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RESUMEN 

Introducción: El cáncer oral representa un desafío sanitario a nivel mundial, siendo el carcinoma 

oral de células escamosas (CCEO) responsable de más del 90 % de los casos. Su desarrollo está 

asociado a la acumulación de mutaciones somáticas que alteran los mecanismos de regulación 

celular. Estas alteraciones genéticas afectan a protooncogenes y genes supresores de tumores, 

dando lugar a una proliferación descontrolada, pérdida de la función normal, invasión de tejidos 

cercanos y metástasis potencial. El análisis transcriptómico proporciona información valiosa 

sobre estos cambios, y las herramientas bioinformáticas ofrecen un enfoque eficiente para 

procesar cantidades tan grandes de datos; Objetivos: Identificar genes expresados 

diferencialmente (DEG) en células tumorales de cáncer oral en comparación con tejido sano; 

Metodología: Se analizaron 8 muestras humanas, de las cuales 5 correspondían a tejido sano 

(muestras 1, 2, 4, 6 y 8) y 3 a tejido tumoral (muestras 3, 5 y 7). El análisis de RNA-seq se realizó 

en Galaxy Europe, utilizando FastQC, HISAT2 y FeatureCounts para el control de calidad, 

alineación y cuantificación. Limma-Voom se empleó para la identificación de DEG; Resultados: 

Se obtuvo una alta calidad de datos (>97 % de alineación), permitiendo identificar 20 genes 

desregulados significativos. El análisis reveló la implicación de rutas clave como Wnt/β-catenina, 

apoptosis, reprogramación metabólica y regulación inmunitaria, destacando la utilidad de 

herramientas bioinformáticas en la investigación del cáncer oral; Conclusiones: Este estudio 

demuestra la eficacia de los enfoques bioinformáticos en la investigación del cáncer oral, 

identificando con éxito los DEG en las células tumorales y destacando las vías implicadas (Wnt/β -

catenina, reprogramación metabólica, homeostasis redox, regulación inmunitaria). 
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ABSTRACT 

Introduction: Oral cancer remains a global health concern, with oral squamous cell carcinoma 

(OSCC) accounting for over 90% of cases. At the molecular level, oral cancer develops through 

the accumulation of somatic mutations that interfere with cellular regulatory mechanisms. 

These genetic alterations affect proto-oncogenes and tumor suppressor genes, resulting in 

uncontrolled proliferation, loss of normal function, invasion of nearby tissues, and potential 

metastasis. Transcriptomic analysis provides valuable insight into these changes, and 

bioinformatic tools offer an efficient approach to process such large quantities of data; 

Objectives: The main objective of this study was to identify differentially expressed genes (DEGs) 

in oral cancer tumor cells compared to healthy tissue; Methodology: The study comprised of 8 

samples from Homo sapiens: Samples 1, 2, 4, 6 and 8 were from healthy patients, and 3, 5 and 

7 from tumor tissue. RNA sequencing data from oral cancer and healthy tissue samples were 

analyzed using a bioinformatic pipeline implemented on Galaxy Europe. Quality control,  

sequence alignment, and count generation were performed using FastQC, HISAT2, and 

FeatureCounts. Differential expression analysis was conducted using Limma-Voom; Results: The 

RNA-seq pipeline achieved >97 % alignment efficiency and minimal adapter contamination, 

confirming data quality and suitability for downstream analysis. A table of the 20 most 

statistically significant dysregulated genes was constructed, revealing enrichment in Wnt/β -

catenin signaling and apoptosis pathways; Conclusions: This study demonstrates the 

effectiveness of bioinformatic approaches in oral cancer research, successfully identifying DEGs 

in tumor cells and highlights pathways involved (Wnt/β-catenin, metabolic reprogramming, 

redox homeostasis, immune regulation). 
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1. INTRODUCTION 

 

1.1. Clinical Relevance in Global Health 

In 2021, the Seventy-fourth World Health Assembly passed a Resolution on oral health.  

Consequently, in 2022, the Secretariat established the “Global Strategy and Action Plan on Oral 

Health 2023–2030”, which identifies oral cancer as “[one of] those with highest public health 

relevance”(1). According to World Health Organization (WHO) data, oral cancer ranks as the 

13th most frequently occurring cancer globally. Reports combining oral cancer with pharyngeal 

cancers indicate they together represent the sixth most prevalent cancer worldwide (2). 

 

1.1.1. Epidemiology 

Research highlights that higher-risk groups for oral cancer include men and older individuals,  

with men facing a two to three-fold increased risk compared to women (3). Socio-economic 

factors significantly impact risk: worldwide, both crude and age-standardized incidence rates are 

higher in developed areas, whereas mortality rates are elevated in less developed regions,  

reflecting social disparities (4). Based on the Global Burden of Cancer Study by the United 

Nations Development Program in 2012, the WHO South-East Asia region (SEARO) and WHO 

Europe region (EURO) show the most critical figures. 

 

Figure 1. World Regions according to World Health Organization (5) 

 

 

 

 

 

 

 

 

 

 

1.2 Classification 

In 2007, the WHO published its first classification of oral potentially malignant disorders 

(OPMDs). In clinical practice, “malignant” typically refers to disease that causes obvious and 

often rapid organ injury (6). Oral cancer has been defined as Squamous Cell Carcinoma (OSCC) 
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given that 90% of said cancer is histologically originated in the squamous cells (3,7). Squamous 

cells are part of the epithelial tissue, forming protective barriers on body surfaces and internal 

organs. 

 

Within the scope of oral cancer are included malignant neoplasms of the lip, oral cavity and 

oropharynx (8). The tongue, particularly its ventral–lateral aspect, is the primary site for roughly 

40% of oral cancers, the floor of the mouth accounts for about 30%, and the lower lip is affected 

less commonly (9).  

 

1.2.1 Types of Oral Cancer 

OSCC is an aggressive cancer affecting the oral epithelium, histologically originated in the 

squamous cells (3,7). It represents the predominant form of oral cancer, making up over 90% of 

all malignant growths within the oral cavity. While oral cancer can develop at any age, it is most 

commonly seen in older adults. Recent research shows that 90% of cases occur in individuals 

over 45 years old, with a significantly higher occurrence in men compared to women, at a ratio 

of 2.6 to 1. It is most frequently located intraorally at the lateral border and ventral surface of 

tongue. Location of the lesion is also dependent on habits, as chronic betel nut users more often 

present OSCC on the buccal mucosa. The gingiva is the site of about 5% to 10% of all cases of 

oral SCC (9). 

 

The clinicopathological aspect of OSCC is heterogenous, demonstrated in Figure 2. It can 

manifest in a range of colors and surface patterns: most often red and white, exophytic,  

infiltrative or ulcerated (9).  

 

Figure 2. OSCC ulcer on ventral tongue, floor of mouth, tumor of tongue (in order left to right) (10) 

 

 

There are other types of oral cancers in addition to squamous cell carcinoma, the most common 

are: salivary gland cancer, basal cell carcinoma, lymphoma, melanoma, and sarcoma (7), for 

more information refer to Annex 1. 
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1.3 Phases of Cancer Evolution 

 

Figure 3. Model of Cancer Evolution (11) 

 

 

Figure 3, adapted from Valent et al., presents a conceptual model of how cancer develops 

through progressive genetic changes originating in a normal stem cell. The process is described 

in six distinct phases, illustrating the gradual accumulation of mutations and the emergence of 

cellular heterogeneity within the tumor mass. 

• Phase I: Initiation – A genetic or epigenetic hit alters the stem cell’s DNA. 

• Phase II: Early Clonal Expansion – The altered stem cell spawns a small, premalignant 

clone. 

• Phase III: Acquisition of Driver Mutations – One or more “driver” mutations emerge,  

enabling certain clones to proliferate more aggressively than others.  

• Phase IV: Progressive Mutation Accumulation – As the clone expands, further mutations 

create subclonal diversity. 

• Phases V and VI: Advanced Clonal Diversification –Multiple genetically distinct subclones 

coexist within the tumor. One or more subclones become dominant forming the major 

and clinically visible portion of cancer, and cancer stem cells (shown in red) sustain 

growth and evolution. 

 

1.3.1 Oral Cancer Metastasis 

Metastasis is “the spread of cancer cells from the place where they first formed to another part 

of the body” (17) and occurs in oral cancer with variable probability. Cervical lymph node 

metastasis is “universally accepted as the main factor influencing survival in patients with 
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(OSCC)” (12). The TNM staging system (Tumor, Node, Metastasis) as seen in Figure 4 is crucial 

for assessing it. The "N" component specifically categorizes the extent of lymph node 

involvement, indicating the cancer's spread beyond the primary site. This system informs 

prognosis, guiding the course of treatment in accordance. For instance, the N3 classification is 

associated with a significantly poorer prognosis compared to N1 or N2b stages. 

 

Figure 4. TMN Staging: Extent of Lymph node involvement: Taken from World Health Organization 

Classification of Tumors (13). 

  

 

1.4 Risk Factors  

The International Agency for Research on Cancer (IARC) have cited smoked and smokeless 

tobacco use as carcinogenic to humans (14). Together with alcohol consumption, they are 

regarded as the primary causes of oral cancer (15). Other risk factors include betel nut chewing,  

high-risk Human Papillomaviruses and Epstein-Barr Virus presence, chewing habits, diet and 

nutrition, and chronic inflammation among many others (16–18). 

 

What lacks clarity in scientific literature is the role of genetic factors in oral cancer incidence- 

also known as Family History of Cancer (FHC). Though many epidemiological studies suggest a 

possible correlation (19–21), “some researchers believe that there is no evidence of a clear 

hereditary trait for oral cancers, except for Cowden syndrome and congenital dyskeratosis” (18).  

 

1.5 Genetics and Oral Cancer 

Cancer is the result of an accumulation of alterations (known as mutations) in the cellular 

pathways that regulate excitation and inhibition of cellular processes (22). It generally takes 

three to six somatic alterations to convert a normal cell into a malignant one (23). As these 

mutations accumulate, the cell gains independence from the surrounding oral epithelium, 

overriding normal cellular functions. This eventually leads to unchecked growth, stimulation of 
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new blood vessel formation, and the capacity to invade nearby tissues or even reach other parts 

of the body  (22). 

 

Genetic harm in oral cancer cells can be categorized into two kinds: dominant changes, often 

found in proto-oncogenes and occasionally in certain tumor suppressor genes (TSGs), which lead 

to an increase of function. On the other hand, recessive changes typically seen in genes involved 

in growth-inhibitory pathways or commonly in TSGs result in a loss of function (22). 

 

1.5.1 Functional Genomics: the role of the Transcriptome in Oral Cancer 

Functional genomics examines how genes and their products (proteins, RNAs) function and 

interact in living systems (30). The transcriptome represents the complete set of transcripts 

(RNA species) i.e. both coding and non-coding, within a cell, tissue, or organ. Unlike the largely 

stable nuclear genome, it is highly dynamic since it varies according to factors like cell cycle 

stage, tissue type, environmental exposure, ageing, disease, and other variables. This 

adaptability makes the transcriptome a valuable tool for identifying gene functions (22,24).  

 

The transcriptome approach, which involves large-scale measurement of mRNA, quickly became 

a favored method within the field of functional genomics. It allows analysis of cellular activity on 

a grand scale by simultaneously analyzing activity of many genes in cells and tissues, known as 

parallel hybridization methods (22,25) . 

 

1.6 The Bioinformatic Approach 
 

1.6.1 What is Bioinformatics? 

As defined by the National Human Genome Research Institute, bioinformatics “is a scientific 

subdiscipline that involves using computer technology to collect, store, analyze and disseminate 

biological data and information, such as DNA and amino acid sequences or annotations about 

those sequences” (26). A bioinformatic approach to studying the transcriptome in oral cancer 

cells involves the use of computational tools and algorithms to extract meaningful biological 

insights from large-scale sequencing data, such as RNA sequencing (RNA-seq) datasets, which 

measure gene expression levels in cancer cells. 

 

1.6.2 Advantages of Bioinformatic application in Oral Cancer Research 

The large amounts of data that need to be processed make it impractical to analyze manually.  

Conveniently, bioinformatics provides the tools to manage the grand scale of information 



 

 11 

efficiently. Other advantages include the possibility of gene expression profiling, pathway 

analysis, ability to detect mutations, copy number variations, and the analysis of transcriptomes 

of individual patients in order to personalize treatment strategies based on specific gene 

expression profiles and genetic mutations (27–29). 

 

1.6.3 Relevance to this Study 

This study applies a bioinformatics workflow to RNA-seq data from healthy and oral cancer 

tumor samples to pinpoint differentially expressed genes. The entire pipeline is performed on 

Galaxy Europe, a web-based platform whose accessible, reproducible workflows ensure 

transparency and are used to process raw reads and quantify expression levels.  

 

1.7 Hypothesis 

It is hypothesized that differential gene expression will be observed between tumor and healthy 

samples from oral mucosa, and bioinformatic tools will effectively detect these changes. 
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2. OBJETIVE 

1. To find genes that are differentially expressed in oral cancer tumors compared to 

healthy cells. 
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3. MATERIAL AND METHODS 
 

3.1 The Samples  

 

• Description of the sample: Samples are taken from the study “RNA Sequencing of Oral 

Cancer Tumor Tissue and Healthy tissue”, conducted by Gujarat Biotechnology Research 

Centre. Comprising of 8 samples from Homo sapiens: Samples 1, 2, 4, 6 and 8 are from 

healthy patients, and 3, 5 and 7 from tumor tissue.  

• Design: RNA sequence analysis 

•  Instrument: Illumina MiSeq  

• Source: Transcriptomic  

• Selection: Random 

Referring to RNA-seq library preparation: random selection uses random primers 

without enriching for specific RNAs (e.g., mRNA), yielding a library containing a mixture 

of RNA species (mRNA, rRNA, tRNA). 

• Layout: Paired 

Specifies single-end versus paired-end sequencing. Paired-end reads both ends of each 

fragment—forward and reverse—boosting mapping accuracy and enabling structural‐

variation detection. 

• Date of completion: June 29 2022  

• Description of data storage 

The RNA-seq data are publicly available in NCBI’s SRA under accession: SRP384104. The 

eight samples include metadata on platform (Illumina MiSeq), file sizes, read counts,  

and library prep, enabling easy public data download and research reproducibility. 

 

3.2 The Galaxy Platform 

The Galaxy platform is an open-source, web-based bioinformatics tool that simplifies large-scale 

data analysis. It provides an intuitive interface for managing RNA-Seq data workflows, from 

quality control to functional analysis, using a variety of built-in tools. It is ideal for this thesis as 

it allows reproducibility and scalability, making it easy to process the RNA data from the eight 

tumor and healthy tissue samples collected.  
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3.3 Tools Used in Analysis 

 

Each tool is tailored to a specific step in the pipeline.  

 

A. Quality Control  

• FastQC: Evaluates raw sequence data quality.  

• MultiQC: Aggregates FastQC reports for a comprehensive overview. 

 

B. Alignment  

• HISAT2: Aligns RNA reads to the reference genome.  

• Samtools Flagstat: Performs manipulations like sorting and indexing on BAM files. 

 

C. Count Generation  

• FeatureCounts: Assigns aligned reads to genes.  

 

D. Differential Expression Analysis  

• Limma-Voom: Suitable for large datasets with RNA-seq data.  

 

3.4 Pipeline for RNA-Seq Data Analysis 

 

1. RNA Extraction: Extract RNA from tumor samples using standard lab methods.  

2. Library Preparation: Convert RNA to cDNA and prepare for sequencing. 

3. Sequencing: Perform RNA-Seq using high-throughput platforms like Illumina.  

4. Quality Control (QC): Use tools to assess and improve sequence quality. 

5. Alignment: Map reads to the reference genome. 

6. Count Generation: Generate read counts per gene. 

7. Differential Expression Analysis: Identify differentially expressed genes. 

 

3.5 Authorization 

The department has authorized this study under the number OD.021/2425. 
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4. RESULTS 

 

4.1 Quality Control of Raw Reads 

The analysis began with quality control of raw RNA-seq reads using FastQC in Galaxy Europe, 

applied to all eight samples with default settings. It generated multiple quality metrics (Annex 2 

shows results for sample 1) which were summarized with MultiQC to provide a combined view. 

From these metrics, three key indicators were selected for the Results section based on their 

relevance to overall read quality and suitability for downstream analysis. 

 

Figure 5. Adapter Content Across Read Positions 

 

Figure 5 shows the adapter content across all samples. This plot assesses the presence of 

leftover adapter sequences, which can interfere with accurate alignment and quantification. The 

graph reveals that adapter contamination was minimal (<1% across all positions), remaining well 

within the green "pass" threshold, and thus no additional trimming steps were required. 

 

Figure 6. Average Phred quality scores across base positions. 

 

Figure 6 presents the per-base sequence quality, indicating the Phred score at each base position 

across all reads. The data show that nearly all base positions exhibit Phred scores above 30, 

falling within the green zone which reflect very high confidence in base calling- the process by 
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which each nucleotide (A, T, G, or C) is identified during sequencing. High scores indicate reliable 

read accuracy and low error rates. 

 

Figure 7. Per-Sequence Quality Score Distribution 

 

Figure 7 illustrates per-sequence quality score distribution, with most sequences clustered near 

the maximum score of 30 and very few below the commonly accepted threshold of 20. This 

confirms that the dataset is composed of consistently high-quality reads. 

 

These three FastQC metrics were prioritized as they best represent sequencing quality.  

Additional metrics such as GC content, sequence duplication, and length distribution are 

provided in Annex 3. 

 

HISAT2 then aligned paired-end reads to the Homo sapiens reference genome (GRCh38) using 

default settings, generating BAM files (Annex 4). Samtools Flagstat reported > 97% mapping and 

strong primary alignment metrics (Annex 5), indicated reliable mapping of reads to the reference 

genome and gene quantification. 

 

4.2 RNA-seq Reads to Counts 

To generate the raw count matrix, FeatureCounts was used to assign aligned reads to genomic 

features based on the Homo sapiens GRCh38 annotation. Key options selected included 

counting at the gene level and specifying paired-end reads. The resulting count table, covering 

all eight samples, was validated using MultiQC to summarize mapping and counting statistics 

(Annex 6), completing the transition from raw reads to a structured count matrix (Annex 7). 

 

A final quality check was then performed on the BAM files using a Galaxy workflow including 

Infer Experiment, MarkDuplicates, and Samtools IdxStats, to assess strandness, duplication, and 

read distribution across chromosomes (Annex 8). 
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4.3 Differential Expression Analysis 

 

Figure 8. Left: Multidimensional Scaling (MDS) Plot: Dims 1 and 2, Right: Scree Plot: Variance Explained 

 

 

Differential expression analysis was performed using the RNA-seq counts to genes tutorial 

pipeline. The process began with data normalization and transformation using the Limma-Voom 

method- chosen for its robustness in handling small sample sizes. First, a Multi-dimensional 

Scaling (MDS) plot was generated to assess clustering based on gene expression patterns (Figure 

8, left). While some samples cluster closely (e.g., healthy samples 2, 4, and 6), there is no 

consistent separation between tumor and healthy groups. Notably, Sample 8 (healthy) and 

Sample 7 (tumor) appear as outliers, and Sample 1 (healthy) overlaps with a tumor sample,  

suggesting potential within-group heterogeneity or technical variation. The scree plot (Figure 8, 

right) shows that Dimension 1 captures 43% of the variance, which supports that there are 

strong global expression differences in the dataset, although these may not align strictly with 

clinical groupings. 

Figure 9. Voom Mean–Variance Trend Plot 
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The voom transformation was then applied, which models the mean-variance relationship of 

the log-counts (Figure 9). Each dot represents a gene, with the x-axis showing the log2-

transformed count and the y-axis the square root of its standard deviation. The red trend line 

highlights that genes with lower expression levels exhibit higher variability, as indicated by the 

wider spread and elevated positions on the left side of the plot. In contrast, highly expressed 

genes show more consistent behavior, clustering lower along the Y-axis. This trend validates the 

voom transformation, which stabilizes variance before applying linear modeling in the Limma 

framework. 

Figure 10. Final Model: Mean-variance trend (SA Plot) 

 

 

Figure 11. MD Plot: Tumor vs. Healthy 
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Following voom transformation, linear modeling and empirical Bayes moderation were applied 

using Limma. Model diagnostics were assessed with two plots. The SA plot (Figure 10) showed 

residual standard deviation (√σ) versus average log-expression. Most genes followed the fitted 

trend line, confirming consistent variance and good model fit, while a few outliers (in red) 

showed elevated variability. The MD plot (Figure 11) displayed logFC against average expression.  

While most genes clustered near logFC = 0, many deviated above or below. Genes above zero 

indicated upregulation in tumors, while those below were downregulated, reflecting 

widespread transcriptomic differences between conditions. 

 

Figure 12. Volcano Plot: Tumor vs. Healthy 

 

To visualize the statistical significance and magnitude of gene expression changes, a volcano plot 

was generated (Figure 12). This plot displays the log2 fold change on the x-axis and the  

-log10 p-value on the y-axis. Genes located in the upper left and right corners represent those 

with both large fold changes and strong statistical significance. These are the most biologically 

relevant DEGs.  
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Table 1. The top 20 most significantly dysregulated genes sorted by ascending p-value, with 

corresponding log2 fold change (logFC), t-statistics, and regulation direction. 

 

 

After model fitting, a table of differentially expressed genes (DEGs) was generated (Annex 9).  

The table included log2 fold change (logFC), p-values, adjusted p-values, t-statistics, and gene 

symbols. To focus on the most statistically significant genes, the list was filtered to include genes 

with p-value < 0.05, and logFC ≥ 1.58 (upregulated) or ≤ -1.58 (downregulated). This logFC 

cutoff corresponds to at least a threefold difference in expression between tumor and healthy 

samples, a commonly accepted benchmark in transcriptomics to identify genes with meaningful 

biological impact. The column 13 of the table, which includes gene names, was used to discard 

any genes labeled “NA” (not mapped). The resulting DEG list was sorted by ascending p-value,  

and the 20 most significantly dysregulated genes were extracted (Table 3). 
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5. DISCUSION 

The differential expression analysis highlighted the 20 most significant dysregulated genes in 

tumors versus healthy tissue, directly supporting the objective of identifying genes altered in 

oral cancer. 

 

SLC24A3, or NCKX3, encodes a K⁺‐dependent Na⁺/Ca²⁺ exchanger important for calcium‐

regulated processes like gene expression and apoptosis (30). Yu et al. suggest it may be a marker 

in OSCC by finding consistent SLC24A3 expression in all of the tested oral cancer cell lines (SCC4, 

SCC9, SCC15, SCC25, and CAL27), regardless of chemoresistance (31). Functional enrichment 

links it to DNA repair, mitochondrial organization, ncRNA metabolism, and the cell cycle, whilst 

another study has also shown the role of SLC24A3 in maintaining cell stability (32). This gene 

also appears to modulate the tumor‐immune microenvironment and pain‐related signaling. In 

cervical and endometrial cancers high expression predicts poorer predicted clinical outcomes 

(33). Although this evidence comes from other types of cancer, it raises the question of whether 

a similar association between expression levels and prognosis could exist in OSCC. Overall,  

SLC24A3 appears to have several roles in cancer development and symptoms, supporting its 

importance as a differentially expressed gene in OSCC. 

 

PPP2R2B encodes the B55β regulatory subunit of protein phosphatase 2A (PP2A), a tumor 

suppressor that restrains cell proliferation (34). Multiple gene expression profiling studies found 

that PPP2R2B is significantly suppressed in OSCC tumors compared to normal oral tissue (35).  

PPP2R2B mRNA and protein levels also tend to be lower in HNSCC tumor samples and cell lines 

than in non-tumor controls (36). Whilst this downregulation reflects PPP2R2B’s role as a tumor 

suppressor, the mechanism by which it occurs in oral cancer remains unclear. Though PPP2R2B’s 

promoter is frequently hypermethylated in laryngeal squamous cell carcinoma, the same study 

found no evidence of PPP2R2B promoter hypermethylation in oral cancers (37). This distinction 

suggests that promoter methylation status of PPP2R2B varies by tumor site and that other 

mechanisms (e.g. transcriptional repression or deletions) are responsible for reduced expression 

of the gene in OSCC. 

 

In OSCC, low PPP2R2B expression correlates with more aggressive disease features and 

resistance to chemotherapy. A bioinformatic analysis of OSCC cell lines revealed that cell lines 

with lower PPP2R2B levels were significantly more resistant to cisplatin, a leading 

chemotherapeutic for oral cancer (35). More specifically, Gouttia et al. demonstrate that 

PPP2R2B expression had one of the highest predictive values for cisplatin response. Low 
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PPP2R2B expression in combination with high MASTL kinase (an inhibitor of PP2A-B55) were 

strong predictors of a higher cisplatin IC50 (poorer drug sensitivity and worse response to 

chemotherapy) across OSCC cell lines.  

 

In this study, PPP2R2B was significantly upregulated in oral cancer samples compared to healthy 

tissue, contrasting with its established role as a tumor suppressor in literature. This discrepancy 

suggests a context-dependent or stage-specific function for PPP2R2B in oral squamous cell 

carcinoma (OSCC). The observed upregulation may reflect a compensatory cellular response to 

oncogenic stress or altered signaling aimed at restoring PP2A balance. Alternatively, it may 

indicate a subtype of OSCC with distinct PP2A complex regulation. These findings highlight the 

need for further investigation into PPP2R2B expression in distinguishing tumors from healthy 

tissue in OSCC. 

 

Extensive research identifies SPINK5 as a tumor suppressor frequently downregulated in OSCC 

and head and neck cancers. It encodes LEKTI, a serine protease inhibitor that regulates kallikrein 

activity and maintains epithelial barrier integrity (38). Loss of SPINK5 enhances protease-driven 

invasion, activates Wnt/β-catenin signaling, and promotes epithelial-mesenchymal transition 

(EMT), contributing to malignancy and chemoresistance (39). Epigenetic silencing through 

EHMT2 (G9a)-mediated histone modification and promoter methylation is linked to reduced 

expression (40). It has been proposed as a diagnostic and prognostic biomarker since clinically,  

low SPINK5 levels correlate with advanced stage, poor differentiation, and worse survival (41).  

Restoring SPINK5 suppresses tumor growth and enhances chemosensitivity in vitro(39). 

 

Contrastingly, a recent spatial transcriptomics study identified high SPINK5 expression in an 

OSCC epithelial cell subtype named Epithelial01, particularly in carcinoma in situ and early-stage 

lesions (42). Such heterogeneity may explain the discrepancy between existing literature and 

the current findings since SPINK5 was significantly upregulated in tumor samples. Moreover, it 

implies expression may vary by tumor subpopulation, differentiation state, or disease stage. 

Further study is required to determine if SPINK5 could have dual or context-dependent roles- as 

a tumor suppressor in advanced disease and retained in early lesions. 

 

Part of the DHRS4 cluster, little is currently known about DHRS4L1’s structure or expression (43).  

There are no published studies directly linking DHRS4L1 expression to outcomes in OSCC or head 

and neck cancers. However, DHRS4 is expressed in multiple tissues and cancer cell lines. DHRS4 

encodes a NADP(H)-dependent oxidoreductase involved in retinol and steroid metabolism, 
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contributing to the production of all-trans retinoic acid (RA) which is a key regulator of cell 

growth and differentiation. Since RA pathways control oral epithelial differentiation and 

proliferation, changes in DHRS4L1 may hold diagnostic or prognostic value. The DHRS4L1 cluster 

is involved in the retinol-to-RA and steroid metabolism pathways, which influences tumor 

behavior by activating nuclear receptors like RAR and RXR, promoting differentiation and 

apoptosis in epithelial cells (44,45). Disruptions in this pathway can influence cancer 

development. 

 

Although HRNR is not well-characterized in oral cancer, it has been linked to tumor progression 

in several epithelial malignancies, including gastric cancer and hepatocellular carcinoma. In 

gastric cancer, high HRNR expression in stage II and III tumors is associated with significantly 

worse overall survival and serves as an independent prognostic marker (5-year OS: 53.6% vs. 

74.9%; HR = 1.53) (46). In liver cancer, HRNR promotes tumor progression via activation of the 

AKT signaling pathway (47). As a member of the S100 protein family, HRNR may also influence 

epithelial differentiation and stress responses through calcium-dependent mechanisms (48).  

These findings show that HRNR contributes to epithelial tumor biology across tissue types and 

may hold prognostic value. Its upregulation in OSCC highlights the possible involvement of both 

epithelial-specific and immune-related pathways in oral cancer development. 

 

RSPO1 potentiates Wnt/β-catenin signaling by blocking the breakdown of key Wnt pathway 

components (49), playing an important role in cancer by helping tumors reprogram their 

metabolism via glycolysis, glutamine use, fat production (50). While there is limited research on 

RSPO1 in OSCC, studies in other cancers show that dysregulated RSPO1 expression is linked to 

changes in immune cell activity, suggesting it influences the tumor immune environment (51).  

In head and neck cancers, single-cell RNA sequencing found a group of epithelial cells with high 

RSPO1 expression and strong tumor-forming ability (52). In gastrointestinal cancers, RSPO1 

overexpression showed promotion of cell growth, movement, and survival, mainly by activating 

the Wnt pathway (53). In the DEG table, RSPO1 was significantly upregulated in tumor samples,  

which supports the idea that RSPO1 may drive metabolic changes and tumor progression in oral 

cancer.  

 

DOK5 encodes a docking protein involved in signal transduction, particularly the MAPK and 

Wnt/β-catenin signaling pathways, and plays a role in cell proliferation and differentiation 

(54,55). In gastric cancer, high DOK5 expression was linked to increased immune cell infiltration 
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and poor prognosis (56). The downregulation of DOK5 in oral cancer samples may reflect tissue-

specific functions or differences in immune regulation. 

 

KCNK2 (also known as TREK-1) encodes a potassium channel involved in membrane potential 

regulation, neuronal signaling, and cellular stress response (57). In papillary thyroid carcinoma,  

KCNK2 was found to be downregulated, and its expression negatively correlated with tumor 

stage, suggesting a possible tumor-suppressive role (58). In contrast, data from the Human 

Protein Atlas shows that KCNK2 is upregulated in breast cancer and classified as cancer-

enhanced, underlining the context-dependent role of this gene. Despite these observations,  

KCNK2 currently lacks consistent prognostic value across cancer types, as its expression does 

not reliably correlate with patient outcomes (59). These findings underscore the complexity of 

gene regulation in cancer, where genes like DOK5 and KCNK2 may have distinct roles depending 

on tissue type and tumor context. 

 

Among the DEGs identified in this study, SPRY4 and UGT1A10 are mentioned in previous cancer 

research, including limited findings in oral squamous cell carcinoma. One recent study is referred 

to as “the first to confer the potential involvement of SPRY4 protein expression in human oral 

squamous cell carcinogenesis” (60), while UGT1A10, a detoxification enzyme involved in 

glucuronidation, has been shown to be dysregulated in several cancers, with its overexpression 

potentially reflecting metabolic adaptation in tumor cells (61,62). ALAS2, a mitochondrial 

enzyme that catalyzes the first step in heme biosynthesis, is significantly upregulated in the 

present dataset which according to studies has been shown to reduce oxidative stress and 

protect against ferroptosis in non-erythroid cells (63). This suggests that tumors may exploit 

ALAS2 to enhance metabolic resilience and survival. Conversely, DNAJB5, a member of the 

HSP40 chaperone family, is downregulated in our dataset. While it has been linked to cell 

survival and therapy resistance in other cancers, its reduced expression in OSCC may impair 

stress response pathways and protein stability (64). Whilst these observations reflect alignment 

with emerging evidence, current available literature concerning these genes remains limited, so 

it does not yet provide a sufficient basis for a broader discussion.  

 

In contrast, TPSD1, CEL, FKBP10, GUCY2C, MEIS3, and SRRM4 appear to be novel findings in the 

context of OSCC, as there is little to no existing literature linking them directly. These 

observations highlight the identification of potentially new molecular players and combination 

of underexplored pathways that may play roles in OSCC progression and warrant further 

investigation. 
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By identifying dysregulated genes, this study contributes to a clearer understanding of the 

molecular mechanisms involved in tumor progression. While earlier research has focused largely 

on well-known oncogenes and tumor suppressors, this study highlights both established players 

(e.g., PPP2R2B, SPINK5) and novel candidates (TPSD1, SRRM4). These findings deepen our 

understanding of oral-cancer regulation and guide improved profiling as well as future 

diagnostic and therapeutic efforts. 

 

Despite these insights, several limitations remain. Small sample size limits generalizability and 

likely omits oral cancer’s full variability. Relying on pre-existing RNA-seq data with only species,  

sex, and provider metadata prevented analysis of race, exposures, habits, and tumor stage. This 

limited the ability to assess how expression changes relate to oral cancer staging. Additionally,  

though the DEG list aligns with published findings, many transcripts are still poorly characterized 

and warrant further study. 

 

Technically, Galaxy workflows use default settings and standard gene filters, which may overlook 

subtle or novel expression changes. Future work with larger datasets and customizable pipelines 

could build on these findings and offer a more complete understanding of gene expression in 

oral cancer. 

 

This study lays a foundation for follow-up research using diverse cohorts, detailed clinical 

metadata, and experimental validation (in vitro or in vivo). Integrating proteomics or epigenetics 

could offer a more comprehensive view of gene function. Overall, this research underscores the 

value of bioinformatics in cancer genomics and supports ongoing transcriptomic analysis in both 

research and clinical contexts. 
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6. CONCLUSIONS 

1. This study successfully identified differentially expressed genes (DEGs) 

between oral cancer tumor cells and healthy tissue using RNA-Seq data.  

20 statistically significantly dysregulated genes were identified 

specifically. 

2. As a complementary conclusion, this study revealed several biological 

pathways in which these DEGs are involved, including Wnt/β-catenin 

signaling, metabolic reprogramming and redox homeostasis, and 

immune system regulation. 

3. As a complementary conclusion, this study also emphasizes the value of 

bioinformatic workflows in oncological research. The use of Galaxy 

Europe enabled a reproducible, accessible, and efficient analysis 

pipeline for transcriptomic data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 27 

7. SUSTAINABILITY 

Integration of bioinformatics into biomedical research contributes significantly to sustainability 

by reducing reliance on physical materials, lab reagents, and animal models, aligning with SDG 

12: Responsible Consumption and Production, and SDG 15: Life on Land. Enabling in-silico 

experimentation allows researchers to pre-screen and prioritize only the most promising targets 

for in vitro validation, minimizing waste and resource use. This approach reduces the 

environmental footprint of research activities, contributing to SDG 13: Climate Action. 

 

Economically, bioinformatic pipelines accelerate data analysis, reducing the time and cost of 

discovery phases and allowing research funds to be allocated more efficiently. This facilitates 

more agile responses to public health challenges, aligning with SDG 3: Good Health and Well-

being. 

 

Socially, free open-source platforms democratize participation in scientific research, promoting 

equity and inclusion across global research communities by reducing technical and financial 

barriers, bioinformatics supports broader collaboration and capacity building, particularly in 

low-resource settings. This contributes to SDG 10: Reduced Inequalities.  
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9. ANNEXES 

 
ANNEX 1. Overview of other Oral Cancer Subtypes: Descriptions, Histology, and 

Clinicopathological Features 

Oral 

Cancer 
Description Histology Clinicopathological aspect 

Salivary 

gland 

cancer 

The salivary glands 

comprise three pairs major 

salivary glands (parotid,  

submandibular, and 

sublingual), as well as 

hundreds of minor salivary 

glands. The most common 

type of salivary gland 

cancer is mucoepidermoid 

carcinomas- most often 

starting in the parotid 

glands (65). However, the 

incidence of malignancy is 

higher in the sublingual 

and submandibular glands 

since around 70-90% and 

45% of tumours in the 

respective glands are 

cancer in comparison to 

15-35% in parotid glands 

(7,65).  

Salivary gland cancers 
show various tumor 
types since a healthy 

salivary gland 
contains inner 

luminal/epithelial or 
acinar/mucous cells 
and outer 

basal/myoepithelial 
cells in the duct or the 

secretory part (13). 

 

Figure 3. Pleomorphic 

adenoma: firm bluish nodule, 

Canalicular adenoma: 

purplish labial nodule (in 

order). 
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Basal Cell 

Carcinoma 

(BCC) 

BCC is a type of skin cancer. 

It usually presents with 

ulceration or bleeding,  

therefore caution should 

be taken when performing 

the differential diagnosis 

as not to confuse with 

Herpes Simplex, Aphthous 

ulcer, Actinic cheilitis,  

traumatic lesions to name 

a few (10,66).  

 

Developing from 

basal cells found on 

the lips. 

Figure 4. Basal cell carcinoma 

on vermilion lip of 45-year-

old woman, Nevus basal cell 

carcinoma with multiple 

odontogenic keratocysts, 

which is a hallmark feature of 

the syndrome (in order). 

 

 

Lymphoma 

 

Lymphomas are the 2nd 

most common neoplasm 

of the head and neck, but 

are relatively rare within 

the scope of oral 

malignancies- accounting 

for around 3.5% (10). 

 

They are usually classified 

into Hodgkin or non-

Hodgkin lymphoma and 

subdivided into nodal and 

extra-nodal disease. Extra-

nodal lymphomas often 

present in the oral region, 

usually in the masticatory 

mucosa. These lymphomas 

are not always primary, but 

rather secondary tumours 

invading from surrounding 

Lymphoma is a 

malignant neoplastic 

growth of 

lymphocytes. 

Figure 5. Lymphoma of 

palate: nontender with 

telangiectasia, HIV-associated 

non-Hodgkin lymphoma (in 

order) 

 

 

 



 

 35 

structures such as 

maxillary sinus or bone 

marrow (67). Those most 

prone to primary 

lymphomas of the palate 

are young AIDS patients or 

adults over 60 years of age 

(10). 

Melanoma Oral malignant melanoma 

(OMM) is very rare but 

highly aggressive, making 

up 0.5% of all oral 

malignancies and <1% of 

all other melanomas, 80% 

of which occur on the 

palate or maxillary alveolar 

ridge (10). 

 

During 

embryogenesis, 

melanocytes arise 

from neural-crest 

precursors that 

migrate into and 

reside in the basal 

layer of the 

epithelium. 

Melanoma is a 

malignancy of these 

epidermal 

melanocytes. 

Figure 6. Melanoma satellite 

lesions on palate, Melanoma 

color variation in soft palate 

and tuberosity (in order). 
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Sarcoma  Oral sarcomas are very 

rare <1% , as sarcomas 

account for nearly 1% of all 

neoplasms in the head and 

neck region (68). It can 

include malignant 

periodontal defects, 

osteosarcoma, 

chondrosarcoma, Ewing 

sarcoma (cell malignancy 

caused by a chromosomal 

translocation), Kaposi’s 

sarcoma (associated to 

HIV/IAIDs infection) (10). 

Derived from 

mesenchymal 

progenitor cells. 

Figure 7. Malignant disease: 

chondrosarcoma with 

widened PDL, Ewing sarcoma, 

HIV-associated Kaposi 

Sarcoma: purplish macules (in 

order). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 37 

ANNEX 2. FASTQC on sample 1 (webpage)  

Overview information  

 

Per Base Sequence quality  

 

Per Sequence Quality Score  

 

Per Base Sequence content  
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Per Sequence GC content  

  

Per Base N content  

 

Sequence length distribution  

 

Adapter content  
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ANNEX 3. MULTIQC data (webpage) 

General 

Statistics 

 

 

 

Sequence 

counts for each 

sample: 

Sequence 

counts for each 

sample. 

Duplicate read 

counts are an 

estimate only. 

 

Per Sequence 

GC Content: 

The average GC 

content of 

reads. Normal 

random library 

typically have a 

roughly normal 

distribution of 

GC content. 

 

 

Per Base N 

Content: 

The percentage 

of base calls at 

each position for 

which an N was 

called.  
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Sequence 

Length 

Distribution: 

The distribution 

of fragment 

sizes (read 

lengths) found.  

Sequence 

Duplication 

Levels: 

The relative 

level of 

duplication 

found for every 

sequence. 

 

Overrepresente

d sequences by 

sample: 

The total 

amount of 

overrepresented 

sequences 

found in each 

library. 

 

 

Top 

overrepresented 

sequences 

across all 

samples:  

The table shows 

20 most 

overrepresented 

sequences 

across all 
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samples, ranked 

by the number 

of samples they 

occur in. 

Status Checks: 

Status for each 

FastQC section 

showing 

whether results 

seem entirely 

normal (green), 

slightly 

abnormal 

(orange) or very 

unusual (red). 
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ANNEX 4. Screenshot of BAM file generated by HISAT2 tool  
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ANNEX 5. Samtools Flagstat results on samples 1-8  

 

Sample 1 Sample 2 

  

Sample 3  Sample 4  

  

Sample 5  

 

Sample 6  

 

Sample 7  Sample 8  
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Key Metrics and their relevance (Taking sample 1 for example):  

 

 

 

 

 

 

 

1. Total reads (34320119): the total number of sequencing reads in the dataset 

A high read count ensures sufficient data coverage for accurate gene expression analysis.  

2. Mapped reads (33625182, 97.98%): how many reads were successfully aligned to the 

reference genome  

As I said earlier a high mapping rate (>70%) is good, meaning most reads matched known 

genomic regions.  

3. Primary Mapped reads (94.95%): reads that uniquely mapped to a single location in the 

genome  

High primary alignment means reads are specific to genes, improving quantification accuracy.  

4. Secondary reads (20568101): reads which map to multiple locations in the genome 

(common in repetitive regions). High secondary alignments may indicate contamination, 

duplicated sequences, or issues with reading.  
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ANNEX 6. MultiQC results from the 8 summary featurecount files 

General Statistics 

 

FeatureCounts: 

Counts mapped reads for genomic 

features such as genes, exons, 

promoter, gene bodies, genomic 

bins and chromosomal locations 
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ANNEX 7. Count Matrix (the screenshot is for demonstrative purposes, part of a larger table 

that cannot be included in its entirety)  
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ANNEX 8. QC summary report  

Using a prepared workflow (first picture below), the following three tools were run: Infer 

Experiment, MarkDuplicates and IdxStats. Then a MultiQC report was generated which has 

been copied in continuation. 

 

 

Output Graph 

General Statistics 

 

Infer experiment: 

Counts the percentage 

of reads and read pairs 

that match the 

strandedness of 

overlapping 

transcripts. It can be 

used to infer whether 

RNA-seq library preps 

are stranded (sense or 

antisense). 
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Picard 

 

 

Samtools: XY counts 

 

Samtools: Mapped 

reads per contig 
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ANNEX 9. Filtered DEG Table (the screenshot is for demonstrative purposes, part of a larger 

table that cannot be included in its entirety) 

 

 

 

 

 

 

 


