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RESUMEN

Introduccidn: El cancer oral representa un desafio sanitario a nivel mundial, siendo el carcinoma
oral de células escamosas (CCEO) responsable de mas del 90 % de los casos. Su desarrollo estd
asociado a la acumulacion de mutaciones somaticas que alteran los mecanismos de regulacién
celular. Estas alteraciones genéticas afectan a protooncogenes y genes supresores de tumores,
dando lugar a una proliferacién descontrolada, pérdida de la funcidn normal, invasién de tejidos
cercanos y metastasis potencial. El andlisis transcriptémico proporciona informacién valiosa
sobre estos cambios, y las herramientas bioinformaticas ofrecen un enfoque eficiente para
procesar cantidades tan grandes de datos; Objetivos: Identificar genes expresados
diferencialmente (DEG) en células tumorales de cédncer oral en comparacion con tejido sano;
Metodologia: Se analizaron 8 muestras humanas, de las cuales 5 correspondian a tejido sano
(muestras 1, 2,4, 6 y 8) y 3 a tejido tumoral (muestras 3, 5y 7). El andlisis de RNA-seq se realizd
en Galaxy Europe, utilizando FastQC, HISAT2 y FeatureCounts para el control de calidad,
alineacion y cuantificacién. Limma-Voom se empled para la identificacion de DEG; Resultados:
Se obtuvo una alta calidad de datos (>97 % de alineacidén), permitiendo identificar 20 genes
desregulados significativos. El analisis reveld la implicacién de rutas clave como Wnt/B-catenina,
apoptosis, reprogramaciéon metabdlica y regulacién inmunitaria, destacando la utilidad de
herramientas bioinformaticas en la investigacion del cancer oral; Conclusiones: Este estudio
demuestra la eficacia de los enfoques bioinformaticos en la investigaciéon del cancer oral,
identificando con éxito los DEG en las células tumorales y destacando las vias implicadas (Wnt/p -

catenina, reprogramacién metabdlica, homeostasis redox, regulacion inmunitaria).
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ABSTRACT

Introduction: Oral cancer remains a global health concern, with oral squamous cell carcinoma
(OSCC) accounting for over 90% of cases. At the molecular level, oral cancer develops through
the accumulation of somatic mutations that interfere with cellular regulatory mechanisms.
These genetic alterations affect proto-oncogenes and tumor suppressor genes, resulting in
uncontrolled proliferation, loss of normal function, invasion of nearby tissues, and potential
metastasis. Transcriptomic analysis provides valuable insight into these changes, and
bioinformatic tools offer an efficient approach to process such large quantities of data;
Objectives: The main objective of this study was to identify differentially expressed genes (DEGs)
in oral cancer tumor cells compared to healthy tissue; Methodology: The study comprised of 8
samples from Homo sapiens: Samples 1, 2, 4, 6 and 8 were from healthy patients, and 3, 5 and
7 from tumor tissue. RNA sequencing data from oral cancer and healthy tissue samples were
analyzed using a bioinformatic pipeline implemented on Galaxy Europe. Quality control,
sequence alignment, and count generation were performed using FastQC, HISAT2, and
FeatureCounts. Differential expression analysis was conducted using Limma-Voom; Results: The
RNA-seq pipeline achieved >97 % alignment efficiency and minimal adapter contamination,
confirming data quality and suitability for downstream analysis. A table of the 20 most
statistically significant dysregulated genes was constructed, revealing enrichment in Wnt/pB-
catenin signaling and apoptosis pathways; Conclusions: This study demonstrates the
effectiveness of bioinformatic approaches in oral cancer research, successfully identifying DEGs
in tumor cells and highlights pathways involved (Wnt/B-catenin, metabolic reprogramming,

redox homeostasis, immune regulation).
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1. INTRODUCTION

1.1. Clinical Relevance in Global Health

In 2021, the Seventy-fourth World Health Assembly passed a Resolution on oral health.
Consequently, in 2022, the Secretariat established the “Global Strategy and Action Plan on Oral
Health 2023-2030", which identifies oral cancer as “[one of] those with highest public health
relevance”(1). According to World Health Organization (WHO) data, oral cancer ranks as the
13th most frequently occurring cancer globally. Reports combining oral cancer with pharyngeal

cancers indicate they together represent the sixth most prevalent cancer worldwide (2).

1.1.1. Epidemiology

Research highlights that higher-risk groups for oral cancer include men and older individuals,
with men facing a two to three-fold increased risk compared to women (3). Socio-economic
factors significantly impact risk: worldwide, both crude and age-standardized incidence rates are
higher in developed areas, whereas mortality rates are elevated in less developed regions,
reflecting social disparities (4). Based on the Global Burden of Cancer Study by the United
Nations Development Program in 2012, the WHO South-East Asia region (SEARO) and WHO

Europe region (EURO) show the most critical figures.

Figure 1. World Regions according to World Health Organization (5)
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1.2 Classification
In 2007, the WHO published its first classification of oral potentially malignant disorders
(OPMDs). In clinical practice, “malignant” typically refers to disease that causes obvious and

often rapid organ injury (6). Oral cancer has been defined as Squamous Cell Carcinoma (OSCC)



given that 90% of said cancer is histologically originated in the squamous cells (3,7). Squamous
cells are part of the epithelial tissue, forming protective barriers on body surfaces and internal

organs.

Within the scope of oral cancer are included malignant neoplasms of the lip, oral cavity and
oropharynx (8). The tongue, particularly its ventral-lateral aspect, is the primary site for roughly
40% of oral cancers, the floor of the mouth accounts for about 30%, and the lower lip is affected

less commonly (9).

1.2.1 Types of Oral Cancer

OSCC is an aggressive cancer affecting the oral epithelium, histologically originated in the
squamous cells (3,7). It represents the predominant form of oral cancer, making up over 90% of
all malignant growths within the oral cavity. While oral cancer can develop at any age, it is most
commonly seen in older adults. Recent research shows that 90% of cases occur in individuals
over 45 years old, with a significantly higher occurrence in men compared to women, at a ratio
of 2.6 to 1. It is most frequently located intraorally at the lateral border and ventral surface of
tongue. Location of the lesion is also dependent on habits, as chronic betel nut users more often
present OSCC on the buccal mucosa. The gingiva is the site of about 5% to 10% of all cases of

oral SCC (9).
The clinicopathological aspect of OSCC is heterogenous, demonstrated in Figure 2. It can
manifest in a range of colors and surface patterns: most often red and white, exophytic,

infiltrative or ulcerated (9).

Figure 2. OSCC ulcer on ventral tongue, floor of mouth, tumor of tongue (in order left to right) (10)

There are other types of oral cancers in addition to squamous cell carcinoma, the most common
are: salivary gland cancer, basal cell carcinoma, lymphoma, melanoma, and sarcoma (7), for

more information refer to Annex 1.



1.3 Phases of Cancer Evolution

Figure 3. Model of Cancer Evolution (11)
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Figure 3, adapted from Valent et al., presents a conceptual model of how cancer develops

through progressive genetic changes originating in a normal stem cell. The process is described

in six distinct phases, illustrating the gradual accumulation of mutations and the emergence of

cellular heterogeneity within the tumor mass.

1.3.1

Phase I: Initiation — A genetic or epigenetic hit alters the stem cell’s DNA.

Phase II: Early Clonal Expansion — The altered stem cell spawns a small, premalignant
clone.

Phase Ill: Acquisition of Driver Mutations — One or more “driver” mutations emerge,
enabling certain clones to proliferate more aggressively than others.

Phase IV: Progressive Mutation Accumulation —As the clone expands, further mutations
create subclonal diversity.

Phases V and VI: Advanced Clonal Diversification —Multiple genetically distinct subclones
coexist within the tumor. One or more subclones become dominant forming the major
and clinically visible portion of cancer, and cancer stem cells (shown in red) sustain

growth and evolution.

Oral Cancer Metastasis

Metastasis is “the spread of cancer cells from the place where they first formed to another part

of the body” (17) and occurs in oral cancer with variable probability. Cervical lymph node

metastasis is “universally accepted as the main factor influencing survival in patients with



(OSCC)” (12). The TNM staging system (Tumor, Node, Metastasis) as seen in Figure 4 is crucial
for assessing it. The "N" component specifically categorizes the extent of lymph node
involvement, indicating the cancer's spread beyond the primary site. This system informs
prognosis, guiding the course of treatment in accordance. For instance, the N3 classification is

associated with a significantly poorer prognosis compared to N1 or N2b stages.

Figure 4. TMN Staging: Extent of Lymph node involvement: Taken from World Health Organization

Classification of Tumors (13).
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1.4 Risk Factors

The International Agency for Research on Cancer (IARC) have cited smoked and smokeless
tobacco use as carcinogenic to humans (14). Together with alcohol consumption, they are
regarded as the primary causes of oral cancer (15). Other risk factors include betel nut chewing,
high-risk Human Papillomaviruses and Epstein-Barr Virus presence, chewing habits, diet and

nutrition, and chronic inflammation among many others (16-18).

What lacks clarity in scientific literature is the role of genetic factors in oral cancer incidence-
also known as Family History of Cancer (FHC). Though many epidemiological studies suggest a
possible correlation (19-21), “some researchers believe that there is no evidence of a clear

hereditary trait for oral cancers, except for Cowden syndrome and congenital dyskeratosis” (18).

1.5 Genetics and Oral Cancer

Cancer is the result of an accumulation of alterations (known as mutations) in the cellular
pathways that regulate excitation and inhibition of cellular processes (22). It generally takes
three to six somatic alterations to convert a normal cell into a malignant one (23). As these
mutations accumulate, the cell gains independence from the surrounding oral epithelium,

overriding normal cellular functions. This eventually leads to unchecked growth, stimulation of



new blood vessel formation, and the capacity to invade nearby tissues or even reach other parts

of the body (22).

Genetic harm in oral cancer cells can be categorized into two kinds: dominant changes, often
found in proto-oncogenes and occasionally in certain tumor suppressor genes (TSGs), which lead
to anincrease of function. On the other hand, recessive changes typically seen in genes involved

in growth-inhibitory pathways or commonly in TSGs result in a loss of function (22).

1.5.1 Functional Genomics: the role of the Transcriptome in Oral Cancer

Functional genomics examines how genes and their products (proteins, RNAs) function and
interact in living systems (30). The transcriptome represents the complete set of transcripts
(RNA species) i.e. both coding and non-coding, within a cell, tissue, or organ. Unlike the largely
stable nuclear genome, it is highly dynamic since it varies according to factors like cell cycle
stage, tissue type, environmental exposure, ageing, disease, and other variables. This

adaptability makes the transcriptome a valuable tool for identifying gene functions (22,24).

The transcriptome approach, which involves large-scale measurement of mRNA, quickly became
a favored method within the field of functional genomics. It allows analysis of cellular activity on
a grand scale by simultaneously analyzing activity of many genes in cells and tissues, known as

parallel hybridization methods (22,25) .

1.6 The Bioinformatic Approach

1.6.1 What is Bioinformatics?

As defined by the National Human Genome Research Institute, bioinformatics “is a scientific
subdiscipline that involves using computer technology to collect, store, analyze and disseminate
biological data and information, such as DNA and amino acid sequences or annotations about
those sequences” (26). A bioinformatic approach to studying the transcriptome in oral cancer
cells involves the use of computational tools and algorithms to extract meaningful biological
insights from large-scale sequencing data, such as RNA sequencing (RNA-seq) datasets, which

measure gene expression levels in cancer cells.

1.6.2 Advantages of Bioinformatic application in Oral Cancer Research

The large amounts of data that need to be processed make it impractical to analyze manually.

Conveniently, bioinformatics provides the tools to manage the grand scale of information

10



efficiently. Other advantages include the possibility of gene expression profiling, pathway
analysis, ability to detect mutations, copy number variations, and the analysis of transcriptomes
of individual patients in order to personalize treatment strategies based on specific gene

expression profiles and genetic mutations (27-29).

1.6.3 Relevance to this Study

This study applies a bioinformatics workflow to RNA-seq data from healthy and oral cancer
tumor samples to pinpoint differentially expressed genes. The entire pipeline is performed on
Galaxy Europe, a web-based platform whose accessible, reproducible workflows ensure

transparency and are used to process raw reads and quantify expression levels.

1.7 Hypothesis

Itis hypothesized that differential gene expression will be observed between tumor and healthy

samples from oral mucosa, and bioinformatic tools will effectively detect these changes.

11



2. OBIETIVE
1. To find genes that are differentially expressed in oral cancer tumors compared to

healthy cells.

12



3. MATERIAL AND METHODS

3.1 The Samples

e Description of the sample: Samples are taken from the study “RNA Sequencing of Oral
Cancer Tumor Tissue and Healthy tissue”, conducted by Gujarat Biotechnology Research
Centre. Comprising of 8 samples from Homo sapiens: Samples 1, 2, 4, 6 and 8 are from
healthy patients, and 3, 5 and 7 from tumor tissue.

e Design: RNA sequence analysis

e Instrument: lllumina MiSeq

e Source: Transcriptomic

e Selection: Random
Referring to RNA-seq library preparation: random selection uses random primers
without enriching for specific RNAs (e.g., mRNA), yielding a library containing a mixture
of RNA species (MRNA, rRNA, tRNA).

e Llayout: Paired
Specifies single-end versus paired-end sequencing. Paired-end reads both ends of each
fragment—forward and reverse—boosting mapping accuracy and enabling structural-
variation detection.

e Date of completion: June 29 2022

e Description of data storage
The RNA-seq data are publicly available in NCBI’s SRA under accession: SRP384104. The
eight samples include metadata on platform (lllumina MiSeq), file sizes, read counts,

and library prep, enabling easy public data download and research reproducibility.

3.2 The Galaxy Platform

The Galaxy platform is an open-source, web-based bioinformatics tool that simplifies large-scale
data analysis. It provides an intuitive interface for managing RNA-Seq data workflows, from
quality control to functional analysis, using a variety of built-in tools. It is ideal for this thesis as
it allows reproducibility and scalability, making it easy to process the RNA data from the eight

tumor and healthy tissue samples collected.

13



3.3 Tools Used in Analysis

Each tool is tailored to a specific step in the pipeline.

A. Quality Control
e FastQC: Evaluates raw sequence data quality.

e MultiQC: Aggregates FastQC reports for a comprehensive overview.

B. Alignment
e HISAT2: Aligns RNA reads to the reference genome.

e Samtools Flagstat: Performs manipulations like sorting and indexing on BAM files.

C. Count Generation

e FeatureCounts: Assigns aligned reads to genes.

D. Differential Expression Analysis

e Limma-Voom: Suitable for large datasets with RNA-seq data.

3.4 Pipeline for RNA-Seq Data Analysis

1. RNA Extraction: Extract RNA from tumor samples using standard lab methods.
2. Library Preparation: Convert RNA to cDNA and prepare for sequencing.

3. Sequencing: Perform RNA-Seq using high-throughput platforms like lllumina.
4. Quality Control (QC): Use tools to assess and improve sequence quality.

5. Alignment: Map reads to the reference genome.

6. Count Generation: Generate read counts per gene.

7. Differential Expression Analysis: ldentify differentially expressed genes.

3.5 Authorization

The department has authorized this study under the number 0D.021/2425.

14



4. RESULTS

4.1 Quality Control of Raw Reads

The analysis began with quality control of raw RNA-seq reads using FastQC in Galaxy Europe,
applied to all eight samples with default settings. It generated multiple quality metrics (Annex 2
shows results for sample 1) which were summarized with MultiQC to provide a combined view.
From these metrics, three key indicators were selected for the Results section based on their

relevance to overall read quality and suitability for downstream analysis.

Figure 5. Adapter Content Across Read Positions

FastQC: Adapter Content
16 samples

Figure 5 shows the adapter content across all samples. This plot assesses the presence of
leftover adapter sequences, which caninterfere with accurate alignment and quantification. The
graph reveals that adapter contamination was minimal (<1% across all positions), remaining well

within the green "pass" threshold, and thus no additional trimming steps were required.

Figure 6. Average Phred quality scores across base positions.

FastQC: Mean Quality Scores

8 samples

Figure 6 presents the per-base sequence quality, indicating the Phred score at each base position
across all reads. The data show that nearly all base positions exhibit Phred scores above 30,

falling within the green zone which reflect very high confidence in base calling- the process by
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which each nucleotide (A, T, G, or C) is identified during sequencing. High scores indicate reliable

read accuracy and low error rates.

Figure 7. Per-Sequence Quality Score Distribution

FastQC: Per Sequence Quality Scores
8 samples

Figure 7 illustrates per-sequence quality score distribution, with most sequences clustered near
the maximum score of 30 and very few below the commonly accepted threshold of 20. This

confirms that the dataset is composed of consistently high-quality reads.

These three FastQC metrics were prioritized as they best represent sequencing quality.
Additional metrics such as GC content, sequence duplication, and length distribution are

provided in Annex 3.

HISAT2 then aligned paired-end reads to the Homo sapiens reference genome (GRCh38) using
default settings, generating BAM files (Annex 4). Samtools Flagstat reported > 97% mapping and
strong primary alignment metrics (Annex 5), indicated reliable mapping of reads to the reference

genome and gene quantification.

4.2 RNA-seq Reads to Counts

To generate the raw count matrix, FeatureCounts was used to assign aligned reads to genomic
features based on the Homo sapiens GRCh38 annotation. Key options selected included
counting at the gene level and specifying paired-end reads. The resulting count table, covering
all eight samples, was validated using MultiQC to summarize mapping and counting statistics

(Annex 6), completing the transition from raw reads to a structured count matrix (Annex 7).

A final quality check was then performed on the BAM files using a Galaxy workflow including

Infer Experiment, MarkDuplicates, and Samtools IdxStats, to assess strandness, duplication, and

read distribution across chromosomes (Annex 8).
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4.3 Differential Expression Analysis

Figure 8. Left: Multidimensional Scaling (MDS) Plot: Dims 1 and 2, Right: Scree Plot: Variance Explained
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Differential expression analysis was performed using the RNA-seq counts to genes tutorial
pipeline. The process began with data normalization and transformation using the Limma-Voom
method- chosen for its robustness in handling small sample sizes. First, a Multi-dimensional
Scaling (MDS) plot was generated to assess clustering based on gene expression patterns (Figure
8, left). While some samples cluster closely (e.g., healthy samples 2, 4, and 6), there is no
consistent separation between tumor and healthy groups. Notably, Sample 8 (healthy) and
Sample 7 (tumor) appear as outliers, and Sample 1 (healthy) overlaps with a tumor sample,
suggesting potential within-group heterogeneity or technical variation. The scree plot (Figure 8,
right) shows that Dimension 1 captures 43% of the variance, which supports that there are
strong global expression differences in the dataset, although these may not align strictly with
clinical groupings.

Figure 9. Voom Mean—Variance Trend Plot
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The voom transformation was then applied, which models the mean-variance relationship of
the log-counts (Figure 9). Each dot represents a gene, with the x-axis showing the log2-
transformed count and the y-axis the square root of its standard deviation. The red trend line
highlights that genes with lower expression levels exhibit higher variability, as indicated by the
wider spread and elevated positions on the left side of the plot. In contrast, highly expressed
genes show more consistent behavior, clustering lower along the Y-axis. This trend validates the
voom transformation, which stabilizes variance before applying linear modeling in the Limma
framework.

Figure 10. Final Model: Mean-variance trend (SA Plot)
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Following voom transformation, linear modeling and empirical Bayes moderation were applied
using Limma. Model diagnostics were assessed with two plots. The SA plot (Figure 10) showed
residual standard deviation (Vo) versus average log-expression. Most genes followed the fitted
trend line, confirming consistent variance and good model fit, while a few outliers (in red)
showed elevated variability. The MD plot (Figure 11) displayed logFC against average expression.
While most genes clustered near logFC = 0, many deviated above or below. Genes above zero
indicated upregulation in tumors, while those below were downregulated, reflecting

widespread transcriptomic differences between conditions.

Figure 12. Volcano Plot: Tumor vs. Healthy
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To visualize the statistical significance and magnitude of gene expression changes, a volcano plot
was generated (Figure 12). This plot displays the log2 fold change on the x-axis and the

-log10 p-value on the y-axis. Genes located in the upper left and right corners represent those
with both large fold changes and strong statistical significance. These are the most biologically

relevant DEGs.
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Table 1. The top 20 most significantly dysregulated genes sorted by ascending p-value, with
corresponding log2 fold change (logFC), t-statistics, and regulation direction.

Gene Name logFC P.Value| t Regulation

SLC24A3 1.718471992 0.0008104358657 4.652902552 Upregulated
PPP2R2ZB 4,173101513 0.0009604055031 4.545086547 Upregulated
SPINKS 2.390760051 0.001134244251 4.440415008 Upregulated
CEL 3.745475349 0.001231130074 4.385196259 Upregulated
DHRS4L1 3.249559102 0.002122611731 4.054184972 Upregulated

UGT1A10 3.818255477 0.002484642848 3.958947977 Upregulated

ALAS2 3.716011705 0.002488054745 3.958111372 Upregulated
DNAIBS -2.139921639 0.002555492604 -3.542015207 Downregulated
HRNR 4.422741465 0.002835787903 3.875515924 Upregulated
RSPO1 3.533321894 0.003155335204 3.814923215 Upregulated
TPSD1 3.421191257 0.0034793507592 3.757474097 Upregulated
PLAUR -2.122550785 0.00354414764  -3.746520222 Downregulated

GUCY2C 2.946596262 0.003633402886 3.73175836 Upregulated

FN1 -2.213959677 0.003785784917 -3.728221169 Downregulated
MEIS3 -2.680145526 0.003846556435 -3.697975783 Downregulated
FKEP10 -1.892531276 0.004141953588 -3.654237926 Downregulated
DOK5 -4.189461772 0.004438562346 -3.613459025 Downregulated
SRRM4 3.125108841 0.004550353602 3.598817247 Upregulated

KCNK2 -3.851426686 0.004642528749 -3.587021%3 Downregulated
SPRY4 -1.791328536 0.004652367032 -3.585777294 Downregulated

After model fitting, a table of differentially expressed genes (DEGs) was generated (Annex 9).
The table included log2 fold change (logFC), p-values, adjusted p-values, t-statistics, and gene

symbols. To focus on the most statistically significant genes, the list was filtered to include genes

with p-value < 0.05, and logFC = 1.58 (upregulated) or < -1.58 (downregulated). This logFC

cutoff corresponds to at least a threefold difference in expression between tumor and healthy
samples, a commonly accepted benchmark in transcriptomics to identify genes with meaningful

biological impact. The column 13 of the table, which includes gene names, was used to discard

any genes labeled “NA” (not mapped). The resulting DEG list was sorted by ascending p-value,

and the 20 most significantly dysregulated genes were extracted (Table 3).
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5. DISCUSION
The differential expression analysis highlighted the 20 most significant dysregulated genes in
tumors versus healthy tissue, directly supporting the objective of identifying genes altered in

oral cancer.

SLC24A3, or NCKX3, encodes a K*-dependent Na*/CaZ* exchanger important for calcium-
regulated processes like gene expression and apoptosis (30). Yu et al. suggest it may be a marker
in OSCC by finding consistent SLC24A3 expression in all of the tested oral cancer cell lines (SCC4,
SCCY9, SCC15, SCC25, and CAL27), regardless of chemoresistance (31). Functional enrichment
links it to DNA repair, mitochondrial organization, ncRNA metabolism, and the cell cycle, whilst
another study has also shown the role of SLC24A3 in maintaining cell stability (32). This gene
also appears to modulate the tumor-immune microenvironment and pain-related signaling. In
cervical and endometrial cancers high expression predicts poorer predicted clinical outcomes
(33). Although this evidence comes from other types of cancer, it raises the question of whether
a similar association between expression levels and prognosis could exist in OSCC. Overall,
SLC24A3 appears to have several roles in cancer development and symptoms, supporting its

importance as a differentially expressed gene in OSCC.

PPP2R2B encodes the B55B regulatory subunit of protein phosphatase 2A (PP2A), a tumor
suppressor that restrains cell proliferation (34). Multiple gene expression profiling studies found
that PPP2R2B is significantly suppressed in OSCC tumors compared to normal oral tissue (35).
PPP2R2B mRNA and protein levels also tend to be lower in HNSCC tumor samples and cell lines
than in non-tumor controls (36). Whilst this downregulation reflects PPP2R2B’s role as a tumor
suppressor, the mechanism by which it occurs in oral cancer remains unclear. Though PPP2R2B’s
promoter is frequently hypermethylated in laryngeal squamous cell carcinoma, the same study
found no evidence of PPP2R2B promoter hypermethylation in oral cancers (37). This distinction
suggests that promoter methylation status of PPP2R2B varies by tumor site and that other
mechanisms (e.g. transcriptional repression or deletions) are responsible for reduced expression

of the gene in OSCC.

In OSCC, low PPP2R2B expression correlates with more aggressive disease features and
resistance to chemotherapy. A bioinformatic analysis of OSCC cell lines revealed that cell lines
with lower PPP2R2B levels were significantly more resistant to cisplatin, a leading
chemotherapeutic for oral cancer (35). More specifically, Gouttia et al. demonstrate that

PPP2R2B expression had one of the highest predictive values for cisplatin response. Low
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PPP2R2B expression in combination with high MASTL kinase (an inhibitor of PP2A-B55) were
strong predictors of a higher cisplatin IC50 (poorer drug sensitivity and worse response to

chemotherapy) across OSCC cell lines.

In this study, PPP2R2B was significantly upregulated in oral cancer samples compared to healthy
tissue, contrasting with its established role as a tumor suppressor in literature. This discrepancy
suggests a context-dependent or stage-specific function for PPP2R2B in oral squamous cell
carcinoma (OSCC). The observed upregulation may reflect a compensatory cellular response to
oncogenic stress or altered signaling aimed at restoring PP2A balance. Alternatively, it may
indicate a subtype of OSCC with distinct PP2A complex regulation. These findings highlight the
need for further investigation into PPP2R2B expression in distinguishing tumors from healthy

tissue in OSCC.

Extensive research identifies SPINK5 as a tumor suppressor frequently downregulated in OSCC
and head and neck cancers. It encodes LEKTI, a serine protease inhibitor that regulates kallikrein
activity and maintains epithelial barrier integrity (38). Loss of SPINK5 enhances protease-driven
invasion, activates Wnt/B-catenin signaling, and promotes epithelial-mesenchymal transition
(EMT), contributing to malignancy and chemoresistance (39). Epigenetic silencing through
EHMT2 (G9a)-mediated histone modification and promoter methylation is linked to reduced
expression (40). It has been proposed as a diagnostic and prognostic biomarker since clinically,
low SPINK5 levels correlate with advanced stage, poor differentiation, and worse survival (41).

Restoring SPINK5 suppresses tumor growth and enhances chemosensitivity in vitro(39).

Contrastingly, a recent spatial transcriptomics study identified high SPINKS expression in an
OSCC epithelial cell subtype named Epithelial01, particularly in carcinoma in situ and early-stage
lesions (42). Such heterogeneity may explain the discrepancy between existing literature and
the current findings since SPINK5 was significantly upregulated in tumor samples. Moreover, it
implies expression may vary by tumor subpopulation, differentiation state, or disease stage.
Further study is required to determine if SPINK5 could have dual or context-dependent roles- as

a tumor suppressor in advanced disease and retained in early lesions.

Part of the DHRS4 cluster, little is currently known about DHRS4L1’s structure or expression (43).
There are no published studies directly linking DHRS4L1 expression to outcomes in OSCC or head
and neck cancers. However, DHRS4 is expressed in multiple tissues and cancer cell lines. DHRS4

encodes a NADP(H)-dependent oxidoreductase involved in retinol and steroid metabolism,
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contributing to the production of all-trans retinoic acid (RA) which is a key regulator of cell
growth and differentiation. Since RA pathways control oral epithelial differentiation and
proliferation, changes in DHRS4L1 may hold diagnostic or prognostic value. The DHRS4L1 cluster
is involved in the retinol-to-RA and steroid metabolism pathways, which influences tumor
behavior by activating nuclear receptors like RAR and RXR, promoting differentiation and
apoptosis in epithelial cells (44,45). Disruptions in this pathway can influence cancer

development.

Although HRNR is not well-characterized in oral cancer, it has been linked to tumor progression
in several epithelial malignancies, including gastric cancer and hepatocellular carcinoma. In
gastric cancer, high HRNR expression in stage Il and Ill tumors is associated with significantly
worse overall survival and serves as an independent prognostic marker (5-year OS: 53.6% vs.
74.9%; HR = 1.53) (46). In liver cancer, HRNR promotes tumor progression via activation of the
AKT signaling pathway (47). As a member of the S100 protein family, HRNR may also influence
epithelial differentiation and stress responses through calcium-dependent mechanisms (48).
These findings show that HRNR contributes to epithelial tumor biology across tissue types and
may hold prognostic value. Its upregulation in OSCC highlights the possible involvement of both

epithelial-specific and immune-related pathways in oral cancer development.

RSPO1 potentiates Wnt/B-catenin signaling by blocking the breakdown of key Wnt pathway
components (49), playing an important role in cancer by helping tumors reprogram their
metabolism via glycolysis, glutamine use, fat production (50). While there is limited research on
RSPO1 in OSCC, studies in other cancers show that dysregulated RSPO1 expression is linked to
changes in immune cell activity, suggesting it influences the tumor immune environment (51).
In head and neck cancers, single-cell RNA sequencing found a group of epithelial cells with high
RSPO1 expression and strong tumor-forming ability (52). In gastrointestinal cancers, RSPO1
overexpression showed promotion of cell growth, movement, and survival, mainly by activating
the Wnt pathway (53). In the DEG table, RSPO1 was significantly upregulated in tumor samples,
which supports the idea that RSPO1 may drive metabolic changes and tumor progression in oral

cancer.

DOK5 encodes a docking protein involved in signal transduction, particularly the MAPK and

Wnt/B-catenin signaling pathways, and plays a role in cell proliferation and differentiation

(54,55). In gastric cancer, high DOK5 expression was linked to increased immune cell infiltration
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and poor prognosis (56). The downregulation of DOKS5 in oral cancer samples may reflect tissue-

specific functions or differences in immune regulation.

KCNK2 (also known as TREK-1) encodes a potassium channel involved in membrane potential
regulation, neuronal signaling, and cellular stress response (57). In papillary thyroid carcinoma,
KCNK2 was found to be downregulated, and its expression negatively correlated with tumor
stage, suggesting a possible tumor-suppressive role (58). In contrast, data from the Human
Protein Atlas shows that KCNK2 is upregulated in breast cancer and classified as cancer-
enhanced, underlining the context-dependent role of this gene. Despite these observations,
KCNK2 currently lacks consistent prognostic value across cancer types, as its expression does
not reliably correlate with patient outcomes (59). These findings underscore the complexity of
gene regulation in cancer, where genes like DOK5 and KCNK2 may have distinct roles depending

on tissue type and tumor context.

Among the DEGs identified in this study, SPRY4 and UGT1A10 are mentioned in previous cancer
research, including limited findings in oral squamous cell carcinoma. One recent study is referred
to as “the first to confer the potential involvement of SPRY4 protein expression in human oral
squamous cell carcinogenesis” (60), while UGT1A10, a detoxification enzyme involved in
glucuronidation, has been shown to be dysregulated in several cancers, with its overexpression
potentially reflecting metabolic adaptation in tumor cells (61,62). ALAS2, a mitochondrial
enzyme that catalyzes the first step in heme biosynthesis, is significantly upregulated in the
present dataset which according to studies has been shown to reduce oxidative stress and
protect against ferroptosis in non-erythroid cells (63). This suggests that tumors may exploit
ALAS2 to enhance metabolic resilience and survival. Conversely, DNAJB5, a member of the
HSP40 chaperone family, is downregulated in our dataset. While it has been linked to cell
survival and therapy resistance in other cancers, its reduced expression in OSCC may impair
stress response pathways and protein stability (64). Whilst these observations reflect alignment
with emerging evidence, current available literature concerning these genes remains limited, so

it does not yet provide a sufficient basis for a broader discussion.

In contrast, TPSD1, CEL, FKBP10, GUCY2C, MEIS3, and SRRM4 appear to be novel findings in the
context of OSCC, as there is little to no existing literature linking them directly. These
observations highlight the identification of potentially new molecular players and combination
of underexplored pathways that may play roles in OSCC progression and warrant further

investigation.
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By identifying dysregulated genes, this study contributes to a clearer understanding of the
molecular mechanisms involved in tumor progression. While earlier research has focused largely
on well-known oncogenes and tumor suppressors, this study highlights both established players
(e.g., PPP2R2B, SPINK5) and novel candidates (TPSD1, SRRM4). These findings deepen our
understanding of oral-cancer regulation and guide improved profiling as well as future

diagnostic and therapeutic efforts.

Despite these insights, several limitations remain. Small sample size limits generalizability and
likely omits oral cancer’s full variability. Relying on pre-existing RNA-seq data with only species,
sex, and provider metadata prevented analysis of race, exposures, habits, and tumor stage. This
limited the ability to assess how expression changes relate to oral cancer staging. Additionally,
though the DEG list aligns with published findings, many transcripts are still poorly characterized

and warrant further study.

Technically, Galaxy workflows use default settings and standard gene filters, which may overlook
subtle or novel expression changes. Future work with larger datasets and customizable pipelines
could build on these findings and offer a more complete understanding of gene expression in

oral cancer.

This study lays a foundation for follow-up research using diverse cohorts, detailed clinical
metadata, and experimental validation (in vitro orin vivo). Integrating proteomics or epigenetics
could offer a more comprehensive view of gene function. Overall, this research underscores the
value of bioinformatics in cancer genomics and supports ongoing transcriptomic analysis in both

research and clinical contexts.
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6. CONCLUSIONS

This study successfully identified differentially expressed genes (DEGs)
between oral cancer tumor cells and healthy tissue using RNA-Seq data.
20 statistically significantly dysregulated genes were identified
specifically.

As a complementary conclusion, this study revealed several biological
pathways in which these DEGs are involved, including Wnt/B-catenin
signaling, metabolic reprogramming and redox homeostasis, and
immune system regulation.

As a complementary conclusion, this study also emphasizes the value of
bioinformatic workflows in oncological research. The use of Galaxy
Europe enabled a reproducible, accessible, and efficient analysis

pipeline for transcriptomic data.
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7. SUSTAINABILITY

Integration of bioinformatics into biomedical research contributes significantly to sustainability
by reducing reliance on physical materials, lab reagents, and animal models, aligning with SDG
12: Responsible Consumption and Production, and SDG 15: Life on Land. Enabling in-silico
experimentation allows researchers to pre-screen and prioritize only the most promising targets
for in vitro validation, minimizing waste and resource use. This approach reduces the

environmental footprint of research activities, contributing to SDG 13: Climate Action.

Economically, bioinformatic pipelines accelerate data analysis, reducing the time and cost of
discovery phases and allowing research funds to be allocated more efficiently. This facilitates
more agile responses to public health challenges, aligning with SDG 3: Good Health and Well-

being.

Socially, free open-source platforms democratize participation in scientific research, promoting
equity and inclusion across global research communities by reducing technical and financial
barriers, bioinformatics supports broader collaboration and capacity building, particularly in

low-resource settings. This contributes to SDG 10: Reduced Inequalities.
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9. ANNEXES

ANNEX 1. Overview of other Oral Cancer Subtypes: Descriptions, Histology, and

Clinicopathological Features

Oral Description Histology Clinicopathological aspect

Cancer

Salivary The salivary glands | Salivary gland cancers | Figure 3.  Pleomorphic
show various tumor ' .

gland comprise three pairs major ) adenoma: firm bluish nodule,
types since a healthy

cancer salivary glands (parotid, | salivary gland | Canalicular adenoma:
contains inner | purplish labial nodule (in

submandibular, and
sublingual), as well as
hundreds of minor salivary
glands. The most common
type of salivary gland
cancer is mucoepidermoid
carcinomas- most often
starting in the parotid
glands (65). However, the
incidence of malignancy is
higher in the sublingual
and submandibular glands
since around 70-90% and
in the

45% of tumours

respective  glands are
cancer in comparison to
15-35% in parotid glands

(7,65).

luminal/epithelial  or
acinar/mucous cells
and outer
basal/myoepithelial
cells in the duct or the
secretory part (13).

order).
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Basal Cell | BCCisatype of skin cancer. | Developing from | Figure 4. Basal cell carcinoma
Carcinoma | It usually presents with | basal cells found on | on vermilion lip of 45-year-
(BCC) ulceration or bleeding, | the lips. old woman, Nevus basal cell
therefore caution should carcinoma  with - multiple
. odontogenic keratocysts,

be taken when performing
which is a hallmark feature of

the differential diagnosis
the syndrome (in order).

as not to confuse with

Herpes Simplex, Aphthous

ulcer, Actinic cheilitis,

traumatic lesions to name

a few (10,66).

Lymphoma | Lymphomas are the 2nd | Lymphoma is a | Figure 5. Lymphoma of
most common neoplasm | malignant neoplastic | Palate:  nontender  with

of the head and neck, but
are relatively rare within
oral

the scope of

malignancies- accounting

for around 3.5% (10).

They are usually classified

into Hodgkin or non-

Hodgkin lymphoma and
subdivided into nodal and
extra-nodal disease. Extra-
nodal lymphomas often
present in the oral region,
usually in the masticatory
mucosa. These lymphomas
are not always primary, but
rather secondary tumours

invading from surrounding

growth of

lymphocytes.

telangiectasia, HIV-associated
non-Hodgkin lymphoma (in

order)
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structures such as

maxillary sinus or bone
marrow (67). Those most
prone to primary
lymphomas of the palate
are young AIDS patients or
adults over 60 years of age

(10).

Melanoma

Oral malignant melanoma
(OMM) is very rare but
highly aggressive, making
up 0.5% of all oral
malignancies and <1% of
all other melanomas, 80%
of which occur on the

palate or maxillary alveolar

ridge (10).

During
embryogenesis,

melanocytes arise

from neural-crest
precursors that
migrate  into  and
reside in the basal
layer of the
epithelium.

Melanoma is a

malignancy of these
epidermal

melanocytes.

Figure 6. Melanoma satellite
lesions on palate, Melanoma

color variation in soft palate

and tuberosity (in order).

35




Sarcoma

Oral sarcomas are very
rare <1% , as sarcomas
account for nearly 1% of all
neoplasms in the head and

neck region (68). It can

include malignant
periodontal defects,
osteosarcoma,

chondrosarcoma, Ewing

sarcoma (cell malignancy
caused by a chromosomal
translocation), Kaposi’'s
sarcoma (associated to

HIV/IAIDs infection) (10).

Derived
mesenchymal

progenitor cells.

from

Figure 7. Malignant disease:
chondrosarcoma with
widened PDL, Ewing sarcoma,
HIV-associated Kaposi

Sarcoma: purplish macules (in

order).
-
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ANNEX 2. FASTQC on sample 1 (webpage)

Filename SAMPLE 1_gz.gz

File type Conventional base calls

Encoding Sanger / Illumina 1.9
Overview information Total Sequences 13752018

Total Bases 1.9 Gbp

Sequences flagged as poor quality @
Sequence length 35-151

%GC 53

Quality scores across all bases (Sanger / llumina 1.9 encoding)
34
32

= - — - — - - - - - - = - - - - =

28
26
24
22
20
18

Per Base Sequence quality

123456769 1518 3034 4540 6064 7579 ©60-84 105109 120-124 135139 150151
Fosition in read {bp)

Quality seore distribution over all sequences
Average Quality per read
1.2E7
1.0E7
8000000
Per Sequence Quality Score
6000000

4000000

2000000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 16 20 21 22 23 24 25 26 27 28 29 30
Mear Sequence Qualty (Phired Score)

Sequence content across all bases

%C
90 A

20
70
60

Per Base Sequence content|*

a0

- «/><),__,A~__A EERERER RGP

20

1234546789 1519 30-34 45-49 60-64 7579 90-94 105-1098 120-124 135-139 150-15
Position in read {bp)
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Per Sequence GC content

500000

400000

300000

200000

100000

GC distribution over all sequences
GC count per read

Theoretical Distribution

02468 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 7L 75 79 83 87 91 95 99
Mean GC content (%)

Per Base N content

N content across all bases

100 wn

4548 6064 7579 105108 120124 135138 15015

Position in read (bp)

8084

1234567808 15 30-34

Sequence length distribution

Distribution of sequence lengths over all sequences

Sequence Length

7000000

6000000

5000000

4000000

3000000

2000000

1000000

6064 7074 B0-84  90-84 100-104 110-114 120-124 130-134 140-144 150152

Sequance Length (bp)

054

Adapter content

% Adapter
100 . .
llumina Universal Adapter
llumina Small RNA 3' Adapter
%0 llumina Small RNA 5 Adapter
PolyA
80 PolyG
70
60
50
a0
Y
20
10
0

1519 25-20 35-30 45-40 55.50 65-60 75-79 85-80 9506 110-114 125128 140

Position in read {bp)

12345867889
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ANNEX 3. MULTIQC data (webpage)

General

Statistics e 1o e o
sawPLELgx
SAWPLE D gr
o - e o
SAWPLE D gr

Sequence FastQC: Sf_ﬁﬁ:fs Counts

counts foreach | 7"

sample: B

Seauence | -

counts for each ) h

sample.

Duplicate read

counts are an

estimate only.

Per Sequence

GC Content: B e o Contant

The average GC

content of N

reads. Normal

random library

typically have a . :

roughly normal

distribution of

GC content.

Per Base N N FastQC: Pehrjlaui:_e\ N Content

Content: .

The percentage .

of base calls at
each position for
which an N was

called.

o
abe

20k 40 bp ke s be 100be FE 1obe
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Sequence
Length
Distribution:
The distribution
of fragment
sizes (read

lengths) found.

FastQC: Sequence Length Distribution

8 samples

e 60bp aoto 100 bo. 12000 1400

Sequence
Duplication
Levels:

The relative
level of
duplication
found for every

sequence.

FastQC: Sequence Duplication Levels
& samples

1 2 3 4 s i 7 ] i »10 50 100 »500 ik =5k ~10ke

Overrepresente

d sequences by

FastQC: Overrepresented sequences sample summary
8 samples

SAMPLE 1_gz

Top overrepresented sequence

B Sum of remaining overrepresented sequences.

SampLE 3_gx
SanpLE 4_az
sample: I
The total
amount of o - - o - -
overrepresented
sequences
found in each
library.
Overrepresented sequence Reports Occurrences % of all reads
To p CTGTATTGTTATTTTTCGTCACTACCTCCCCGGGTCGGGAGTGGGTAATT 8 452485 0.5041%
CCCATTCGAACGTCTGCCCTATCAACTTTCGATGGTAGTCGCCGTGCCTA 8 312843 0.3485%
overre p rese nted CGACGACCCATTCGAACGTCTGCCC TATCAAC TTTCGATGGTAGTCGCCG 8 389428 0.4338%
CCCGAAGTTACGGATCCGGCTTGCCGACTTCCCTTACCTACATTGTTCCA & 160485 01788%
CTTTAAATGGGTAAGAAGCCCGGCTCGCTGGCGTGGAGCCGGGCGTGGAA & 181260 0.2020%
sequences
CTCCCGTCCACTCTCGACTGCCGGCGACGGCCGGGTATGGGCCCGACGCT 8 209170 02330%
I CTGGGGTCTGATGAGCG TCGBECATCGGGCGCCTTAACCCGGCGTTCGTT ] 135802 01514%
a C ro SS a GCCTGCTGCCTTCCTTGGATGTGGTAGCCGTTTCTCAGGCTCCCTCTCCG 8 175668 01957 %
CGCCTGCTGCCTTCCTIGGATGTGGTAGCCGTTTCTCAGGCTCCCTCTCC & 182 541 02034%
sam p | es:. CCCCTCCTTAGGCAACCTGGTGGTCCCCCGCTCCCGGGAGGTCACCATAT 7 206204 02297%
GTCCTGTATTGTIATTTTTCGTCACTACCTCCCCGBGTCGGGAGTGGGTA 7 197718 02209%
CTGCTGCCTTCCTTGGATGTGGTAGCCGTTTCTCAGGCTCCCTCTCCGGA 7 132760 0.1479%
The table shows
CAAACTTTAAATGGGTAAGAAGCCCGGCTCGCTGGCGTGGAGCCGGGCGT 7 128804 0.1435%
CTTGATTAATGAAAACATTCTTGGCAAATGCTTTCGCTCTGGTCCGTCTT 6 143558 0.1599%
2 O m o St CGCAGTTTTATCCGGTAAAGCGAATGATTAGAGG TCTTGGGGCCGAAACG 6 103611 01154%
ACCCATTCGAACGTCTGCCCTATCAACTTTCGATGGTAGTCGCCGTGCCT 6 142110 0.1583%
ove rrepresented CCTTAGGCAACCTGGTGGTCCCCCGCTCCCGGGAGGTCACCATATTGATG 5 132595 0.1477%
CCCTCCTTAGGCAACCTGGTGGTCCCCCGCTCCCGGGAGGTCACCATATT 5 152 460 0.1699%
CTCCTTAGGCAACCTGGTGGTCCCCCGCTCCCGGGAGGTCACCATATTGA 5 128716 0.1434%
sequences -
CCTCCTTAGGCAACCTGGTGGTCCCCCGCTCCCGGGAGGTCACCATATTG 5 90294 0.1006%
across all

40




samples, ranked
by the number
of samples they

occurin.

Status Checks:
Status for each
FastQC section
showing
whether results
seem entirely
normal (green),
slightly
abnormal
(orange) or very

unusual (red).

SAMPLE 1_gz

SAMPLE 2_gz

SAMPLE 3_gz

SAMPLE 4_g7

SAMPLE 5_g7

SAMPLE §_gz

SAMPLE 7_gz~

SAMPLE 8_gz-

FastQC: Status Checks

10 samples

Per Base per Per Base N
Sequence Sequence Content
Content 6€ Content




ANNEX 4. Screenshot of BAM file generated by HISAT2 tool

QNAME

SRR19894454.18681984

SRR19894454.1122534

SRR19894454.910030

SRR19894454.13968538

SRR19894454.3739345

SRR19894454.66881278

SRR19894454.910030

16

256

256

256

256

272

chrl

chrl

chr

chrl

chrl

chrl

chrl

13676

14266

14467

14487

14467

14410

14416

8

1

1

1

1

L]

FLAG RNAME POS MAPQ CIGAR

151

151

151

151M

151M

151

158M

L]

]

=]

@

@

@

=]

MRNM MPOS ISIZE SEf

GGTGGGTCTTGGCCATCCGTGAGATCTTCCCAGGGCAGCTCCCCTCTG

CTCCCTCTCATCCCAGAGAAACAGGTCAGCTGGGAGCTTCTGCCCCCA

CTGCTCAGTTCTTTATTGATTGGTGTGCCGTTTTCTCTGGAAGCCTCTTA

CTGCTCAGTTCTTTATTGATTGGTGTGCCGTTTTCTCTGGAAGCCTCTTA
CTGCTCAGTTCTTTATTGATTGGTGTGCCGTTTTCTCTGGAAGCCTCTTA

CTCAGTTCTTTATTGATTGGTGTGCCG CTCTGGAAGCCTCTTAAGA

TCTTTATTGATTGGTGTGCCG CTCTGGAAGCCTCTTAAGAACACGL
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ANNEX 5. Samtools Flagstat results on samples

1-8

Sample 1

Sample 2

4320119 + @ in total (QC-passed reads + QC-failed rea
3752018 + © primary

20568101 + ® secondary

@ + @ supplementary
+ @ duplicates
+ @ primary duplicates

3625182 + & mapped (97.98% : N/A)

3057081 + © primary mapped (94.95% :

N/A)

paired in sequencing

readl

read2

properly paired (N/A : N/A)

with itself and mate mapped

singletons (N/A : N/A)

with mate mapped to a different chr

with mate mapped to a different chr (map(Q>=5)

32822330 + O in total (QC-passed reads + QC-failed
reads)

12637758 + © primary

20184572 + © secondary

@ + 0 supplementary

® + @ duplicates

@ + 0 primary duplicates

32091357 + © mapped (97.77% : N/A)
11986785 + © primary mapped (94.22% :
+ 0

N/A)

paired in sequencing

readl

read2

properly paired (NfA : N/fA)

with itself and mate mapped

singletons (N/A : N/A)

with mate mapped to a different chr

with mate mapped to a different chr (mapQ>=5)

D00 DO DD

2]
e
]
]
e
e
e

Sample 3

Sample 4

33526846 + @ in total (QC-passed reads + QC-failed rea
12322538 + © primary

21204388 + © secondary

@ + 0 supplementary

@ + 0 duplicates

@ + 0 primary duplicates

32808276 + B mapped (97.86% : N/A)
11603968 + @ primary mapped (94.17% :
+ @ paired in sequencing

readl

read2

properly paired (N/A : N/fA)
with itself and mate mapped
singletons (N/A : N/A)

with mate mapped to a different chr

with mate mapped to a different chr (mapQ>=5)

N/A)

[~~~ I~ I~ I I I~

<]
-]
e
5]
-]
<]
-]

29062583 + @ in total (QC-passed reads + QC-failed rea
12128842 + © primary
16933741 + © secondary
@ + @ supplementary
@ + @ duplicates
@ + @ primary duplicates
28537932 + © mapped (98.19% : N/A)
11604191 + © primary mapped (95.67% :
+ @ paired in sequencing
readl
read2
properly paired (N/A : N/A)
with itself and mate mapped
singletons (N/A : N/A)
with mate mapped to a different chr
with mate mapped to a different chr (mapQ>=5)

N/A)

[~~~ I~ I~ B~ I I I )

Sample 5

28042000 + @ in total (QC-passed reads + QC-failed rea
11486096 + @ primary

16555984 + @ secondary

@ + 8 supplementary

@ + 0 duplicates

@ + 0 primary duplicates

27341419 + © mapped (97.50% : N/A)
18785515 + @ primary mapped (93.90% :
@ + O paired in sequencing

readl

read2

properly paired (N/A : NfA)
with itself and mate mapped
singletons (N/A : N/A)

with mate mapped to a different chr

with mate mapped to a different chr (mapQ>=5)

N/A)

@
2]
e
e
e
e
[

Sample 6

19878547 + ® in total (QC-passed reads + QC-failed red
8779642 + O primary
11898905 + B secondary
@ + @ supplementary
@ + @ duplicates
@ + @ primary duplicates
18836300 + © mapped (94.76% : N/A)
7737395 + © primary mapped (88.13% : N/A)
@ + @ paired in sequencing
readl
read2
properly paired (N/A : N/A)
with itself and mate mapped
singletons (N/A : N/A)
with mate mapped to a different chr
with mate mapped to a different chr (mapQ>=5)

Sample 7

Sample 8
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24488620 + @ in total (QC-passed reads + QC-failed re
8426238 + O primary

16062382 + @ secondary

@ + 8 supplementary

@ + @ duplicates

@ + 8 primary duplicates

24985004 + © mapped (98.35% : N/A)

86822622 + © primary mapped (95.21% :

N/A)
@ + @ paired in sequencing

readl

read2

properly paired (N/A : N/A)
with itself and mate mapped

21164567 + B in total (QC-passed reads + QC-failed red

10229530 + © primary
10935037 + @ secondary
@ + 0 supplementary
® + 0 duplicates
@ + 0 primary duplicates
28699704 + © mapped (97.80% : N/A)
9764667 + @ primary mapped (95.46% :
@ + 0 paired in sequencing
readl
read2
properly paired (N/A : N/A)
with itself and mate mapped

N/A)

singletons (N/A : N/A)
with mate mapped to a different chr
with mate mapped to a different chr (mapQ>=5)

singletons (N/A : N/A)
with mate mapped to a different chr
with mate mapped to a different chr (mapQ>=5)

Key Metrics and their relevance (Taking sample 1 for example):

34320119 + @ in total (QC-passed reads + QC-failed reads)
13752018 + @ primary
+ B secondary

@ + @ supplementary
@ + @ duplicates
e+ 0 imary duplicates
3 51 + @ mapped (97.98
13857681 + @ primary mapped
@ + @ paired in sequencing

readl

read2

properly paired (N/A :

[:]

%]

a N/A)
@ with itself and mate mapped
[:]

[:]

8

singletons (N/A : N/A)
with mate mapped to a different chr
with mate mapped to a different chr (mapQ>=5)

1. Total reads (34320119): the total number of sequencing reads in the dataset

A high read count ensures sufficient data coverage for accurate gene expression analysis.
2. Mapped reads (33625182, 97.98%): how many reads were successfully aligned to the
reference genome

As | said earlier a high mapping rate (>70%) is good, meaning most reads matched known
genomic regions.

3. Primary Mapped reads (94.95%): reads that uniquely mapped to a single location in the
genome

High primary alignment means reads are specific to genes, improving quantification accuracy.
_ reads which map to multiple locations in the genome
(common in repetitive regions). High secondary alignments may indicate contamination,

duplicated sequences, or issues with reading.
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ANNEX 6. MultiQC results from the 8 summary featurecount files

General Statistics

FeatureCounts:

Counts mapped reads for genomic
features such as genes, exons,
promoter, gene bodies, genomic

bins and chromosomal locations

General Statistics

i Copy table | 8 Configure columns || o Scatter pliot | & Violinplot |~ Export as CSV. Showing %/ rows and '/

columns. + Summarize table

Sample Name Assigned

SAMPLE 1 125%

SAMPLE 2 125%

SAMPLE 3 11.4%

" samPLE 4 164%

SAMPLE 5 142%

SAMPLE 6 163%

SAMPLE 7 93%

SAMPLE 8 19.8%

Assignments
Percentages. + Summarize piot & Expart
featureCounts: Assignments
8 samples
W Unassigned: Unmapped
M Unassigned: No Features.
v L ]
-~
-
-~
s L
o 20% s 60% 80% Lo0%
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ANNEX 7. Count Matrix (the screenshot is for demonstrative purposes, part of a larger table

that cannot be included in its entirety)

Column 1

Geneid
ENSGOOO00808083
ENSGOBOB0808085
ENSGOOO00808419
ENSGOBO80808457
ENSGOROR0000460
ENSGOBOB0808938
ENSGOROR0O00971
ENSGOBO80801036
ENSGOROR0001084
ENSGOBOBE001167
ENSGOO0000014660
ENSGORO00001461
ENSGOBO80001497
ENSGOROR0001561
ENSGORO80081617
ENSGOROR0001626
ENSGOBORO0081629

ENSGOO8806801636

Column 2

SAMPLE 1.9z
367
o
131
66
23
492
149
126
138
128
25
375
l
187
138
4
396

24

Column 3

SAMPLE 2.9z
218
8
156
63
a4
48
62
123
21
181
47
138
135
27
241
a
362

‘Column 4

SAMPLE 3.9z
267
8
87
48
27
137
82
57
224
93
31
192
122
30
349
7
211

27

Column 5

SAMPLE 4.9z

46

183

3]

176

28

58

66

57

137

295

127

40

167

294

18

417

]

492

28

Column 6

SAMPLE 5.9z
47

]

178

48

49
41
135
294
97
a9
257
196
22
233

1

48

Column 7

SAMPLE 6.9z
50
)
80
32
4
27
20
80
151
123
21
116
139
6
179
]
237

Column 8

SAMPLE 7.9z
263

2

83

36

43
57
79
123
59
33
195
60
102
172
75
215

Column 9

SAMPLE 8.9z
a5

2

129

32

53
84
83

256

158
46

196

149
95

357

236
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ANNEX 8. QC summary report
Using a prepared workflow (first picture below), the following three tools were run: Infer
Experiment, MarkDuplicates and ldxStats. Then a MultiQC report was generated which has

been copied in continuation.

Histon + = =
5 Invoked Workflow: QC report (imported from URL) (Version: 1) # MCacel P Run Y
. . deletedalse visible:any ¥ x
@ invoked less than a minute ago 6 of 6 steps successfully scheduled. 5
& History: TFG 6 of 25 jobs complete... IZ workflow runs: 1)
= e TFG ’d
Outputs  Output Collections  Overview Steps  Inputs  Report  Export  Metrics
utpu stpu n verview p pu por por r 1] g & 0 wes [

© 184:MultiQCon data 181, @ / &
D tReteencegens @ £ 3 icErpereet @ data 180, and others: Webpag

145 GRCAIA.refseqibed
e

© 183: MultiQC on data 181, © / W
data 186, and others: Plots

\

T O = e i
ERIINTE emwollsstbon © 182 MultiGC ondata 181, © / &
data 180, and others: Stats
- - . o
- +: 181: Samtools idxstats @ / ¥ R
s on data 62
— MU - “: 186: Samtools idxstats @ # § R
on data 61
No Step Selected
<% 179: Samtools idxstats @ # B R
Output Graph
L. Sample Name % Dups
General Statistics Ty e
SAMPLE_2_gz 751%
SAMPLE_3_gz 716%
SAMPLE_4_gz 68.3%
SAMPLE_5_gz 69.1%
SAMPLE_6_gz 658%
SAMPLE_7_gz 742%
SAMPLE_8 gz 60.4%
|I’]fer experlment_ RSeQC: Infer experiment
Counts the percentage
of reads and read pairs | swec:w I
that match the ]
strandedness of T
overlapping ]
tra nscrlpts' It can be 0% 10 20% 0 40 50% 60% 70% 80% 90% 100%
% Tags
Used tO Infer WhEther Sense @ Antisense Undetermined
RNA-seq library preps
are stranded (sense or
antisense).
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Picard

SAMPLE_1 g2

SAMPLE 2.9z

SAMPLE 3 gz

SAMPLE 4 g2

SAMPLE S gz

SAMPLE 6.5z

SAMPLE 7 gz

SAMPLE

Picard: Deduplication Stats &, Expar

50

2

Percentages

® Unpaired Read Unique @ Unpaired Read Duplicates Unmapped Reads

Samtools: XY counts

SAMPLE 1_gz_idxstat

SAMPLE 2_gz_idxstat

SAMPLE 3_gz_idxstat

SAMPLE 4_gz_idxstat

SAMPLE 5_gz_idxstat

SAMPLE 6_gz_idxstat

SAMPLE 7_gz_idxstat

SAMPLE 8_gz_idxstat

Samtools idxstats: chrXY mapped reads &, Export Plot

o
s
8
&
2
3
2
o
3
~
3
o
g
©
3
o
3

Percent of X+V Reads

©® ChromosomeX @ Chromosome Y

Samtools: Mapped

reads per contig

#mapped reads

Samtools idxstats: Mapped reads per contig &, Export Plot

O F & & FFFrISE
Tt ot St s
§

Chromosome Name
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ANNEX 9. Filtered DEG Table (the screenshot is for demonstrative purposes, part of a larger

table that cannot be included in its entirety)

Calumn 1 Cotumn 2 Column 3 Column 4 Column 5 Column & Column 7 Column 8  Column 9
GenelD logFC AveExpr t P Value adjPVal B NA NA
181 4845 571047167638448 165T711857885%6 6. 4. 7 8437628
ENSGOB088185052 171847109181556 s 4. s. -4304831 120 19212641
ENSGOB0E156475 4T7310151344404 9280710301045152 4 845 o. -4.56230176207860 5 146586741
4 o. -4.39955112506686 5 148025662

3 847 4 ©061231136674156  0.099548324224362  -4.96330726615456 @ 133661986

ENSGOBO8E268196 369073206512647 ] 4. ®. 2423 6. -457; n 17366648
ENSGOR086236495 325475350480804 180625863160455 4 161 8. 6. 4 26 17509254
! 3249599192334 1 74 4 ©.60212261173060676  §.099548324224302  -457504889583203 14 24985086
3.81825547666716 E) 3.0580470774912 ®. -457350818877084 2 233636447

ENSGOB00S158578 371601778562142 811137102731 a4 o. -4.56647880319210 X 55060854
2139927 40163552547275 - [l o. 4 o 34980646

ENSGOBO8S197915 4.42274146515368 780569545915363 o. 4 198678569 1 152212675
ENSGOB088169218 353332189447052 9268633890686778 3.6149232145366 6.6631 6 6. -4.56268060186142 1 37611349
3 -0.858771998224 3 . -4.57251706448186 17 969631

ENSGOB088005017 3.42110125726672 -Q750367617651062  375747480724767 ©8034703067923010  ©.000548324224302  -4.57182666346300 16 1256658
213 1 El 7535641 6. -453014600877361 13 21208114

1422 2 1 5 374 1 441476404 o. ~4.4357B772411138 10 43646094

3731 464 6. 4 2 14612631

3 COE o o. -4.57664116345544 13 56587366

E 9. 1684713 . 2 215369439

ENSGO9008105419 -268014552555212 184707742221247 - 8. . 4 o 47463123
3 o. 7 41812679

ENSGOB08S18TI34 -418046177153005 o. EE ®. 2 26 54475502
3 E 3.50881724603832 o. 2 118081548

1 293866139716 83 359366 7 . 4 1 18069634
ENSGOB088882482 -3.65142666624761 -0.325676007138372 . 1 215605774
- 4. 79 3 483 © s. -4.50151368919645 5 142318426

10483117 3. 16, 4, 1 58451246

ENSGE8086201820 -3.15862304615061 -8713158461017104 3 3 ®. -457007173584184 7 55678403

49

Cotumn

NA
8438551
10722026
147684784
148137382
133671861
17383531
17599867
24951377
233773380
55030077
34998088
152224193
37634892
917051
1250808
21532406
43670547
14606509
58591676
215436673
47210527
41823213
54651160
119163651
18910811
2152376898
142326435
58629601
55680587

Column 11

NA

Column 12
NA

IncRNA
protein_coding
protein_coding
protein_coding
protein_coding
ICRNA
processed_pseudogene
IncRNA
protein_coding
protein_coding
protein_coding
protein_coding
protein_coding
IncRNA
protein_coding
IncRNA
protein_coding
protein_coding
INCRNA
protein_coding
protein_coding
protein_coding
protein_coding
protein_coding
I7CRNA
protein_coding
protein_coding
protein_coding

IncRNA

Cotumn 13

NA
NA

SLC24A3
Ppe2RIB

SPINKS

DHRSALT
UGTIATS
ALas2
DNAJBS
HRNR
RSPOT

MEIS3
FKEPIO
DOKS
SRRM4
NA
KCNKZ
SPRY4
ALPK2



