruce de un punto para una solucion binaria de longitud 7, donde se

exploran nuevas combinaciones de soluciones de la combinacién de los ultimos 4

digitos:
Progenitor 1: 1011010
Progenitor 2: 0110011
Descendiente 1: 1010011
Descendiente 2: 0111010

La mutacién consiste en la modificacion aleatoria de los genes para evitar

estancamientos en 6ptimos locales. Existen varios tipos de mutacion:
a. Mutacién de Bit, donde se cambia aleatoriamente un bit: 0»1 0 1-0

b. Mutacion Gaussiana. Aplicable a valores reales, se afiade un ruido aleatorio.

Ejemplo de mutacién en un escenario binario:

Original: 1010010
Mutado: 1011010

La nueva poblaciéon estd formada por los nuevos descendientes y los individuos
seleccionados de acuerdo con el criterio de reemplazo generacional indicado

anteriormente.

En los casos en que existan restricciones en las soluciones, se utiliza la siguiente funcién
de penalizacion para castigar a los individuos que no cumplan con dichas restricciones,

donde gi(p) son las restricciones y 4 es un coeficiente de penalizacion.

Jpenalizado(p) = ] (p) + liz max(0, gi(p)) (185
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De acuerdo de Santos (2015), Los Algoritmos Genéticos Simples presentan ciertas limitaciones
que pueden afectar su rendimiento en problemas complejos. Su desempefio depende del
equilibrio entre explotacién (mejorar las soluciones dentro de regiones prometedoras) y
exploracién (buscar nuevas regiones con soluciones potencialmente mejores). Sin embargo,
este equilibrio no siempre es facil de alcanzar y depende de varios parametros como el tamafio
de la poblacidn, el tipo de seleccidn, la probabilidad de cruce P. y la probabilidad de mutacién

Pm.

3.9.2.3 Algoritmo genético adaptativo

Los algoritmos genéticos adaptativos son una variante de los algoritmos genéticos simples, con
la principal ventaja que permiten el ajuste dindmico de los parametros de evolucién como la
probabilidad de cruce P,y la probabilidad de mutacién P, en funcion del estado de la poblacién

y la etapa del proceso evolutivo.

De acuerdo con de Santos (2015), a este algoritmo se le incorpora una etapa de mutacion
adaptativa, donde se busque un equilibrio entre exploraciéon de nuevas regiones del espacio de

busqueda y explotacion para refinar soluciones dentro de regiones potencialmente 6ptimas.

En la Figura 3-53 se muestra la estructura del algoritmo genético adaptativo. En los siguientes
puntos se desarrollan las nuevas fases que se incorporan al algoritmo con respecto al simple

definido en el apartado anterior.

A. Evaluacion de la diversidad poblacional tras la evaluacién de la aptitud de los
individuos. La diversidad poblacional mide la variabilidad genética que hay en la

poblacién con el fin de estimar si el algoritmo necesita mas exploracion o explotacion.

i.  Diversidad de poblacion estandar. Mide la variabilidad general de los valores
de los genes dentro de la poblaciéon (con n nimero de genes). Se basa en la

varianza (0/2) de cada parametro en los individuos.

1 186
Dstq = EZ 0_]'2 (126)

Cuando Dsyq es alto, implica que hay grandes diferencias entre los individuos
(alta diversidad), en caso de ser bajo, la poblaciéon ha convergido a solucione

similares.
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Alternativamente se puede emplear la diversidad basada en la distancia
Euclidiana que mide la variabilidad individual de cada parametro en la
poblacién utilizando la distancia euclidiana entre los valores de los genes de los
individuos. Esta alternativa es mas precisa en representaciones binarias y

codificaciones mas complejas, pero tiene un mayor coste computacional.

ii.  Diversidad de poblacién saludable. Es un umbral dindmico que se calcula en

funcién del historial de diversidad de la poblacién durante el proceso evolutivo.

187
Dsal =a- Dmax + (1 - a) ' Dmin (187)

Donde:
Dmax €s la maxima diversidad observada en generaciones anteriores.
Dmin es la minima diversidad observada en generaciones anteriores.

a es un coeficiente de ponderacion entre 0 y 1 que controla cuanto peso se

le da a cada valor.

Si la diversidad actual es menor que Dy, se activa un aumento en la
mutacién para recuperar diversidad. Cuando la diversidad actual esta
cerca o por encima de Dy el algoritmo mantiene su enfoque en

explotacion.

B. Seleccion adaptativa. De acuerdo con la diversidad de la poblacién, se ajusta la
selecciéon considerando un torneo mayor o r menor para diversidades bajas y altas,

respectivamente.

Adaptativa _ oM (188)
TTamaﬁo - TTacrlr}lCaﬁo ' (1 - Dstd)

C. Cruce adaptativo. La probabilidad de cruce P. se obtiene del ajuste de la funcion de
aptitud del individuo f. El cruce sera mas conservador o agresivo para individuos

buenos o malos, respectivamente.
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Padap — pmax (1 _ fmejor — fina (189)
c c
fmejor - fpromedio

D. Mutacién adaptativa. La probabilidad de mutacién P, se obtiene del ajuste de la funcién
de aptitud del individuo f. Si la poblaciéon es muy homogénea, se obtendra un
incremento en la mutacion para recuperar la diversidad, por el contrario, cuando la

poblacién es muy diversa, se reduce la mutacion para evitar ruido.

adap max fmejor fina (190)
PataP = pmax . (1 —
fmejor fpromedio

Paoblacidn inicial

Y

Evaluacion de la aptitud

A

Evaluacion diversidad de
poblacion estandar y saludable

A

Criterio de convergencia — FIN

Y

Funcion de R ]
R eemplazo generacional
penalizacion
A
Seleccion adaptativa
4
Cruce adaptativo
EXPLOTACION EXPLORACION
_______________ | R
h r

Reemplazo de poblacién

Figura 3-53 — Estructura de algoritmo genético adaptativo. Adaptacién de De Santos (2015), Figure 3.13.

140



Estado del arte

3.9.2.4 Optimizacion por enjambre de particulas

La optimizacidn por enjambre de particulas (PSO por sus siglas en inglés), desarrollada por los
investigadores Kennedy, Eberhart y Shi (1995), es una técnica metaheuristica de algoritmo de
optimizacién basado en la inteligencia colectiva de sistemas bioldgicos, como el
comportamiento de bandadas de pajaros o bancos de peces. Inicialmente fue creado para el
desarrollo de modelos de comportamientos sociales, pero se comprobd que también es capaz

de resolver problemas de optimizacion.

Este algoritmo optimiza un problema utilizando una poblacién de soluciones candidatas
llamadas "particulas”, moviéndolas por el espacio de biisqueda segiin reglas matematicas que
consideran la posicion y velocidad de las particulas. El movimiento de cada particula se ve
influido por su mejor posicién local encontrada hasta ese momento y por las mejores
posiciones globales halladas por otras particulas en el espacio de busqueda. El objetivo tedrico

es hacer que la nube de particulas converja rapidamente hacia las mejores soluciones.

En el siguiente diagrama se puede ver la estructura del algoritmo.

Poblacion inicial

A 4

Evaluacién funcién objetivo de
cada particula

Y

Y

Criterio de convergencia —> FIN

Y

Funcion de
penalizacion
A

Actualizacion de velocidad

h 4

Actualizacion de posicidn

Actualizacién de la mejor
posicién

Figura 3-54 — Estructura de algoritmo de optimizacién por enjambre de particulas PSO
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El algoritmo de enjambre de particulas sigue las siguientes fases:

1

2)

3)

4)

Se comienza estableciendo una poblacién y velocidad inicial de las soluciones
candidatas llamadas "particulas” de tamafio N de individuos, normalmente de forma
aleatoria en el rango de busqueda acotado a los parametros. Cada particula representa

una posible solucidn al problema.

Se evalda la mejor posicion de cada particula. Notese que cada particula es atraida a su
mejor posicién que ha encontrado en iteraciones anteriores, pero a la vez, también es
atraida a la mejor posicion que ha encontrado el conjunto de particulas en el espacio

de busqueda.

El criterio de convergencia determina cuando termina el proceso evolutivo. Dado que
estos algoritmos trabajan con poblaciones de soluciones, son necesarios varios

parametros de tolerancia.

La actualizacion de la velocidad se realiza con la siguiente ecuacion:

D _ o ® (191)

i wv;” + e (pp = X)) + €a12(g — x1)
Donde:
w — Factor de inercia, controla la influencia de la velocidad previa y permite que la

particula mantenga su direccién de movimiento. Valores altos y bajos indican que la

particula explora mas lejos o cerca, respectivamente.
c1 & ¢z = Coeficientes de aceleracidn, controlan la atraccidn hacia p; y g.
r; & r; = Numeros aleatorios entre [0,1], introducen aleatoriedad en el movimiento.

c11y (p; — x;) — Esla parte cognitiva de la ecuacion (aprendizaje personal), que hace
que la particula se aproxime a su mejor posicion encontrada y fomenta la
exploracién individual. Valores de c; altos implican que las particulas confian mas

en sus experiencias.

c,1,(g — x;) = Esla parte social de la ecuacion (aprendizaje colectivo), que controla
que la particula se dirija hacia la mejor posicién global. Esta componente favorece la
colaboracién entre particulas. Valores de c; altos implican que las particulas siguen

mas al grupo.
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5) Laactualizacién de la posicion se realiza con la siguiente ecuacion.

192
xi(t+1) _ xi(t) n vi(Hl) (192)

Donde:

x = Es la posicién en cada iteracion

Ad,

Inevcia

L
el

Figura 3-55 — Actualizacién de posicion en enjambre de particulas PSO. Fuente: SANCHO CAPARRINI,
Fernando. Diagrama del algoritmo PSO. En: PSO: Optimizacién por Enjambres de Particulas. Universidad
de Sevilla, 2025. Disponible en: https://www.cs.us.es/~fsancho/Blog/posts/PSO.md [Consulta:

14/03/2025].
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Figura 3-56 — Ejemplo de trayectoria de las particulas en PSO para resolver la funcién de Mishra Bird para
diferentes valores de x1 y x2 en la funcién sobre mapa de soluciones.
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3.9.3 Método hibrido Global-Local

La combinaciéon de varios métodos se denomina hibridacién. Como se ha indicado
anteriormente, algunos métodos, como los basados en gradientes, son mas eficaces en la
estimacion final de la solucién, pero tienen la desventaja de poder atorarse en minimo locales
en problemas con multiples 6ptimos, por otro lado, los métodos heuristicos y metaheuristicos,
a pesar de no garantizar encontrar el dptimo global, permiten explorar eficientemente el
espacio de soluciones. Esta metodologia tiene la ventaja de poder utilizar los puntos fuertes de

varios métodos para agilizar el proceso de busqueda.

En el retroanalisis geotécnico, el método hibrido que mas interesa consta de dos etapas: una
busqueda global mediante un algoritmo metaheuristico (algoritmo genéticos o enjambre de
particulas) para explorar el espacio de parametros y encontrar regiones prometedoras cerca
del 6ptimo global, seguida de una buisqueda local refinada en esas regiones para converger con
precision al minimo, por ejemplo, mediante los métodos de Gauss-Newton, Levengebr-
Marquardt o gradiente descendiente. Esta combinacidn permite reducir las posibilidades de
quedar atrapado en 6ptimos locales durante la bisqueda global, mientras que se emplea un
algoritmo con mayor velocidad de convergencia una vez encontrada una buena aproximacién.

Este esquema se denomina algoritmo memético.

3.9.3.1 Busqueda global

En la primera etapa, se ejecuta un algoritmo global configurado para priorizar la exploracion
del espacio. Esto implica tipicamente permitir bastantes generaciones o particulas, y criterios
de parada relativamente permisivos, de modo que se identifiquen no sélo una sino varias
regiones de interés. El resultado de esta etapa es una o varias soluciones de buena calidad
global. Por ejemplo, considerando un algoritmo genético, tras G, generaciones, el algoritmo
entrega como salida el mejor individuo encontrado y quizd otros individuos cercanos en

aptitud.

Una practica comun es recoger no solo el 6ptimo global estimado, sino también los 6ptimos
locales significativos detectados. Por ejemplo, si la poblacion final del algoritmo genético
sugiere dos grupos de individuos de aptitud alta en diferentes zonas del espacio de parametros,
se toman representantes de cada grupo. Asi, la etapa global mapea el paisaje de la funcion

objetivo, localizando valles prometedores.
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En el caso de un algoritmo genético, se puede usar un criterio de parada relativamente
temprano si se observa que la poblacién ya se concentr6 en torno a soluciones buenas. El
objetivo es no gastar excesivo tiempo afinando con un algoritmo genético lo que se puede

afinar mejor con el método local.

3.9.3.2 Busqueda local

En la segunda etapa, cada solucién candidata obtenida de la fase global se utiliza como punto
de partida para un algoritmo local de alta eficiencia, por ejemplo, Levenberg-Marquardt o
Gauss-Newton. Este algoritmo refinara la solucidn, aprovechando que esta dentro de la cuenca
de atraccién de un minimo (idealmente el global). La convergencia local llevara a ajustar los
pardmetros con mayor precision que la discrecion finita de la poblacién mediante un algoritmo

genético, alcanzando rapidamente una reduccién adicional del error.

En la implementacién de De Santos (2014) para tuneles, tras el algoritmo genético global se
iniciaba un proceso de Gauss-Newton (con el programa de elementos finitos Plaxis conectado
en el bucle) que en pocas iteraciones lograba reducir el error final en un orden de magnitud
aceptable. Esta sinergia es potente: el algoritmo genético llevaba la solucién a una
aproximacion con un error del 5%, y luego Gauss-Newton desde el 5% al error deseado,
generalmente por debajo del 1%. Si se hubiera usado Gauss-Newton desde el inicio con un
punto aleatorio, probablemente habria quedado atrapado lejos del 6ptimo; si se hubiera
seguido con un algoritmo genético puro, requeriria muchas mas generaciones para lograr esa

precision sub-1%.

El método hibrido, por tanto, combina eficiencia computacional con amplia exploracién. Su
desempefio depende de una adecuada interconexion, sabiendo decidir 6ptimamente cuando
pasar de la etapa 1 a la etapa 2. Si se cambia demasiado pronto, el método local podria llevar a
un 6ptimo local no global. Si se cambia muy tarde, se habra malgastado tiempo en el algoritmo
genético que un método local habria resuelto mas rapido. En la practica, un criterio es pasar
cuando la mejora en aptitud del GA se desacelera y la diversidad poblacional ya es baja (sefial
de que esta explotando en una region). En el estudio de De Santos (2015), se defini6 una cota
de error alcanzable por el algoritmo genético, y al llegar a ella, se dispar6 el refinamiento

Newtoniano.
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3.10 Sintesis del estado del arte

A continuacion, se presenta una sintesis ampliada y detallada del estado del arte en el analisis
de asientos en cimentaciones superficiales en un medio granular y andlisis retrospectivo de

parametros geotécnicos mediante el uso de algoritmos de optimizacion.

Histéricamente, los parametros geotécnicos han sido estimados mediante métodos empiricos
y modelos analiticos tradicionales, cuya precisiéon y capacidad para adaptarse a condiciones
especificas son limitadas. Con la evolucion de la geotecnia y la creciente complejidad de las
estructuras modernas, han surgido necesidades mas rigurosas en la modelacion del
comportamiento del terreno, impulsando avances significativos en los modelos constitutivos
del suelo. Estos modelos han evolucionado desde simplificaciones elasticas lineales hacia
formulaciones mas complejas que reflejan comportamientos no lineales, dependientes del
tiempo o anisotropia, reconociendo explicitamente la heterogeneidad natural del terreno y las

limitaciones inherentes a su representacion matematica idealizada.

Dentro de los modelos constitutivos, el médulo de elasticidad E emerge como parametro
esencial para caracterizar la respuesta del suelo ante solicitaciones externas.
Tradicionalmente, el mddulo de elasticidad se ha estimado mediante ensayos de laboratorio y
correlaciones empfiricas derivadas de ensayos in situ como el ensayo de penetracién estandar,
ensayos de penetracion dinamica o presiémetros, aunque estas correlaciones tienen
dificultades para reflejar adecuadamente la complejidad y variabilidad real del

comportamiento del suelo en condiciones diversas.

A pesar de poderse estimar diferentes modulos de deformacién del suelo a partir de la curva
tension-deformacion, por ejemplo, utilizando lineas secantes desde el origen hasta un punto
determinado de la curva (mdédulo secante o inicial) o la pendiente en ciclos de descarga y
recarga (modulo de recarga), entre otros, la curva tensién-deformacion no es lineal, por lo que
existen diferentes relaciones o médulos de elasticidad para diferentes fases de carga , lo que

complica alin mas la obtencidn de este parametro mediante correlaciones empiricas.

En los dltimos afios, investigaciones avanzadas han enfocado sus esfuerzos en mejorar la
representacion de fendmenos complejos en los modelos constitutivos, como la anisotropia, la
respuesta ciclica y dindmica, y efectos multifisicos relacionados con interacciones suelo-agua-
temperatura. Modelos como el Modified Cam Clay (MCC), Hardening Soil (HS) o Hardening Soil
Small Strain (HSsmall), han permitido representar adecuadamente comportamientos
dependientes del esfuerzo y pequefias deformaciones en suelos cohesivos y blandos. Por otro

lado, el modelo Barcelona Basic Model (BBM) destaca en la representacion del
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comportamiento de suelos parcialmente saturados, especialmente relevante en condiciones

variables de humedad.

A pesar de estos avances significativos, ain existen importantes desafios y necesidades no
cubiertas en la modelacién constitutiva del terreno. Una de las principales carencias
identificadas es la representacion de la anisotropia inducida por la deposiciéon natural y
compactacion del suelo, particularmente en suelos naturales heterogéneos. Asimismo, existe
una necesidad de incorporar eficazmente el comportamiento reoldgico a largo plazo,
incluyendo procesos de fluencia y relajacién bajo cargas permanentes. Otro aspecto critico
pendiente de resolver es la representacion precisa y practica de procesos multifisicos, como la
interaccion compleja entre suelo, agua y temperatura, enfrentando atn limitaciones debido al
elevado coste computacional y la dificultad para determinar experimentalmente los

parametros asociados.

La distribucion de tensiones bajo cimentaciones superficiales constituye otro aspecto
fundamental, clasicamente abordado mediante soluciones analiticas como las propuestas por
Boussinesq y Westergaard. Estas soluciones, aunque utiles en términos educativos y
conceptuales, presuponen condiciones idealizadas que rara vez coinciden exactamente con la
realidad practica de las obras civiles. Por esta razon, el desarrollo de métodos numéricos
avanzados, particularmente el método de elementos finitos (FEM), ha proporcionado
herramientas capaces de simular distribuciones de tensiones mas realistas, considerando
adecuadamente la heterogeneidad del terreno, la estratificacion y las condiciones de carga
complejas. Aunque estos métodos presentan ventajas notables en términos de precisiéon y
flexibilidad, implican también un mayor coste computacional y complejidad en la obtencién de

parametros representativos del terreno.

En estrecha relacion con la distribucion de tensiones se encuentra el calculo de los asientos en
cimentaciones superficiales. La prediccion precisa de estos asientos es esencial para garantizar
la seguridad estructural y funcionalidad de las obras civiles. Los métodos tradicionales,
basados en teorias clasicas de elasticidad o en enfoques empiricos derivados de observaciones
directas en obra, a menudo carecen de precisiéon cuando se enfrentan a condiciones de suelo
heterogéneas o escenarios de carga complejos. La integracién de técnicas avanzadas de
monitoreo en tiempo real y modelos numéricos mas robustos ha proporcionado herramientas

adicionales para mejorar significativamente la capacidad predictiva respecto a los asientos.

Dentro de estos andlisis cobra especial relevancia el modulo de balasto (k), definido como la

relacion entre la presion aplicada sobre una cimentacion y el asiento inducido en el terreno.
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Este pardmetro es critico para el disefio de estructuras de cimentacion como losas.
Tradicionalmente, su estimacion se basa en ensayos de carga directa o correlaciones empiricas,
aunque estos métodos enfrentan limitaciones inherentes en la representacién adecuada de la
variabilidad espacial del suelo y su comportamiento no lineal. Métodos como el de areas
discretas permiten una representacion precisa y practica del comportamiento del suelo frente
a cargas especificas, ofreciendo precisién suficiente para la mayoria de los proyectos
convencionales. Sin embargo, para problemas mas complejos o sensibles, los modelos basados
en elementos finitos son cada vez mas empleados debido a su capacidad para representar
fendmenos no lineales, estratificaciones complejas y variaciones del nivel freatico, a pesar de

implicar un mayor esfuerzo computacional.

Frente a estas necesidades y desafios, el andlisis retrospectivo se presenta como una
metodologia valiosa para calibrar modelos geotécnicos mediante la comparacion sistematica
entre predicciones del modelo y datos observados en campo. En este proceso, la eleccion
adecuada de la funcién objetivo es determinante para garantizar una calibracion efectiva y
significativa del modelo. Funciones clasicas como el error cuadratico medio (MSE) o el
coeficiente de determinacién (R?) son ampliamente utilizadas; sin embargo, en presencia de
mediciones afectadas por ruido o incertidumbre experimental, otras funciones como el error
absoluto medio (MAE), funciones robustas como el error absoluto mediano o enfoques
probabilisticos como la maxima verosimilitud han demostrado ser mdas apropiadas. No
obstante, persisten carencias metodolégicas en la definicion de funciones objetivo que
manejen adecuadamente la incertidumbre inherente a los datos experimentales,

representando una linea clara de desarrollo futuro en la investigacion geotécnica.

En paralelo a estos desarrollos metodoldgicos, los algoritmos de optimizacién utilizados en
geotecnia han evolucionado considerablemente, pasando desde métodos deterministas
basados en gradientes, como Gauss-Newton o Levenberg-Marquardt, hacia técnicas evolutivas
y metaheuristicas, tales como Algoritmos Genéticos (GA) o Enjambre de Particulas (PSO).
Recientemente, ha surgido un cierto interés en la ventaja que ofrecen métodos hibridos que
combinan métodos evolutivos para una fase de busqueda global, seguidos de una fase de
optimizacion local mediante métodos deterministas como Gauss-Newton. Si bien, las
metodologias hibridas ofrecen grandes ventajas para evitar caer en minimos locales, estas
metodologias implican un elevado coste computacional para identificar soluciones dptimas

con precision.
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Precisamente en esta confluencia metodoldgica se posiciona este Trabajo de Final de Master,
cuyo objetivo principal es avanzar en la estimacion precisa del médulo de elasticidad mediante
el desarrollo de un método hibrido innovador. Este método propone una metodologia de
estimacidn global basada en redes neuronales artificiales, seguida por un refinamiento local
mediante el método Gauss-Newton o Levenberg-Marquardt. Esta metodologia implicaria una

reduccidn en el coste computacional para llegar a soluciones precisas.
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4. DEFINICION DE LA NECESIDAD

El presente Trabajo de Fin de Master responde a la necesidad de desarrollar metodologias de
andlisis mas precisas, adaptativas y fundamentadas en datos reales (analisis observacional)
que permitan optimizar el disefio de cimentaciones superficiales en contextos complejos. Esta
necesidad surge de la combinacién de factores técnicos, metodoldégicos, normativos y

estratégicos que se detallan a continuacion.

A. Dificultades en la calibracién de modelos geotécnicos

A pesar de los avances en modelacion numérica, la calibraciéon de parametros geotécnicos
continuda siendo una de las tareas mas criticas y sensibles. Ajustar los modelos a partir de datos
reales (asientos, presiones, deformaciones) requiere metodologias capaces de procesar
informacidn dispersa, potencialmente ruidosa, y que ademas mantengan coherencia fisica con
la mecanica del medio continuo. Esta dificultad se acentia en proyectos donde los

requerimientos de precision son elevados o donde se dispone de datos limitados pero valiosos.

B. Emergencia de la inteligencia artificial en ingenieria geotécnica

En los dltimos afios se ha observado una expansion notable del uso de la inteligencia artificial
en el campo de la geotecnia, particularmente para la predicciéon de parametros del terreno a
partir de datos de campo (data augmentation). Algoritmos como las redes neuronales permiten
capturar relaciones no lineales complejas y patrones ocultos que resultan inaccesibles a través
de métodos empiricos tradicionales. Sin embargo, estos modelos carecen frecuentemente de
control fisico y no garantizan la validez mecanica de las estimaciones, lo que limita su

aplicacion directa en el disefio estructural.

C. Necesidad de enfoques hibridos: busqueda global + ajuste fisico

Para superar las limitaciones anteriores, se requiere una metodologia hibrida que combine la
capacidad predictiva de la inteligencia artificial con herramientas de ajuste fisico de alta
precisién. La presente tesis propone un enfoque que emplea modelos de Machine Learning
como fase de busqueda global, seguidos por un ajuste fino mediante métodos de optimizacion
local. Esta combinaciéon garantiza que los resultados no solo se ajusten a los datos observados,

sino que también respeten las leyes fundamentales del comportamiento mecanico del suelo.
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Ademas, esta estructura modular ofrece la posibilidad de adaptarse a diferentes tipos de

cimentaciones y condiciones del terreno, aportando flexibilidad y robustez al procedimiento.

D. Exigencias de aplicabilidad practica y validacién

La ingenieria geotécnica moderna no puede limitarse a modelos tedricos sofisticados: exige
soluciones aplicables, replicables y validadas en condiciones reales. La integraciéon de datos
provenientes de instrumentacién moderna y sistemas de monitoreo en tiempo real en el
proceso de disefio amplia significativamente la capacidad adaptativa frente a condiciones de
carga cambiantes, contribuyendo a reducir los margenes de incertidumbre durante la vida util
de la infraestructura. La metodologia propuesta permite su implementacién progresiva en la
practica profesional, especialmente en proyectos con datos de auscultaciéon, donde puede

aprovecharse para mejorar decisiones de disefio o control de calidad.

E. Reconocimiento normativo del enfoque observacional

Una de las justificaciones mas sélidas para el uso de andlisis retrospectivo e instrumentacién
es su reconocimiento en normativas de alto nivel. La norma EN 1997-1:2024 (Disefo
geotécnico) ya contemplaba en su Seccién 4 y 10 el uso del Enfoque Observacional
(Observational Method) como una opcién valida en situaciones donde las condiciones del
terreno no se conocen con precision suficiente, siempre que se establezca un plan de accion

adaptativo y se cuente con un sistema de monitoreo fiable.

Mas recientemente, con la revision de la EN 1990:2023, se afianza esta vision integradora entre
disefio y evaluacién en servicio. El documento reconoce expresamente el uso de datos de
comportamiento real (monitorizacidn) en el diseno y evaluacién estructural y geotécnica,
incluyendo su aplicacién en estructuras existentes, cimentaciones y estructuras sometidas a

condiciones variables.

Este enfoque también ha sido reforzado por esfuerzos internacionales como la actualizacion
del CIRIA R185 Observational Method Guidance (Project P3295), que proporciona
recomendaciones practicas para la aplicacion moderna del Enfoque Observacional,

consolidando su papel como estrategia fiable y respaldada por la comunidad técnica.

Este reconocimiento normativo abre la puerta al ajuste racional de los coeficientes de

seguridad, siempre y cuando se utilicen métodos de control y analisis validados. En efecto,

151



Definicién de la necesidad

aunque los Eurocddigos no proporcionan una reducciéon explicita y generalizada de
coeficientes de seguridad por el uso de instrumentacion, permiten su ajuste en funcion del
nivel de conocimiento del terreno, la calidad del control y la fiabilidad de los métodos de
calculo. Asi, en casos donde se aplica un enfoque observacional bien planificado y respaldado
por datos fiables, puede adoptarse un nivel de seguridad parcial mas favorable, lo que implica

beneficios tanto econémicos como técnicos.

F. Evolucién normativa y necesidad de adaptacién

La evolucion reciente del Euroc6digo 7, en particular la actualizacion del EN 1997-3, refuerza
la necesidad de adoptar metodologias de disefio geotécnico mas integradas, adaptativas y
basadas en datos. Esta nueva version (2025) introduce una vision mas holistica del disefio de
estructuras de contencién, promoviendo una integraciéon mas profunda entre la interaccion
suelo-estructura, los modelos especificos del terreno y los estados limite tanto ultimos (ULS)

como de servicio (SLS).

Se otorga especial importancia a aspectos como la gestion del nivel freatico, los efectos del
cambio climatico, el modelado numérico avanzado, y, especialmente, la instrumentaciéon y
durabilidad, exigiendo la incorporacion de planes de inspeccién y medidas de sostenibilidad

desde las primeras fases del disefio.

En este marco normativo emergente, la propuesta de este Trabajo de Final de Master (que
integra inteligencia artificial, modelado fisico y andlisis retrospectivo basado en
observaciones) se sitia en consonancia con las directrices de los nuevos Eurocédigos. La
necesidad de modelos que no solo se adapten al comportamiento observado en campo, sino
que también optimicen los recursos, promuevan la transparencia documental y favorezcan una
toma de decisiones informada en condiciones complejas, se alinea directamente con las

exigencias del EN 1997-3.

G. Contribucién a la sostenibilidad y alineacién con los Objetivos de Desarrollo Sostenible

(ODS)

La metodologia propuesta en este Trabajo de Final de Master no solo responde a la necesidad
técnica de mejorar la precision y eficiencia en la estimacidn de pardmetros geotécnicos, sino

que también se alinea con los principios de sostenibilidad que rigen la ingenieria del siglo XXI.
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En concreto, se articula con varios de los Objetivos de Desarrollo Sostenible (ODS) establecidos
por la Agenda 2030 de Naciones Unidas, especialmente en lo relativo a la innovacion, la
eficiencia en el uso de recursos, la resiliencia de las infraestructuras y la mitigacién del impacto

ambiental de los proyectos de ingenieria civil.
Alineacién con ODS especificos:

e ODS 9: Industria, innovacién e infraestructura. El desarrollo de un método hibrido que
combina inteligencia artificial con fundamentos fisicos para estimar parametros
geotécnicos representa una clara apuesta por la innovacidn tecnolédgica aplicada a la
infraestructura. Este tipo de avances permite disefiar obras mas seguras, inteligentes y
adaptadas al comportamiento real del terreno, incrementando su resiliencia frente a

eventos inesperados o condiciones extremas.

e ODS 11: Ciudades y comunidades sostenibles. Al mejorar la prediccién de asientos y
optimizar el disefio de cimentaciones, la metodologia contribuye a la construccién de
infraestructuras urbanas mas duraderas, estables y adaptadas al entorno. Esto reduce
la necesidad de intervenciones correctivas, minimiza disrupciones urbanas y favorece

entornos urbanos mas sostenibles.

e ODS 12: Produccién y consumo responsables. El enfoque de analisis retrospectivo
basado en datos reales y optimizacién permite ajustar los disefios a condiciones
verificadas, evitando sobreestimaciones de seguridad y, por tanto, el uso innecesario
de materiales. Esta racionalizacion del disefio contribuye directamente a una

utilizacién mas eficiente de recursos como acero, hormigén y energia en las obras.

e ODS 13: Accidn por el clima. La mejora de la eficiencia estructural y la reduccion del
sobredimensionamiento tienen un efecto indirecto en la huella de carbono de los
proyectos geotécnicos. Optimizar el uso de materiales y reducir los trabajos de
correccion en obra disminuyen las emisiones asociadas al ciclo de vida de la

infraestructura.

La estrategia de sostenibilidad implicita en este Trabajo de Final de Master aborda la

sostenibilidad en tres dimensiones:

e Ambiental: mediante la reduccién del consumo de recursos y emisiones asociadas a

sobredimensionamiento y redisefios evitables.
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e Econodmica: al permitir diseflos mas eficientes, ajustados a condiciones reales, lo que se
traduce en ahorros de materiales, tiempo y costes asociados al ciclo de vida de las

infraestructuras.

e Social: al aumentar la fiabilidad de las obras geotécnicas, se incrementa la seguridad
para los usuarios y comunidades cercanas, y se favorece una mejor gestion del riesgo

geotécnico.

En resumen, esta tesis se sitia en la interseccién entre el avance tecnolégico, la evolucion
normativa y los principios de sostenibilidad que configuran la nueva ingenieria geotécnica. Su
contribucion no solo reside en la mejora de los procedimientos analiticos, sino en la apertura

hacia un disefio mas flexible, informado y conectado con la realidad de campo.
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5. METODOLOGIA

En este capitulo se expone la metodologia desarrollada para la estimacién del médulo de
elasticidad del terreno mediante analisis retrospectivo (backanalysis), utilizando datos de

monitorizacién de asientos y presiones bajo cimentaciones superficiales.

La estrategia metodolodgica se organiza en un algoritmo estructurado en un bucle de cinco fases
sucesivas, tal como se muestra en la Figura 5-57. Cada una de estas etapas se describe en detalle
en el apartado 5.1, donde se expone el flujo completo del proceso, desde la caracterizacion
inicial del terreno hasta la validacion de los parametros retrocalculados en diferentes fases del

proyecto.

Fase 2A
Analisis estructural

Fase 2B
Analisis geotécnico

Modelo estructural modelo geotécnico

(CSI SAFE)

|
|
|
Generacion del |
|
|
|

A 4

Obtencion de
presiones

| Importar geometria y

tensiones a Settle3

A 4

Analisis de asiento

E inicial

Modulo de elasticidad

A

o] (Rocscience Settle3) (E)
NO
Y |
s - - - - - - - - - = ~
Importar nuevo Exportar médulo de Fase 5 |

modulo de balasto balasto

Convergencia entre |
médulo de elasticidad —Sl—» FIN
y andlisis de asiento |

A
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modulos de balasto y
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Validacion modelo | Monitorizacién — Analisis retrospectivo

STR-GEO

Figura 5-57 — Estructura de algoritmo de analisis retrospectivo

El proceso del andlisis retrospectivo se basa en un enfoque de optimizacién hibrido Global-

Local. En la fase de busqueda global se emplean modelos de Machine Learning con capacidad

155



Metodologia

de generalizacién, mientras que en la buisqueda local se recurre a algoritmos clasicos de
optimizacién no lineal, como Gauss-Newton o Levenberg-Marquardt, que permiten afinar la

solucién con mayor precision.

Con el objetivo de evaluar el rendimiento del algoritmo hibrido (principal contribucién de este
Trabajo de Fin de Master) y, en particular, de validar la funcién objetivo, se ha llevado a cabo
una comparaciéon con diversos algoritmos de optimizacion ampliamente utilizadas en la

literatura. Estos algoritmos se enumeran en el apartado 5.2.

5.1Metodologia de analisis retrospectivo

La estimacién del médulo de elasticidad del terreno a partir de ensayos de campo y laboratorio
presenta un desafio significativo en el calculo de asientos y esfuerzos en cimentaciones
superficiales. En este contexto, se propone una metodologia basada en el analisis retrospectivo
que permite ajustar los valores del médulo de elasticidad del suelo mediante la comparaciéon
entre los resultados de calculo inicial y los datos obtenidos a partir de la monitorizacién en

obra.

La estrategia desarrollada integra herramientas de Machine Learning, algoritmos de
optimizacién hibrida y modelos numéricos de calculo geotécnico y estructural, lo que permite
mejorar progresivamente la caracterizacion del terreno conforme avanza la ejecucion del
proyecto. Este enfoque iterativo busca no solo retrocalcular parametros con mayor fidelidad,
sino también generar un marco metodoldgico aplicable a distintas fases de obra, dotando de

mayor robustez al disefio y control de las cimentaciones previo a su puesta en servicio.

La estrategia metodoldgica que forma el algoritmo de andlisis retrospectivo se estructura en

un bucle formado por cinco fases sucesivas, como se puede ver en la Figura 5-57.

5.1.1 Fase 1 - Creacion del modelo de terreno inicial

Para la creacion del modelo inicial del terreno se propone el uso de campafias geotécnicas
convencionales, complementadas mediante técnicas de expansiéon de datos (data
augmentation) que permitan enriquecer el conjunto de informacién disponible. Esta
ampliacién de datos puede realizarse a partir de correlaciones empiricas reconocidas en la

literatura, resultados de campaifias anteriores, conocimiento geoldgico y geotécnico de la zona
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de estudio, asi como pardametros derivados de mediciones histéricas y otras fuentes

complementarias disponibles durante la etapa de caracterizacién.

Una vez generado este conjunto de datos enriquecido, se emplean algoritmos de Machine
Learning, en particular redes neuronales artificiales, para construir un modelo predictivo del
comportamiento del terreno. Este modelo hibrido permite integrar el conocimiento empirico
y estadistico con los datos obtenidos in situ, ofreciendo una caracterizacién inicial del terreno

mas robusta y adaptable que la basada exclusivamente en métodos tradicionales.

Este modelo inicial adquiere una gran relevancia, ya que constituye el punto de partida del
analisis retrospectivo en fases posteriores. En este contexto, se utiliza como base para la
busqueda global dentro del algoritmo de optimizacién hibrido, que sera posteriormente
refinada mediante técnicas de optimizacion local. Un modelo inicial mejor calibrado puede

reducir significativamente el coste computacional y mejorar la eficiencia del proceso de ajuste.

Asimismo, se recomienda disponer de un conjunto de datos independientes, que no se hayan
empleado durante el entrenamiento del modelo de Machine Learning, para su uso en la
evaluacion de precision y capacidad predictiva, con el objetivo de validar su desempefio de

forma objetiva.

5.1.2 Fase 2 - Analisis estructural y geotécnico

Se propone la aplicacion de esta metodologia en el disefio de una cimentacidon directa. Para ello,
se realizan dos modelos de calculo usando los programas CSI SAFE y Rocscience Settle3D, que
corresponden, de acuerdo con la Figura 5-57, a la fase 2A analisis estructural y fase 2B analisis
geotécnico, respectivamente. En el programa Rocscience Settle3D se adopta una distribucion
de tensiones de acuerdo con la teoria de Bousinesq y se limita el analisis al asiento instantaneo,

ignorandose asientos de consolidacién dada la naturaleza granular del medio.

CSI SAFE es un programa de disefio estructural que utiliza como unico input del terreno el
modulo de balasto. Por otro lado, Rocscience Settle3D es un programa de analisis de asientos
que permite indicar varios datos de entrada diferenciando si es necesario realizar un calculo
de asiento instantaneo o de consolidacién (primaria y secundaria). En este caso, al limitarse la
aplicacion de esta metodologia al estudio de terreno granulares y asientos instantaneos, a parte
de la presién ejercida por la cimentacién (magnitud, forma y rigidez), los pardmetros

geotécnicos de entrada usados en Settle3D son:
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e Peso especifico aparente
e Peso especifico saturado
e (oeficiente de Poisson

e Mddulo elastico secante E; y de descarga E.. Véase la Figura 3-8 para mayor aclaracion

de los médulos de deformacién utilizados en el programa Rocscience Settle3D.

A partir de la parametrizacidon del terreno obtenida en la fase 1, se construye el modelo
geotécnico en Settle3D, mediante el cual se calcula un valor inicial del médulo de balasto. Este
valor se transfiere posteriormente al modelo estructural en CSI SAFE. Ambos programas
permiten una interconexion iterativa: las presiones transmitidas al terreno, calculadas en
SAFE, se utilizan como entrada en Settle3D para estimar los asientos, y a su vez, los asientos
obtenidos se emplean para actualizar el médulo de balasto en SAFE. Este proceso iterativo esta

representado esquematicamente en el diagrama de la Figura 3-48.

El médulo de balasto considera una variacién espacial conforme al método de areas discretas
descrito en el apartado 3.6.3.2. La discretizacion espacial de los valores del médulo de balasto
considerados en cada zona se realiza mediante el proceso iterativo indicado previamente,
buscandose la convergencia de presiones, asiento y mddulo de balasto en las diferentes

subdivisiones de la cimentacion.

Esta subdivisién permite una representaciéon mas precisa de cdmo el suelo responde a las
cargas aplicadas, mejorando la exactitud del andlisis estructural y variacidon espacial de los

asientos y presiones de contacto.

Una vez generado el modelo estructural, se obtienen los esfuerzos de disefo, presiones

transmitidas al terreno y asientos finales estimados, entre otros.

5.1.3 Fase 3 - Monitorizacion

Durante las diferentes fases de ejecucion de la estructura y su puesta en carga, se realiza la
monitorizacién mediante sensores de tltima generacion (IoT - Internet of Things) capaces de

proporcionar datos en tiempo real.

Es necesario disponer de registros de monitorizacion de los asientos (en varios puntos de la

superficie y a diferentes profundidades) y presién transmitida al terreno. Una posible
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propuesta de instrumentacién estaria compuesta por puntos de control topografico, galgas

extensométricas, celdas de carga e inclinémetros.

Estos sensores ayudarian no solo en el analisis retrospectivo, también en la identificacién de
anomalias o patrones que puedan indicar riesgos. Por otro lado, también servirian en la
creacidn de gemelos digitales que facilitarian la toma de decisiones durante el mantenimiento

y futuras construcciones.

5.1.4 Fase 4 - Analisis retrospectivo (busqueda local)

El proceso del andlisis retrospectivo se basa en un enfoque de optimizacién hibrido Global-

Local.

La fase de busqueda global se realiza en la fase 1 a través de algoritmos de Machine Learning,
en particular redes neuronales artificiales, que permiten una bisqueda global de los médulos

de elasticidad en los diferentes estratos.

En la basqueda local se recurre a algoritmos clasicos de optimizacién no lineal basados en
gradientes, mas concretamente, Gauss-Newton o Levenberg-Marquardt, que permiten afinar

la solucién con mayor precision.

Los métodos basados en gradientes requieren el calculo de derivadas de la funcién objetivo

para determinar la direccién 6ptima de btisqueda.

Tanto Gauss-Newton como Levenberg-Marquardt son algoritmos de ajuste no lineal que, en su

forma clasica, requiere una funcion objetivo basada en residuos:

r(x) = fi(x) — yobs (193)

Donde f;(x) es la salida del modelo (asiento calculado) e yiobs es el valor medido.

También es necesaria una matriz jacobiana de los residuos respecto a los parametros de

entrada:

or; (194)

]ij 6x]
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No obstante, al empleare los programas CSI SAFE y Rocscience Settle3D, no se dispone de una
funcién objetivo y, por tanto, sus derivadas. Esto implica una adaptacidon practica de la
metodologia mediante la estimacion numérica de las derivadas, aproximando la matriz
jacobiana numéricamente usando diferencias finitas haciendo pequefias perturbaciones h

sobre cada parametro x;.

o _filg +h) - fi(x) (195)

axj h

Se aplica el algoritmo Gauss-Newton o Levenberg-Marquardt, con la Jacobiana aproximada y
los residuos, para obtener una nueva estimacion de los parametros. El proceso se repite
iterativamente hasta alcanzar la convergencia, entendida como la condicidn en la que el cambio
relativo entre iteraciones consecutivas en los parametros estimados o en el valor de la funcion

objetivo (error) es menor que un umbral predefinido.

Este umbral se establece con base en criterios de sensibilidad numérica y precisién practica:
por un lado, debe ser lo suficientemente bajo como para garantizar que los parametros
convergen a una solucién estable y no a una oscilacién numérica; por otro, no debe ser
excesivamente estricto, para evitar un nimero innecesario de iteraciones que apenas mejoren
el ajuste. En este trabajo, el valor del umbral se ha fijado empiricamente tras observar la
estabilizacion del error y la variaciéon marginal de los parametros, asegurando asi un equilibrio

entre precision y eficiencia computacional.

5.1.5 Fase 5 - Convergencia del médulo de elasticidad

A medida que avanza la ejecucidn de la estructura y se producen las distintas etapas de carga,
los datos obtenidos a través de la monitorizacién son evaluados de forma continua. Con base
en esta informacidén actualizada, se repite el andlisis retrospectivo del médulo de elasticidad,

adaptandolo a las condiciones reales observadas en cada fase constructiva.

Este proceso iterativo permite verificar la consistencia y robustez de los parametros
retrocalculados, al contrastarlos en diferentes momentos del desarrollo de la obra. De este
modo, se refuerza la fiabilidad del modelo geotécnico empleado y se mejora progresivamente

la calibracién del comportamiento del terreno.

160



Metodologia

5.2 Algoritmos empleados en el analisis comparativo

En este apartado se enumeran los diferentes algoritmos de optimizacién que se han empleado

amodo de comparacidn con la metodologia expuesta anteriormente.

5.2.1 Basados en gradientes

e (Gauss-Newton

e Levenberg-Marquardt

e Multistart con Levenberg-Marquardt
e Multistart con Gauss-Newton

e (Cuasi-Newton BFGS

5.2.2 Heuristicos y metaheuristicos - Evolutivos

e Genéticos Simples

e Genéticos Adaptativos

e Enjambre de particulas - PSO
e Evolucién Diferencial (DE)

e Recocido simulado (SA)

5.2.3 Busqueda Directa

e Nelder-Mead (Simplex) — Pattern Search o Direct Search

5.2.4 Surrogados
e Optimizacion Bayesiana (BO)
e Procesos Gaussianos (GP)

e Modelos de superficie de respuesta - Kriging
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5.2.5 Basados en programacion matematica

e SQP (Sequential Quadratic Programming) - Programacion cuadratica

e Programacién No Lineal (NLP - Nonlinear Programming)

5.2.6 Otros

e Optimizacién robusta

e Optimizacién distribuidamente robusta

5.2.7 Hibridos

Cada método usa un algoritmo de busqueda global combinado con una busqueda local

mediante Gauss-Newton y Levenberg-Marquardt.
e Genético simple con GN o LN
e Genético Adaptativo con GN o LN
e PSOconGNoLN
e Evolucioén Diferencias (DE) con GN o LN
e Recocido simulado (SA) con GN o LN
e BOconGNoLN
e GPconGNoLN
e Kriging con GN o LN
e (CMA-ES con GN o LN — Estrategias evolutivas
e Cuckoo Search con GN o LM
e Grey Wolf Optimizer + GN o LM
e Shuffled Complex Evolution (SCE) + GN o LM
e NSGA-II Multiobjetivo + GN o LM

e SPEA2 Multiobjetivo + GN o LM

162



Caso de estudio

6. CASO DE ESTUDIO

El objetivo del presente capitulo es presentar los casos de estudio sobre los que se realizara
una comparacion del coste computacional para llegar a un error dado y desviaciéon de los
modulos de elasticidad obtenidos del andlisis inverso y asientos retrocalculos medidos en
varios puntos clave que se obtienen mediante la metodologia expueste en el apartado 5.1 y los

algoritmos de optimizacion enumerados en el apartado 5.2.

La metodologia propuesta se pone en practica en dos casos de estudio. Uno de ellos sintético,
donde se conocen los datos y facilita el analisis comparativo de los treinta y dos algoritmos de
optimizacidn frente al algoritmo propuesto en este trabajo. El segundo caso de estudio consta
de los datos de monitorizacién de un proyecto real, pero con ciertas limitaciones en la
informacién disponible. En el caso real tan solo se aplica el algoritmo propuesto en este trabajo

y los principales algoritmos de optimizacién hibridos.

6.1Caso de estudio sintético

El caso de estudio sintético se ilustra en la Figura 6-58. Se considera una cimentacion
superficial de ancho By largo L que ejerce una presién g constante en toda la superficie. La
cimentaciéon se apoya en la superficie del terreno, sin empotramiento. Se asume un medio
granular, con asiento elastico (sin asiento de consolidacién), formado por 4 estratos con

madulo elastico Es;, de espesor H;, homogéneos, elasticos e isotropicos.

L,,f'\.r‘—B—ﬂ
‘_,’”
q
WOW W W W
R £,
s E.
H
_____ o Es
H
‘ E‘a.d

77777 %

Estrato incompresible

Figura 6-58 — Caso de estudio sintético
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Tabla 6-4 — Valores base adoptados en el caso de estudio

Parametro Valor
q 150.0 KN/m?
L 2.50 m
B 1.75m
Hi 2.00 m
Hz 550 m
Hs 7.50 m
Hy 15.00 m
Es1 12.5 MPa
Es2 20.0 MPa
Es3 25.0 MPa
Esa 35.0 MPa

No se considera nivel freatico en este caso de estudio y, por tanto, variaciones del modulo de

elasticidad debida a este.

Se consideran los datos de monitorizacion del asiento de la cimentacién en 8 puntos ubicados
a varias profundidades en el centro de la cimentacion. Estos datos han sido derivados del
calculo del asiento considerando los valores del médulo de elasticidad objetivo Es; indicados en

la Tabla 6-4.

Con el objetivo de validar la robustez del modelo predictivo frente a la incertidumbre asociada
amediciones reales, se ha introducido un ruido sintético a los datos generados numéricamente.
Esta practica permite simular condiciones de campo mas realistas al considerar errores de

medicion similares a los que se presentan con instrumentacién geotécnica.

El enfoque seguido en la introduccién del ruido se fundamenta en la modelizacion del error
como una variable aleatoria de distribucién normal, con medida cero y desviacién estandar o,
segun se ha planteado en diversos estudios sobre instrumentacion y retroanalisis, como los de
Ledesma (1987, 1996), donde se analizan los errores en mediciones con inclindmetros y otros
sensores. Esta estrategia representa adecuadamente errores aleatorios (tipo ruido blanco) sin
introducir sesgo sistematico, lo cual es esencial para evaluar la fidelidad de un modelo

predictivo ante datos afectados por incertidumbre.

La formulacion general adoptada para la perturbacion de las mediciones es la siguiente:

§i=s;+e€ con €~ N(O, al-z) (196)

Donde:
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e §; eselvalor de asiento simulado con ruido en la profundidad z;
e s; es el valor de asiento original (sin ruido)
e ¢; es una perturbacion aleatoria

e o;esladesviacion estandar del error en la profundidad z;

Se ha considerado que el error de medicion es independiente para cada profundidad, y que la
desviacion estandar del error crece ligeramente con la profundidad, para reflejar posibles
acumulaciones de incertidumbre en sistemas extensométricos multipunto. EI modelo

adoptado para o; es:

g; = Oy +k- Zj (197)

Donde:
e 0, esigual a 0.05mm y representa la desviacion estandar minima

e kesiguala 0.01 mm/m y representa el incremento lineal del error con la profundidad

Zi.

Los asientos sintéticos se generaron en distintos niveles de profundidad: 0.0, 0.5, 1.0, 2.0, 3.0,
5.0, 10.0 y 20.0 m. A cada uno de ellos se le sum6 una perturbacién aleatoria generada con la
distribucién descrita anteriormente. La generacion de estos valores se realiz6 utilizando la

funcién np.random.normal de Python, con media cero y desviacidn estandar o; en cada caso.

Este procedimiento permiti6 obtener el siguiente conjunto de datos con y sin ruido
incorporado, que imita el comportamiento de mediciones reales afectadas por error
experimental. Este conjunto se ha utilizado como base para evaluar el desempefio del modelo
predictivo en condiciones mas cercanas a las de campo, comprobando su sensibilidad ante

variaciones no sistematicas en los datos de entrada.

Tabla 6-5 — Asientos tedricos con y sin ruido
Profundidad (m) Asiento te6rico Asiento con ruido

s (mm) s ruido (mm)
0.0 23.53 23.31
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Tabla 6-5 — Asientos tedricos con y sin ruido
Profundidad (m) Asiento teérico Asiento con ruido

s (mm) s ruido (mm)
0.5 17.60 17.81
1.0 12.52 12.59
2.0 6.19 5.80
3.0 4.02 3.85
5.0 2.14 2.72
10.0 0.72 0.33
20.0 0.15 0.10

En la siguiente figura se ilustran los datos de monitorizacién para ambos casos, con y sin ruido.

Asiento (mm)

0.00 5.00 10.00 15.00 20.00 25.00
0.0

5.0

10.0

15.0

Profundidad (m)

20.0

25.0

—— s (mm) = & = s ruido (mm)

Figura 6-59 — Asiento tedrico con y sin ruido
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Para la aplicacion del modelo de Machine Learning se consideran los valores del niimero de
golpes del ensayo SPT que se presentan en la Figura 6-60, donde se muestra el resultado de
campoy corregido frente a la profundidad. El perfil obtenido muestra una variacién progresiva,

con golpes mas bajos en superficie y un incremento moderado en profundidad.

La estratigrafia adoptada asume que el terreno estd formado por una arena limosa hasta los

15m de profundidad, seguida de una arena limpia hasta el fondo del sondeo.

Nspr
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[ ] A
[ ] A
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30.0m L J A
35.0m

Figura 6-60 — Resultados ensayo SPT de campo y corregidos (N1,60)
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6.2 Caso de estudio real

El presente caso de estudio se basa en la instrumentacidn y analisis de la losa de cimentacion
de un edificio de gran altura. La cimentacién consiste en una losa maciza de hormigén armado

como se puede ver en la Figura 6-61, cuya geometria en planta se muestra en la Figura 6-62.

Figura 6-61 — Caso de estudio real. Losa de cimentacion de edificio de gran altura. Vista 3D

La losa presenta unas dimensiones de 45 m de ancho (B) y 47 m de largo (L), y transmite al
terreno una presion de contacto aproximadamente uniforme g, la cual varia a lo largo del
tiempo conforme avanza el proceso constructivo. El sistema de monitorizaciéon implementado
permite el seguimiento del comportamiento en servicio de la cimentacién, concretamente

mediante la medicion de asientos verticales.

Se dispone de registros de asiento en 16 puntos ubicados sobre la superficie superior de la losa,
todos ellos a nivel de cimentaciéon. No obstante, no se cuenta con informaciéon de
monitorizacién en profundidad ni sobre la respuesta del terreno en capas subyacentes.
Asimismo, las mediciones comenzaron una vez alcanzada una tensién media de contacto de
aproximadamente 125 KPa, por lo que se ha estimado la deformacién acumulada durante la
primera fase de carga. Adicionalmente, la ubicacion exacta de cada punto de medicién no esta
documentada, lo que obliga a realizar una hipétesis simplificada sobre la distribucién espacial
de los asientos: se asume que el punto de asiento maximo se localiza en el centro geométrico
de la losa, mientras que el asiento minimo corresponde a una de las esquinas. Esta
aproximacion, si bien no reproduce fielmente la distribuciéon real, permite definir un gradiente
de deformacién compatible con el andlisis retrospectivo planteado. En la Figura 6-63 se

ilustran los registros monitorizados.
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Punto monitorizacién
L—— N1 (centro)

Punto monitorizacién
| — P3 (esquina)

J —

Figura 6-62 — Caso de estudio real. Losa de cimentacidn de edificio de gran altura. Planta.
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Figura 6-63 — Caso de estudio real. Evolucidn asiento en funcién de la tension media de contacto

En la Figura 6-64 e presentan los datos de monitorizacién que seran empleados en el analisis
retrospectivo, asumiendo que el asiento de mayor magnitud corresponde al centro geométrico

de la losa, mientras que el de menor magnitud se localiza en la esquina inferior izquierda.
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50
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Asiento (mm)

- @ - Esquina

0 50 100 150 200 250 300 350 400 450
Tensién media de contacto (KPa)

Figura 6-64 — Caso de estudio real. Evolucidn asiento en funcidn de la tensién media de contacto
adoptados en el analisis retrospectivo

Los valores numéricos asociados a cada punto se recogen en la Tabla 6-6. Cabe sefalar que
dichos valores han sido estimados de forma aproximada a partir de la Figura 6-63, mediante
interpretacion visual, por lo que deben considerarse como una adaptacion orientativa del
comportamiento observado dada la limitacién de la informacién disponible para realizar este

trabajo.

Tabla 6-6 — Asientos en funcion de la tensidon de contacto

Presién (KPa) Centro (mm) Esquina (mm)
0.0 0.00 0.00
125.0 14.50 5.00
200.0 22.50 8.00
300.0 32.50 11.00
400.0 46.50 15.00

Para la generacion del modelo de Machine Learning se dispone de 18 ensayos presiométricos
realizados a diferentes profundidades, los cuales se han corregido para estimar el mdédulo de
elasticidad E como se ilustra en la Figura 6-65. El perfil obtenido muestra un incremento
progresivo con la profundidad. Esta informacién se empleard como base del algoritmo de

aprendizaje automatico.
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Médulo de elasticidad (MPa)
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Figura 6-65 — Mddulo elasticidad obtenido de ensayos presiométricos
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7. RESULTADOS

En este capitulo se presentan los resultados obtenidos tras la aplicacién de la metodologia de

analisis retrospectivo desarrollada en este trabajo.

En el caso de estudio sintético, la finalidad principal es evaluar la capacidad del algoritmo
propuesto para estimar de forma precisa los médulos de elasticidad de los dos primeros
estratos del terreno a partir de los datos de monitorizacién de asientos en distintas
profundidades, tal y como estan presentados en el capitulo 6.1. Se analizan tanto los resultados
del caso sintético en condiciones ideales como los obtenidos al aplicar errores introducidos
deliberadamente en los asientos tedricos emulando mediciones ruidosas. El algoritmo
propuesto se compara con los treinta y dos algoritmos de optimizacién indicados en el

apartado 5.2.

De igual forma, en el caso de estudio real, se realiza un analisis comparativo de la capacidad de
precision y coste computacional del algoritmo propuesto frente a los algoritmos hibridos que

mejor resultado han obtenido en el caso de estudio sintético.

La comparacion entre los asientos generados por el modelo ajustado y los datos de referencia
permite cuantificar el grado de ajuste y la eficacia de los algoritmos de optimizacién empleados,

tanto en su fase global como local.

Los resultados se organizan en tablas y graficas para facilitar su interpretacion, y se acompaiian

de un andlisis técnico que anticipa las conclusiones discutidas en el capitulo siguiente.

7.1Métricas empleadas

Las métricas empleadas para valorar la capacidad de cada método son las siguientes:

e Numero de iteraciones necesarias para alcanzar una tolerancia de error igual a 10-5 en
el asiento en superficie calculado con los mddulos de elasticidad retrocalculados. Esta
meétrica permite cuantificar el coste computacional de cada método y su eficiencia en
el proceso de convergencia, estableciendo un equilibrio entre precisién y coste

computacional.

e Recorrido por el mapa de soluciones de los diferentes valores de los pardmetros
objetivo (por ejemplo, E; e E> en el caso de estudio sintético) en cada iteraciéon en
funcién del error cuadratico normalizado. En el caso de estudio sintético, se representa

graficamente la trayectoria seguida por el algoritmo de optimizacién sobre un mapa de
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isolineas del error cuadratico normalizado, calculado entre los médulos de elasticidad
tedricos y los retrocalculados. Esta visualizacion permite evaluar la eficiencia del
método no solo en términos de convergencia, sino también en cuanto a su capacidad
para explorar zonas del espacio de soluciones con mejor ajuste. Un desplazamiento
directo y rapido hacia zonas de bajo error sugiere una estrategia de buisqueda eficiente,
mientras que trayectorias erraticas o estancadas pueden indicar problemas de

sensibilidad, dependencia del punto inicial o sobreajuste local.

e Error de prediccién de los mdédulos de deformaciéon retrocalculados respecto a los
tedricos. Esta comparacion permite valorar la precision del ajuste obtenido, para ello

se utilizan:

o Error cuadratico medio (RMSE, por sus siglas en inglés): permite medir la
magnitud promedio de los errores de prediccién, penalizando mas los errores
grandes. Es una métrica robusta y ampliamente utilizada para validar modelos

numéricos.

o Coeficiente de determinacién (R?): mide el grado de correlacién entre los
modulos de elasticidad calculados y los tedricos. Un valor cercano a 1 indica un

buen ajuste del modelo.

e Error de prediccion de los asientos respecto a los datos de monitorizacion: se evalia la
desviacion entre los asientos tedricos calculados, a partir de los mddulos de
deformacién retrocalculados, y los asientos registrados en obra. Esta comparacién
permite valorar la precision del ajuste obtenido y la capacidad del modelo de estimar

los potenciales asientos en futuras fases. Como en el caso anterior, se emplea:

o Error cuadratico medio (RMSE, por sus siglas en inglés): permite medir la
magnitud promedio de los errores de prediccién, penalizando mas los errores

grandes.

o Coeficiente de determinacién (R?): mide el grado de correlacién entre los
asientos calculados y los observados. Un valor cercano a 1 indica un buen ajuste

del modelo.

Adicionalmente, con el objetivo de dotar de transparencia al modelo de ajuste empleado en el

analisis retrospectivo del mddulo de elasticidad, en el caso de estudio sintético se ha
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incorporado una técnica de interpretabilidad del tipo XAl (Explainable Artificial Intelligence),

concretamente el método SHAP (SHapley Additive exPlanations).

SHAP se fundamenta en la teoria de juegos cooperativos, y en particular en el concepto de
valores de Shapley. En este contexto, cada variable de entrada del modelo se interpreta como
un “jugador” cuya aportacién marginal al resultado final (la prediccién del asiento) puede
cuantificarse. El algoritmo SHAP traduce esta légica al ambito de la modelizacion predictiva,
asignando a cada entrada un valor numérico que refleja su contribucién individual a la
prediccidn realizada por el modelo. De este modo, es posible descomponer la respuesta global

del modelo en una suma de efectos atribuibles a cada variable.

En el contexto del analisis inverso propuesto, SHAP permite interpretar el papel que
desempeiia cada parametro de entrada (E1, E, etc.) en la estimacion final del asiento superficial
retrocalculado. Este andlisis es especialmente 1til en un entorno tipo caja negra, donde la
funcidn de ajuste no es explicita ni derivada analiticamente, como ocurre cuando el modelo

estd gobernado por relaciones numéricas o empiricas integradas en un software de simulacion.
Las ventajas especificas del uso de SHAP en este trabajo son:

o Identificacion de variables clave: permite determinar cuales de los moédulos de
elasticidad tienen mayor peso en la prediccién, lo que puede relacionarse con la

profundidad o rigidez relativa de los estratos.

e Coherencia geotécnica: facilita la validacién cualitativa del modelo, al verificar si las
variables mas influyentes coinciden con los conocimientos teéricos (por ejemplo,

mayor sensibilidad del asiento superficial respecto a los médulos de capas someras).

e Robustez interpretativa: proporciona una base para analizar si el modelo esta
capturando correctamente las interacciones entre parametros, o si existen posibles

falsas correlaciones que puedan inducir a conclusiones incorrectas.

e Aplicabilidad iterativa: al repetir el proceso en distintas fases constructivas, SHAP
puede evidenciar como cambia la sensibilidad del modelo respecto a cada variable

conforme se acumulan nuevos datos de monitorizacion.
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7.2Resultados numéricos de los algoritmos de optimizacion
7.2.1 Caso de estudio sintético

A continuacién, se presentan los resultados numéricos obtenidos tras la aplicacién de los
diferentes algoritmos de optimizacion considerados en este trabajo. Cada algoritmo se analiza
segln las métricas definidas en el apartado anterior 7.1, con el objetivo de comparar su eficacia,

precision y coste computacional en la estimacion de los médulos de elasticidad E; & E>.

Para realizar una evaluacidn rigurosa, se analizan el caso de estudio expuesto en el apartado
6.1, diferenciandose un caso ideal (sin ruido afiadido a los asientos de referencia) y, el segundo,
considerando mediciones con ruido moderado afiadido deliberadamente para simular
incertidumbres realistas que aporten un mayor valor a este caso sintético. Los asientos

monitorizados con y sin ruido se encuentra en la Tabla 6-5.

En primer lugar, en la Tabla 7-7 se presentan los resultados obtenidos por cada algoritmo
indicado en el apartado 5.2, junto a la propuesta metodoldgica indicada en el apartado 5.1
(Modelo hibrido de Machine Learning con Gauss-Newton o Levenberg-Marquardt) en la
prediccion de los modulos de elasticidad E; & E; para el caso sintético sin ruido.
Posteriormente, en la Tabla 7-8 se muestran estos mismos resultados, pero considerando la

presencia de ruido en las mediciones de referencia.
En ambas tablas se incluyen los siguientes parametros para una mejor valoracién comparativa:

e Numero de iteraciones necesarias para alcanzar un error igual a 105 en el asiento en
superficie calculado a partir de los médulos de elasticidad retrocalculados. Este
indicador permite evaluar el coste computacional y la eficacia de convergencia de cada

algoritmo.

e Valores retrocalculados de los moédulos de elasticidad E; & E2, obtenidos por cada

método, permitiendo valorar la precisién del proceso de optimizacion.

e Error cuadratico medio (RMSE) y coeficiente de determinacién (R*) de los mddulos
retrocalculados respecto a los médulos tedricos utilizados como referencia. Estas
métricas proporcionan una vision cuantitativa del grado de ajuste del modelo numérico

respecto a la solucién esperada.

Finalmente, en la Tabla 7-9 se presentan el error cuadratico medio (RMSE) y el coeficiente de

determinacién (R?) obtenidos al comparar los asientos estimados mediante los médulos de
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elasticidad retrocalculados con los asientos observados (con y sin ruido). Esto permite evaluar,

ademas de la exactitud en la estimacion de parametros geotécnicos, la capacidad predictiva

real del modelo.

Tabla 7-7 - Numero de iteraciones y error de predicciéon del médulo de elasticidad E1 & Ez

derivados de mediciones sin ruido

E1 E2 RMSE

Algoritmo Iteraciones (MPa) (MPa) (KPa) R?

Gauss-Newton (GN) 11 12.500 20.062 441 1.000
Levenberg-Marquardt (LM) 14 12.500 20.000 0.1 1.000
Multistart con LM 13 12.500 20.002 1.6 1.000
Multistart con GN 11 12.499 20.014 10.0 1.000
Cuasi-Newton BFGS 45 12.936 18.026 1429.8 0.855
Genéticos Simples 54 11.714 26.792 4834.4 -0.662
Genéticos Adaptativos 57 12.413 18.796 853.3 0.948
Enjambre de particulas - PSO 59 12.500 20.000 0.2 1.000
Evolucién Diferencial (DE) 119 12.497 20.048 34.2 1.000
Recocido simulado (SA) 250 12411 19.442 399.6 0.989
Nelder-Mead (Simplex) 302 12.500 20.000 0.3 1.000
Optimizacién Bayesiana (BO) 200 11.287 28.953 6388.6 -1.902
Procesos Gaussianos (GP) 300 12.090 19.873 303.4 0.993
Kriging 300 12.156 20.162 268.5 0.995
Programacién cuadratica (SQP) 45 12.936 18.026 1429.8 0.855
Programacién No Lineal (NLP) 50 12.647 19.174 593.1 0.975
Optimizacién robusta 59 12.512 20.089 63.5 1.000
Optimizaciéon distribuidamente robusta 45 12.557 19.779 161.5 0.998
Genético simple + GN o LM 10+4 12.500 20.241 170.3 0.998
Genético Adaptativo + GN o LM 10+11 12.500 20.002 1.6 1.000
PSO + GN o LM 10+7 12.500 20.002 1.6 1.000
Evolucién Diferencial + GN o LM 10+10 12.500 20.002 1.6 1.000
Recocido simulado + GN o LM 10+9 12.500 20.002 1.6 1.000
BO + GN o LM 20+18 12.501 19.980 14.3 1.000
GP +GN o LM 10+10 12.501 19.969 22.2 1.000
Kriging + GN o LM 10+10 12.500 20.010 7.1 1.000
CMA-ES + GN o LM 10+13 12.500 20.000 0.3 1.000
Cuckoo Search + GN o LM 10+11 12.500 20.000 0.3 1.000
Grey Wolf Optimizer + GN o LM 10+7 12.500 19.996 2.9 1.000
Shuffled Complex Evolution + GN o LM 10+9 12.498 20.052 37.0 1.000
NSGA-II Multiobjetivo + GN o LM 10+9 12.502 19.958 29.6 1.000
SPEA2 Multiobjetivo + GN o LM 10+6 12.499 20.028 19.8 1.000
Machine Learning + GN 4 12.500 19.997 2.3 1.000
Machine Learning + LM 10 12.500 20.000 0.1 1.000
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Tabla 7-8 - Numero de iteraciones y error de predicciéon del médulo de elasticidad E1 & Ez

derivados de mediciones con ruido

E1 E2 RMSE

Algoritmo Iteraciones (MPa) (MPa) (KPa) R?

Gauss-Newton (GN) 11 12.339 22.514 1781.4 0.774
Levenberg-Marquardt (LM) 15 12.502 18.308 1196.4 0.898
Multistart con LM 13 12.502 18.308 1196.4 0.898
Multistart con GN 10 12.339 22.515 1781.9 0.774
Cuasi-Newton BFGS 40 12.492 20.070 50.1 1.000
Genéticos Simples 53 12.803 16.453 2517.0 0.549
Genéticos Adaptativos 53 13.483 17.992 1581.2 0.822
Enjambre de particulas - PSO 59 12.502 18.308 1196.5 0.898
Evolucién Diferencial (DE) 120 12.439 19.723 200.4 0.997
Recocido simulado (SA) 250 12.723 17.955 1454.7 0.850
Nelder-Mead (Simplex) 241 12.439 19.725 199.3 0.997
Optimizacién Bayesiana (BO) 200 12.558 17.539 1740.7 0.785
Procesos Gaussianos (GP) 300 12.975 17.008 2142.4 0.674
Kriging 300 11.911 21.994 1470.3 0.846
Programacion cuadratica (SQP) 40 12.492 20.070 50.1 1.000
Programacion No Lineal (NLP) 48 12.628 19.391 440.0 0.986
Optimizacién robusta 64 12.266 21.303 936.4 0.938
Optimizacion distribuidamente robusta 78 12.362 22.389 1692.0 0.796
Genético simple + GN o LM 10+6 12.339 22.514 1781.1 0.774
Genético Adaptativo + GN o LM 10+13 12.502 18.308 1196.4 0.898
PSO + GN o LM 10+11 12.502 18.308 1196.4 0.898
Evolucion Diferencial + GN o LM 10+15 12.502 18.308 1196.4 0.898
Recocido simulado + GN o LM 10+14 12.502 18.308 1196.4 0.898
BO + GN o LM 10+11 12.339 22.512 1779.9 0.775
GP +GN o LM 10+13 12.339 22.515 1782.0 0.774
Kriging + GN o LM 10+18 12.339 22.515 1781.7 0.774
CMA-ES + GN o LM 10+10 12.339 22.515 1782.3 0.774
Cuckoo Search + GN o LM 10+14 12.339 22.515 1782.1 0.774
Grey Wolf Optimizer + GN o LM 10+16 12.339 22.515 1782.2 0.774
Shuffled Complex Evolution + GN o LM 10+14 12.339 22.515 1782.1 0.774
NSGA-II Multiobjetivo + GN o LM 10+17 12.339 22.515 1782.3 0.774
SPEA2 Multiobjetivo + GN o LM 10+16 12.339 22.512 1780.2 0.775
Machine Learning + GN 6 12.346 22.290 1622.7 0.813
Machine Learning + LM 13 12.502 18.308 1196.4 0.898
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Tabla 7-9 - Error de prediccion del asiento mediante E; & E; retrocalculados

Sin ruido Con ruido
RMSE RMSE

Algoritmo (mm) R? (mm) R?

Gauss-Newton (GN) 0.01 1.000 0.20 0.999
Levenberg-Marquardt (LM) 0.00 1.000 0.29 0.999
Multistart con LM 0.00 1.000 0.29 0.999
Multistart con GN 0.00 1.000 0.20 0.999
Cuasi-Newton BFGS 0.24 0.999 0.15 1.000
Genéticos Simples 0.32 0.999 0.32 0.999
Genéticos Adaptativos 0.23 0.999 0.27 0.999
Enjambre de particulas - PSO 0.00 1.000 0.29 0.999
Evolucion Diferencial (DE) 0.00 1.000 0.22 0.999
Recocido simulado (SA) 0.07 1.000 0.24 0.999
Nelder-Mead (Simplex) 0.00 1.000 0.22 0.999
Optimizacién Bayesiana (BO) 0.95 0.988 0.36 0.998
Procesos Gaussianos (GP) 0.18 1.000 0.31 0.999
Kriging 0.15 1.000 0.78 0.992
Programacién cuadréatica (SQP) 0.24 0.999 0.15 1.000
Programacion No Lineal (NLP) 0.09 1.000 0.15 1.000
Optimizacién robusta 0.05 1.000 0.23 0.999
Optimizacion distribuidamente robusta 0.03 1.000 0.19 1.000
Genético simple + GN o LM 0.03 1.000 0.20 0.999
Genético Adaptativo + GN o LM 0.00 1.000 0.29 0.999
PSO + GN o LM 0.00 1.000 0.29 0.999
Evolucion Diferencial + GN o LM 0.00 1.000 0.29 0.999
Recocido simulado + GN o LM 0.00 1.000 0.29 0.999
BO + GN o LM 0.00 1.000 0.20 0.999
GP +GN o LM 0.01 1.000 0.20 0.999
Kriging + GN o LM 0.00 1.000 0.20 0.999
CMA-ES + GN o LM 0.00 1.000 0.20 0.999
Cuckoo Search + GN o LM 0.00 1.000 0.20 0.999
Grey Wolf Optimizer + GN o LM 0.00 1.000 0.20 0.999
Shuffled Complex Evolution + GN o LM 0.01 1.000 0.20 0.999
NSGA-II Multiobjetivo + GN o LM 0.01 1.000 0.20 0.999
SPEA2 Multiobjetivo + GN o LM 0.01 1.000 0.20 0.999
Machine Learning + GN 0.00 1.000 0.18 1.000
Machine Learning + LM 0.00 1.000 0.29 0.999
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7.2.2 Caso de estudio real

En la Tabla 7-10 se presentan los resultados numéricos obtenidos tras la aplicacién de los

principales algoritmos de optimizacion frente a la metodologia propuesta en este trabajo.

Se analizan la precisién para estimar el asiento superficial en base al médulo de elasticidad

retrocalculado y el coste computacional asociado.

Tabla 7-10 - Error de prediccion del asiento mediante parametros retrocalculados

RMSE
Algoritmo de optimizacion Iteraciones (mm) R?
Genético simple + GN o LM 10+2 0.285 0.998
Genético Adaptativo + GN o LM 10+2 0.286 0.998
PSO+GNoLM 10+2 0.287 0.998
ML+ GN 4 0.285 0.998
ML+ LM 14 0.285 0.998

El error cuadratico medio (RMSE, por sus siglas en inglés) y coeficiente de determinacién (R?)
es similar en todos los casos porque todos los métodos alcanzan la misma solucién. No
obstante, el coste computacional, representado como ndmero de iteraciones, es diferente para

cada método.

En el apartado 7.5 se analizan los resultados en detalle, incluyendo graficas y figuras que

completan los resultados expuestos anteriormente.
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7.3 Interpretacion del modelo mediante SHAP en el caso de estudio sintético

Con el objetivo de proporcionar transparencia al modelo empleado en el analisis retrospectivo
del cao de estudio sintético, se ha aplicado la técnica SHAP (Shapley Additive exPlanations). Los

resultados obtenidos con esta técnica se presentan en esta seccion.

El analisis mediante SHAP permite interpretar mejor que mediciones de asientos tienen mayor

relevancia a la prediccion de cada mddulo de elasticidad Ej, Ez, E3 y Ea.

Los valores SHAP pueden ser positivos o negativos, lo que indica si una determinada medicién
de asiento contribuye a aumentar o disminuir la predicciéon del mdédulo de elasticidad con
respecto al valor medio del modelo. Esta interpretacion direccional permite entender la l16gica
interna del modelo, incluso cuando actia como una caja negra, y ayuda a verificar si las

relaciones aprendidas son coherentes con el comportamiento mecanico esperado del suelo.

Los resultados se muestras en graficos de tipo SHAP Beeswarm y diagramas de barras, una
representacién grafica comun en la interpretabilidad de modelos de machine learning con
SHAP. El objetivo de este tipo de graficas es ilustrar cdmo y cuanto influye cada variable

(feature) en la prediccion del modelo, para todos los datos de una manera compacta y visual.

Las graficas tipo Beeswarm listan en el eje vertical las variables de entrada (mediciones de
asiento a distintas profundidades), mientras que el eje horizontal representa los valores SHAP
de cada observacion, los cuales indican el impacto de cada variable en la salida del modelo. Los
valores de SHAP pueden ser positivos o negativos, lo que indica que la variable de entrada
contribuya a aumentar o disminuir, respectivamente, la prediccién del modelo. Por ejemplo,
una alta densidad de puntos alejados del eje vertical (alto valor SHAP), especialmente en color
rojo y en la zona positiva, indica una alta contribucidn positiva de esa variable en la predicciéon

del modulo de elasticidad.

Los diagramas de barras resumen graficamente la importancia relativa de cada variable,
representando el valor medio absoluto de los valores SHAP. En el eje vertical se indican las
variables de entrada (mediciones de asiento), y el eje horizontal muestra cuanto contribuye
cada variable, en promedio, a la prediccion del modelo, sin importar la direccién del impacto

(positivo o negativo).

El analisis realizado mediante SHAP ha permitido entender qué profundidades son mas
determinantes en el calculo retrospectivo de los mddulos de elasticidad del terreno. Las
mediciones superficiales han demostrado tener un impacto transversal relevante en todos los

modulos estudiados, especialmente significativo en médulos superficiales (E7 y E2). Por otra
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parte, mediciones profundas (a partir de 10 m) se vuelven cada vez mas criticas conforme se

calibran médulos correspondientes a capas mas profundas (E3 y E4).

El médulo de elasticidad E; esta claramente asociado con las capas superficiales del terreno.
De acuerdo con la Figura 7-66 y la Figura 7-67, los valores de SHAP mas altos aparecen en
profundidades superficiales (0.0 m, 0.5 m y 1.0 m), confirmando que estos datos son criticos
para calibrar correctamente E;. Mediciones mas profundas tienen menor impacto, lo que

corrobora la ldgica geotécnica del problema.

El médulo de elasticidad E; representa un estrato intermedio (2.0 a 7.5 m). Los graficos
correspondientes al mddulo de elasticidad del segundo estrato se pueden encontrar en la
Figura 7-68 y la Figura 7-69. Resulta significativo que tanto las mediciones superficiales (z=0
m y z=1 m) como las profundas (z=20 m) muestran alta importancia. Esto sugiere que para la
correcta calibracion de E2 es necesario considerar tanto los datos superficiales (posiblemente
por interaccion estructural directa) como profundos (por influencia acumulada). Por otra
parte, los limitados datos de monitorizacion por debajo de los 5m de profundidad, limitandose
a 10m y 20m de profundidad, hacen que el andlisis retrospectivo tenga que apoyarse de los

datos disponibles a mayor profundidad.

El médulo de elasticidad E; corresponde a un estrato mas profundo (7.5 a 15.0 m). Los graficos
correspondientes al mdédulo de elasticidad del segundo estrato se pueden encontrar en la
Figura 7-70 y la Figura 7-71. Los resultados indican que los asientos superficiales
(especialmente z=5.0 m y z=0 m) contintian siendo influyentes, probablemente debido a
efectos acumulativos, mientras que mediciones intermedias (z=10 m) muestran una influencia
menor, aunque también importante. La profundidad de 5.0 m muestra la maxima influencia,

posiblemente por su ubicacién cercana al inicio del estrato correspondiente.

El médulo de elasticidad E; representa las capas mas profundas (15 a 30 m). Los graficos
correspondientes al mddulo de elasticidad del segundo estrato se pueden encontrar en la
Figura 7-72 y la Figura 7-73. Resulta llamativo que, aunque se esperaria que profundidades
grandes fuesen las mdas determinantes, la superficie (0.0 m) sigue ejerciendo una influencia
considerable. Las mediciones en 0.0 my 0.5 m tienen alta relevancia, destacando la importancia
del efecto acumulativo del asiento superficial en la calibracién de médulos muy profundos.
Mediciones a 10.0 m y 20.0 m también muestran una influencia relevante, pero algo menor, lo

que es esperable en la l6gica geotécnica del problema.
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Figura 7-66 — SHAP Beeswarm para Ei1
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Figura 7-67 — SHAP value para E;
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Figura 7-68 — SHAP Beeswarm para E:
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Figura 7-69 — SHAP value para E2
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Figura 7-70 — SHAP Beeswarm para E3
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Figura 7-71 — SHAP value para E3
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Figura 7-72 — SHAP Beeswarm para Eq4
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Figura 7-73 — SHAP value para Ey4
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Con el fin de sintetizar los resultados obtenidos mediante la técnica SHAP y facilitar su
interpretacion, se ha elaborado la Tabla 7-11, donde se resume la influencia relativa de cada
medicion de asiento en la estimacion de los diferentes médulos de elasticidad del terreno (Ej,

Ez, E3 y E4).

La tabla clasifica la importancia de cada profundidad en cuatro niveles cualitativos (muy baja,
baja, media, alta), en funcién del valor medio absoluto de SHAP obtenido para cada variable.
Esta clasificacion permite visualizar de forma rapida qué mediciones tienen mayor impacto en
la prediccion de cada parametro, lo que resulta especialmente util para orientar decisiones en
futuras campaiias de instrumentacion o para priorizar sensores en contextos con limitaciones

de monitorizacion.

Este resumen evidencia, por ejemplo, que las mediciones superficiales (z = 0.0-1.0 m) son
determinantes en la estimacion de E;, mientras que las mas profundas (z =10.0-20.0 m) cobran
mayor relevancia progresivamente en la prediccién de E3 y E4. También permite observar que
ciertas profundidades intermedias, como z = 5.0 m, mantienen una relevancia transversal en
todos los médulos, probablemente debido a su ubicacién estratégica en la transiciéon entre

estratos.

Tabla 7-11 — Resumen influencia SHAP por médulo elastico

Profundidad (m) E4 E> E3 E4
0.0 Alta Alta  Media Alta
0.5 Alta Media Media Media
1.0 Alta Media Baja Media
2.0 Media Alta  Media Media
3.0 Baja Media Media Baja
5.0 Baja Media Alta Media
10.0 Muy baja Media Media Media
20.0 Muy baja  Alta Media Media

Los patrones identificados mediante SHAP proporcionan una base objetiva y visualmente
interpretativa para discutir la validez y limitaciones del modelo en el capitulo 8 y abren la
puerta a estudios futuros para explorar los puntos de monitorizacién dptimos en un analisis

inverso.

186



Resultados

7.4 Analisis detallado de los resultados del caso de estudio sintético

A continuacion, se presentan los resultados mas relevantes obtenidos tras la aplicacion de los
distintos métodos de optimizacion en el caso de estudio sintético, poniendo el foco en aquellos
que han mostrado un comportamiento destacado, ya sea por su eficiencia computacional o por

la precision alcanzada en la estimacion de los médulos de elasticidad.

Este apartado incluye una seleccion representativa de los algoritmos aplicados, con el fin de
ilustrar los patrones observados y justificar su rendimiento comparativo. Los resultados
detallados para cada uno de los algoritmos de optimizacion evaluados, tal como se describen

en el apartado 5.2, se recogen integramente en el ANEJO A.

7.4.1 Métodos basados en gradientes

La Figura 7-74 y la Figura 7-75 muestran la evolucion del error cuadratico medio durante el
proceso iterativo de los métodos de Gauss-Newton y Levenberg-Marquardt, respectivamente,

comparando los casos sin ruido (grafica izquierda) y con ruido (grafica derecha).

En el caso de Gauss-Newton, la convergencia ocurre rapidamente en ambos escenarios. Para
datos sin ruido, el error se reduce casi a cero en la octava iteracion, lo que evidencia la alta
eficiencia del algoritmo en condiciones ideales. En presencia de ruido, el nimero de iteraciones
necesarias es similar (once iteraciones), aunque el error residual final es mayor debido a la

incertidumbre inherente a los datos, lo cual es coherente con lo esperado.
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Figura 7-74 — No. Iteraciones para convergencia segin Gauss-Newton (sin ruido — con ruido)
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Figura 7-75 — No. Iteraciones para convergencia segln Levenberg-Marquardt (sin ruido — con ruido)

Por su parte, el método de Levenberg-Marquardt requiere mas iteraciones para converger. En
el caso sin ruido, alcanza el criterio de parada en la iteracidon catorce, mientras que con ruido
se necesitan hasta quince iteraciones. Al igual que en Gauss-Newton, se observa un error
residual mas elevado en el escenario con ruido, reflejando la sensibilidad del modelo a la

calidad de los datos de entrada.

La Figura 7-76 y la Figura 7-77 representan la evolucién del proceso de optimizacion en el
espacio de soluciones delimitado por los médulos E1 y E2 para los métodos de Gauss-Newton
y Levenberg-Marquardt, respectivamente. En ambas figuras se muestra tanto el caso sin ruido

(izquierda) como el con ruido (derecha).

La trayectoria seguida por los algoritmos parte de un punto inicial (resaltado en azul) y
progresa iterativamente hasta alcanzar una solucidén final (circulo verde). La posicién del

minimo tedrico se indica mediante un circulo rojo.

En ambos métodos se observa un comportamiento estable y dirigido al 6ptimo, sin evidencia
de estancamiento en minimos locales, lo que demuestra una buena capacidad de exploracion
del espacio de bisqueda. No obstante, al introducir ruido en los datos, el punto de convergencia
se desplaza ligeramente respecto al éptimo ideal, como resultado de la incertidumbre en la
informacion observada. Este efecto es coherente con la sensibilidad de los métodos de ajuste
frente a perturbaciones en las mediciones y refleja la robustez relativa de ambos algoritmos

ante ruido.
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Figura 7-76 — Mapa trayectoria E:1 y E2 para cada iteracidn segin Gauss-Newton (sin ruido — con ruido)
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Figura 7-77 — Mapa trayectoria E1 y E2 para cada iteracion segun Levenberg-Marquardt (sin ruido — con
ruido)

La Figura 7-78 y la Figura 7-79 muestran la comparacién entre los perfiles de deformacion
tedricos y los perfiles ajustados obtenidos mediante el retrocdlculo de los moédulos de
elasticidad, tanto para el caso ideal (sin ruido) como para el caso con ruido. En cada figura, se
presentan los resultados correspondientes al método de Gauss-Newton y Levenberg-

Marquardt, respectivamente.

Se representa el asiento acumulado frente a la profundidad, comparando la curva obtenida con
los moédulos tedricos (curva negra discontinua) y la generada a partir de los mddulos calibrados

por optimizacion (curva negra continua). En ambos métodos se observa un ajuste excelente en
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el caso sin ruido, donde las curvas practicamente se solapan, lo que valida la capacidad del

modelo para recuperar los pardmetros originales.
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Figura 7-78 — Asiento tedrico con valores de E:1y Ez retrocalculados segin Gauss-Newton (sin ruido — con

ruido)
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Figura 7-79 — Asiento tedrico con valores de E: y Ez retrocalculados segin Levenberg-Marquardt (sin
ruido — con ruido)
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En el caso con ruido, aunque se aprecia una ligera desviaciéon por debajo de los 5m de
profundidad, el modelo sigue proporcionando una aproximacién razonable, lo que evidencia
surobustez frente a datos con incertidumbre. Esta visualizacién permite verificar graficamente
la bondad del ajuste global y ofrece una interpretacion directa de la coherencia geotécnica del

retroanalisis realizado.

7.4.2 Heuristicos y metaheuristicos - Evolutivos

7.4.2.1 Algoritmo Genético Simple

La aplicacién del algoritmo genético simple (SGA) para la calibraciéon de los mdédulos de
elasticidad ha permitido evaluar el comportamiento poblacional en distintas generaciones, asi
como analizar la evolucion del ajuste a los datos observados en funcién de la presencia o

ausencia de ruido.

El algoritmo considera una poblacién fija de 75 individuos, que evolucionan de manera
iterativa a través de operadores genéticos clasicos (seleccion, cruce y mutacién). El nimero de
generaciones no estd predefinido, sino que se prolonga hasta alcanzar un error cuadratico

medio inferior al umbral adoptado como criterio de convergencia.

En primer lugar, la Figura 7-80 muestra la evolucion del reemplazo generacional hasta alcanzar
la convergencia. A la izquierda se representa el caso sin ruido y, a la derecha, el caso con ruido.
En ambas simulaciones se observa un descenso inicial abrupto del reemplazo generacional,
correspondiente a la fase de convergencia rapida del algoritmo hacia zonas prometedoras del
espacio de busqueda. A medida que avanzan las generaciones, el reemplazo se estabiliza en
torno a un valor medio, sefial de que la poblacién ha alcanzado un equilibrio evolutivo. En el
caso con ruido, el reemplazo tiende a valores mas bajos, lo cual indica una mayor dificultad

para mantener diversidad genética en presencia de incertidumbre.

La Figura 7-82 (sin ruido) y la Figura 7-83 (con ruido) muestran la evolucion de la poblacién
en el espacio de busqueda definido por los parametros E; y E,. Se representan distintas
generaciones clave (1, 5, 10, 20, 30, 40 y 50), donde cada punto negro corresponde a un
individuo y el punto rojo representa la solucién objetivo (minimo). Puede observarse que, en
ambos casos, la poblacién se va concentrando progresivamente en una regién éptima del
espacio. Sin embargo, en presencia de ruido, los individuos presentan una mayor dispersiéon en

las generaciones intermedias, reflejo del efecto del ruido sobre la precision del ajuste.
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Finalmente, la Figura 7-81 muestra la comparacién entre los asientos medidos y los asientos
calculados con los moédulos de elasticidad retrocalculados. A la izquierda se presenta el caso
sin ruido y a la derecha con ruido. En ambos casos se observa un buen ajuste general, si bien el
modelo con ruido presenta una ligera desviacion en las zonas intermedias de profundidad. Este
efecto es consistente con el comportamiento observado en otros algoritmos y refuerza la

necesidad de considerar métodos robustos ante incertidumbre en datos experimentales.
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Figura 7-80 — Reemplazo generacional en algoritmo genético simple (sin ruido — con ruido)
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Figura 7-81 — Asiento tedrico con valores de E:y Ez retrocalculados segun algoritmo genético simple (sin
ruido — con ruido)

192



Resultados

E,(MPa)

E,(MPa)

E, (MPa)

E,(MPa)

100
90
80
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

100
a0
20
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

Generacion 1 Generacion 5

90
[ X ] 80
70
60
50

**

e ®
[ ]
®
[ ]

(S ne s
® Py ° o
.. o ® . 40 :
0 e o 0 ®
nimo
SN o SR - .
° °, L L e ® 10 °

E, (MPa)

10 20 30 40 50 60 70 80 S0 100 0O 10 20 30 40 50 60 70 80 S0 100
E, (MPa) E, (MPa)

Generacion 10 Generacion 20

100
90
80
70
60
50
40
30
Minimo 20 .. Minimo

E, (MPa)

-
e
10

10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
E; (MPa) E, (MPa)

Generacion 30 Generacion 40

100
90
80
70
60
50
40
30

'. Minimo 20 .. Minimo
10

E, (MPa)

10 20 30 40 50 60 70 80 S0 100 0O 10 20 30 40 50 60 70 80 S0 100
E, (MPa) E, (MPa)

Generacion 50

Y .
* Minimo

10 20 30 40 50 60 70 80 90 100
E, (MPa)

Figura 7-82 — Evolucién poblacién en algoritmo genético simple (sin ruido)
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Figura 7-83 — Evolucién poblacidn en algoritmo genético simple (con ruido)
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7.4.2.2 Algoritmo Genético Adaptativo

En esta seccidon se presentan los resultados obtenidos mediante la aplicacion del algoritmo
genético adaptativo, una variante mejorada del enfoque genético clasico que ajusta

dindmicamente sus parametros para optimizar el proceso de buiisqueda.

Como en el caso anterior, el algoritmo considera una poblacién fija de 75 individuos, que
evolucionan de manera iterativa a través de operadores genéticos clasicos (seleccidn, cruce y
mutacion). El nimero de generaciones no esta predefinido, sino que se prolonga hasta alcanzar
un error cuadratico medio inferior al umbral adoptado como criterio de convergencia. Estas
bases implican que se priorice la precision sobre la rapidez computacional. Esta estrategia ha
demostrado ser particularmente 1til en escenarios con incertidumbre, ya que permite una

adaptacion continua sin necesidad de intervencién manual.

La Figura 7-84 muestra la evoluciéon del nimero de individuos reemplazados en cada
generacién, tanto para el caso sin ruido (izquierda) como con ruido (derecha). Puede
observarse una tendencia descendente en las primeras generaciones, donde el algoritmo
explora activamente nuevas soluciones. Posteriormente, el nimero de reemplazos se
estabiliza, indicando que la poblacién ha convergido hacia regiones prometedoras del espacio
de soluciones. En comparaciéon con el algoritmo genético simple, el comportamiento del
reemplazo es mas eficiente y menos oscilante, lo cual sugiere una mayor estabilidad del

algoritmo adaptativo.

La evolucién de la poblacion en el espacio de soluciones se representa en las Figura 7-86 (sin
ruido) y Figura 7-87 (con ruido). En ambas se aprecia cdmo, a lo largo de las generaciones, los
individuos se agrupan progresivamente en torno al minimo global, indicado en rojo. El proceso
es mas eficiente que en el caso anterior: desde las primeras generaciones, se observa una
concentracion de soluciones hacia un entorno muy préximo al minimo, y esta tendencia se
mantiene incluso en presencia de ruido, lo que evidencia la robustez del algoritmo frente a

datos inciertos.

Por tultimo, la Figura 7-85 compara el perfil de asientos retrocalculado con el perfil teérico,
tanto en el caso sin ruido (izquierda) como con ruido (derecha). El ajuste logrado es muy
acertado en ambos escenarios, aunque, como es esperable, el caso con ruido presenta una

ligera desviacion en las mediciones profundas.
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Figura 7-84 — Reemplazo generacional en algoritmo genético adaptativo (sin ruido — con ruido)
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Figura 7-85 — Asiento tedrico con valores de E:y Ez retrocalculados segun algoritmo genético adaptativo
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Figura 7-86 — Evolucién poblacidn en algoritmo genético adaptativo (sin ruido)
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Figura 7-87 — Evolucién poblacidn en algoritmo genético adaptativo (con ruido)
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7.4.2.3 Enjambre de particulas

A continuacidn, se presentan los resultados obtenidos al aplicar el algoritmo Particle Swarm
Optimization (PSO - Enjambre de particulas) para la estimacién de los médulos de elasticidad.
Este método utiliza una poblacion de 75 particulas que se desplazan en el espacio de busqueda
simulando el comportamiento colectivo de un enjambre. A diferencia de los algoritmos
genéticos, en PSO no se produce reemplazo generacional, sino que cada particula ajusta su
posicion y velocidad en funcién de su experiencia individual y la del conjunto del enjambre,

permitiendo una exploracién continua y cooperativa del espacio de soluciones.

Las siguientes graficas muestran la evolucion de la posicién de las particulas a lo largo de
distintas iteraciones (Iteracion 1, 5, 10, 20, 30, 40 y 50), tanto para el caso ideal (Figura 7-88)
como para el caso con ruido (Figura 7-89). En ambos escenarios, se observa una rapida
convergencia hacia la region éptima del espacio de busqueda, con una reduccién progresiva en
la dispersion de las soluciones. En las primeras generaciones, las particulas exploran un rango
amplio de valores de E; y E;, pero hacia la generaciéon 20 la mayoria se agrupa en torno al

minimo, destacando la eficiencia del algoritmo para identificar regiones prometedoras.

Incluso en presencia de ruido, el enjambre muestra un comportamiento robusto, aunque se
detecta una ligera desviacién respecto al 6ptimo tedrico, el conjunto de particulas logra
localizar soluciones préximas al minimo global sin evidencias de estancamiento prematuro ni

convergencia hacia 6ptimos locales irrelevantes.

En la Figura 7-90 se observa la comparacién entre los asientos medidos y los asientos
calculados con los parametros 6ptimos obtenidos. Tanto en el caso sin ruido (izquierda) como
con ruido (derecha), el algoritmo logra reproducir con alta precision el perfil tedrico de
deformaciones, especialmente en las zonas mas criticas de la curva. El ajuste es
particularmente bueno en la superficie y los primeros metros de profundidad, se mantiene

aceptable hasta los 20 metros.
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7.4.3 Métodos hibridos
7.4.3.1 Algoritmo genético simple y Gauss-Newton

En este apartado se recogen los resultados del modelo hibrido que combina una busqueda
global, mediante un algoritmo genético simple, y una bisqueda local con el método Gauss-

Newton. Los resultados se presentan para ambas etapas.

De acuerdo con los resultados de los métodos evolutivos expuestos en el punto anterior, la
evolucion de reemplazo generacional hasta alcanzar la convergencia requiere de mas de 50
generaciones. No obstante, como se puede ver en la Figura 7-80, se observa un descenso inicial
abrupto del reemplazo generacional, correspondiente a la fase de convergencia rapida del
algoritmo hacia zonas prometedoras del espacio de busqueda. A medida que avanzan las
generaciones, el reemplazo se estabiliza en torno a un valor medio, sefial de que la poblaciéon

ha alcanzado un equilibrio evolutivo.

La fase de convergencia rapida suele darse en 10 generaciones, por lo que se ha configurado la
busqueda global para que el algoritmo genético se ejecuta durante 10 generaciones, empleando

una poblacién de 50 individuos, lo que permite una exploracién amplia del espacio de
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soluciones. La Figura 7-91 ilustra como evoluciona la poblaciéon a lo largo de las generaciones,
observandose una clara convergencia hacia una regién del espacio de pardmetros donde se

sitda el minimo global. Este punto actiia como valor inicial para la segunda fase del modelo.
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Figura 7-91 — Reemplazo generacional en algoritmo genético simple (sin ruido — con ruido)

La Figura 7-92 (sin ruido) y la Figura 7-93 (con ruido) muestran la evolucion de la poblacion
en el espacio de busqueda definido por los parametros E; y E,. Se representan distintas
generaciones clave (1, 2, 3,4, 5, 6, 8 y 10), donde cada punto negro corresponde a un individuo
y el punto rojo representa la solucidn objetivo (minimo). Puede observarse que, en ambos
casos, la poblacién se va concentrando progresivamente en una regiéon 6ptima del espacio, sin
alcanzar una convergencia dentro del error admisible. Sin embargo, en presencia de ruido, los
individuos presentan una mayor dispersion en las generaciones intermedias, reflejo del efecto

del ruido sobre la precision del ajuste.
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Figura 7-92 — Evolucién poblacién en algoritmo genético simple (sin ruido)
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Figura 7-93 — Evolucién poblacién en algoritmo genético simple (con ruido)
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Posteriormente, se aplica el método Gauss-Newton utilizando como punto de partida la mejor
solucion obtenida en la fase evolutiva. Tal y como se muestra en la Figura 7-94, esta fase
permite una rapida reduccién del error cuadratico medio, convergiendo en muy pocas

iteraciones a una solucion 6ptima.

La Figura 7-95 resume graficamente el proceso, donde se observa la evolucidn del error desde

el punto inicial (tras la fase genética) hasta la solucién final optimizada mediante Gauss-

Newton.
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Figura 7-94 — No. Iteraciones para convergencia seglin Gauss-Newton (sin ruido — con ruido)
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Figura 7-95 — Mapa trayectoria E: y E2 para cada iteracidn segun Gauss-Newton (sin ruido — con ruido)
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Finalmente, la Figura 7-96 muestra el excelente ajuste entre los valores medidos de asiento y

los retrocalculados a partir de los parametros obtenidos con este enfoque hibrido.
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Figura 7-96 — Asiento tedrico con valores de E:1y Ez retrocalculados segin Genético Simple y Gauss-
Newton (sin ruido — con ruido)

7.4.3.2 Algoritmo genético adaptativo y Gauss-Newton

En esta seccion se presentan los resultados del modelo hibrido que integra una primera fase
de exploracién global mediante algoritmo genético adaptativo, seguida de una optimizacién
local mediante el método Gauss-Newton. Esta combinacién permite beneficiarse de la
capacidad exploratoria del algoritmo genético adaptativo y de la radpida convergencia del

método de minimos cuadrados.

De acuerdo con los resultados de los métodos evolutivos expuestos en el punto anterior, la
evolucion de reemplazo generacional hasta alcanzar la convergencia requiere de mas de 50
generaciones. No obstante, como se puede ver en la Figura 7-84, se observa un descenso inicial
abrupto del reemplazo generacional, correspondiente a la fase de convergencia rapida del
algoritmo hacia zonas prometedoras del espacio de busqueda. A medida que avanzan las
generaciones, el reemplazo se estabiliza en torno a un valor medio, sefial de que la poblacién

ha alcanzado un equilibrio evolutivo.
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La fase de convergencia rapida suele darse en 10 generaciones, por lo que se ha configurado la
busqueda global para que el algoritmo genético se ejecuta durante 10 generaciones, empleando
una poblacién de 50 individuos, lo que permite una exploracién amplia del espacio de
soluciones. La Figura 7-97 ilustra como evoluciona la poblacidén a lo largo de las generaciones,
observandose una clara convergencia hacia una regién del espacio de pardmetros donde se

sitda el minimo global. Este punto actiia como valor inicial para la segunda fase del modelo.
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Figura 7-97 — Reemplazo generacional en algoritmo genético adaptativo (sin ruido — con ruido)

La Figura 7-98 (sin ruido) y la Figura 7-99 (con ruido) muestran la evolucidn espacial de la
poblacién en el plano definido por los parametros E; y E,. A medida que avanza el proceso
evolutivo, los individuos tienden a concentrarse en zonas cada vez mas cercanas al minimo
global. No obstante, el ruido en los datos induce una ligera dispersion adicional en las
generaciones intermedias, lo que pone de manifiesto la robustez del algoritmo para mantener
el enfoque en soluciones viables. Se representan distintas generaciones clave (1, 2, 3,4, 5, 6, 8
y 10), donde cada punto negro corresponde a un individuo y el punto rojo representa la

solucion objetivo (minimo).
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Figura 7-98 — Evolucién poblacién en algoritmo genético adaptativo (sin ruido)
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Figura 7-99 — Evolucién poblacién en algoritmo genético adaptativo (con ruido)
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Concluida la etapa evolutiva, se aplica el método Gauss-Newton tomando como punto inicial el
mejor individuo obtenido por el algoritmo genético. Como se muestra en la Figura 7-100, la
convergencia es rapida y eficaz, logrando una reduccién significativa del error cuadratico

medio en nueve iteraciones.

La Figura 7-101 resume graficamente el proceso, donde se observala evolucion del error desde
el punto inicial (tras la fase genética) hasta la solucién final optimizada mediante Gauss-
Newton. En ambos escenarios (con y sin ruido), se aprecia una aproximacidn directa al minimo,

con una mejora sustancial respecto al punto de partida.
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Figura 7-100 — No. Iteraciones para convergencia segun Gauss-Newton (sin ruido — con ruido)
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Figura 7-101 — Mapa trayectoria E1 y E2 para cada iteracion segin Gauss-Newton (sin ruido — con ruido)
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Finalmente, la Figura 7-102 evidencia el ajuste entre los valores de asiento medidos y aquellos
obtenidos con los moédulos E; y E; retrocalculados mediante este modelo hibrido. Tanto en

condiciones ideales como en presencia de ruido, el ajuste es muy preciso.
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Figura 7-102 — Asiento tedrico con valores de E: y Ez retrocalculados segiin Genético Simple y Gauss-
Newton (sin ruido — con ruido)

7.4.3.3 Enjambre de particulas y Gauss-Newton

En este apartado se presentan los resultados correspondientes a la técnica hibrida que
combina una exploracién global mediante Particle Swarm Optimization (enjambre de

particulas) y una fase de refinamiento local utilizando el método Gauss-Newton.

La busqueda global se realiza con una poblacién de 50 particulas, que actualizan su posicion y
velocidad en funcién de su mejor experiencia personal y la de sus compafieras. Con base en los
resultados de este método como unico algoritmo de optimizacién, es necesario realizar 59
iteraciones hasta alcanzar la convergencia optima, pero el acercamiento al minimo es mas
significativo en las primeras 20 iteraciones. Con el fin de poder comparar los métodos hibridos
utilizados, se considera que la busqueda global esta compuesta por 10 iteraciones (como en los

dos casos anteriores), a pesar de que el resultado de la bisqueda global pueda ser menos

prometedor que en los casos anteriores.
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Figura 7-104 — Evolucidn particulas en enjambre de particulas (con ruido)
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En la Figura 7-103 (sin ruido) y la Figura 7-104 (con ruido) se muestran la evolucién de las
particulas en el espacio de buisqueda definido por los parametros E; y E,. Se representan
distintas iteraciones clave (1, 2, 3, 4, 5, 6, 8 y 10), entendidas aqui como instantes discretos de
actualizacion colectiva, donde cada punto negro corresponde a una particula y el punto rojo
representa la soluciéon objetivo (minimo). En dichas figuras se observa una progresiva
concentracion de las particulas hacia la regién 6ptima, tanto en el caso sin ruido como con
ruido, aunque en este ultimo se aprecia mayor dispersion intermedia debido ala incertidumbre

de los datos.

El método Gauss-Newton se aplica a continuacién, tomando como punto de partida el mejor
resultado obtenido por el algoritmo evolutivo. La Figura 7-105 muestra la evolucién del error
cuadratico medio durante esta fase. La convergencia es rapida, alcanzandose el minimo en siete
iteraciones. En presencia de ruido son necesarias hasta 10 iteraciones, adicionalmente, el error

final es ligeramente superior, pero sigue siendo aceptable.

La Figura 7-106 resume graficamente el proceso, donde se observa la evolucion de los médulos
de elasticidad calculados para cada iteracion desde el punto inicial (tras la fase de busqueda
global) hasta la solucidn final optimizada mediante Gauss-Newton. En ambos escenarios (con
y sin ruido), se aprecia una aproximacién directa al minimo, con una mejora sustancial respecto

al punto de partida.
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Figura 7-105 — No. Iteraciones para convergencia segun Gauss-Newton (sin ruido — con ruido)
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Figura 7-106 — Mapa trayectoria E1 y E2 para cada iteracion segin Gauss-Newton (sin ruido — con ruido)

Finalmente, la Figura 7-107 compara los perfiles de asentamiento medidos y retrocalculados a
partir de los valores estimados de los mddulos de elasticidad. En ambos casos (sin ruido y con
ruido), el modelo reproduce con gran precisidn el comportamiento del terreno, destacando el
buen acoplamiento de esta técnica hibrida. En comparacién con otros enfoques, este método
ha demostrado un mejor ajuste final que la combinacién genética simple + Gauss-Newton o

incluso genética adaptativa + Gauss-Newton.
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Figura 7-107 — Asiento tedrico con valores de E; y E2 retrocalculados segin enjambre de particulas y
Gauss-Newton (sin ruido — con ruido)
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7.4.3.4 Machine Learning y Gauss-Newton o Levenberg-Marquardt

En este apartado se presentan los resultados obtenidos con la metodologia hibrida propuesta
en este Trabajo Final de Master, la cual constituye una de las principales contribuciones del
trabajo. A diferencia de los enfoques hibridos expuestos anteriormente, los cuales combinan
algoritmos evolutivos en la fase de busqueda global, se plantea aqui una estrategia basada en
la combinacién de técnicas de Machine Learning (redes neuronales artificiales) para la
busqueda global, junto con el método de Gauss-Newton o Levenberg-Marquardt como

optimizacion local.

Esta propuesta se fundamenta en la capacidad de los modelos neuronales para capturar
relaciones complejas entre variables geotécnicas, proporcionando un punto de partida

robusto, y de bajo coste computacional, para la fase de ajuste local.

A nivel conceptual, la diferencia fundamental respecto a metodologias previas radica en que el
modelo inicial no se define arbitrariamente ni mediante busquedas aleatorias, sino que se
entrena con datos de campo y sintéticos generados mediante correlaciones empiricas entre los
resultados del ensayo SPT corregido Nigeo, la profundidad del estrato, la distribucion

granulométrica y el moédulo de elasticidad E.

Se emplea una red neuronal tipo Multilayer Perceptron (MLP), con una configuracién tipo
feedforward de una tinica capa oculta con 10 neuronas. La funcién de activacién empleada en
la capa oculta es la funcién sigmoide, mientras que en la capa de salida se emplea una funciéon

lineal, habitual en modelos de regresion.

El modelo se ha entrenado empleando como datos de entrada el nimero de golpes corregido
del ensayo SPT (N1,0) y el tipo de suelo (arenas limosas, arenas limpias o arenas con gravas).
La variable de salida del modelo es el modulo de elasticidad. Para ello se ha utilizado el
algoritmo Levenberg-Marquardt, particularmente util en redes pequefias y con conjuntos de

datos de tamafio moderado, como es el caso de estudio.

La division del conjunto de datos se realiza automaticamente por MATLAB en tres

subconjuntos:
e 70% para entrenamiento
e 15% para validacién (Control del sobreajuste durante el entrenamiento)

e 159% para test (evaluacion independiente de rendimiento)

217



Resultados

Este reparto permite evitar sobreajuste y comprobar que el modelo mantiene su capacidad

predictiva con datos no vistos durante el entrenamiento.

En la Figura 7-108 se presenta la evolucion del error cuadratico medio (MSE) a lo largo de las
69 épocas empleadas durante el entrenamiento de la red neuronal mediante el algoritmo
Levenberg-Marquardt. El grafico muestra los errores correspondientes a los conjuntos de
entrenamiento (azul), validacién (verde) y prueba (rojo), asi como la mejor iteracion del
modelo (linea discontinua vertical y circulo). Se observa que el modelo converge rapidamente
en las primeras épocas, alcanzando una region estable de error minimo en torno a la época 61,
momento en el cual se registra el mejor rendimiento de validacién con un MSE = 0.03. La curva
de validacion se mantiene por debajo de la de entrenamiento durante la mayor parte del
proceso, lo que indica una buena capacidad de generalizacién del modelo y ausencia de
sobreajuste. El error de prueba permanece también préximo al de entrenamiento, lo que

sugiere que el modelo tiene un comportamiento coherente sobre datos no vistos.
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Figura 7-108 — Curva de aprendizaje red neuronal

En la Figura 7-109 se representa el histograma del error de prediccion de la red neuronal para

los tres subconjuntos (entrenamiento, validacién y prueba). La distribuciéon es simétrica y
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centrada en torno al error cero, con una alta concentracién de errores pequefios, lo que indica

un buen ajuste general del modelo en todas las fases.
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Figura 7-109 — Histograma del error de prediccién de la red neuronal

En la Figura 7-111 se ilustran las curvas de evolucion del gradiente, el parametro de
actualizacion p del algoritmo Levenberg-Marquardt, y el nimero de fallos de validacion. El
descenso del gradiente y la estabilizacion de p indican que el modelo ha aprendido
progresivamente hasta alcanzar la convergencia. Los fallos de validacién son escasos, lo cual

valida ain mas la estabilidad del modelo.

En la Figura 7-111 se representa la comparacion entre los valores reales del mddulo de
elasticidad y las estimaciones proporcionadas por el modelo para todo el conjunto de datos. La
nube de puntos sigue fielmente la bisectriz, lo que indica una alta precisiéon del modelo y la

ausencia de sesgos sistematicos relevantes.
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Figura 7-110 — Curvas de gradiente, parametro de ajuste y fallos de validacién
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En la Figura 7-112 se muestra una visién desglosada del ajuste entre datos reales y predichos
para cada subconjunto (entrenamiento, validacién, test y conjunto completo), con las
correspondientes rectas de regresién. En todos los casos se obtienen coeficientes de

correlacién superiores a 0.97, lo cual indica un alto grado de ajuste en todas las fases.
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Figura 7-112 — Representacion de correlacidén por subconjuntos

Finalmente, la Figura 7-113 muestra un analisis de sensibilidad en el que se evalia la respuesta
del modelo ante variaciones de N1, para un tipo de suelo fijo (arena limosa). Se observa una
relacion creciente practicamente lineal, coherente con las correlaciones empleadas para el

entrenamiento, lo que valida la capacidad del modelo para generalizar correctamente.
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Figura 7-113 — Sensibilidad modelo red neuronal respecto a Ni,60

El modelo entrenado ha sido utilizado para estimar el médulo de elasticidad del caso de estudio

sintético. Los valores de entrada utilizados fueron los siguientes:
e Valores de N1
e Profundidad: entre 1y 30m

e Tipo de suelo: clasificado como arena limosa (primeros 15m) o arena limpia (por

debajo de 15m).

Los valores del numero de golpes del ensayo SPT se presentan en la Figura 7-114, donde se
muestra el resultado de campo y corregido frente a la profundidad. El perfil obtenido muestra
una variacién progresiva, con golpes mas bajos en superficie (arena limosa) y un incremento

moderado en profundidad (arena limpia).

222



Resultados

Blows/ft
0 10 20 30 40 50 60 70
00m
A [ ]
A @
A e
Ae
50m Ao
A®
A O
A
"»
10.0m L
L 3
®A
® A
[ ] A
— 15.0m L] A
% . N A N Campo
ks ° A ®N1,60
= L] A
3 . A
& 20.0m ° A
° A
L ] A
L] A
L] A
25.0m L] A
[} A
[ ] A
[ ] A
[ ] A
30.0m L] A
35.0m

Figura 7-114 — Resultados ensayo SPT de campo y corregidos (N1,60)

El resultado de esta prediccidn se presenta en la Figura 7-115, donde se muestra el perfil del
modulo de elasticidad estimado frente a la profundidad. El perfil obtenido muestra una
variacién progresiva, con mdédulos mas bajos en superficie (arena limosa) y un incremento

moderado en profundidad (arena limpia).

Este perfil se emplea como base para la creaciéon del modelo inicial del terreno en el analisis

retrospectivo, adoptando los valores indicados por la linea roja discontinua para cada estrato.
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Figura 7-115 — Resultados mddulos elasticidad obtenidos del modelo de Machine Learning

El método Gauss-Newton o Levenberg-Marquardt se aplica a continuacién, tomando como
punto de partida los médulos de elasticidad obtenidos por el modelo de redes neuronales. La
Figura 7-116 y la Figura 7-117 muestran la evolucion del error cuadratico medio durante esta
fase. La convergencia es rapida, alcanzandose el minimo en cuatro iteraciones en el caso de
Gauss-Newton y diez iteraciones en el caso de Levenberg-Marquardt. En presencia de ruido
son necesarias hasta 6 y 13 iteraciones, adicionalmente, el error final es ligeramente superior,

pero sigue siendo aceptable.
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Figura 7-116 — No. Iteraciones para convergencia segun Gauss-Newton (sin ruido — con ruido)
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Figura 7-117 — No. lteraciones para convergencia segun Levenberg-Marquardt (sin ruido — con ruido)

La Figura 7-118 y la Figura 7-119 resumen graficamente el proceso, donde se observa la
evolucion de los modulos de elasticidad calculados para cada iteracidén desde el punto inicial
(tras la fase de busqueda global) hasta la solucion final optimizada mediante Gauss-Newton o
Levenberg-Marquardt. En ambos escenarios (con y sin ruido), se aprecia una aproximacion

directa al minimo, con una mejora sustancial respecto al punto de partida.
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Figura 7-118 — Mapa trayectoria E1 y E2 para cada iteracion segiin Gauss-Newton (sin ruido — con ruido)

25 25
24 24
23 23
22 22
Punto inicial R
—_ —_ Punt |
T 21 g e w21 Minimo & unte fnicta
o Minimo -0 a .-
= 20 ‘ = 20 )
— — 1
~ ™~ ‘
w19 w19 b
18 18 ¢- Punto final
17 17
16 16
15 15
i0 11 12 13 14 15 16 17 18 19 20 0 11 12 13 14 15 16 17 18 19 20
E; (MPa) E; (MPa)

Figura 7-119 — Mapa trayectoria E; y E2 para cada iteracion seglin Levenberg-Marquardt (sin ruido — con
ruido)

Finalmente, la Figura 7-120 y la Figura 7-121 comparan los perfiles de asentamiento medidos
y retrocalculados a partir de los valores estimados de los m6dulos de elasticidad. En ambos
casos (sin ruido y con ruido), el modelo reproduce con gran precisiéon el comportamiento del

terreno, destacando el buen acoplamiento de esta técnica hibrida.
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Asiento (mm)

Asiento (mm)

0.00 5.00 10.00 15.00 20.00 25.00 0.00 5.00 10.00 15.00 20.00 25.00
0.0
5.0
E 10.0 |4 E
=] =
© ©
= =
= =
= =
= =
= —
2 15.0 2 150
o o
20.0 J 20.0 JD
25.0 25.0

--#==-5(mm) —— sretrocalculado (mm) — 4 —s(mm) —&— s retrocalculado (mm)

Figura 7-121 — Asiento tedrico con valores de E: y Ez retrocalculados segin red neuronal y Levenberg-
Marquardt (sin ruido — con ruido)

227



Resultados

7.5 Analisis detallado de los resultados del caso de estudio real

A continuacidn, se exponen los resultados mas relevantes obtenidos tras aplicar las distintas
estrategias de optimizacion al caso de estudio real. El analisis pone un énfasis especial en
aquellos algoritmos que han evidenciado un desempefio sobresaliente, ya sea por la rapidez
con la que convergen y, por ende, el ahorro computacional asociado, o por la precision
alcanzada al retrocalcular los médulos de elasticidad en el escenario sintético disefiado como

banco de pruebas.

La interpretacion de los datos disponibles presentaba dos restricciones fundamentales. Por un
lado, existen incertidumbres en la posicidn exacta de los puntos de monitorizacién; por otro,
se dispone unicamente de mediciones de asientos superficiales, sin informacion procedente de
niveles mas profundos. Esta doble limitaciéon impide plantear un modelo inverso que parta de
un terreno estratificado con suficientes grados de libertad para capturar la variabilidad vertical

del subsuelo.

Ante este escenario, se adopté una formulacion simplificada del mddulo de elasticidad,

asumiendo una ley lineal con la profundidad:

E(z) = A+ Bz (198)

Donde,
E es el modulo de elasticidad (MPa)
A representa la rigidez inicial en la superficie (MPa)
B indica la tasa de incremento por metro de profundidad (MPa/m)

z es la profundidad (m)

Esta aproximacidn, aun siendo deliberadamente sencilla, respeta la tendencia esperada de
aumento de rigidez con la profundidad reflejada en la estratigrafia regional y, al mismo tiempo,
se ajusta al alcance real de la informacién disponible. De esta forma se logra un equilibrio
pragmatico entre fidelidad geotécnica y robustez numérica, permitiendo comparar de manera

homogénea la eficacia de los distintos métodos de optimizaciéon evaluados.
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7.5.1 Métodos hibridos

7.5.1.1 Algoritmo genético simple y Gauss-Newton o Levenberg-Marquardt

En este apartado se presentan los hallazgos obtenidos con la estrategia hibrida que combina
una fase de exploracién global, mediante un Algoritmo Genético simple, y una etapa de
refinamiento local con los métodos de Gauss-Newton y Levenberg-Marquardt. A diferencia del
ejercicio sintético, la configuracidn y la interpretacién de los resultados se han adaptado a las

caracteristicas particulares del caso real.

I. Exploracién global (Algoritmo Genético)

Se mantuvo el nimero de generaciones en 10 y la poblacién en 50 individuos para asegurar un
balance adecuado entre diversidad y coste computacional, pero los rangos iniciales de
buisqueda para A y B se ampliaron ligeramente con respecto al estudio sintético para

incorporar la mayor incertidumbre observacional.

Las Figura 7-122 ilustran la evolucién de la poblacién en el plano (4, B). En las generaciones 1,
2,3,4,5, 6,8y 10 puede apreciarse cémo los individuos se desplazan desde una dispersion
inicial hasta concentrarse en un corredor bien definido, aunque sin alcanzar todavia el umbral

de error preestablecido.

Esta fase identifica un subconjunto de soluciones prometedoras que acttian como punto de

origen para la optimizacién local.

I1. Afinado local (Gauss-Newton y Levenberg-Marquardt)

Tomando como punto de partida el mejor individuo de la fase genética, se ejecutan en paralelo
los esquemas GN y LM con idénticos criterios de parada, lo que permite contrastar su robustez

frente a la elevada no linealidad del problema.

La Figura 7-123 muestra la rdpida caida del error cuadratico medio en ambas variantes: GN
converge en dos iteraciones, mientras que LM requiere tan solo una, pero ofrece un resultado

algo mas desacertado, posiblemente al caer en un minimo local.

En la Figura 7-124 se resume la trayectoria completa del error, desde la solucion
proporcionada por el algoritmo genético hasta la convergencia fina del bloque local,

destacando la sinergia entre exploracion global y explotacién local.
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Figura 7-122 — Evolucidén poblacién en algoritmo genético simple
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Figura 7-124 — Mapa trayectoria A y B para cada iteracion segun Gauss-Newton y Levenberg-Marquardt,
respectivamente

[11. Validacion del ajuste

Finalmente, la Figura 7-125 compara los asientos medidos en superficie con los
retrocalculados a partir de los parametros optimizados. El ajuste refleja una desviacion media
inferior al 3 %, confirmando la capacidad del enfoque hibrido para capturar la rigidez creciente

con la profundidad a pesar de la limitada informaci6n disponible.
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Figura 7-125 — Asiento tedrico con valores de E: y Ez retrocalculados segin Genético Simple y Gauss-
Newton o Levenberg-Marquardt
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7.5.1.2 Algoritmo genético adaptativo y Gauss-Newton o Levenberg-Marquardt

En este apartado se documenta el desempefio del enfoque mixto que aina la exploracion global
mediante un Algoritmo Genético Adaptativo (AGA) y el pulido local con los algoritmos de
Gauss-Newton (GN) y Levenberg-Marquardt (LM). El rasgo distintivo del Algoritmo Genético
Adaptativo radica en que las probabilidades de cruce y mutacién se ajustan dindmicamente
conforme progresa la busqueda, permitiendo intensificar o diversificar la exploracién segin la

dispersion de la poblacion.

I. Exploracién global (Algoritmo Genético Adaptativo)

Al igual que en la fase sintética, se ejecutaron 10 generaciones con 50 individuos; no obstante,
los operadores genéticos se autorregulan: la tasa de mutacién se incrementa cuando la
diversidad decrece y se reduce cuando la poblaciéon vuelve a dispersarse, evitando

convergencias prematuras.

La Figura 7-126 plasma la evolucién de la poblacion sobre el plano (4, B) para las generaciones
1,2,3,4,5, 6,8y 10. La nube inicial, ampliamente dispersa, se transforma en un cimulo bien
delimitado que rodea la cuenca del minimo global con mayor rapidez que en el algoritmo

genético simple, a pesar de no alcanzar todavia el umbral de error objetivo.

I1. Afinado local (GN y LM)
Con el mejor individuo del AGA como arranque, se lanzaron GN y LM en paralelo.

La Figura 7-127 evidencia un descenso vertiginoso del error cuadratico medio: GN alcanza la
tolerancia en sdélo dos iteraciones, mientras que LM lo hace en una. En este caso concreto, LM
detecta que el punto de partida se halla practicamente en el minimo y ejecuta una correccion

marginal sobre 4, dejando B inalterado.

La trayectoria completa del error, mostrada en la Figura 7-128, subraya la complementariedad
del esquema: el Algoritmo Genético Adaptativo situa la solucién dentro de la “cuenca de
atraccion” correcta y los métodos de minimos cuadrados aseguran la llegada a la convergencia

en pocas iteraciones.
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Figura 7-126 — Evolucidén poblacidn en Algoritmo Genético Adaptativo
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Figura 7-128 — Mapa trayectoria A y B para cada iteracion segun Gauss-Newton y Levenberg-Marquardt,
respectivamente

[1I. Validacion del ajuste

En la Figura 7-129se contraponen los asientos superficiales medidos con los retrocalculados a
partir del mddulo de elasticidad optimizado. El desajuste medio se sitiia por debajo del 2,8 %,
ligeramente mejor que el obtenido con el algoritmo genético simple, reflejando la ventaja de la

adaptacidn dinamica para sortear valles locales sin comprometer la precision final.
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7.5.1.3 Enjambre de particulas y Gauss-Newton o Levenberg-Marquardt

En este epigrafe se describen los resultados obtenidos con la estrategia mixta que combina un
rastreo a gran escala mediante la optimizacién por enjambre de particulas (PSO) y un ajuste
local con los métodos de Gauss-Newton (GN) y Levenberg-Marquardt (LM). E1 PSO actia como
mecanismo de “sondeo colectivo”: cada particula ajusta su velocidad atendiendo a su mejor
experiencia individual y a la mejor experiencia compartida por el enjambre, de modo que la
nube de soluciones va migrando de forma cooperativa hacia regiones prometedoras del

espacio (4, B).

I. Fase global (Enjambre de Particulas)

Se liber6 un enjambre de 50 particulas durante 10 pasos de actualizacién, se mantienen, asi, la
dimension poblacional y el nimero de iteraciones empleados en los apartados previos para
asegurar comparabilidad directa. La Figura 7-130 muestra la proyeccion de las trayectorias en
las iteraciones clave (1, 2, 3, 4, 5, 6, 8 y 10). El patron revela una rapida atraccién inicial hacia
un corredor de minimos; sin embargo, el enjambre conserva cierta dispersién en la tltima

iteracion, reflejo de su tendencia a mantener diversidad para evitar minimos locales.

[1. Basqueda local (GN o LM).

La particula con el menor error tras el PSO se tomé como punto de arranque para los esquemas

de minimos cuadrados. La Figura 7-131 recoge la caida del error cuadratico medio:

e (Gauss-Newton alcanza la tolerancia en dos iteraciones, ejecutando correcciones

simultaneas sobre Ay B.

e Levenberg-Marquardt finaliza en una iteracidn; al identificar que el punto inicial ya se
encuentra dentro de la cuenca de atracciéon del minimo, sélo introduce un ajuste

marginal en A.

La Figura 7-132 ilustra, de forma compacta, la evolucién de los parametros desde la solucion
preliminar del PSO hasta la convergencia fina de GN y LM, subrayando cé6mo el refinamiento

local reduce la dispersion residual que ain mantenia el enjambre.
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Figura 7-130 — Evolucidn particulas en enjambre de particulas
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Figura 7-132 — Mapa trayectoria A y B para cada iteracion segun Gauss-Newton y Levenberg-Marquardt,
respectivamente

I11. Validacién del modelo inverso.

Por tultimo, la Figura 7-133superpone los asientos superficiales medidos y los retrocalculados
con los parametros optimizados. El desajuste medio queda por debajo del 3 %, resultado que
sitda a la combinacion PSO + GN/LM en un rango de precision equiparable y, en términos de
velocidad de convergencia local, ligeramente peor al de las configuraciones genéticas

ensayadas previamente.
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Figura 7-133 — Asiento tedrico con valores de A y B retrocalculados segliin enjambre de particulas y
Gauss-Newton y Levenberg-Marquardt
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7.5.1.4 Machine Learning y Gauss-Newton o Levenberg-Marquardt

El método que se describe a continuacién constituye la aportacion principal de este trabajo,
una estrategia hibrida en dos fases que sustituye la busqueda global aleatoria por un modelo
de aprendizaje automatico y conserva el refinamiento determinista con Gauss-Newton (GN) o

Levenberg-Marquardt (LM).

A diferencia de los algoritmos evolutivos empleados en apartados previos, aqui el punto de
partida se obtiene entrenando un modelo sobre ensayos presiométricos propios y valores
publicados para los suelos de la zona de estudio. De este modo se incorpora informaciéon de

campo real antes de iniciar la fase de optimizacion local.

En ausencia de un ndmero suficiente de ensayos in situ para entrenar un modelo mas
sofisticado, se optd por el esquema de Machine Learning méas elemental, una regresion lineal,
para estimar la ley E(z) = A + Bz. Aunque se trata de un aprendizaje “ligero”, sigue todas las
etapas basicas de un proceso de Machine Learning: recopilacién de datos, entrenamiento,
validacion y uso posterior de los resultados como informacién previa para la optimizaciéon

numeérica.

Los datos de partida constan de 20 ensayos presiométricos y 38 registros bibliograficos. En la
Figura 7-134 se representan los resultados de los ensayos presiométricos y la correspondiente

recta de regresion obtenida.
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Figura 7-134 — Representacion de correlacién del médulo presiométrico vs profundidad
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La recta de ajuste alcanza un coeficiente de determinacién R? igual a 0.447, lo que indica una

correlacién moderada entre rigidez y profundidad.

Para iniciar la busqueda global se definié una ventana limitada a A = 130+25 MPay B = 9.0+3.0
MPa/m. Con ello se redujo drasticamente el dominio de calculo, manteniendo, no obstante, la
posibilidad de encontrar soluciones alejadas de la linea de regresidn gracias a la incorporacion

explicita de la dispersién observada en los datos.

Finalmente, la busqueda global mediante la regresion lineal establece que el punto de partida

de la bisqueda local es A =134 MPay B = 7.0 MPa/m.

El método Gauss-Newton o Levenberg-Marquardt se aplica a continuacion. La Figura 7-135
muestra la evolucion del error cuadratico medio durante esta fase. La convergencia es rapida
para el método de Gauss-Newton, alcanzandose el minimo en cuatro iteraciones en el caso de

Gauss-Newton y catorce iteraciones en el caso de Levenberg-Marquardt.
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Figura 7-135 — No. Iteraciones para convergencia segun Gauss-Newton & Levenberg-Marquardt

La Figura 7-136 resume graficamente el proceso, donde se observa la evoluciéon de los
parametros A y B calculados para cada iteracion desde el punto inicial (tras la fase de busqueda
global) hasta la solucioén final optimizada mediante Gauss-Newton o Levenberg-Marquardt. En
ambos escenarios se aprecia una aproximacién directa al minimo, con una mejora sustancial
respecto al punto de partida. Ambas metodologias alcanzan un resultado de A y B muy similar

entre ellas.
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Figura 7-136 — Mapa trayectoria A y B para cada iteracion segun Gauss-Newton & Levenberg-Marquardt

Finalmente, la Figura 7-137 comparan los perfiles de asentamiento medidos y retrocalculados
a partir de los valores estimados de los mddulos de elasticidad. En ambos casos (GN y LM), el

modelo reproduce con gran precisién el comportamiento del terreno, destacando el buen

acoplamiento de esta técnica hibrida.
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8. DISCUSION DE LOS RESULTADOS

El presente capitulo profundiza en el analisis critico de los resultados obtenidos en el capitulo
anterior, con el objetivo de valorar la eficacia, robustez y utilidad practica de los diferentes
algoritmos aplicados al andlisis retrospectivo del médulo de elasticidad del terreno a partir de
mediciones de asiento. Para ello, se realiza una comparacion detallada entre métodos clasicos
basados en gradientes, heuristicos, hibridos y el enfoque propuesto basado en Machine
Learning combinado con algoritmos de optimizacién local. La discusion se estructura segun los
siguientes ejes: precisiéon en la estimacidn, coste computacional, sensibilidad al ruido y

capacidad de interpretacion e integracion en entornos reales.

8.1Precision en la estimacion de parametros geotécnicos

Uno de los principales objetivos de este trabajo ha sido evaluar la capacidad de los diferentes
algoritmos para estimar con precisién los mddulos de elasticidad a partir de datos sintéticos
de asientos, tanto en condiciones ideales como en presencia de ruido. La comparacion de los
errores cuadraticos medios (RMSE) y los coeficientes de determinacién (R?) entre métodos

permite extraer conclusiones claras.

En condiciones sin ruido, los métodos basados en gradientes como Gauss-Newton (GN) y
Levenberg-Marquardt (LM) destacan por su elevada precision: se obtienen valores de RMSE
inferiores a 1 KPa y coeficientes R* practicamente iguales a 1.000. Los métodos heuristicos
puros, como los algoritmos genéticos simples y la optimizacién bayesiana, presentan errores
mucho mayores (hasta RMSE > 6000 kPa en algunos casos), lo que evidencia su baja precision

cuando se utilizan de forma aislada.

Por el contrario, los enfoques hibridos que combinan métodos globales con ajustes locales
muestran una mejora significativa en la precisién. En particular, los hibridos que combinan
algoritmos evolutivos (como evolucion diferencia, enjambre de particulas o genéticos
adaptativos) con Levenberg-Marquardt o Gauss-Newton reducen drasticamente el error final,
situdndose en muchos casos por debajo de RMSE = 2 KPa. Este efecto sinérgico se explica por
el hecho de que los algoritmos globales permiten una exploracion amplia del espacio de
busqueda, mientras que los métodos de minimos cuadrados refinan la solucién en una etapa

posterior.

Sin embargo, el resultado mas destacable lo aporta el enfoque hibrido propuesto en este

trabajo, basado en Machine Learning (ML) como fase global y Gauss-Newton o Levenberg-
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Marquardt como fase local. En todos los casos del ejemplo sintético, este método alcanzé un
RMSE practicamente nulo (entre 0.0 y 2.3 kPa) y valores de R? de 1.000. Esto evidencia una
capacidad superior del modelo para predecir los médulos con gran exactitud, especialmente

en comparacion con métodos evolutivos puros o incluso hibridos tradicionales.

En el caso de estudio real, las distintas metodologias empleadas conducen a soluciones
practicamente coincidentes, lo que indica que todas ellas alcanzan una precisiéon adecuada y
coherente entre si. No obstante, el ndmero de iteraciones necesarias para llegar a dicha

solucién varia significativamente entre los métodos, como se analiza en el siguiente apartado.

8.2 Comportamiento computacional y nimero de iteraciones

Otro criterio clave en la evaluacién de los métodos es su eficiencia computacional, medida en
términos del numero de iteraciones necesarias para alcanzar la convergencia con un umbral

de error de 10-5 en el asiento superficial.

En el caso de estudio sintético, los métodos clasicos como Gauss-Newton (11 iteraciones) y
Levenberg-Marquardt (14 iteraciones) destacan por su rapidez, lo que refuerza su idoneidad
como técnica de refinamiento local. En cambio, métodos heuristicos como Simulated Annealing
(250 iteraciones), Bayesian Optimization (200 iteraciones) y Kriging (300 iteraciones)
requieren tiempos computacionales significativamente mayores, lo que limita su aplicabilidad

practica en entornos donde la eficiencia es critica.

Los métodos hibridos, al tener dos fases, acumulan iteraciones: tipicamente impuestas 10
iteraciones en la busqueda global mas entre 7 y 13 en la fase local. No obstante, el nimero total
sigue siendo inferior al de muchas técnicas heuristicas puras y, lo que es mas importante, con
una mejora notable en la calidad de los resultados. No obstante, se recalca el alto coste
computacional para realizar 10 iteraciones con poblaciones/particulas de 50 elementos en

cada caso, esto implica realizar 500 andlisis tan solo en la fase global.

En este contexto, el modelo propuesto de Machine Learning + Gauss-Newton requiere
solamente 4 iteraciones en la fase local tras el entrenamiento inicial, lo que representa una
ventaja muy relevante. El coste computacional del entrenamiento del modelo ML se amortiza
al ser utilizado en multiples retroanalisis, y su capacidad de proporcionar buenos puntos de

partida reduce significativamente el esfuerzo de ajuste posterior.
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En el caso de estudio real, la fase de busqueda local tras el modelo de Machine Learning
requiere de 4 iteraciones en el caso de Gauss-Newton y 14 si el refinamiento local se realiza
con Levenberg-Marquardt. La fase de blisqueda local en los métodos hibridos necesita tan solo
2 iteraciones, por lo que se duplica el nimero de iteraciones necesarias, no obstante, el coste
computacional de la fase de bisqueda global es significativamente menor, siendo el método

propuesto significativamente mejor en términos de coste computacional.

8.3Robustez frente al ruido y estabilidad de los algoritmos

La introduccion de ruido simulado en las mediciones representa un escenario mas realista,
donde los algoritmos deben lidiar con incertidumbres similares a las de campo. Bajo estas
condiciones, la mayoria de los algoritmos muestran un aumento esperable en el RMSE y una
ligera reduccién del R? Sin embargo, la magnitud de esta degradacién es indicativa de la

robustez del método.

Métodos clasicos como Gauss-Newton y Levenberg-Marquardt conservan una aceptable
robustez, aunque el RMSE puede incrementarse hasta 1700-1800 KPa. Algunos algoritmos
heuristicos sufren degradaciones importantes: por ejemplo, los algoritmos genéticos simples

presentan un RMSE > 2500 kPa y un R? tan bajo como 0.549.

Se destacan los buenos resultados de los métodos de btisqueda directa (Nelder-Mead), basados
en programacién matematica (cuadratica y no lineal) y optimizacién robusta por su gran ajuste

en presencia de ruido, a pesar de tener un coste computacional muy superior.

En cambio, los hibridos presentan un comportamiento mucho mas estable. Las combinaciones
evolutivas + Gauss-Newton o Levenberg-Marquardt suelen mantenerse por debajo de RMSE =
1800 KPa y R? > 0.774. El modelo propuesto de Machine Learning + Gauss-Newton mantiene
un RMSE de 1622.7 kPa y un R? de 0.813, ligeramente mejor a otros hibridos con busqueda
evolutiva. No obstante, este resultado sigue siendo competitivo y destaca por la rapidez con la

que se alcanza la convergencia.

Por el contrario, el modelo propuesto de Machine Learning + Lavenberg-Marquardt, a pesar de
necesitar hasta 13 iteraciones en el caso de estudio con ruido, obtiene un RMSE de
aproximadamente 1200 KPa y un R? de 0.898. Esto es debido a la mejor precision del algoritmo

local Lavenberg-Marquardt en presencia de ruido.
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Por tanto, en presencia de ruido, el método propuesto ofrece un compromiso equilibrado entre

precision, velocidad y estabilidad en comparacién con los otros algoritmos analizados.

8.4 Interpretabilidad y validez geotécnica mediante SHAP

La integracion de técnicas de interpretabilidad mediante SHAP permite analizar qué variables
de entrada (profundidades de medicién) influyen mas en la prediccion de cada moédulo de

elasticidad.

Los resultados obtenidos en el caso de estudio sintético indican una distribucién coherente con
los principios de la mecanica del suelo. Las mediciones superficiales (0.0 m a 1.0 m) son
determinantes para E7, mientras que E: se ve influido por datos mas intermedios (2.0 ma 7.5
m) y profundos (hasta 20.0 m), esto se explica por los limitados datos de monitorizacién por
debajo de los 5m de profundidad (nétese que el estrato dos llega hasta los 7.5m), limitdndose
a10my 20m, lo que implica que el andlisis retrospectivo de E; tenga que apoyarse de los datos
disponibles a mayor profundidad. F3 y Ez muestran una dependencia creciente de mediciones
a mayores profundidades (10 m, 20 m), con una influencia transversal de z = 5.0 m como punto

de transicion entre estratos.

Este tipo de anadlisis no solo refuerza la validez geotécnica del modelo, sino que permite tomar
decisiones fundamentadas en cuanto a la planificacion de instrumentaciéon en campo. Se puede
priorizar la instalacion de sensores en profundidades estratégicas segtin su impacto real en la

estimacién de pardmetros, lo que mejora la relacion coste-beneficio del monitoreo.

8.5 Relevancia practica y ventajas del modelo propuesto

El enfoque hibrido basado en Machine Learning y Gauss-Newton o Levenberg-Marquardt no
solo ofrece alta precision y velocidad de convergencia, sino que también permite incorporar
conocimiento empirico a través del entrenamiento con datos reales o generados
sintéticamente. Esta caracteristica le proporciona una capacidad de generalizaciéon que lo
distingue del resto de métodos, especialmente cuando se considera su potencial de

escalabilidad a modelos con mayor niimero de parametros o estratos.

Ademas, la estructura modular del modelo facilita su adaptacién a problemas mas complejos,

como la estimacién simultanea de otros parametros, la inclusién de condiciones no elasticas
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(e.g., plastificacidon, anisotropia) o su integraciéon en flujos de trabajo BIM o sistemas de

monitoreo en tiempo real.

8.6 Sintesis comparativa y limitaciones observadas

A modo de resumen, se puede establecer la siguiente clasificacidn cualitativa:

Tabla 8-12 — Sintesis comparativa de los resultados

Precision  Precisiéon Coste

Método (sinruido) (conruido) computacional Robustez
Gradientes Alta Media Muy bajo Media
Evolutivos Media Baja Alto Baja
Busqueda Dir. Muy alta Muy alta Muy alto Muy alta
Surrogados Media Media Muy alto Media
Prog. Matemat. Alta Muy alta Medio Muy alta
Otros Muy alta Alta Medio Alta
Hibridogs Muy alta Alta Medio-Bajo Alta
ML + GN/LM Muy alta Alta Muy bajo Alta

Cabe mencionar que el enfoque propuesto requiere una etapa previa de entrenamiento que
implica su propia carga computacional, y depende de la calidad de los datos de entrada para el
modelo de Machine Learning. Asimismo, la sensibilidad al tipo de red neuronal y sus

hiperparametros podria influir en la generalizacidn del modelo en otros casos no tratados.

A pesar de estas limitaciones, los resultados obtenidos validan la propuesta como una
alternativa robusta, precisa e interpretativa para el andlisis retrospectivo de parametros

geotécnicos, con un potencial claro de aplicacién en obra real.
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9. CONCLUSIONES

En este Trabajo de Fin de Master se desarrollé y puso a prueba una metodologia hibrida de
andlisis retrospectivo de parametros geotécnicos mediante el uso de técnicas de Machine
Learning en la fase de bisqueda global y métodos de optimizacion local como Gauss-Newton y
Levenberg-Marquardt. Esta metodologia permite encontrar soluciones prometedoras
mediante algoritmos de inteligencia artificial, para que posteriormente sean refinadas

mediante técnicas deterministas.

Esta propuesta hibrida ha proporcionado un ajuste satisfactorio en los casos de estudio
expuestos en este trabajo, empleando tanto mediciones con como sin ruido, con una alta
correlacién entre los resultados estimados y los datos observados. En concreto, en el caso de
estudio sintético se obtuvo un RMSE de 2.3 kPay 1623 kPa para los casos sin ruido y con ruido,
respectivamente, asi como un coeficiente de determinacién R? del asiento retrocalculado en
superficie de 1.000 y 0.898 en cada caso. En el caso de estudio real el coeficiente de
determinacién R? alcanz6 un valor de 0.998. Estos resultados confirman la validez de la

metodologia propuesta para problemas de calculo inverso en ingenieria geotécnica.

No obstante, deben sefialarse ciertas limitaciones en el alcance del estudio. El enfoque se ha
aplicado exclusivamente a cimentaciones superficiales sobre suelos granulares, considerando
unicamente el comportamiento elastico del terreno, es decir, asiento instantaneo. Esto implica
que no se han abordado los fendmenos de consolidacién propios de suelos cohesivos, ni se ha
evaluado la respuesta de cimentaciones profundas u otras soluciones de cimentacion.
Asimismo, se asume que el terreno se subdivide en estratos homogéneos, elasticos e

isotrépicos.

Aunque el modelo se comporta de forma robusta frente a datos limpios, se ha observado que
su precision disminuye cuando se introduce ruido en las mediciones de campo. En estas
circunstancias, el algoritmo requiere un mayor nimero de iteraciones para converger y puede
llegar a desviarse del valor real en su intento por ajustarse a los datos contaminados, como es
esperable en cualquier proceso inverso, aun asi, ofrece resultados aceptables en comparacion
con los otros algoritmos analizados, siendo solamente superado en precision (pero no en coste
computacional) por los algoritmos de busqueda directa o basados en programacion

matematica.

Una de las principales ventajas del enfoque propuesto respecto a los métodos tradicionales de
optimizacion es su eficiencia computacional. Si bien, la precision obtenida ha sido comparable

a la de treinta y dos métodos clasicos como se puede ver en la Tabla 7-7 y la Tabla 7-8, el
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ndmero de iteraciones necesarias para alcanzar una solucién éptima ha sido notablemente
menor, lo que representa una mejora importante en términos de tiempo de calculo y coste de
simulacién. A pesar de obtenerse un menor coste computacional (medido como nimero de
iteraciones) en los casos de estudio tratados, cabe mencionar que el enfoque propuesto
requiere una etapa previa de entrenamiento que implica su propia carga computacional, y
depende de la calidad de los datos de entrada para el modelo de Machine Learning. Asimismo,
la sensibilidad al tipo de red neuronal y sus hiperparametros podria influir en la generalizacion
del modelo en otros casos no tratados. En cualquier caso, el modelo de Machine Learning puede
ser extrapolado de casos anteriores, incorporando nuevos datos de campo para validar y

ensayar los resultados ofrecidos por la red neuronal.

En términos de implementacidn, la metodologia puede automatizarse de forma significativa.
Su desarrollo en entornos como MATLAB o Python permite la integraciéon con software de
calculo comercial mediante Interfaces de Programacion de Aplicaciones (API - Application
Programming Interface por sus siglas en inglés), facilitando flujos de trabajo agiles y
reproducibles. No obstante, en aquellos programas que atin no disponen de interfaces abiertas,
la automatizacion debe completarse con pasos manuales, lo cual puede ralentizar el proceso,
aunque previsiblemente estas limitaciones se irdn resolviendo con la evolucién de los
softwares dada la tendencia actual de incorporar API para facilitar el intercambio de datos,
funcionalidades y servicios entre entornos como MATLAB, Python y otros programas

comerciales de andlisis geotécnico y estructural.

El método propuesto demuestra un alto potencial de generalizacién y escalabilidad. Su
estructura modular lo hace adaptable a otros problemas de calculo retrospectivo geotécnico,
como la estimacion de parametros en tuneles, estructuras de contencién, taludes o
cimentaciones profundas. Ademas, puede ser alimentado con datos sintéticos o reales, lo que
le permite ajustarse tanto a condiciones idealizadas como a escenarios de obra mas complejos.
Esta flexibilidad se traduce en una herramienta versatil, con capacidad para integrarse en

procesos de ingenieria del terreno con distintos grados de incertidumbre.

Desde el punto de vista practico, la metodologia propuesta puede incorporarse en las fases de
control de obra y seguimiento del comportamiento geotécnico y estructural. Su capacidad para
calibrar los modelos de calculo con base en datos reales permite una toma de decisiones
adaptativa, basada en la evolucién observada del terreno, lo cual incrementa la seguridad
operativa y permite optimizar recursos. Asimismo, su integraciéon con estrategias BIM,

mediante la actualizaciéon de modelos digitales a partir de datos de instrumentacion, abre
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nuevas posibilidades para la gestion integral del ciclo de vida de la infraestructura, desde la

fase de disefio hasta la operacién y el mantenimiento.

Este trabajo también est4 en concordancia con un enfoque de diseflo geotécnico basado en
datos, es decir, en un enfoque observacional (Observational Method), al basar las decisiones en

mediciones reales, y no inicamente en hipétesis conservadoras o parametros estimados.

De esta forma, esta propuesta metodoldgica se alinea con la tendencia de la nueva generacion
de Eurocddigos, en particular la actualizacion del EN 1997-3 2025 refuerza la necesidad de
adoptar metodologias de disefio geotécnico mds integradas, adaptativas y basadas en datos, y
anticipando el tipo de herramientas que seran necesarias para implementar de forma eficiente

el enfoque observacional.

En este marco normativo emergente, la propuesta de este Trabajo de Final de Master (que
integra inteligencia artificial, modelado fisico y andlisis retrospectivo basado en
observaciones) se sitla en consonancia con las directrices de los nuevos Eurocddigos. La
necesidad de modelos que no solo se adapten al comportamiento observado en campo, sino
que también optimicen los recursos, promuevan la transparencia documental y favorezcan una
toma de decisiones informada en condiciones complejas, alinedndose directamente con las

exigencias del EN 1997-3 2025.

Ademas de su valor técnico y normativo, la propuesta desarrollada en este TFM se alinea con
los principios de sostenibilidad que definen la practica de la ingenieria del siglo XXI. En
particular, guarda una estrecha relacidon con varios de los Objetivos de Desarrollo Sostenible
(ODS) establecidos por la Agenda 2030 de Naciones Unidas. El uso de modelos calibrados en
funciéon del comportamiento real del terreno permite reducir sobredimensionamientos,
optimizar el uso de materiales y minimizar el impacto ambiental asociado a la construccion
(ODS 12: Produccién y consumo responsables). La integracién de tecnologias digitales y
modelos predictivos también promueve la innovacién en infraestructuras (ODS 9: Industria,
innovacidn e infraestructura), contribuyendo a un entorno construido mas resiliente, eficiente
y adaptado a condiciones cambiantes. En este contexto, la metodologia no solo constituye una
aportacién técnica sélida, sino que también representa un avance en la direccién de una

ingenieria civil mas sostenible, fundamentada en el conocimiento y la evidencia.
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10.RECOMENDACIONES Y ESTUDIOS FUTUROS

Finalmente, se identifican diversas lineas futuras de investigacién que permitirian ampliar y

consolidar el trabajo realizado.

I1.

II1.

Aplicacién en otros casos reales, preferiblemente con cimentaciones de diferentes
dimensiones en planta, presiones de contacto y una progresiéon gradual de la carga a lo
largo del tiempo. Esta extensién permitiria evaluar la robustez y aplicabilidad del
modelo en diversas condiciones de campo, caracterizadas por una mayor
heterogeneidad en el comportamiento del terreno, presencia de estratigrafias
complejas y mediciones inevitablemente afectadas por ruido instrumental y
condiciones ambientales. La validaciéon en situaciones reales ofreceria una prueba
critica de la capacidad del algoritmo para identificar con precisién los parametros
geotécnicos en contextos no controlados, asi como para adaptarse a cargas progresivas
que simulan el comportamiento real de estructuras durante las fases de construcciéon y

operacion.

Integracion de modelos numéricos mas avanzados, como el método de elementos
finitos y modelos constitutivos tipo Hardening Soil. A pesar de que el método de areas
discretas ofrece un buen resultado en el disefio de losas de cimentacion, el enfoque FEM
resuelve las ecuaciones de equilibrio en la estructura y el suelo simultdneamente,
permitiendo una distribucién natural de tensiones y deformaciones segin las
propiedades del suelo y la cimentacion, sin depender de un moédulo de balasto
supuesto. También permite considerar efectos no lineales, estratificacion compleja o el

nivel freatico, entre otros.

Explorar otras hibridaciones que, partiendo de un modelo de Machine Learning para la
busqueda global, incorporen algoritmos de mayor precision en la fase de busqueda
local, especialmente en contextos con mediciones ruidosas. Los resultados obtenidos
indican que los métodos deterministas utilizados (como Gauss-Newton o Levenberg-
Marquardt) presentan una menor precisiéon en escenarios sintéticos con ruido, en
comparacion con enfoques de busqueda directa o métodos basados en programacién
matematica. Si bien la metodologia propuesta destaca por su bajo coste computacional,
una linea de investigacion futura podria consistir en evaluar nuevas combinaciones
hibridas que integren técnicas de busqueda local mas robustas frente al ruido,
analizando el posible incremento del coste computacional asociado y su compensacion

en términos de precision.
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IV.

VL.

VIL

Extensiéon de la metodologia a suelos cohesivos, incorporando mediciones de asientos
de consolidacion en funcion del tiempo, abriendo la puerta al calculo retrospectivo de
pardametros como el indice de compresion c, el indice de recompresion c; o coeficiente
de compresibilidad m,, entre otros. La adaptaciéon del modelo requeriria incorporar
funciones de respuesta dependientes del tiempo y, posiblemente, ajustar los algoritmos
de optimizacién para tener en cuenta el cardcter no instantdneo de la respuesta del
terreno. Esta linea de trabajo ampliaria significativamente el alcance de la metodologia,
permitiendo su aplicacién en proyectos sobre arcillas blandas, precargas, depdsitos
naturales y otras situaciones donde la consolidacién primaria o secundaria condiciona

el comportamiento geotécnico a medio y largo plazo.

Ampliar la aplicacién del método al andlisis retrospectivo de parametros en suelos
tratados o mejorados, como en el caso de técnicas de mejora mediante precarga,
columnas de grava o inclusiones rigidas. La metodologia propuesta, centrada hasta
ahora en suelos granulares no tratados, podria adaptarse para evaluar la evolucién de
pardmetros geotécnicos en suelos cuyo comportamiento ha sido modificado
artificialmente. En particular, la aplicacién de técnicas como la precarga con o sin
drenes verticales induce una modificacién progresiva del médulo de deformacion, que
puede ser monitoreada e interpretada mediante mediciones de asentamiento y presion
intersticial. Integrar estos efectos en el modelo de retroandlisis permitiria no solo
calibrar los parametros iniciales, sino también caracterizar el proceso de mejora y
optimizar su diseno y seguimiento en campo. Esta linea de investigaciéon representa
una oportunidad para extender el uso del enfoque hibrido a contextos donde la
variacion temporal de las propiedades del terreno es un factor clave en el disefio y

control de la obra.

Extrapolar la metodologia a otra tipologia de calculos. Se destaca la potencial aplicaciéon
en estructuras de contencién o tineles. Aunque el presente trabajo se ha basado en
cimentaciones superficiales, la metodologia de andlisis inverso propuesta es
extrapolable a otros contextos donde se disponga de mediciones de campo y exista
incertidumbre en los parametros geotécnicos. El caso de estructuras de contencion es
especialmente interesante, dado que es ideal para un enfoque observacional y presenta

mas oportunidades de optimizacién con la evolucién de la construccion.

Aplicacion en un caso real bajo un enfoque observacional, desarrollando una

metodologia que tome como premisa la automatizacion del calculo restrospectivo. Una
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VIIL.

linea especialmente prometedora consiste en implementar el modelo propuesto
dentro de un proyecto real que utilice el método observacional, permitiendo la
actualizacion continua de los parametros geotécnicos a medida que avanza la obray se
obtienen nuevos datos de instrumentacion. Esta aproximacién permitiria validar la
utilidad del modelo en un entorno operativo, asi como evaluar su capacidad para
integrarse en flujos de trabajo donde la toma de decisiones debe adaptarse a la
evolucion del comportamiento real del terreno. Para ello, seria necesario desarrollar
una arquitectura automatizada que conecte directamente las lecturas de campo (por
ejemplo, asientos y tensiones de contacto) con el modelo de calculo inverso, generando
recomendaciones de ajuste de parametros en tiempo cuasi-real. Esta linea de trabajo
contribuiria directamente a la implementacién practica de los principios del disefio
geotécnico adaptativo recogidos en los nuevos Eurocddigos, reforzando la trazabilidad,
eficiencia y sostenibilidad del proceso constructivo. Asimismo, esta aplicacién
permitiria valorar la posible optimizacién de recursos frente a un calculo convencional
y seria posible cuantificar si la optimizaciéon de la solucién (respaldada por el
monitoreo y el ajuste continuo) se traduce en un ahorro significativo de materiales y
costes de ejecucion, y si dicho ahorro compensa, en términos econdmicos y operativos,

el esfuerzo adicional requerido para implementar el modelo de calculo automatizado.

Evaluar el impacto de distintos esquemas de monitorizacién en la eficacia del analisis
retrospectivo aplicado a cimentaciones o estructuras de contencién. Una posible linea
de investigacion podria consistir en analizar cdmo el tipo de variable medida (asientos,
presiones, deformaciones), su ubicacion, frecuencia de toma de datos y numero de
puntos instrumentados afectan la capacidad del modelo para identificar con precision
los parametros del terreno. Esta evaluacion permitiria no solo mejorar la fiabilidad del
retroandlisis, sino también optimizar el disefio de sistemas de instrumentacion,
priorizando configuraciones que aporten el mayor valor informativo con el menor

coste posible.

Estas direcciones representan una oportunidad para seguir perfeccionando el método

propuesto y ampliar su aplicabilidad a diferentes tipos de suelos, otras tipologias de

estructuras o andlisis, asi como a casos reales de mayor complejidad geotécnica y mediciones

ruidosas. Su desarrollo futuro permitira consolidar la metodologia como una herramienta
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versatil, adaptable y 1til tanto en fases de disefio como en toma de decisiones durante la

ejecucién y seguimiento de obras geotécnicas.
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12.ANEJO A

En el presente anejo se incluyen las graficas con los resultados de todos los algoritmos de

optimizacion empleados en el caso de estudio sintético expuesto en el apartado 6.1.
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12.1 Anejo Al. Métodos basados en gradientes

12.1.1 Gauss-Newton - Sin ruido
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Figura A-138 — Error cuadratico vs Iteracidon. Gauss-Newton sin ruido
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Figura A-139 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido
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Perfil de Asentamiento vs Profundidad
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Figura A-140 — Perfil asiento retrocalculado. Gauss-Newton sin ruido

12.1.2 Gauss-Newton - Con ruido
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Figura A-141 — Error cuadratico vs Iteracidon. Gauss-Newton con ruido
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«10% Mapa de Soluciones y Trayectoria de Optimizacion

T

T T T T T

©
2
2.5 3 o© < .
AN 2
» 5
= o o
o ?
$ 2 X 2 2
N | ® =
L e - \
|
1.5° 4 )@
o S~ © - 6>
w — §4
1y \X_E—_ 0 4
% %
> s 50s,
1 | 1 1 1 ) 1 1 |

Figura A-142 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton con ruido
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Figura A-143 — Perfil asiento retrocalculado. Gauss-Newton con ruido
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12.1.3 Levenberg-Marquardt - Sin ruido
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Figura A-144 — Error cuadrdtico vs Iteracién. Mutistart Levenberg-Marquardt sin ruido
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Figura A-145 — Mapa de soluciones y trayectoria de optimizacién. Mutistart Levenberg-Marquardt sin
ruido
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0 Perfil de Asentamiento vs Profundidad
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Figura A-146 — Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt sin ruido

12.1.4 Levenberg-Marquardt - Con ruido
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Figura A-147 — Error cuadrdtico vs Iteracién. Mutistart Levenberg-Marquardt con ruido
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«10% Mapa de Soluciones y Trayectoria de Optimizacion
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Figura A-148 — Mapa de soluciones y trayectoria de optimizacién. Mutistart Levenberg-Marquardt sin
ruido
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Figura A-149 — Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt con ruido
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12.1.5 Multistart con Levenberg-Marquardt - Sin ruido

Se consideran 50 inicios aleatorios
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Figura A-150 — Mapa de soluciones y trayectoria de optimizacién. Mutistart Levenberg-Marquardt sin
ruido
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Figura A-151 — Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt sin ruido
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12.1.6 Multistart con Levenberg-Marquardt - con ruido
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Figura A-152 — Mapa de soluciones y trayectoria de optimizacién. Mutistart Levenberg-Marquardt con
ruido
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Figura A-153 — Perfil asiento retrocalculado. Mutistart Levenberg-Marquardt con ruido
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12.1.7 Multistart con Gauss-Newton - Sin ruido
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Figura A-154 — Mapa de soluciones y trayectoria de optimizacién. Mutistart Gauss-Newton sin ruido
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Figura A-155 — Mapa de soluciones y trayectoria de optimizacién. Mutistart Gauss-Newton sin ruido
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0 Perfil de Asentamiento vs Profundidad
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Figura A-156 — Perfil asiento retrocalculado. Mutistart Gauss-Newton sin ruido

12.1.8 Multistart con Gauss-Newton - Con ruido
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Figura A-157 — Error cuadratico vs Iteracidén. Mutistart Gauss-Newton con ruido
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Figura A-158 — Mapa de soluciones y trayectoria de optimizacién. Mutistart Gauss-Newton con ruido
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Figura A-159 — Perfil asiento retrocalculado. Mutistart Gauss-Newton con ruido
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12.1.9 Cuasi-Newton BFGS - Sin ruido
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Figura A-160 — Error cuadrdtico vs Iteracion. Cuasi-Newton BFGS sin ruido
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Figura A-161 — Mapa de soluciones y trayectoria de optimizacién. Cuasi-Newton BFGS sin ruido
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12.1.10

Error Cuadratico
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Figura A-162 — Perfil asiento retrocalculado. Cuasi-Newton BFGS sin ruido
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«10% Trayectoria de las Iteraciones en (E1, E2)
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Figura A-164 — Mapa de soluciones y trayectoria de optimizacién. Cuasi-Newton BFGS con ruido
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Figura A-165 — Perfil asiento retrocalculado. Cuasi-Newton BFGS con ruido
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12.2 Anejo A2. Métodos heuristicos y metaheuristicos - Evolutivos

12.2.1 Algoritmos Genéticos Simples - Sin ruido

Poblacién de 75 individuos y nimero de generaciones necesarias para alcanzar error indicado.

Evolucién del reemplazo generacional
T T T
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60 [

N° de individuos reemplazados

0 10 20 30
Generacion

Figura A-166 — Reemplazo generacional. Algoritmo genético simple sin ruido

10X 104 Mapa de Soluciones para la generacién 1
\ .
9- . 30(; ° . ° ° -
S
8 -
& [ J [ ]
74 _
[ ]

6 * *
NG . 703 -
B . " T

4 * -

[ ]
¢ 0
3 99 ® ..83186 —
2% \ 0.6239% —
e
1 x 0.416%2 .
g g T I I @%@r
5 6 7 8 9 10
E1 (kPa) x10%

Figura A-167 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.

Generacion 1
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Figura A-168 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 5
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Figura A-169 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacién 10
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apa de Soluciones para la generacién 20
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Figura A-170 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 20
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Figura A-171 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacidn 30
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apa de Soluciones para la generacion 40
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Figura A-172 — Mapa de soluciones y trayectoria de optimizacidn. Algoritmo genético simple sin ruido.
Generacion 40
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Figura A-173 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacidén 50
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Figura A-174 — Evolucidn E1-E4. Algoritmo genético simple sin ruido
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Figura A-175 — Perfil asiento retrocalculado. Algoritmo genético simple sin ruido
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12.2.2 Algoritmos Genéticos Simples - Con ruido

Evolucion del reemplazo generacional
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Figura A-176 — Reemplazo generacional. Algoritmo genético simple con ruido
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Figura A-177 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacién 1
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Figura A-178 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacion 5
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Figura A-179 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacién 10

281



ANEJO A

apa de Soluciones para la generacion 20
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Figura A-180 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacion 20
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Figura A-181 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacidn 30
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10 10% Mapa de Soluciones para la generacién 40
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Figura A-182 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacion 40

«10% Mapa de Soluciones para la generacién 50

T \ T T T \ T T T
I i

% <

: ~
N
o)
w
DS

e?® 1

E2 (kPa)

QGS&?Q 085111 i—
T 0.63872 —
T 04234
5 6 7 8 9 10
E1 (kPa) x10%

Figura A-183 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacidén 50
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Figura A-184 — Evolucion E1-E4. Algoritmo genético simple con ruido
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Figura A-185 — Perfil asiento retrocalculado. Algoritmo genético simple con ruido
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12.2.3 Algoritmo Genéticos Adaptativos - Sin ruido

Poblacién de 75 individuos y niimero de generaciones necesarias para alcanzar error indicado.

Evolucion del reemplazo generacional
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Figura A-186 — Reemplazo generacional. Algoritmo genético adaptativo sin ruido
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Figura A-187 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin

ruido. Generacién 1
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Figura A-188 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin
ruido. Generacion 5
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Figura A-189 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin
ruido. Generacién 10
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Figura A-190 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin

ruido. Generacién 20
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Figura A-191 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin

ruido. Generacién 30

287



ANEJO A
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Figura A-192 — Mapa de soluciones y trayectoria de optimizacidn. Algoritmo genético adaptativo sin

ruido. Generacién 40

« 104 Mapa de Soluciones para la generacién 50

928020

10 T

9 g

B
o
=
x
N

666290

s

ﬁﬁg\

E2 (kPa)
w S (6]
.Q
(o)
& /
o
Q
S
$
o
[06)
w
&
(o))

\

E1 (kPa)

0.62399 — 1

0.41612

Figura A-193 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin

ruido. Generacién 50
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Figura A-194 — Evolucidn E1-E4. Algoritmo genético adaptativo sin ruido
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Figura A-195 — Perfil asiento retrocalculado. Algoritmo genético adaptativo sin ruido
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12.2.3.1 Algoritmo Genético Adaptativo - Con ruido

Evolucion del reemplazo generacional
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Figura A-196 — Reemplazo generacional. Algoritmo genético adaptativo con ruido
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Figura A-197 — Mapa de soluciones y trayectoria de optimizacion. Algoritmo genético adaptativo con
ruido. Generacién 1
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«10% Mapa de Soluciones para la generacién 5
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Figura A-198 — Mapa de soluciones y trayectoria de optimizacidn. Algoritmo genético adaptativo con
ruido. Generacion 5
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Figura A-199 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo con
ruido. Generacién 10
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10 10% Mapa de Soluciones para la generacién 20
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Figura A-200 — Mapa de soluciones y trayectoria de optimizacidn. Algoritmo genético adaptativo con
ruido. Generacion 20
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Figura A-201 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo con
ruido. Generacién 30
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Figura A-202 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo con
ruido. Generacion 40
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Figura A-203 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo con
ruido. Generacién 50
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Figura A-204 — Evolucidn E1-E4. Algoritmo genético adaptativo con ruido
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Figura A-205 — Perfil asiento retrocalculado. Algoritmo genético adaptativo con ruido
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12.2.4 Enjambre de particulas - Sin ruido

Se consideran también particulas en la busqueda.

Evolucion de la actualizacion de posicion
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Figura A-206 — Evolucién de la actualizacion de posicidon. Enjambre de particulas sin ruido
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Figura A-207 — Evolucién E1-E4.
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«10% Mapa de Soluciones (Iter 1)
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Figura A-208 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas sin ruido.

Iteracion 1
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Figura A-209 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas sin ruido.
Iteracion 5
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Figura A-210 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas sin ruido.
Iteracidon 10
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Figura A-211 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas sin ruido.
Iteracion 20
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Mapa de Soluciones (lter 30)
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Figura A-212 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas sin ruido.
Iteracidon 30
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Figura A-213 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas sin ruido.
Iteracion 40
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«10% Mapa de Soluciones (Iter 50)
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Figura A-214 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas sin ruido.
Iteracidon 50
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Figura A-215 — Perfil asiento retrocalculado. Enjambre de particulas sin ruido
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12.2.5 Enjambre de Particulas - Sin ruido
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Figura A-216 — Evolucién de la actualizacion de posicidn. Enjambre de particulas con ruido
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Figura A-217 — Evolucidn E1-E4. Enjambre de particulas con ruido
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Figura A-218 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.
Iteracion 1

%104 Mapa de Soluci'ones (Iter 5)

E2 (kPa)

E1 (kPa) <104

Figura A-219 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.
Iteracion 5
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Figura A-220 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.
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Figura A-221 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.

Iteracién 20
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10 10% Mapa de Soluciones (lter 30)
‘ T T T \ T T T
9 El - \ )O -
i %,
o ko) |
o 3
N 2
w N -
© o
o s
pS o
[e)) ry -
T ? ki)
2,
3 >
3 4
L
4 0.
639 85111 —

i’&% 042634 - 0.63872 —
\ 0.42634

1), L
1 2 3 4 5 6 7 8 9 10
E1 (kPa) x10%

Figura A-222 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.
Iteracidon 30

Mapa de Soluciones (Iter 40)
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Figura A-223 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.
Iteracion 40
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«10% Mapa de Soluciones (lter 50)
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Figura A-224 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.
Iteracidon 50

Mapa de Soluciones (Iter 60)
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Figura A-225 — Mapa de soluciones y trayectoria de optimizacién. Enjambre de particulas con ruido.
Iteracion 50
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Perfil de Asiento vs Profundidad
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Figura A-226 — Perfil asiento retrocalculado. Enjambre de particulas con ruido
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12.2.6 Evolucion Diferencial (DE) - Sin ruido

Se adopta una poblacién de 50, un factor de escalado de 0.8 y tasa de cruce de 0.9. Se

implementan tantas iteraciones como sea necesario para alcanzar el error objetivo o 250, lo
que sea menor.

Evoluciéon del Mejor Valor (DE)
14? T T T

12

10 -

Mejor f

0 50 100 150 200 250
Iteracion

Figura A-227 — Evolucidn del mejor valor. Evolucién diferencial sin ruido

«10% Evolucién de E1

T T T

1 1
0 50 100 150 200 250
Iteracion

5 X 104 Evolucién de E2
T T

0 50 100 150 200 250
Iteracion

Figura A-228 — Evolucidn E1-E2. Evolucion diferencial sin ruido
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E2 (kPa)

E1 (kPa) x10*

Figura A-229 — Mapa de soluciones. Evolucién diferencial sin ruido

Perfil de Asiento vs. Profundidad (DE)
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E objetivo h
= = =E ¢éptimo DE
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15 1 .
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30 1 1 1 1
0 5 10 15 20 25
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Figura A-230 — Perfil asiento retrocalculado. Evolucidén diferencial sin ruido
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12.2.7 Evolucion Diferencial (DE) - Con ruido

5 Evoluciéon del Mejor Valor (DE)
5 T T T T

30

251

0 20 40 60 80 100 120
Iteracion

Figura A-231 — Evolucién del mejor valor. Evolucidn diferencial con ruido

Evolucion de E1

1 Il 1 1 1 1
0 20 40 60 80 100 120
Iteracion

10 Evolucion de E2

0 1 1 1 1 1

0 20 40 60 80 100 120
Iteracion

Figura A-232 — Evolucion E1-E2. Evolucién diferencial con ruido
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E2 (kPa)

0.4263% —°

R VI S
5 6 7 8 9 10
E1 (kPa) x10%

Figura A-233 — Mapa de soluciones. Evolucién diferencial con ruido

Perfil de Asiento vs. Profundidad (DE)
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Figura A-234 — Perfil asiento retrocalculado. Evolucidn diferencial con ruido
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12.2.8 Recocido simulado (SA) - Sin ruido
Se considera una temperatura inicial de 1 y un factor de enfriamiento de 0.95. Se adoptan

tantas iteraciones como sean necesarias para alcanzar el error objetivo o 250, lo que sea menor.

180 Evolucion del Mejor Valor (Simulated Annealing)

160

140

120

100

Mejor f

80

60

40

20

0 50 100 150 200 250
Iteracion

Figura A-235 — Evolucién del mejor valor. Recocido simulado sin ruido

104 Evolucién de E
T T T T

1 1
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«10% Evolucién de E
T T

0 50 100 150 200 250
Iteracion

Figura A-236 — Evolucion E1-E2. Recocido simulado sin ruido
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«10%  Trayectoria de Evaluaciones en E1 vs E2 (SA)
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Figura A-237 — Mapa de soluciones. Recocido simulado sin ruido

Perfil de Asiento vs. P
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Figura A-238 — Perfil asiento retrocalculado. Recocido simulado sin ruido
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12.2.9 Recocido simulado (SA) - Sin ruido

180 Evolucion del Mejor Valor (Simulated Annealing)

160

140

120

60

40

20

0 50 100 150 200 250
Iteracion

Figura A-239 — Evoluciéon del mejor valor. Recocido simulado con ruido

Evolucion de E
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Evolucion de E
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Figura A-240 — Evolucidn E1-E2. Recocido simulado con ruido
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«10%  Trayectoria de Evaluaciones en E1 vs E2 (SA)

T T T T T \ T T T

§6€12°0
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1 2 3 4 5 6 7 8 9 10
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Figura A-241 — Mapa de soluciones. Recocido simulado con ruido

Perfil de Asiento vs. Profundidad (Simulated Annealing)
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Figura A-242 — Perfil asiento retrocalculado. Recocido simulado con ruido
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12.3 Anejo A3. Métodos de Busqueda Directa
12.3.1 Nelder-Mead (Simplex) - Sin ruido

Se adopta una tolerancia de 0.10 para la malla y salto.

< 10* Evolucién E1
4

T T T T T

0 200 400 600 800 1000 1200
Iteracion
4 Evolucién E2

1.8
N
L
1.6
14 1 1 Il 1 1
0 200 400 600 800 1000 1200
Iteracion
Figura A-243 — Evolucién E1-E2. Nelder-Mead sin ruido
180 Evolucion del Mejor Valor (Pattern Search)
(]
160 | .
140 } -
120 | .
“ 100 | 1
o
[
= 80} 1
608 i
40 i
20 .
0 _7
0 200 400 600 800 1000 1200
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Figura A-244 — Evolucion del mejor valor. Nelder-Mead sin ruido
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Trayectoria E1 vs E2 (Pattern Search)
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Figura A-245 — Mapa de soluciones. Nelder-Mead sin ruido
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Figura A-246 — Perfil asiento retrocalculado. Nelder-Mead sin ruido
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12.3.2 Nelder-Mead (Simplex) - Con ruido

180
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Mejor f

Evolucion del Mejor Valor (Pattern Search)

50 100 150 200 250
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Figura A-247 — Evolucién mejor valor. Nelder-Mead con ruido
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Figura A-248 — Evolucién E1-E2. Nelder-Mead con ruido

316



ANEJO A

10 10% Trayectoria E1 vs E2 (Pattern Search)
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Figura A-249 — Mapa de soluciones. Nelder-Mead con ruido
0 Perfil de Asentamiento (Pattern Search)
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Figura A-250 — Perfil asiento retrocalculado. Nelder-Mead con ruido
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12.4 Anejo A4. Métodos surrogados

12.4.1 Optimizaciéon Bayesiana (BO) - Sin ruido

1000 Objective function vs. Number of function evaluations

900 -
800 -
700 1

600

500
400 |
300 ﬂ

200 - v\
100 |

0 20 40 60 80 100 120 140 160 180 200
Function evaluations

Objective function

S

Figura A-251 — Numero de evaluaciones por iteracion. Optimizacion Bayesiana sin ruido

S O MWa

0 0 0
0 100 200 0 100 200 0 100 200
Evaluacion Evaluacion Evaluacion

Evolucion de la Funcion Objetivo

500 {

Evaluacion Evaluacién

Figura A-252 — Evolucidn E1-E4. Optimizacién Bayesiana sin ruido
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1 0 T T T T T T T T
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0.41612
1 T h
g 5 = glgbply —————
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Figura A-253 — Mapa de soluciones. Optimizacién Bayesiana sin ruido

12.4.2 Optimizacion Bayesiana (BO) - Con ruido
1200 Objective function vs. Number of function evaluations
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Function evaluations

Figura A-254 — Numero de evaluaciones por iteracion. Optimizacién Bayesiana con ruido
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E2 (kPa)

, xEyblucion de E1 o E¥olucion de E2
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0 100 200 0 100 200
Evaluacion Evaluacion

Evolucion de la Funcién Objetivo
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i
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Figura A-255 — Evolucidn E1-E4. Optimizacién Bayesiana con ruido

«10% Mapa de Soluciones (Trayectoria Evaluaciones)
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E1 (kPa) x 104

Figura A-256 — Mapa de soluciones. Optimizacion Bayesiana con ruido
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12.4.3 Procesos Gaussianos (GP) - Sin ruido

Se adopta un maximo de iteraciones 300 y 30 puntos iniciales.

Evolucion de E1

1—? .
1 1 1 1 1

0 50 100 150 200 250 300
Iteracion
4 Evolucion de E2
5 ) T T T T
4+
N
L
3 =
2 1 B
0 50 100 150 200 250 300
Iteracion
Figura A-257 — Evolucién E1-E4. Proceso Gaussiano sin ruido
10 % 104  Trayectoria de Evaluaciones en E1 vs. E2 (GP)
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1 2 3 4 5 6 7 8 9 10
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Figura A-258 — Mapa de soluciones. Proceso Gaussiano sin ruido
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0 Perfil de Asiento vs. Profundidad (GP)

-
o

E objetivo 7
= = =E optimo GP

Profundidad (m)
o

20

25k b

30 1 1 1 1
0 5 10 15 20 25
Asiento (mm)

Figura A-259 — Perfil asiento retrocalculado. Proceso Gaussiano sin ruido

12.4.4 Procesos Gaussianos (GP) - Con ruido

Evolucion de E1
16 T T T

1 (( 1 1 1 1 I
0 50 100 150 200 250 300
Iteracion

3 Evolucion de E2

1 1 1 1 1 1
0 50 100 150 200 250 300

Iteracion

Figura A-260 — Evolucion E1-E4. Proceso Gaussiano con ruido
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Trayectoria de Evaluaciones en E1 vs. E2 (GP)
[ ]

>
%
o

E2 (kPa)

[
0.63872 —
 ——— °
e o o e 042634 — o
5.;‘.{.’. A S e —_——— ——a )] %81 T ——d
6 7 8 9 10
kPa) x10%

Figura A-261 — Mapa de soluciones. Proceso Gaussiano con ruido

Perfil de Asiento vs. Profundidad (GP)
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Figura A-262 — Perfil asiento retrocalculado. Proceso Gaussiano con ruido
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12.4.5Modelos de superficie de respuesta (Kriging) - Sin ruido

Se consideran un maximo de 300 iteraciones y 30 puntos iniciales.

Evolucion del Mejor Valor (Kriging RSM)

30

1

0 50 100 150 200 250 300
Iteracion

Figura A-263 — Evolucion mejor resultado. Kriging sin ruido

x10% Evolucién de E1
18 T T T T

0 50 100 150 200 250 300
Iteracion
x10% Evoluciéon de E2

50 100 150 200 250 300
Iteracion

Figura A-264 — Evolucién E1-E4. Kriging sin ruido
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Figura A-265 — Mapa de soluciones. Kriging sin ruido
0 Perfil de Asiento vs. Profundidad (Kriging)
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Figura A-266 — Perfil asiento retrocalculado. Kriging sin ruido
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12.4.6 Modelos de superficie de respuesta (Kriging) - Con ruido

0 Evolucion del Mejor Valor (Kriging RSM)
. T T T T T
« 4.6 .
S
g
45 a
44+ _
43 J
42 1 1 Il 1 1
0 50 100 150 200 250 300
Iteracion

Figura A-267 — Evolucidn mejor resultado. Kriging con ruido
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Figura A-268 — Evolucién E1-E4. Kriging con ruido
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E2 (kPa)

Profundidad (m)

E1 (kPa) x10%
Figura A-269 — Mapa de soluciones. Kriging con ruido
0 Perfil de Asiento vs. Profundidad (Kriging)
E objetivo i
= = = E 6ptimo Kriging

25| b
30 1 1 1 |

0 5 10 15 20 25
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Figura A-270 — Perfil asiento retrocalculado.

Kriging con ruido
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12.5 Anejo A5. Métodos basados en programacion matematica

12.5.1 Programacion cuadratica - Sin ruido

03 Evolucion del Error Cuadratico
. JOC0BC0006k T T T T

(sQP)

T

0.25

0.2

015

011

Error Cuadratico (SSE)

0.05 |

0 5 10 15 20 25 30 35 40 45 50
Iteracion

Figura A-271 — Evolucién mejor resultado. Programaciéon matematica sin ruido

«10% Trayectoria de las Iteraciones en (E1, E2) - SQP

Figura A-272 — Mapa de soluciones. Programacion matematica sin ruido
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0 Perfil de Asentamiento vs Profundidad

Perfil tedrico
= = = Perfil optimizado

10 - y

15 | -

Profundidad (m)

25| :

30 1 1 1 1
0 5 10 15 20 25

Asentamiento (mm)

Figura A-273 — Perfil asiento retrocalculado. Programacién matematica sin ruido

12.5.2 Programacion cuadratica - Con ruido
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Figura A-274 — Evolucién mejor resultado. Programacién matematica con ruido

329



ANEJO A

«104 Trayectoria de las Iteraciones en (E1, E2) - SQP

E2 (kPa)

1 15 2 25 3 35 4 45 5 55 6
E1 (kPa) x10%

Figura A-275 — Mapa de soluciones. Programacion matematica con ruido
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Figura A-276 — Perfil asiento retrocalculado. Programacién matematica con ruido
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12.5.3 Programacion No Lineal - Sin ruido

03 Evolucion del Error Cuadratico (Interior-Point)
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Figura A-277 — Evolucién mejor resultado. Programacién no lineal sin ruido

«10frayectoria de las lteraciones en (E1, E2) - Interior-Point

E2 (kPa)

1 1.5 2 2.5 3 3.5 4 4.5 5 55 6
E1 (kPa) «10%

Figura A-278 — Mapa de soluciones. Programacién no lineal sin ruido
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0 Perfil de Asentamiento vs Profundidad

Perfil tedrico
= = = Perfil optimizado
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Profundidad (m)
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Figura A-279 — Perfil asiento retrocalculado. Programacién no lineal sin ruido

12.5.4 Programacion No Lineal - Con ruido
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Figura A-280 — Evolucién mejor resultado. Programacién no lineal con ruido
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« 10frayectoria de las Iteraciones en (E1, E2) - Interior-Point

E2 (kPa)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
E1 (kPa) x10%

Figura A-281 — Mapa de soluciones. Programacién no lineal con ruido
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Figura A-282 — Perfil asiento retrocalculado. Programacién no lineal con ruido
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12.6 Anejo A5. Otros métodos

12.6.1 Optimizacion robusta - Sin ruido

Se consideran 20 escenarios con una perturbacién del 5%.

Comparacion Asientos Medidos vs Robustos

T T T T T

25 T

—©— Asientos medidos
= H = Asientos robustos
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Profundidad (m)

Figura A-283 — Perfil asiento retrocalculado. Optimizacién robusta sin ruido
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12.6.2 Optimizacion robusta - Con ruido

Comparacion Asientos Medidos vs Robustos

T T T T T

—©— Asientos medidos
= H = Asientos robustos

25 T
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N
[&)]

Asentamiento (mm)
=
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Figura A-284 — Perfil asiento retrocalculado. Optimizacién robusta con ruido
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12.6.3 Optimizacion distribuidamente robusta - Sin ruido

Se adoptan 100 muestras con una perturbacion del 2.5% (desviacién estandar).
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Figura A-285 — Perfil asiento retrocalculado. Optimizacién distribuidamente robusta sin ruido
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12.6.4 Optimizacion distribuidamente robusta - Con ruido

Comparacion Asientos Medidos vs Distribucionales (DRO)

g =—O— Asientos medidos
( Asientos DRO

15 .

ol \ _

Asentamiento (mm)

0 2 4 6 8 10 12 14 16 18 2'0
Profundidad (m)

Figura A-286 — Perfil asiento retrocalculado. Optimizacién distribuidamente robusta con ruido
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12.7 Anejo A6. Métodos hibridos

12.7.1 Genético simple con GN - Sin ruido

El algoritmo de busqueda global considera una poblacién de 50 individuos con un maximo de

10 generaciones, seguido del refinamiento en la fase local.
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Figura A-287 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.

Generacion 1
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Figura A-288 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.

Generacion 2
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Mapa de Soluciones (Gen 3)
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Figura A-289 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 3

10 «10% Mapa de Soluciones (Gen 4)
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Figura A-290 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 4
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10 % 10% Mapa de Soluciones (Gen 5)
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Figura A-291 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 5
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Figura A-292 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 6
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«10% Mapa de Soluciones (Gen 7)

10 T T T \ T T T
9k > -
= 2
- ©
8 ° B -
i o]
k N
¢ w
3
©
o
>
—_
(o]
_
N

o
S .
[e2]
>
—~ 6 At Qo i
© ° %,
o >
< % 70
y o7
4 o0 ° i
[ X ) 0
) 0. i
3 69399 83186 — -

2 oo .90&96‘ 0'47672\ 0.62399 — 7
i x 0.41612

E1 (kPa) x10*

Figura A-293 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 7

10 %10% Mapa de Soluciones (Gen 8)
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Figura A-294 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 8
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«10% Mapa de Soluciones (Gen 9)
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Figura A-295 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 9

«10% Mapa de Soluciones (Gen 10)
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Figura A-296 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacién 10
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«10% Mapa de Soluciones GN (lteraciones)
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Figura A-297 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.

Perfil de Asiento vs Profundidad (Hibrido GA+GN)
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Figura A-298 — Perfil de asiento retrocalculado. Algoritmo hibrido GS+GN sin ruido.
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12.7.2 Genético simple con GN - Con ruido

«10% Mapa de Soluciones (Gen 1)
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Figura A-299 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacién 1
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Figura A-300 — Mapa de soluciones y trayectoria de optimizacidn. Algoritmo genético simple con ruido.
Generacion 2
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E2 (kPa)
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Figura A-301 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
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Figura A-302 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.

Generacion 4
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E2 (kPa)

Mapa de Soluciones (Gen 5)
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Figura A-303 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
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Generacion 5

Mapa de Soluciones (Gen 6)
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Figura A-304 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.

Generacion 6
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10 10% Mapa de Soluciones (Gen 7)
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Figura A-305 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacion 7
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Figura A-306 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacién 8
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«10% Mapa de Soluciones (Gen 9)
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Figura A-307 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacion 9

Mapa de Soluciones (Gen 10)
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Figura A-308 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple con ruido.
Generacién 10
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10 10% Mapa de Soluciones GN (lteraciones)
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Figura A-309 — Mapa de soluciones y trayectoria de optimizaciéon. Gauss-Newton con ruido.

Perfil de Asiento vs Profundidad (Hibrido GA+GN)
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Figura A-310 — Perfil de asiento retrocalculado. Hibrido GS+GN con ruido.
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12.7.3 Genético simple con LM - Sin ruido
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Figura A-311 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.

Generacion 1
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Figura A-312 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.

Generacion 2
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Mapa de Soluciones (Gen 3)
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Figura A-313 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 3
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Figura A-314 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 4
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Mapa de Soluciones (Gen 5)
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Figura A-315 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 5
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Figura A-316 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacién 6
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Mapa de Soluciones (Gen 7)
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Figura A-317 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 7
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Figura A-318 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacién 8
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Mapa de Soluciones (Gen 9)
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Figura A-319 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacion 9
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Figura A-320 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético simple sin ruido.
Generacién 10
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10 «10% Mapa de Soluciones LM (lteraciones)
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Figura A-321 — Mapa de soluciones y trayectoria de optimizacién. LM sin ruido.

Perfil de Asiento vs Profundidad (Hibrido GA+LM)
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Figura A-322 — Perfil de asiento retrocalculado. Hibrido GS + LM sin ruido.
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12.7.4 Genético Adaptativo con GN o LN - Sin ruido

El algoritmo de buisqueda global considera una poblacién de 50 individuos con un maximo de

50 generaciones, seguido del refinamiento en la fase local.
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Figura A-323 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin
ruido. Generacion 1

10 & 10* Mapa de Soluciones (Gen 5)
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Figura A-324 — Mapa de soluciones y trayectoria de optimizacién. Algoritmo genético adaptativo sin
ruido. Generacion 5
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Mapa de Soluciones (Gen 10)
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Figura A-325 — Mapa de soluciones y trayectoria de optimizacidn. Algoritmo genético adaptativo sin
ruido. Generacion 10
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Figura A-326 — Mapa de soluciones y trayectoria de optimizacién. GN sin ruido.
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«10% Mapa de Soluciones LM (lteraciones)
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Figura A-327 — Mapa de soluciones y trayectoria de optimizacién. LM sin ruido.

Perfil de Asiento vs Profundidad (GA Adapt.+GN)
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Figura A-328 — Perfil de asiento retrocalculado. Hibrido GA + GN sin ruido.
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12.7.5 Genético Adaptativo con GN o LN - Con ruido
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Figura A-329 — Mapa de soluciones y trayectoria de optimizacion.

ruido. Generacién 1

Algoritmo genético adaptativo con
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Figura A-330 — Mapa de soluciones y trayectoria de optimizacién.
ruido. Generacién 5

Algoritmo genético adaptativo con
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«10% Mapa de Soluciones (Gen 10)
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Figura A-331 — Mapa de soluciones y trayectoria de optimizacion. Algoritmo genético adaptativo con
ruido. Generacion 10
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Figura A-332 — Mapa de soluciones y trayectoria de optimizacién. GN con ruido.
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Perfil de Asiento vs Profundidad (GA Adapt.+GN)
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Figura A-333 — Perfil de asiento retrocalculado. Hibrido GA + GN con ruido.
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12.7.6 Enjambre de particulas (PSO) con GN o LN - Sin ruido

El algoritmo de bisqueda global considera una poblacién de 50 particulas con un maximo de

10 generaciones, seguido del refinamiento en la fase local.
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Figura A-334 — Mapa de soluciones y trayectoria de optimizacién. PSO sin ruido. Generacion 10
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Figura A-335 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.

362



ANEJO A

Mapa de Soluciones LM (lteraciones)
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Figura A-336 — Mapa de soluciones y trayectoria de optimizacién. LM sin ruido.

Perfil de Asiento vs Profundidad (PSO + GN)
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Figura A-337 — Perfil de asiento retrocalculado. Algoritmo hibrido PSO+GN sin ruido.
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12.7.7 Enjambre de particulas (PSO) con GN o LN - Con ruido
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Figura A-338 — Mapa de soluciones y trayectoria de optimizacién. PSO con ruido. Generacién 10
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Figura A-339 — Mapa de soluciones y trayectoria de optimizacion. Gauss-Newton con ruido.
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Perfil de Asiento vs Profundidad (PSO + GN)
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Figura A-340 — Perfil de asiento retrocalculado. Algoritmo hibrido PSO+GN con ruido.
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12.7.8 Evolucion Diferencias (DE) con GN o LN - Sin ruido

La fase global considera una poblacién con un tamafio de 10, un maximo de 10 generaciones,

un factor de mutacion de 0.8 y probabilidad de cruce de 0.9. La fase local considera la mejor
posicion de la busqueda global.
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Figura A-341 — Mapa de soluciones y trayectoria de optimizacién. DE sin ruido. Generacién 10
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Figura A-342 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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Mapa de Soluciones LM (lteraciones)
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Figura A-343 — Mapa de soluciones y trayectoria de optimizacién. LM sin ruido.

Perfil de Asiento vs Profundidad (DE + GN)
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Figura A-344 — Perfil de asiento retrocalculado. Algoritmo hibrido DE+GN sin ruido.
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12.7.9 Evolucion Diferencias (DE) con GN o LN - Con ruido

4 DE: Gen 10, bestVal=35.3961
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Figura A-345 — Mapa de soluciones y trayectoria de optimizacién. DE con ruido. Generacién 10
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Figura A-346 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton con ruido.
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Perfil de Asiento vs Profundidad (DE + GN)
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Figura A-347 — Perfil de asiento retrocalculado. Algoritmo hibrido DE+GN con ruido.

369



ANEJO A

12.7.10 Recocido simulado (SA) con GN o LN - Sin ruido

Fase global de 10 iteraciones con temperatura inicial de 1 y factor de enfriamiento Alpha de
0.95.

10 %10 Trayectoria SA(E1 vs E2)
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Figura A-348 — Mapa de soluciones y trayectoria de optimizacién. SA sin ruido. Iteracion 10
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Figura A-349 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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Figura A-350 — Mapa de soluciones y trayectoria de optimizacién. LM sin ruido.

Perfil de Asiento (SA+GN)

10

Tedrico B
= = = Optimizado

15 1

Profundidad(m)

20

25|

30 1 1 1 1
0 5 10 15 20 25
Asent(mm)

Figura A-351 — Perfil de asiento retrocalculado. Algoritmo hibrido SA+GN sin ruido.
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12.7.11 Recocido simulado (SA) con GN o LN - Con ruido

10 x10% Trayectoria SA(E1 vs E2)
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Figura A-352 — Mapa de soluciones y trayectoria de optimizacion. SA con ruido. Iteracién 10
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Figura A-353 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton con ruido.
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Perfil de Asiento (SA+GN)
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Figura A-354 — Perfil de asiento retrocalculado. Algoritmo hibrido SA+GN con ruido.
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12.7.12 Optimizacion Bayesiana (BO) con GN o LN - Sin ruido

0 104 Mapa BayesOpt (E1 vs E2)
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Figura A-355 — Mapa de soluciones y trayectoria de optimizacién.

BO sin ruido. Iteracién 10

Mapa GN (lteraciones)

E2

Figura A-356 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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0 Perfil de Asiento (BayesOpt + GN)
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Figura A-357 — Perfil de asiento retrocalculado. Algoritmo hibrido BO+GN sin ruido.

12.7.13 Optimizacion Bayesiana (BO) con GN o LN - Con ruido

«104 Mapa BayesOpt (E1 vs E2
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Figura A-358 — Mapa de soluciones y trayectoria de optimizacién. BO con ruido. Iteracion 10
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«10% Mapa GN (lteraciones)
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Figura A-359 — Mapa de soluciones y trayectoria de optimizaciéon. Gauss-Newton con ruido.
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Figura A-360 — Perfil de asiento retrocalculado. Algoritmo hibrido BO+GN con ruido.
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12.7.14 Procesos Gaussianos (GP) con GN o LN - Sin ruido

« 104 Trayectoria (GP) en E1 vs E2
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Figura A-361 — Mapa de soluciones y trayectoria de optimizacién. GP sin ruido. Iteracion 10

«10% Mapa GN (lteraciones)

REE I

E2

Figura A-362 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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Perfil de Asiento (GP + GN)
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Figura A-363 — Perfil de asiento retrocalculado. Algoritmo hibrido GP+GN sin ruido.

12.7.15 Procesos Gaussianos (GP) con GN o LN - Con ruido
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Figura A-364 — Mapa de soluciones y trayectoria de optimizacion. GP con ruido. Iteracion 10
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«10% Mapa GN (lteraciones)
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Figura A-365 — Mapa de soluciones y trayectoria de optimizaciéon. Gauss-Newton con ruido.
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Figura A-366 — Perfil de asiento retrocalculado. Algoritmo hibrido GP+GN con ruido.
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12.7.16 Kriging con GN o LN - Sin ruido

0 <104 Trayectoria Kriging (E1 vs E2)
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Figura A-367 — Mapa de soluciones y trayectoria de optimizacién. Kriging sin ruido

«10% Mapa GN (Trayectoria)
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Figura A-368 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.

. Iteracion 20

380



ANEJO A

Trayectoria Kriging (E1 vs E2)
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Figura A-369 — Mapa de soluciones y trayectoria de optimizacién. LM sin ruido.
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Figura A-370 — Perfil de asiento retrocalculado. Algoritmo hibrido Kriging+GN sin ruido.

381



ANEJO A

12.7.17 Kriging con GN o LN - Con ruido

«10% Trayectoria Kriging (E1 vs E2)
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Figura A-371 — Mapa de soluciones y trayectoria de optimizacion. Kriging con ruido. Iteracion 20
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Figura A-372 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton con ruido.
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Perfil de Asiento (Kriging + GN)
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Figura A-373 — Perfil de asiento retrocalculado. Algoritmo hibrido Kriging+GN con ruido.
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12.7.18 Estrategias evolutivas (CMA-ES) con GN o LN - Sin ruido
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Figura A-374 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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Figura A-375 — Perfil de asiento retrocalculado. Algoritmo hibrido CMA-ES+GN sin ruido.
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12.7.19 Estrategias evolutivas (CMA-ES) con GN o LN - Con ruido

« 104 Mapa GN (Trayectoria)
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Figura A-376 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton con ruido.
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Figura A-377 — Perfil de asiento retrocalculado. Algoritmo hibrido CMA-ES+GN con ruido.
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12.7.20 Cuckoo Search con GN o LM - Sin ruido

Se considersa en la buisqueda global (Cuckoo Search) 10 nidos y 10 iteraciones con una

probailidad de abandono de 0.25
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Figura A-378 — Mapa de soluciones y trayectoria de optimizacién. Cuckoo Search sin ruido. Iteracién 10
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Figura A-379 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.

386



ANEJO A

Perfil de Asiento (Cuckoo Search + GN)
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Figura A-380 — Perfil de asiento retrocalculado. Algoritmo hibrido Cuckoo+GN sin ruido.

12.7.21 Cuckoo Search con GN o LM - Con ruido
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Figura A-381 — Mapa de soluciones y trayectoria de optimizacién. Cuckoo Search con ruido. Iteracién 10
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«10% Mapa GN (Trayectoria)
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Figura A-382 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton con ruido.
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Figura A-383 — Perfil de asiento retrocalculado. Algoritmo hibrido Cuckoo+GN con ruido.
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12.7.22 Grey Wolf Optimizer + GN o LM - Sin ruido

« 104 Trayectoria Grey Wolf (E1 vs E2)
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Figura A-384 — Mapa de soluciones y trayectoria de optimizacién. Grey Wolf sin ruido. Iteracion 10

«10% Mapa GN (Trayectoria)
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Figura A-385 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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Perfil de Asiento (GWO + GN)
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Figura A-386 — Perfil de asiento retrocalculado. Algoritmo hibrido Grey Wolf+GN sin ruido.

12.7.23 Grey Wolf Optimizer + GN o LM - Con ruido
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Figura A-387 — Mapa de soluciones y trayectoria de optimizacién. Grey Wolf con ruido. Iteracién 10
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«10% Mapa GN (Trayectoria)
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Figura A-388 — Mapa de soluciones y trayectoria de optimizaciéon. Gauss-Newton con ruido.
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Figura A-389 — Perfil de asiento retrocalculado. Algoritmo hibrido Grey Wolf+GN con ruido.
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12.7.24 Shuffled Complex Evolution (SCE) + GN o LM - Sin ruido

«10% Mapa de Soluciones GN (Iteraciones) SCE+GN
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Figura A-390 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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Figura A-391 — Perfil de asiento retrocalculado. Algoritmo hibrido SCE+GN sin ruido.
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12.7.25 Shuffled Complex Evolution (SCE) + GN o LM - Con ruido

x10% Mapa de Soluciones GN (lteraciones) SCE+GN
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Figura A-392 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton con ruido.
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Figura A-393 — Perfil de asiento retrocalculado. Algoritmo hibrido SCE+GN con ruido.
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12.7.26 NSGA-II Multiobjetivo + GN o LM - Sin ruido
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Figura A-394 — Mapa de soluciones NSGA-II sin ruido.

10X 104 Mapa de Soluciones GN (lteraciones) MOEA+GN
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Figura A-395 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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0 Perfil de Asiento (MOEA + GN)
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Figura A-396 — Perfil de asiento retrocalculado. Algoritmo hibrido NSGA-Il +GN sin ruido.

12.7.27 NSGA-II Multiobjetivo + GN o LM - Con ruido
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Figura A-397 — Mapa de soluciones NSGA-II con ruido.
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«10% Mapa de Soluciones GN (lteraciones) MOEA+GN
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Figura A-398 — Mapa de soluciones y trayectoria de optimizaciéon. Gauss-Newton con ruido.
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Figura A-399 — Perfil de asiento retrocalculado. Algoritmo hibrido NSGA-II +GN con ruido.
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12.7.28 SPEA2 Multiobjetivo + GN o LM - Sin ruido

Frente de Pareto final (SPEA2)
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Figura A-400 — Mapa de soluciones SPEA2 sin ruido.
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Figura A-401 — Mapa de soluciones y trayectoria de optimizacién. Gauss-Newton sin ruido.
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Perfil de Asentamiento (SPEA2+GN)
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Figura A-402 — Perfil de asiento retrocalculado. Algoritmo hibrido SPEA2+GN sin ruido.

12.7.29 SPEA2 Multiobjetivo + GN o LM - Con ruido
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Figura A-403 — Mapa de soluciones SPEA2 con ruido.
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Iteraciones GN (SPEA2+GN)
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Figura A-404 — Mapa de soluciones y trayectoria de optimizaciéon. Gauss-Newton con ruido.
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Figura A-405 — Perfil de asiento retrocalculado. Algoritmo hibrido SPEA2+GN con ruido.
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