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Abstract

This paper presents the development of a finite element model on which several studies are carried out to
analyze the performance of the joints. The model is implemented in the commercial software Abaqus us-
ing a parametric Python script that generates different configurations of two-plate assemblies connected by
fasteners. The plates are meshed with S4R shell elements, while the fasteners are modeled using *fastener el-
ements. Contact is considered through Signorini conditions, without including large displacements or plastic
material behavior.

Initially, several models are examined where parameters such as plate thickness, plate length, number of
joints or mesh size are varied to determine what effect they have separately on the behavior of the model. In
this study is found that the forces in the joints decrease with more number of fasteners, that the axial force
grows with plate length as the moment increases, that with a finer mesh more accurate results are obtained
or that the deformation is greater when the thicknesses of the plates are different.

In the next analysis, two different methods are used to model the joints in Abaqus: BEAM and CARTESIAN
connectors. BEAM provides a rigid beam connection between two nodes, kinematically constraining all com-
ponents of relative motion. CARTESIAN connector represents a constitutive mechanical behavior between
two or three nodes. The constitutive behavior is predicted using a semi-empirical flexibility equation, in this
case the Huth equation. With this second approach it can be noted that the axial force decreases significantly
due to its inability to transmit moments.

Finally, the presence of clearance in the joints is simulated to determine the effect it has. To introduce this
effect into the model, variation of the shear stiffness in the direction perpendicular to the applied force is
performed. Clearance leads to a contact region at the bolt-hole interface that varies the stress state around
the hole.

The results obtained contribute to a better understanding of load distribution in bolted connections. The
methodology developed in this study offers a computationally efficient approach for evaluating fastener per-
formance in structural joints, which can be applied in aerospace and mechanical engineering applications.



Resumen

Este trabajo presenta el desarrollo de un modelo de elementos finitos para analizar en el cual se
realizan varios estudios para analizar el rendimiento de las uniones. El modelo se implementa
en el software comercial Abaqus mediante un script paramétrico en Python que genera diferentes
configuraciones de un ensamblaje de dos placas unidas por remaches. Las placas se mallan con
elementos de shell S4R, mientras que los remaches se modelan mediante *fastener elements. El
contacto se considera a través de las condiciones de Signorini, sin incluir grandes desplazamientos ni
comportamiento plástico del material.

Inicialmente, se examinan varios modelos donde se varían parámetros como el espesor de la placa,
la longitud de la misma, el número de uniones o el tamaño de la malla para determinar qué efecto
tienen por separado en el comportamiento del modelo. Con este estudio se observa que las fuerzas
en las uniones disminuyen a medida que aumenta el número de remaches, que la fuerza axial crece
con la longitud de la placa ya que aumenta el momento, que con una malla más fina se obtienen
resultados más precisos o que la deformación es mayor cuando los espesores de las placas son
diferentes.

En el siguiente análisis, se utilizan dos métodos diferentes para modelar las uniones en Abaqus:
conectores BEAM y CARTESIAN. BEAM es un conector tipo viga entre dos nodos, que restringe
cinemáticamente todas las componentes del desplazamiento relativo. El conector CARTESIAN
representa un comportamiento mecánico constitutivo entre dos o tres nodos. El comportamiento
constitutivo se predice utilizando una ecuación de flexibilidad semi-empírica, en este caso la
ecuación de Huth. Con este segundo enfoque se puede notar que la fuerza axial disminuye significa-
tivamente debido a su incapacidad para transmitir momentos.

Finalmente, se simula la presencia de holgura en las uniones para determinar el efecto que tiene. Para
introducir este efecto en el modelo, se realiza una variación de la rigidez a cortadura en las uniones
en la dirección perperdicular a la fuerza aplicada. La holgura conduce a una región de contacto en la
interfaz del perno-agujero que varía el estado de tensión alrededor del agujero.

Para investigar el efecto de la tolerancia en los remaches, se realiza una variación paramétrica de la
rigidez a cortadura de los mismos. El estudio se centra en analizar cómo cambian los caminos de
carga en función de la rigidez de los remaches.

Los resultados obtenidos contribuyen a una mejor comprensión de la distribución de carga en
conexiones atornilladas. La metodología desarrollada en este estudio ofrece un enfoque computa-
cionalmente eficiente para evaluar el rendimiento de los remaches en uniones estructurales.
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1
Introduction

1.1. Motivation

In the realm of structural engineering, the integrity and performance of joints play a pivotal role in the overall
reliability of mechanical systems. Among the various types of joints, riveted joints have been a cornerstone of
construction and manufacturing for centuries, providing robust connections in a multitude of applications.
This thesis delves into the intricate dynamics of riveted joints, with a particular focus on the influence of
clearances in low-loaded scenarios.

Figure 1.1: Schematic diagram of a rivet

The motivation from this work arises from the growing need to optimize joint performance under mini-
mal load conditions, where traditional design methods may not adequately account for the effects of clear-
ance. Low-loaded joints are ubiquitous in many industries, including aerospace, automotive, and civil en-
gineering, where they are often subjected to varying environmental conditions and operational demands.
Understanding how clearances affect the behavior of riveted joints in these contexts is not only critical for
ensuring structural integrity but also for enhancing the longevity and safety of engineered systems.

Moreover, as industries strive for greater efficiency and sustainability, there is an increasing emphasis on
innovative design solutions that can accommodate variations in manufacturing tolerances and operational
conditions. Investigating the interplay between riveted joints and clearances offers valuable insights into op-
timizing joint design to meet these evolving challenges.

5
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Figure 1.2: Aircraft skin with riveted joints

Riveted joints offer several key benefits for low-loaded applications:

• Flexibility and load distribution
Riveted joints allow for slight flexibility and better load distribution across the connection. This char-
acteristic is particularly advantageous in low-loaded applications where vibrations may occur, stress
needs to be distributed evenly or some degree of joint flexibility is desirable. The ability of riveted joints
to accommodate slight movements makes them well-suited for structures that experience dynamic but
low-intensity loads.

• Ease of inspection and maintenance
One of the significant advantages of riveted joints is the ease of inspection and maintenance. Visual
inspections can be performed quickly and efficiently, Potential issues can be identified early before they
lead to failure and maintenance and repairs are generally less time-consuming compared to welded
structures. This simplicity in maintenance is particularly valuable in industries where downtime must
be minimized.

• Weight considerations
For low-loaded applications where weight is a critical factor, riveting can achieve a lighter structure
compared to welding. The overlap required for riveted joints is typically smaller than for welded joints,
and no additional material (like weld metal) is needed, further reducing overall weight. This weight
advantage makes riveted joints particularly suitable for industries such as aerospace and automotive,
where every gram matters even in low-load scenarios.

Figure 1.3: Rivets

• Cost-Effectiveness
Rivets are generally low in cost per unit. The installation process requires less specialized equipment
compared to welding. Energy costs are lower since riveting doesn’t require electricity for joining, unlike
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welding. These factors contribute to overall cost savings, especially in large-scale or mass-production
scenarios.

• Versatility in material joining
Riveted joints excel in joining dissimilar materials, which can be particularly useful when different ma-
terials need to be combined for specific properties or thermal or chemical incompatibility prevents the
use of welding. This versatility allows to select the most appropriate materials for each component
without being constrained by joining limitations.

Figure 1.4: Riveted joints

In summary, this thesis aims to navigate through the complexities of riveted joints with clearances in low-
load applications, highlighting their importance in contemporary engineering challenges and paving the way
for stronger and more efficient structural solutions.
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1.2. State of art

Currently, the increased use of riveted joints has led to numerous studies on this type of assembly. These
investigations focus on optimizing joint design, extending their lifespan, and enhancing their performance.
All structural assemblies must be joined in one way or another, whether through bolts, rivets, welding, ad-
hesives, or other means. The increasing use of riveted joints as structural elements has created the need for
numerous studies on them, either to optimize their design or to prevent failures.

The numerical method is a straightforward and efficient tool for studying the effects of various influencing
factors, including geometric dimensions, bolt tightening force, aperture size, and clearance. Among these
factors, clearance refers to the intentional or unintentional gap between mating components, such as the
space between a bolt and a hole or the clearance in mechanical assemblies to allow for thermal expansion,
ease of assembly, or controlled movement. Clearance plays a critical role in the overall performance and
reliability of mechanical systems, as excessive clearance can lead to misalignment, vibration, and wear, while
insufficient clearance can cause interference, overheating, or material failure. Numerical simulations help
in analyzing these parameters under different conditions, providing insights for optimizing the design and
functionality of mechanical systems.

1.2.1. Stress analysis method for clearance-fit joints with bearing-bypass loads

The article [9] “Stress Analysis Method for Clearance-Fit Joints with Bearing-Bypass Loads” by R. A. Naik and J.
H. Crews, Jr., investigates the complex stress behaviors that arise in joints with clearance subjected to com-
bined bearing and bypass loads. These conditions are common in aerospace structures, particularly those
utilizing composite materials, where lightweight and high-strength connections are paramount. The study
presents an innovative numerical approach for analyzing such systems, offering significant advancements in
understanding and optimizing joint performance.

The proposed method employs an inverse formulation coupled with linear elastic finite element anal-
ysis. This approach is particularly noteworthy because it circumvents the computational challenges asso-
ciated with nonlinear contact problems, such as iterative-incremental methods. Instead of requiring time-
consuming node tracking along the bolt-hole interface, the inverse formulation defines the boundary condi-
tions using multi-point constraint equations. These equations model the contact between the bolt and the
hole, capturing the nonlinear behavior introduced by clearance without the need for specialized algorithms.

One of the critical contributions of the study is its focus on the effects of clearance. Clearance fundamen-
tally alters the contact mechanics of the joint. For tension-dominated bearing-bypass loads, clearance causes
the contact angle between the bolt and hole to expand as the load increases. Conversely, under compression-
dominated loading, the contact angle diminishes, and in some cases, dual contact occurs when the hole
closes onto the bolt. Dual contact significantly reduces stress concentrations, which is a beneficial outcome,
particularly under high compressive loading conditions.

Figure 1.5: Variation of contact angle with bypass stress
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The research highlights the importance of the bearing-bypass load ratio (β) in influencing the joint’s stress
state. This ratio governs the proportion of the load distributed between the bearing and bypass effects. For
instance, under tensile bearing-bypass loading, tangential stresses around the bolt-hole interface increase
linearly with the bypass load. However, under compressive loading, both tangential and radial stresses show
complex variations, influenced heavily by the onset of dual contact. The study provides detailed stress distri-
bution profiles, demonstrating that peak stresses shift location based on the loading conditions, an observa-
tion critical for predicting failure modes in composite joints.

Another significant insight is the role of dual contact in enhancing joint strength. When dual contact oc-
curs, load transfer across the fastener increases, reducing the stress concentration around the hole. This phe-
nomenon suggests that optimizing clearance dimensions can improve joint performance. Smaller clearances
encourage dual contact at lower loads, leading to a more uniform stress distribution and increased resistance
to mechanical failure. This insight is particularly valuable for applications involving high compressive loads,
where stress concentrations can lead to premature failure of the joint.

Figure 1.6: Contact angle notation for dual contact

The authors validate their approach using quasi-isotropic graphite/epoxy laminates, materials commonly
used in aerospace applications due to their lightweight and high-strength characteristics. By incorporating
realistic material properties and applying their method to practical configurations, the study establishes a
robust framework for analyzing and designing clearance-fit joints in advanced structural assemblies.

The study underscores the practical applicability of the method. The simplicity of the inverse formulation
allows for implementation using standard finite element tools such as MSC/NASTRAN, making it accessible
to engineers and designers without requiring extensive customization. This computational efficiency, com-
bined with the method’s ability to capture nonlinear contact behaviors accurately, positions it as a powerful
tool for the optimization of riveted and bolted joints, particularly in applications where safety and perfor-
mance are critical.

This work provides a comprehensive framework for understanding and analyzing the behavior of clearance-
fit joints under combined bearing and bypass loading. The insights gained are directly applicable to the
design and optimization of structural joints, particularly in composite materials, offering a valuable contri-
bution to the field of mechanical and aerospace engineering.
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1.2.2. Contact stresses in pin-loaded orthotropic plates

The article [6] “Contact Stresses in Pin-Loaded Orthotropic Plates” by M.W. Hyer and E.C. Klang explores
the complex interaction of contact stresses in pin-loaded joints within orthotropic materials, such as fiber-
reinforced composites. This research provides a significant advancement by integrating the effects of pin
elasticity, friction, and clearance — three critical factors often studied in isolation — into a cohesive numeri-
cal analysis framework. Its contributions offer valuable insights into optimizing joint design and understand-
ing failure mechanisms in advanced structural assemblies.

This study adopts a two-dimensional contact elasticity model based on complex variable theory, explicitly
accounting for the elasticity of both the pin and the plate. Unlike prior studies that simplified the interaction
by assuming a rigid pin or a known radial load distribution (e.g., a cosine function), this work models the full
coupling between the elastic bodies in contact. The analysis divides the boundary into regions of contact,
slip, and no-slip, and iteratively determines these zones under loading conditions. By enforcing boundary
conditions at discrete points using a collocation procedure, the study achieves high numerical accuracy, cap-
turing the nuanced behavior of pin-plate interactions.

A central theme of this research is the role of clearance between the pin and the hole in determining stress dis-
tributions and contact mechanics. Clearance introduces significant nonlinearity, affecting the size and shape
of the contact region, as well as the location and magnitude of peak stresses. When clearance is present, the
pin contacts the plate over an arc that evolves nonlinearly with the applied load. This variation creates zones
of tensile radial stresses in areas of no contact, which the analysis successfully captures. Smaller clearances
generally reduce stress concentrations by encouraging more uniform load transfer across the interface, while
larger clearances exacerbate stress localization and misalignment risks.

Figure 1.7: Effect of clearance on stresses

The study also incorporates the effect of friction within the contact region, modeled using Coulomb’s law.
Friction influences the stress state by defining slip and no-slip zones along the contact arc. Higher coeffi-
cients of friction increase shear stress while altering the peak locations and magnitudes of radial and cir-
cumferential stresses. The interplay of friction and clearance highlights their combined role in defining joint
performance. Friction, for instance, significantly affects the contact region’s extent and redistributes stresses,
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improving joint strength under certain conditions.

One of the most important findings relates to the influence of orthotropic material properties on stress distri-
butions. Plates with different fiber orientations exhibit varying stress profiles around the hole. For example,
plates with fibers aligned along the loading direction experience higher stress concentrations, whereas quasi-
isotropic laminates exhibit more evenly distributed stresses. Highly orthotropic materials, such as those with
fibers exclusively aligned in the load direction, demonstrate stress concentration factors significantly higher
than quasi-isotropic configurations, underscoring the importance of material selection in joint design.

Figure 1.8: Fiber reinforced composite

The analysis further evaluates the elasticity of the pin and its relative significance. While the plate’s elastic
properties dominate the stress behavior, the study reveals that pin flexibility has a secondary yet noticeable
effect. Simulations with rigid, steel, and aluminum pins show minor variations in stress distributions, with
more flexible pins slightly reducing peak stress magnitudes due to increased deformation and load redistri-
bution. However, the influence of pin elasticity is generally less critical compared to the effects of clearance
and friction.

The numerical methodology developed in this study demonstrates the power of iterative approaches for solv-
ing complex contact problems. The collocation method enforces boundary conditions precisely, while the
iterative process adjusts contact and slip regions until convergence. This computational framework ensures
that critical physical conditions such as traction-free zones and the Coulomb friction limit—are satisfied,
leading to reliable predictions of stress distributions and contact angles.

The study concludes with practical implications for joint design in fiber-reinforced composites. By integrat-
ing clearance, friction, and orthotropic properties into a single analysis, this research offers a comprehensive
framework for optimizing joint performance in advanced materials. The results emphasize that assumptions
like rigid pins or simple radial load distributions fail to capture the true stress states, especially in cases involv-
ing significant orthotropy or clearance. This underscores the importance of realistic modeling in preventing
failures and improving the reliability of pin-loaded joints in critical applications, such as aerospace and au-
tomotive structures.

This work significantly enriches the state of the art by demonstrating that clearance, friction, and orthotropic
properties interact in complex but predictable ways to shape stress distributions. It provides a detailed nu-
merical approach for understanding and optimizing these factors, paving the way for more efficient and ro-
bust joint designs in composite materials.
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1.2.3. Load distribution of multi-fastener laminated composite joints

The article [4] “Load Distribution of Multi-Fastener Laminated Composite Joints” by Wei-Xun Fan and Chijn-
Tu Qiu explores the influence of clearance, also referred to as fitting tolerance, on the load distribution in
multi-bolt joints. The study applies a robust analytical approach that combines Faber series expansion and
complex potential methods to model the stress and load transfer mechanisms in laminated composite mate-
rials. Using a configuration with four fasteners, the research provides valuable insights into how clearances
impact joint performance under various loading conditions.

Figure 1.9: Laminated composite joint having four hole/pin connections

A significant finding of the study is the impact of clearance on load distribution. In joints with positive
clearance, load sharing among fasteners is inherently uneven, especially at lower load levels. Initially, only
the fasteners with the smallest clearances engage in load transfer, leaving the remaining fasteners inactive.
As the load increases, more fasteners come into contact, and the load is redistributed more evenly across the
joint. This transition highlights the critical role of clearance in determining load-sharing behavior in multi-
fastener configurations.

The study identifies two distinct stages of load distribution when clearances are present. In the first stage,
referred to as Stage I, only the first and last fasteners in the joint are in contact due to their smaller clearances.
These fasteners equally share the external load up to a certain threshold value. In the second stage, or Stage
II, all fasteners come into contact as the load exceeds the threshold. In this stage, the load distribution is in-
fluenced by the joint’s geometric and material properties, transitioning toward a more uniform load-sharing
state.

The numerical modeling in the study assumes that the joint’s plates are orthotropic, thin, and homoge-
neous, ensuring symmetry in the stress fields and boundary conditions. By representing contact stresses as
cosine functions and expanding them using Faber series, the researchers develop a precise computational
model that accurately captures the nonlinearities introduced by clearance. The model effectively simulates
the interaction between fasteners and plates, allowing for the prediction of stress concentrations and load
distribution patterns.

Clearance magnitude is shown to have a profound effect on joint behavior. Larger clearances result in
more pronounced load unevenness, as the fasteners with smaller clearances must bear the majority of the
load before others engage. For instance, doubling the clearance not only delays the engagement of additional
fasteners but also doubles the threshold load required to transition to a fully engaged state. This finding un-
derscores the need to carefully control clearances during joint design to avoid excessive stress concentrations
and potential failures.

The study also examines the influence of friction within the contact regions of the joint. Friction, modeled
using a coefficient of friction, plays a stabilizing role by reducing stress concentrations and slightly evening
out the load distribution among fasteners. Although the effect of friction is less pronounced than that of
clearance or plate stiffness, it still contributes to improved joint performance, particularly under moderate
loading conditions.

Material stiffness and laminate properties are additional factors that strongly affect load-sharing behav-
ior. As the axial stiffness of the joint plates increases, the load distribution becomes more uniform, with
relative displacements between fasteners diminishing. In the limiting case of infinitely stiff plates, all fasten-
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ers carry an equal share of the load, regardless of clearance. Furthermore, orthotropic laminates with fibers
aligned along the load direction exhibit more consistent load distribution than cross-ply laminates, where
stresses tend to concentrate unevenly.

The numerical results highlight the combined effects of clearance, material stiffness, and friction on load
distribution. For example, joints with larger clearances initially exhibit significant load concentration on
fewer fasteners, increasing the likelihood of local failure. However, as external loads increase, load-sharing
becomes more balanced, even for joints with considerable clearances. Similarly, friction reduces peak stresses
near the contact edges and enhances the joint’s ability to distribute loads evenly.

This study underscores the practical implications of clearance management in the design of multi-fastener
joints. By understanding the interplay of clearance, material properties, and friction, engineers can optimize
joint configurations to improve load-sharing efficiency, minimize stress concentrations, and enhance the re-
liability of composite structures. These findings are particularly relevant for high-performance applications,
such as aerospace engineering, where joint integrity is critical.

The article provides a comprehensive analytical framework for studying the effects of clearance in multi-
fastener joints. It highlights the critical role of clearance in influencing load distribution, stress concentration,
and joint reliability, offering valuable insights for optimizing the design and performance of composite joints.





2
Fundamentals of Numerical Methods in

Computational Mechanics

2.1. Linear implicit solver

Linear implicit solvers are a kind of algorithms used in numerical simulations to solve systems of differential
equations in the context of structural, dynamic or thermal analysis. In linear problems, the global equation
would be:

[K ]{u} = {F }, (2.1)

where K is a the stiffness matrix, u is the vector of unknown displacement and F is the vector of external
nodal forces.

The global stiffness matrix is obtained assembling the individual element stiffness matrices. Since the
global matrix has to be inverted to obtain the displacements, it is required to be a square matrix. If the model
presents rigid body motion (mechanism) that structure is unstable and the matrix will be singular.

Figure 2.1: Example of global striffness matrix

In 2D elements, displacement variable has two components (u,v), and therefore 2 degrees of freedom
(dof) per node. The displacements at any other point of the elements will be expressed as a function of the
displacements calculated at the nodes and the shape functions.

u = N1q1 +N2q3 +N3q5

v = N1q2 +N2q4 +N3q6
(2.2)

15
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Figure 2.2: Degrees of freedom per node in 2D element

The shape function is an interpolator that represents the displacement relationships between the differ-
ent nodes. The shape function for node i represents how much node i is displaced with respect to other nodes
of the element.

Ni = 1

2a

[
a1 +b1 · x + c1 · y

]
(2.3)

Once the shape functions are obtained, they are derived to determine [B] (matrix of derivatives of the
shape functions). With the following relation we can calculate the structure deformation field.
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= Bu (2.4)

On the other hand, it is necessary to define the Elastic Tensor [D] depending on whether we are working
in plane stress or plane strain.

[D] = E

(1−ν)

1 ν 0
ν 1 0
0 0 1−ν

2

 Plane Stress (2.5)

[D] = E

(1+ν)(1−2ν)

1−ν ν 0
ν 1−ν 0
0 0 1−2ν

2

 Plane Strain (2.6)

Combining with the elastic tensor [D] with the matrix of derivatives of the shape functions, we obtain the
stiffness of the element. In this way the elemental stiffness matrix can be calculated without using the dis-
placement method.

kelemento =
∫

[B ]T · [C ] · [B ]d v (2.7)

Thus, we move from a differential equation format to a system of linear equations that is easier to solve.
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2.2. Linear vs Nonlinear

A system or model is linear if it satisfies two main properties:

• Superposition: If the inputs x1 and x2 produce responses y1 and y2, then the response to a linear
combination of the inputs, such as ax1 +bx2, will be the same linear combination of the responses:
ay1 +by2.

Mathematically:
f (ax1 +bx2) = a f (x1)+b f (x2)

• Proportionality: The system’s response is directly proportional to the magnitude of the input. For
example, if a load is doubled, the deformations, stresses, or displacements are also doubled.

In structural linear analysis, the following assumptions are made:

1. Material obeys Hooke’s Law:
The relationship between stress (σ) and strain (ε) is linear, as defined by Hooke’s law:

σ= E ·ε
where E is the modulus of elasticity. This assumes the material remains within the elastic region and
does not exhibit plastic behavior.

2. External forces are conservative:
The forces applied to the structure are path-independent and do not depend on the history of deforma-
tion. Conservative forces mean that the work done by these forces is recoverable, making the potential
energy approach valid.

3. Unchanged supports during loading:
Boundary conditions (e.g., fixed, pinned, or roller supports) remain constant throughout the analysis.
There are no displacements, rotations, or alterations in the constraints caused by the applied loads.

4. Infinitesimal deformations:
Displacements, rotations, and strains are so small that the geometry of the structure remains effectively
unchanged. This allows the use of the small strain approximation:

ε≈ ∂u

∂x

The strain is assumed to be less than 0.2%, ensuring that geometric nonlinearity (e.g., buckling or large
deformations) does not occur.

A system or model is nonlinear if it does not satisfy the properties of superposition and proportionality. In
these cases, the relationship between variables is neither direct nor constant, which can result in complex
responses.

2.2.1. Types of nonlinearity

1. Geometric nonlinearity: Appears when deformations are large, and the geometry of the system changes
significantly under load. It is usually solved using the Newton Raphson scheme solution.

Newton Raphson method

The Newton-Raphson method is a powerful iterative approach to solve nonlinear equations. In non-
linear systems, the equilibrium equation R(u) = 0 does not have a direct analytical solution due to the
complexity of the function.

R(u) = Fint(u)−Fext = 0
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Where:

• Fint(u): Internal forces, which depend on the deformation state.

• Fext: External applied forces.

The Newton-Raphson method uses a tangent-based linear approximation to iteratively converge to the
solution.

Starting from an initial guess u0, the function R(u) is approximated using a Taylor expansion:

R(un+1) ≈ R(un)+KT∆u

Where:
∆u = un+1 −un (incremental displacement),

KT = ∂R

∂u
(tangent stiffness matrix, Jacobian)

The next displacement is updated as:
∆u =−K−1

T R(un)

un+1 = un +∆u.

This iterative formula updates the solution until convergence is achieved.

Figure 2.3: Newton Raphson method

2. Material nonlinearity: Occurs when the relationship between stress (σ) and strain (ε) deviates from
linear behavior. Unlike in linear elasticity, where stress and strain are directly proportional (σ = E ·ε),
material nonlinearity reflects complex phenomena such as plasticity, damage, or viscoelasticity.

→ Plasticity: Irreversible deformation beyond the yield point.

→ Viscoelasticity: Time-dependent deformation

→ Damage or fracture: material degradation leading to crack formation or failure.

In nonlinear materials, the stress-strain curve is not a straight line. The material behavior varies de-
pending on the load, and properties like stiffness may change during deformation. Common stress-
strain curve regions include:
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• Elastic region: Linear relationship; deformation is fully recoverable.

• Plastic region: Permanent deformation begins; stress and strain are no longer proportional.

• Hardening/Softening: The material may exhibit strain hardening (increased resistance) or soft-
ening (decreased resistance).

Figure 2.4: Stress-strain curve (nonlinear materials

In addition to material nonlinearities, the relationship between kinematic quantities (displacement,
rotation, and strain) can also exhibit nonlinearity. For instance:

(a) Small strain approximation (linear strain):

ε(x) = du

d x

(b) Nonlinear strain (for large deformations):

ε(x) = du

d x
+ 1

2

(
du

d x

)2

Where:

• ε(x): Strain in the small deformation regime.

• E(x): Strain in the large deformation regime.

• u: Displacement.

• du
d x : Gradient of displacement with respect to position x.

The additional quadratic term in the nonlinear strain expression accounts for large deformation effects,
making it crucial in capturing geometric nonlinearity in material models.

3. Boundary nonlinearity: Boundary nonlinearity arises in structural systems when the conditions at the
boundaries or interfaces are not constant and change due to the applied loads, deformation, or contact.
Unlike fixed boundary conditions in linear systems, the response at boundaries in nonlinear systems
evolves dynamically, making the problem more complex to analyze and solve.
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Contact nonlinearity: Signorini conditions

Contact nonlinearity appears when two or more bodies interact at their surfaces, creating a nonlinear
relationship due to changes in the contact area, forces, and relative motion.

When modeling contact nonlinearity, Signorini conditions are used to mathematically describe the in-
teraction between two surfaces. These conditions govern the relationship between the gap, the normal
force, and the contact state (contact or separation).

The Signorini conditions ensure that:

(a) No penetration occurs between surfaces (unilateral contact).

gn(u) ≥ 0

(b) Contact forces are compressive only (no tensile forces in the contact zone).

Fn ≥ 0

(c) Complementarity: Either contact occurs or separation exists, but not both simultaneously.

gn(u) ·Fn = 0

This condition ensures that:

• gn(u) = 0: Contact occurs, and Fn > 0.

• gn(u) > 0: Separation occurs, and Fn = 0.
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2.3. Implicit vs Explicit

In implicit methods, the equations of the system cannot be solved directly in a sequential manner, as in ex-
plicit methods. At each time step, the system of algebraic equations is solved, which implies the need to solve
large matrices, which implies a higher computational cost.

Implicit solvers are known to be more stable, especially in problems involving large changes in time or
space, such as in simulations of structural dynamics or fluid flows. This is because they do not depend on a
small time step, which allows them to handle large transient or nonlinear changes more efficiently. The time
step in explicit analysis must be less than the Courant time step (time it takes a sound wave to travel across
an element).

C = u∆t

∆x
, (2.8)

In contrast, implicit transient analysis has no inherent limit on the size of the time step. As such, implicit
time steps are typically several orders of magnitude larger than explicit time steps.

Implicit analysis requires a numerical solver to invert the stiffness matrix once or even several times over
the course of a load/time step. This matrix inversion is an expensive operation, especially for large models.
Explicit does not require this step.

Implicit solvers usually require a number of iterative steps to converge to the solution, especially when
the system is nonlinear or has multiple coupled variables. In explicit dynamic analysis, nodal accelerations
are solved directly (not iteratively) as the inverse of the diagonal mass matrix times the net nodal force vector
where net nodal force includes contributions from exterior sources (body forces, applied pressure, contact,
etc.), element stress, damping, bulk viscosity, and hourglass control. Once accelerations are known at time
n, velocities arecalculated at time n+1/2, and displacements at time n+1. From displacements comes strain.
From strain comes stress. And the cycle is repeated.

Solver Implicit Explicit
Method Solves a global system of equations. Calculates nodal acceleration directly
Stability Inherently stable, admits large time steps Conditioned by Courant time step
Iteration Needs iteration to find equilibrium at each step No iterations required

Computational cost High due to the inversion of the stiffness matrix Low because inversion of the stiffness matrix not
required

Velocity Suitable for quasi-static or slow dynamic analysis Suitable for fast dynamic analysis (impacts)
Non-linearity More complex to implement for nonlinear prob-

lems
Easily handles contact and rupture problems

Time step Relatively large Very small, limited by the stability criterion

Table 2.1: Comparation between implicit and explicit solver





3
Modelization

3.1. FE model

The basic model on which we rely for the parametrization is a single shear joint model. It consists of two
plates joined by a fastener and subjected to a shear force. See Appendix A for detailed model construction in
Abaqus CAE.

One of the plates has one of its sides fixed (Ux =Uy =Uz = 0,Rx = Ry = Rz = 0) and the other is subjected to a
shear force, as shown in Figure 3.1

Figure 3.1: Boundary conditions and load applied

For the modeling plate elements are used since there is no triaxiality and fastener elements for the rivets. No
large displacements or plastic material are considered in the model, but contact is applied to describe the
interaction between the surfaces.

3.1.1. Plate theory

Plates are structural elements characterized by its flat, broad shape, where the thickness is significantly smaller
in comparison to its other two dimensions, such as its length and width. This disparity in dimensions allows
plates to be categorized as thin structural elements.
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The measurement of the plate’s thickness is always taken normal to the middle surface of the plate. The mid-
dle surface is an imaginary plane that lies exactly halfway between the two broad faces of the plate. This
middle surface serves as a reference point for analyzing the plate’s mechanical behavior, such as when evalu-
ating bending, shear stresses, or deflections under load.

Figure 3.2: Plate

Plate theory is an approximate theory; assumptions are made and the general three dimensional equa-
tions of elasticity are reduced. It turns out to be an accurate theory provided the plate is relatively thin but
also that the deflections are small relative to the thickness.

Kirchhoff-Love Plate Theory

The Kirchhoff–Love theory is an extension of Euler–Bernoulli beam theory to thin plates. It is assumed that a
mid-surface plane can be used to represent the three-dimensional plate in two-dimensional form.

Let the plate mid-surface lie in the x-y plane and the z axis be along the thickness direction, forming a right
handed set.

Figure 3.3: Cartesian axes

The stress components applied to a representative element of the plate are illustrated in Figure 3.4.
The following assumptions are made:

(i) The mid-plane is a “neutral plane”

• The middle plane of the plate remains free of in-plane stress/strain.

• Bending of the plate will cause material above and below this mid-plane to deform in-plane.

(ii) Vertical strain is ignored

• Line elements lying perpendicular to the mid-surface do not change length during deformation,
so that εzz = 0 throughout the plate.

(iii) Line elements remain normal to the mid-plane

• Line elements lying perpendicular to the middle surface of the plate remain perpendicular to the
middle surface during deformation.
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Figure 3.4: Stresses acting on a element

In terms of the mid-surface, displacements can be expressed as:

u = u0 − z
∂w0

∂x
(3.1)

v = v0 − z
∂w0

∂y
(3.2)

w = w0 (3.3)

When the mid-surface strains are neglected, according to the final assumption of the classical plate theory,
one has:

εxx =−z
∂2w

∂x2 (3.4)

εy y =−z
∂2w

∂y2 (3.5)

γx y =−2z
∂2w

∂x∂y
(3.6)

From Hooke’s law, taking σzz = 0, these relations are obtain:

εxx = 1

E
σxx − ν

E
σy y , εy y = 1

E
σy y − ν

E
σxx , γx y = 2(1+ν)

E
τx y (3.7)

With these equations and in conjunction with 3.4, 3.5 and 3.6, normal stresses are deduced.


σxx

σy y

τx y

= E

1−ν2

1 ν 0
ν 1 0
0 0 1−ν

2


εxx

εy y

γx y

 (3.8)

This matrix equation represents the plane stress relationship in linear elasticity, where E is the Young’s mod-
ulus and ν is the Poisson’s ratio.
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3.1.2. Abaqus elements library

Abaqus provides an extensive element library, offering a versatile set of tools for solving diverse engineering
problems. Each element in Abaqus is uniquely identified by its name, such as T2D2, S4R, C3D8I, or C3D8R,
which encodes information about its properties.

Family

Element families are categorized by their geometry type, which is one of the primary distinctions among
them. The first letter(s) of an element’s name indicate the family to which it belongs. Commonly used ele-
ment families in stress analysis are illustrated in Figure 3.5.

Figure 3.5: Commonly used element families

Degrees of Freedom

The degrees of freedom (DOF) represent the fundamental variables calculated during an analysis. In stress/displacement
simulations, DOF include translations and, for shell and beam elements, rotations at each node. For heat
transfer simulations, DOF correspond to temperatures at each node. In coupled thermal-stress analyses,
temperature DOF are included in addition to displacement DOF at each node. Since the DOF differ, heat
transfer and coupled thermal-stress analyses require different element types than stress analyses.

Number of Nodes and Interpolation Order

Displacements or other DOF are calculated at the nodes of an element. Displacements at other points within
the element are obtained by interpolating from the nodal values. The interpolation order depends on the
number of nodes in the element:

• Linear elements (first-order): These elements have nodes only at their corners and use linear interpo-
lation in each direction.

• Quadratic elements (second-order): These elements include midside nodes and use quadratic inter-
polation.

• Modified second-order elements: Triangular or tetrahedral elements with midside nodes employ mod-
ified second-order interpolation.

The number of nodes in an element is typically indicated in its name.
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Figure 3.6: Interpolation nodes

Formulation

The formulation of an element defines the mathematical framework governing its behavior. Abaqus offers
two primary formulations:

• Lagrangian formulation: In this approach, elements deform along with the material. Most stress/displacement
elements in Abaqus use this formulation.

• Eulerian formulation: In this method, elements remain fixed in space while the material flows through
them. This is commonly used in fluid mechanics simulations. For example:

– Abaqus/Standard employs Eulerian elements to model convective heat transfer.

– Abaqus/Explicit offers multimaterial Eulerian elements for stress/displacement analyses and adap-
tive meshing. Adaptive meshing combines Lagrangian and Eulerian characteristics, allowing ele-
ments to move independently of the material.

In Abaqus/Explicit, Eulerian elements can interact with Lagrangian elements using general contact defini-
tions.To accommodate various behaviors, some Abaqus element families include multiple formulations. The
conventional shell element family comprises:

• General-purpose shell elements.

• Thin shell elements.

• Thick shell elements.

Abaqus also offers continuum shell elements, which are similar to continuum elements but designed to sim-
ulate shell behavior with minimal elements through the thickness.

Some Abaqus/Standard element families include alternative formulations, indicated by additional characters
in their names. For example hybrid elements, designed to address incompressible or inextensible behaviors,
are marked with an H at the end of their names (e.g., C3D8H, B31H).

Mass Formulation and Dynamic Analyses

Abaqus employs different mass formulations depending on the solver:

• Abaqus/Standard uses the lumped mass formulation for low-order elements.

• Abaqus/Explicit applies the lumped mass formulation across all elements. However, this may lead to
deviations in the second mass moments of inertia, particularly for coarse meshes.

For steady-state dynamic and frequency extraction analyses, Abaqus/Standard uses a specialized projected
mass matrix algorithm for certain shell elements (e.g., S3, S3R, S4, S4R, SC6R, SC8R, and S4R5). This approach
may result in slight variations when comparing these results with those obtained from implicit dynamic anal-
yses.

In Abaqus/CFD, hybrid elements are employed to address common stability issues in incompressible flow
simulations. Additionally, Abaqus/CFD allows extra degrees of freedom to be added based on the procedure
settings, such as turbulence models or optional energy equations.
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Integration

Abaqus uses numerical methods to integrate quantities over the volume of each element, enabling flexibility
for diverse material behaviors. Gaussian quadrature is the primary technique, with material responses eval-
uated at integration points within each element. For continuum elements, both full and reduced integration
options are available, significantly impacting accuracy. Reduced integration elements are identified by the
letter R in their names.

For shell, pipe, and beam elements, properties can either be defined as general section behaviors or in-
tegrated numerically to track nonlinear material responses. Additionally, composite layered sections can
be specified, allowing for different materials in each layer. This capability is available for shells and, in
Abaqus/Standard, for three-dimensional brick elements.

3.1.3. S4R element

The S4R element is a popular shell element in Abaqus, belonging to the conventional shell element family. It
is specifically designed for modeling structures where one dimension, the thickness, is significantly smaller
than the other dimensions, that is why it has been used to model the plates of the model.

Figure 3.7: Plates mesh

Conventional shell elements, such as the S4R, discretize the structure by defining a reference surface and
determining the thickness through section properties. These elements include both displacement and rota-
tional degrees of freedom, which makes them particularly suitable for analyzing bending and deformation.

Figure 3.8: Conventional versus continuum shell element
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The S4R element uses a set of conventions to define its behavior and orientation. Local directions on the
shell surface are used for defining anisotropic material properties and reporting stress and strain compo-
nents. These directions are typically output in the current configuration during large-deformation analyses,
except in thin shell elements where the reference configuration is used.

The positive normal direction of the S4R element is determined using the right-hand rule and plays a criti-
cal role in defining the top and bottom surfaces for contact interactions and pressure load applications. The
“top” surface corresponds to the positive normal direction (referred to as the SPOS face), while the “bottom”
surface corresponds to the negative normal direction (SNEG face).

Figure 3.9: Conventional versus continuum shell element

The S4R element includes several advanced features that make it highly effective for shell modeling. It em-
ploys reduced integration to enhance computational efficiency while mitigating shear locking issues, which
can arise in first-order elements. Each node of the element has six degrees of freedom, including three trans-
lational and three rotational, allowing for detailed modeling of structural behaviors. The S4R is a four-node
quadrilateral element, making it a general-purpose choice for shell analysis in a variety of applications, such
as thin to moderately thick structures and complex geometries.

Integration through the shell thickness can be customized for the S4R element. Users can define the number
of integration points, with default settings determined by Simpson’s rule (five points) or Gauss quadrature
(three points). For composite sections, the integration points per layer can also be specified, allowing detailed
modeling of laminate behavior. In Abaqus/Standard, the default output includes values at the top and bottom
surfaces of the shell, while in Abaqus/Explicit, all section points through the thickness are included in the
output by default.
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3.1.4. *FASTENER

This element defines mesh-independent fasteners. The mesh-independent fastener capability provides a
convenient method for defining point-to-point connections between two or more surfaces such as spot welds
or rivet connections. It uses spatial coordinates of fastener locations to establish connections independently
of the underlying meshes it combines either connector elements or BEAM MPCs with distributing coupling
constraints allowing connections to be placed anywhere between two or more surfaces regardless of mesh
refinement or node locations on each surface it can connect both deformable and rigid element-based sur-
faces it can model rigid elastic or inelastic connections with failure by leveraging the generality of connector
behavior definitions and it is available only in three dimensions.

The fastener can be positioned anywhere between the components to be joined, independent of the mesh
configuration. In other words, the fastener’s placement does not depend on the location of the nodes on the
connecting surfaces. Instead, the connection to each part is distributed among multiple nodes on the sur-
faces near the fastening points.

Figure 3.10: One-layer and two-layer fastener configuration

Connector elements

Using connector elements as the foundation for a point-to-point connection enables the modeling of highly
complex behavior in fasteners. Similar to other applications of connector elements, the connection can ei-
ther be fully rigid or allow for unrestricted relative motion in local connector components. Additionally, de-
formable behavior can be defined through a connector behavior specification, which may incorporate the
effects of elasticity, damping, plasticity, damage, and friction. There are two approaches to defining fasten-
ers that utilize connector elements to represent the interaction between fastening points. In both cases, the
fastener interaction is associated with an element set containing the connector elements, and a connector
section definition referencing this element set must be specified.

When connector elements are genearted by Abaqus, there is no need to explicitly define the connector el-
ements that link the fastening points of the fastener. Instead, the fastener interaction refers to an empty
element set. You must specify a connector section definition that references this element set. Additionally, a
reference node set containing a list of user-defined nodes is assigned to the fastener interaction. The nodes
in this reference set serve as positioning points for locating the fasteners.

For single-layer fasteners, Abaqus generates individual connector elements, with each node in the reference
node set becoming the first node of a connector element. The second node of each connector element is
generated internally by Abaqus.

For multi-layer fasteners, Abaqus creates linked sets of connector elements. Each node in the reference node
set becomes the first node of the first connector element in each linked set, while subsequent nodes within
the set are generated internally. The number of connector elements in each linked set corresponds to the
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number of layers in the fastener. These connector elements are assigned internally generated element num-
bers and grouped into a named, user-specified element set. This element set can be used to request output
for the connector elements, but it should not be included in another element set definition.

Figure 3.11: Single layer fastener modeled with connectors

Attachment method: face-to-face

Each interaction defines one or more fasteners, with the total number of fasteners corresponding to the num-
ber of positioning points used to place them. Positioning points are nodes specified at the fastener locations
and assigned as a reference node set for the interaction.

In general, a positioning point should be placed as close as possible to the surfaces being joined. The ref-
erence node defining the positioning point can either be one of the nodes on the connected surfaces or a
separately defined node. Abaqus determines the exact locations where the fastener layers attach to the con-
nected surfaces by first projecting the positioning point onto the nearest surface.

The face-to-face projection method is the most appropriate when the surfaces to be fastened together are
nearly parallel to each other. In this method, Abaqus projects each positioning point onto the nearest surface
along a directed line segment that is normal to the surface. Alternatively, you can define the projection direc-
tion manually. This option can be particularly useful when two-dimensional drawings are used to determine
the positioning point locations, as these locations may be precisely known in two dimensions but not in the
third. In such cases, the specified direction is typically perpendicular to the plane of the drawing.

Figure 3.12: Directed and normal projection to locate the fastening points for the face-to-face projection method

Once the fastening point on the closest surface is identified, Abaqus determines the corresponding points on
the other surface(s) by projecting the initial fastening point onto them along the fastener’s normal direction,
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which is generally perpendicular to the nearest surface. Figure 3.12 illustrates the two methods for locating
projection points. When the surfaces to be fastened are not perfectly parallel, Abaqus may sometimes posi-
tion attachment points at the nearest facet edges or corners of the surface instead of following the fastener’s
normal direction.

The positioning point (a node in the reference node set) may not align exactly with the fastening points de-
termined by Abaqus. As a result, the coordinates of the node at the positioning point may deviate from the
user-specified values when it is relocated to a fastening point. If this node is part of the connectivity of a user-
defined element, its displacement can lead to unacceptable initial distortions in the element that includes
it. In such cases, it is advisable to define the node at the positioning point separately. Generally, this node
should not be one of the nodes belonging to the connected surfaces.

Fastener orientation

Each fastener is defined within a local coordinate system that moves along with the fastener. By default,
Abaqus determines this local system by projecting the global coordinate system onto the fastened surfaces,
following the standard convention for surfaces in space. In this approach, the local z-axis of each fastener is
oriented perpendicular to the surface closest to the fastener’s reference node.

Figure 3.13: Default local surface directions

Radius of influence

Each fastening point is linked to a group of nodes on the surface within its immediate vicinity, referred to as
the region of influence. The movement of the fastening point is then connected to the motion of the nodes in
this region through a weighted distributed coupling constraint.

To determine the region of influence, Abaqus calculates an internal radius of influence based on the fastener’s
geometric properties, the characteristic length of the connected facets, and the selected weighting function.
By default, the radius of influence is set as the largest value among the internally computed radius, the physi-
cal fastener radius, and the distance from the projection point to the nearest node. Users can define a specific
radius of influence, but Abaqus will override any user-defined value that is smaller than the computed default.
Regardless of the calculation method, each region of influence will always include at least three nodes.
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Weighting method

Abaqus calculates a larger default radius of influence for higher-order weighting methods because nodes far-
ther from the fastening point contribute minimally to its motion. To ensure an adequate "smearing" effect,
the number of nodes within the region of influence must be increased by expanding the default radius. In
contrast, a uniform weighting scheme assigns significant influence to surface nodes farther from the fasten-
ing point. As a result, a smaller default radius of influence is sufficient, as the smearing effect remains strong
even with fewer nodes. If fewer than three cloud nodes are detected, increasing the radius of influence can
help form the fastener by incorporating more nodes into the coupling node cloud. By default, Abaqus uses
the uniform weighting method.

Surface coupling: continuum method

The default continuum coupling method links the translation and rotation of each fastening point to the av-
erage translation of the group of coupling nodes on each fastened surface. This constraint distributes forces
and moments at the fastening point solely as a coupling node-force distribution. When the weight factors
are interpreted as bolt cross-section areas, the force distribution corresponds to the classic bolt pattern force
distribution. For each fastening point and its associated group of coupling nodes, the constraint enforces a
rigid beam connection between the fastening point and a point located at the weighted center of the coupling
nodes’ positions.

Fastener properties

Each fastener interaction definition must reference a property that defines the geometric section properties
of the fastener. Fasteners are assumed to have a circular projection onto the connected surfaces, requiring the
user to specify the fastener’s radius. For fasteners modeled using connector elements, both translational and
rotational degrees of freedom can be released by selecting connector section types that allow unconstrained
degrees of freedom.

Figure 3.14: Model with fasteners
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3.2. FEM validation

To validate the results from the model, the distribution for each fastener is analytically calculated. This cal-
culation is performed according to the method outlined in the book “Airframe Stress Analysis and Sizing” [10]
for eccentric joints.

Concentric riveted connections that do not carry moments are assumed to have an even load distribution,
meaning the load is shared equally among the rivets. This holds true approximately, even when the rivets are
aligned in a single row, as the end or first fasteners are not excessively loaded as one might expect.

Shear load on fastener 1, due to the concentrated load:

Ps,1 = P

(
A1∑

A

)
(3.9)

where A is the fastener area and the load goes through the centroid of fastener clusters.

This force corresponds to the shear force in the direction of the applied force (x-axis). The shear force in the
y-direction is considered to be zero.

Using this equation, these assumptions are made:

• Fastener materials are the same

• Fastener bearing on the same material and thickness

• Fastener shear load assumes straight line distribution

Figure 3.15: Model configuration

According to [10], for the model configuration shown in Figure 3.15 the shear load is the following on each
fastener:

Ps1,s2 = 5000N (3.10)
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As there is an eccentricity between the point of application of the axial force and the midplane of the joint,
a moment is generated which gives place to the axial force. It is calculated analytically with the following
formula, where N is the number of joints.

Pa1,a2 = M

LN
= 85.23N (3.11)

Figure 3.16: Load scheme

Table 3.1 shows the forces at each joint obtained by Abaqus. It can be seen that the value of the shear force at
x differs very little from the calculated one. The value of the axial force is higher when calculated analytically.
Once these values are obtained, it can be said that the model is verified.

Joint Shear X (N) Axial (N)
1 4999.47 73.17
2 4999.47 73.17

Table 3.1: Joint forces by Abaqus





4
Methodology

4.1. Objective of the work

The main objective of this work is to develop an automated model for analyzing failure criteria in plate joints
using Abaqus. This involves building a comprehensive simulation framework that can evaluate the structural
integrity of joints under various loading conditions, identifying points of potential failure. By automating
this process, it becomes possible to efficiently simulate a range of configurations and conditions, allowing for
more robust and accurate analysis in structural engineering applications.

To achieve this main objective, several specific goals have been established. First, the creation of scripts
in Python will enable parameterization of the model, providing flexibility in adjusting key variables such as
plate dimensions, load magnitudes, and the number and arrangement of fasteners. This parametrization is
crucial for conducting sensitivity analyses and optimizing joint configurations based on structural demands.

Furthermore, automation of the post-processing stage is an essential component of this work. This in-
cludes extracting and analyzing key data points such as stress, strain, and failure criteria values from the
simulation results. Automating post-processing allows for a streamlined evaluation of results, enabling com-
parisons across different simulation runs without manual intervention.

Through this automated approach, the project aims to provide a reliable and efficient method for struc-
tural engineers to assess and optimize plate joints in various industrial contexts. This methodology could
have broad applicability in sectors where joint integrity is critical, such as aerospace, automotive, and civil
engineering, ultimately contributing to safer and more cost-effective design solutions.

37
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4.2. Procedure

4.2.1. Base model creation with Python

A Python code is developed to establish the foundational structure of a single-shear joint in Abaqus. This
serves as the starting point for further modifications and parameterizations.

In the script the model will be generated, where the sketches and the parts of the plates are created. Then the
plates are assembled and placed in the desired position. To create the joint between them it is necessary to
define the connector section and the surfaces to be joined. The surface to surface contact is also defined.

Once this is done, the mesh of the plates is generated using S4R elements. Then the boundary conditions are
determined by fixing the edge of one of the plates. The applied load is applied at the center of the edge of the
unfixed plate.

Figure 4.1: Simple shear model

4.2.2. Model parameterization

The model is parameterized to allow flexibility in adjusting key variables such as plate dimensions, load mag-
nitudes, and the number and arrangement of fasteners. This parameterization is essential for conducting
sensitivity analyses and optimizing joint configurations according to structural demands.

The code of our model is adapted to parameterize the variables shown in Figure 4.2 and Figure 4.3.
The correspondence between the numbers and the variables is as follows:

1. Plate 1 length

2. Plate 1 width

3. Thickness plate 1

4. Plate 2 length

5. Plate 2 width

6. Thickness plate 2

7. Displacement plate 2

8. Load magnitude

9. Mesh size

10. Number of joints along x axis

11. Number of joints along y axis

12. Fastener radius
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Figure 4.2: Model parameters I

Figure 4.3: Model parameters II

The different parameter values are stored in an excel file in the format shown in Table 4.1, where the first line
is the name of the parameter, and the following lines contain the values for each model, with the first line
containing the values for the first model, the second line for the second, and so on.

plate1_length plate1_width plate2_length plate2_width thickness1 thickness2 ...
200 100 200 100 3 5 ...
200 100 200 100 3 5 ...

Table 4.1: Model parameters in Excel format
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Figure 4.4: Variation of plate length parameter

Figure 4.5: Variation of mesh parameter

Figure 4.6: Variation of joints along Y axis
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Figure 4.7: Variation of joints along X axis

Figure 4.8: Variation of displacement plate 2

The script reads all these parameters, and stores them in a dictionary. Based on this, it creates the sketch by
assigning the correct dimensions for each model, assigns a mesh size, etc.

Figure 4.9: Read paratemers function
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Figure 4.10: Plate 1 definition

Figure 4.11: Fastener point-based definition

Figure 4.12: Contact definition
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4.2.3. Batch execution

The model stack is launched in batch mode to enable the simultaneous execution of multiple simulations
in Abaqus. This approach improves efficiency by allowing large numbers of configurations to be processed
without manual intervention, making it ideal for projects that require extensive parametric studies.

Figure 4.13: Script for batch execution

4.2.4. Postprocess

Once the models are run and the output files are obtained, it is time to postprocess them to be able to ana-
lyze and visualize the results. The post-processing phase is crucial for interpreting the simulation data and
extracting meaningful insights about the model’s behavior.

In the script where the model are created, there is also a part where the results of interest are requested.

Figure 4.14: Output request code

Figure 4.15: Output request Abaqus CAE
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The following results were obtained:

• U (Displacements): It is a noval variable output. Represents all physical displacement components,
including rotations at nodes with rotational degrees of freedom. Allows evaluation of how the structure
deforms under different loading conditions. It is crucial to verify that displacements are within accept-
able design limits.

Figure 4.16: Output U

• S (Stresses): Represents the Cauchy stress tensor in the model elements, which includes normal and
shear stresses. Helps identify high-stress areas that could be prone to failure. It is essential for the anal-
ysis of material strength and durability.

Figure 4.17: Output S
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• CTF (Connector Forces): All components of connector total forces and moments. Fundamental for an-
alyzing the effectiveness and safety of the joints. It allows verification that the connectors are operating
within their design capacities.

• NFORC (Nodal Forces) Forces at the nodes of the element caused by the stress in the element (internal
forces in the global coordinate system). Helps understand how loads are distributed throughout the
structure, which is vital to ensure the model is in equilibrium and loads are transferred appropriately.

Figure 4.18: Output NFORC3

• CSTRESS (Connector Stresses) Contact pressure (CPRESS) and frictional shear stresses (CSHEAR). Al-
lows evaluation of connector performance under load. It is crucial to ensure that connectors do not fail
due to excessive stresses.

Figure 4.19: Output CPRESS
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CTF and CPRESS simulation results are extracted using Python scripts that access the output database (ODB)
files generated by Abaqus. These data are collected in a csv file, that can then be imported into Excel for easier
data manipulation and analysis.

Figure 4.20: Output data in csv file
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Analysis

5.1. Parametric study

In this section, a comprehensive parametric study is conducted to evaluate the impact of various parame-
ters on the performance of the joints. The objective is to understand how each parameter influences joint
behavior and identify potential areas for optimization. By systematically varying parameters such as plate
thickness, fastener configuration, and load application, the study aims to uncover insights that can guide the
design and enhancement of joint structures.

The model configuration shown in Figure 5.1 serves as the baseline for all cases of study. This configuration
provides a consistent starting point, ensuring that the effects of each parameter variation are isolated and
accurately assessed.

Figure 5.1: Initial model configuration

Through detailed analysis and comparison, this parametric study seeks to optimize joint design. The findings
will contribute to the development of more robust and reliable joint configurations, enhancing the structural
performance of the system under various loading conditions.

47
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To carry out the parametric study, a parameter is taken, for example the plate length, and the other parame-
ters are maintained with the values shown in Figure 5.1. For the next model the length increases by 20 mm, so
that in the second model the length is 140 mm, in the third model it is 160 mm, and so on, until it reaches 400
mm. For each model, the forces at the joints are obtained to compare how they evolve as the length varies.
This process is repeated with all the parameters, in order to isolate the effect of each one.

Table 5.10 lists the studied parameters and the range in which they vary. For a better understanding of the
parameters go to section 4.2.2.

PARAMETER STUDY RANGE VARIATION BETWEEN MODELS

Plate length (mm) 120 - 400 20

Plate width (mm) 120 - 400 20

Plate thickness (mm) 1 - 9 0.5

Mesh size (mm) 1 - 8 0.5

Fastener radius (mm) 1 - 8 0.5

Nº joints along x-axis 1 - 4 1

Nº joints along y-axis 1 - 5 1

Load (N) 105 - 15 ×105 105

Table 5.1: Studied parameters
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5.1.1. Plate length

In order to study the influence of length on the behavior of the model, several cases are analyzed. The length
of plate 1 is varied up to 40 cm, keeping the length of plate 2 constant.

Joint Length (mm) Fx (N) Fy (N) Fz (N)
1 120 498630.7 -23815.5 72585.1

400 498455.6 -2193.4 73709.4
2 120 498630.7 23815.5 72585.1

400 498455.6 2193.4 73709.4

Table 5.2: Comparison of forces for 120mm and 400mm lengths

Figure 5.2 shows the evolution of the forces for a range of lengths between 120 and 400 mm. As the forces are
equal in absolute value in both connections, there is no difference between joints in the curves.

As one of the plate is elongated, the point of load application also becomes more distant and the structure is
subjected to more buckling. The moment generated causes the value of the axial load to increase. This effect
is greater when the plates go from having the same length to one of them protruding. This increase in axial
force is compensated by the decrease in both shear forces. By contrast, increasing the length of both plates
results in a constant behavior of the forces on the rivets.

Figure 5.2: Evolution of forces
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Figure 5.3: Stress for initial conf. (up), plate 1 elongated (middle) and both plates elongated (down)
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5.1.2. Plate width

This section examines how increasing the width of the plates affects the structural behavior of the joint. By
modifying the width, the aim is to understand its impact on the distribution of loads.

Joint Length (mm) Fx (N) Fy (N) Fz (N)
1 120 498630.7 -23815.6 72585.1

400 498655.4 -26949.1 69186.1
2 120 498630.7 23815.6 72585.1

400 498655.4 26949.1 69186.1

Table 5.3: Comparison of forces for 120mm and 400mm widths

The oscillating pattern in Fx suggests that as the width changes, there are fluctuations in how the load is dis-
tributed along the plate. This could be due to variations in stiffness and load path as the width increases,
causing periodic changes in force distribution. Fy shows a general increasing trend, indicating that a wider
plate provides better lateral support, allowing it to bear more load in the Y direction. This increase sug-
gests improved stability and load distribution as the width expands. The oscillations in Fz are indicating that
changes in width affect the load distribution in the Z direction as well. These fluctuations may result from
changes in how the plate interacts with the applied load and the resulting stress distribution.

Figure 5.4: Evolution of forces
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Figure 5.5: Stress for width 120 mm (up) and 400 mm (down)



5.1. Parametric study 53

5.1.3. Plate thickness

This section examines how the thickness of the plate 1 affects the structural behavior of the joint. Thicknesses
ranging from 1 mm to 6 mm have been considered for plate 1, while plate 2 remains at a constant thickness
of 3 mm.

Joint Thickness (mm) Fx (N) Fy (N) Fz (N)
1 475538.9 -48816.9 154341.6

1 3 498319.0 -57544.1 74073.3
6 499107.5 -72325.3 45625.7
9 499475.0 -78974.3 30922.8
1 475538.9 48816.9 154341.6

2 3 498319.0 57544.1 74073.3
6 499107.5 72325.4 45625.7
9 499475.0 78974.3 30922.8

Table 5.4: Comparison of forces for different thickness

Increasing the thickness of plates increases their stiffness. This is because the bending stiffness of a plate is
proportional to the cube of the thickness (according to Kirchhoff’s plate theory for small deformations). As
the thickness of plate 1 increases, Fx rises. If the plates are stiffer, the joints must be able to support higher
loads since the structure itself absorbs less energy through deformation. The bending moments at the joints
are reduced as the stiffness of the plates increases (when the thickness increases), since the plate deforms less
under load. The reduction of moments is reflected in the axial force, which also decreases.

Figure 5.6: Evolution of the forces
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Fy shows peaks before reaching the thickness of plate 2 (3 mm), suggesting that differences in stiffness and
deformation compatibility between the plates generate temporary stress concentrations.

A thinner plate may lead to higher stress concentrations and greater deformation, whereas a thicker plate
could enhance the plate’s ability to withstand the applied load.

Figure 5.7: Stress for thickness 1 mm (up) and 9 mm (down)
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5.1.4. Mesh size

The element size varies from 1 to 8 mm to see the effect of the mesh on the results.

When a finer mesh size is used, the simulation can better capture the structural behavior due to the increased
number of nodes and elements, as shown in Figure 5.8. This allows for a more precise discretization of the
geometry and loading conditions.

Figure 5.8: Stress for 1mm mesh (up) and 8mm mesh (down)

Joint Mesh (mm) Fx (N) Fy (N) Fz (N)
1 499436.6 -29797.7 22842.4

1 4 498897.3 -23389.0 44516.2
8 495303.0 -20468.9 170179.9
1 499436.6 29797.7 22842.4

2 4 498897.3 23389.0 44516.2
8 495303.0 20468.9 170179.9

Table 5.5: Comparison of forces for different mesh sizes
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Figure 5.9 shows the evolution of the forces for a range of mesh sizes. As the forces are equal in absolute
value in both connections, only the values of a joint are shown. With a finer mesh, higher shear forces may
be observed because the simulation can identify stress concentrations and local variations in the structure
that a coarser mesh might overlook. For axial force, a finer mesh may reveal that the load is distributed more
evenly, reducing load concentrations in certain areas.

Figure 5.9: Evolution of the forces

Larger element sizes may lead to inaccurate representation of stress concentrations in the joints. These con-
centrations may be overestimated because the mesh is not fine enough to smooth these transitions, resulting
in higher values.

Also, with larger elements, the application and distribution of loads may not be as accurate as with a fine
mesh. This may result in incorrect application of loads on the elements, which in turn may cause the coarser
mesh to predict higher load values due to inappropriate load concentration on fewer elements.

Axial loads are extremely sensitive to the location of stresses and strains, and a coarse mesh may not ade-
quately capture these details. In contrast, the distribution of shear stresses is often more uniform and less
prone to sharp stress concentrations compared to normal stresses induced by axial loads. Therefore, shear
loads tend to be less sensitive to variations in mesh quality.
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5.1.5. Fastener radius

The fastener radius varies from 4.4 to 10 mm to see the effect on the results.

Joint Radius (mm) Fx (N) Fy (N) Fz (N)
1 1 498080.3 -65365.1 73830.1

8 498297.8 -10764.1 138977.9
2 1 498080.3 65365.1 73830.1

8 498297.8 10764.1 138977.9

Table 5.6: Comparison of forces for different mesh sizes

The results indicate that the shear force in the direction of the applied load remains relatively constant as the
fastener radius increases. This suggests that changes in the radius do not significantly affect the joint’s ability
to directly support the applied load. On the other hand, the shear force perpendicular to the load decreases
with a larger fastener radius. Increasing the radius at joints typically helps reduce stress concentrations. With
a larger radius, the load is more evenly distributed across the joint, decreasing peak stresses. Additionally,
the axial force increases with the fastener radius. A larger cross-sectional area directly increases the ability of
the joint to support axial loads, reflected in an increase in measured axial forces. In addition, a larger cross-
section may increase the local stiffness of the joint. Higher local stiffness may allow the joint to transmit a
higher axial load without significant deformation.

Figure 5.10: Evolution of the forces
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Figure 5.11: Stress for radius 4.4 mm (up) and 10 mm (down)
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5.1.6. Nº joints along x-axis

Rows of joints are added along x-axis until there are eight joints to evaluate how the forces are distributed.
Increasing the number of fasteners along the improves the load distribution across the joint.

Figure 5.12: Joints configuration: A (left), B (right)

This distribution reduces stress concentrations on individual fasteners and decrease the risk of overloading.
The additional fasteners increase the stiffness and stability of the structure, allowing it to absorb and redis-
tribute loads more efficiently.

Observing the forces, it makes sense that the most loaded joints are those farthest from and closest to the
point of force application. The joints farthest from the point experience greater moments due to the lever ef-
fect, increasing the forces they must bear to balance the moment generated by the applied load. Similarly, the
joints closest to the point of application bear significant loads as they are directly in the path of the applied
force.

Configuration Joint Fx (N) Fy (N) Fz (N)
A 1 498319.0 -57544.133 74073.32

2 498319.0 57544.133 74073.32
1 155879.3 -7532.6 7683.2
2 94287.3 -746.6 2856.4
3 92565.7 -515.7 2791.3

B 4 157124.8 -21491.8 8078.5
5 155879.3 7532.6 7683.2
6 94287.3 746.6 2856.4
7 92565.7 515.7 2791.3
8 157124.8 21491.8 8078.5

Table 5.7: Comparison of forces for different joint configurations

Figure 5.13: Comparison of maximum forces



60 5. Analysis

Figure 5.14: Stress for 2 joints (up) and 5 joints (down) along y-axis
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5.1.7. Nº joints along y-axis

The number of joints along y-axis is varied from 2 to 5 to evaluate how the forces are distributed. Increasing
the number of fasteners along the y-axis improves the load distribution across the joint.

Figure 5.15: Joints configurations

More fasteners provide additional points of contact and support, allowing the load to be distributed more
evenly throughout the joint. This reduces load concentrations on individual fasteners, thereby decreasing
the shear and axial forces on each one. Additionally, having more fasteners increases the stiffness of the joint,
which can help absorb and redistribute loads more efficiently.

It is also possible to observe that the position of the fasteners plays a crucial role. Fasteners located at the
edges of the joint tend to bear more load due to their position relative to the applied force.

Joint Fx (N) Fy (N) Fz (N)
1 498319.0 -57544.1 74073.3
2 498319.0 57544.1 74073.3
1 214789.7 -12432.5 15008.1
2 189910.6 -9366.1 11314.2
3 189831.8 5.8 ×10−9 11820.4
4 189910.6 9366.1 11314.2
5 214789.7 12432.5 15008.1

Table 5.8: Comparison of forces for different joint configurations

Figure 5.16: Comparison of maximum forces
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Figure 5.17: Stress for 2 joints (up) and 5 joints (down) along y-axis
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5.1.8. Load magnitude

To study the influence of the force on the behavior of the model, the applied force is increased from 104 to 14
×105.

Joint Load (N) Fx (N) Fy (N) Fz (N)
1 104 5000.2 -456.1 11.7

14 ×105 696846.3 -32710.8 130579.6
2 106 5000.2 456.1 11.7

14 ×105 696846.3 32710.8 130579.6

Table 5.9: Comparison of forces

When the applied shear force on a joint is increased, both the shear and axial forces are observed to rise. The
load is applied to one of the plates, creating a moment due to the eccentricity relative to the center of the
joint. As a result, the generated moment can cause a tensile or compressive effect on the joint elements, in-
creasing the axial force. This occurs because the moment induces internal stresses along the axis of the joint,
increasing the axial load that the components must bear. Additionally, the extra load and resulting moment
redistribute the forces across the joint, increasing the shear force in certain areas.

Figure 5.18: Evolution of the forces



64 5. Analysis

Figure 5.19: Stress for minimum (up) and maximum (down) load
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5.1.9. Summary

This table shows the joint forces obtained for the minimum and maximum value of each parameter. It is pos-
sible to observe the evolution of the forces when varying each parameter individually.

PARAMETER RANGE Fshear,max Faxial,max VARIATION

Plate length (mm) 120 – 400 120 → 498630.7 72585.1 Fshear: −0.04%

400 → 498455.6 73709.4 Faxial: 1.55%

Plate width (mm) 120 – 400 120 → 498630.7 72585.1 Fshear: 0.00%

400 → 498655.4 69186.1 Faxial: −4.68%

Plate thickness (mm) 1 – 9 1 → 475538.9 154341.6 Fshear: 5.03%

9 → 499475.0 30922.8 Faxial: −79.96%

Mesh size (mm) 1 – 8 1 → 499436.6 22842.4 Fshear: −0.83%

8 → 495303.0 170179.9 Faxial: 645.02%

Fastener radius (mm) 1 – 8 1 → 498080.3 73830.1 Fshear: 0.04%

8 → 498297.8 138977.9 Faxial: 88.24%

Nº joints (x-axis) 1 – 4 1 → 498319.0 74073.3 Fshear: −68.47%

4 → 157124.8 8078.5 Faxial: −89.09%

Nº joints (y-axis) 1 – 5 1 → 498319.0 74073.3 Fshear: −56.90%

5 → 214789.7 15008.1 Faxial: −79.74%

Load (N) 105 – 15×105 105 → 5000.2 11.7 Fshear: 1.4×104%

15×105 → 696846.3 130579.6 Faxial: 1.1×106%

Table 5.10: Results summary

The following conclusions can be drawn from the results shown in the table:

• The dimensions of the plate (length or width) have no impact on the shear force supported by the
joints. The axial force varies somewhat more than the shear force, about 2% for the length and 5% for
the width, but without reaching significant values.

• The increase in thickness significantly affects the axial force of the joints. As the thickness increases,
the stiffness of the plate increases, thus reducing the bending moment, and therefore the axial force. If
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we look at the table, when the thickness is 9mm, the axial force is 80% lower than when the thickness is
1mm.

• Shear loads remain stable, while axial loads are very sensitive to element size. As the mesh becomes
finer, these forces decrease, stabilizing their value for an element size of about 4 mm.

• The fastener radius does not affect the shear force, but has a direct impact on the axial force. Increasing
the radius results in a larger cross section and the stiffness of the fastener increases, which allows the
fastener to transmit a greater axial load without significant deformation.

• The greater the number of fasteners, the better the load distribution, reducing the concentration of
each fastener and therefore reducing the axial and shear load.

• As the applied shear load is increased, the shear force rises with it. The axial load also climbs, since the
moment also rises due to the eccentricity relative to the center of the joint.

It is observed that the parameters that significantly affect the shear force are the number of joints and the
applied force. In addition, the axial force is also influenced by the thickness, the mesh size and the fastener
radius. With this it can be concluded that the length and width of the plates have no significant effect.
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5.2. Huth Stiffness

The application of the Finite Element Method (FEM) in determining fastener stiffness provides highly accu-
rate results. However, when dealing with numerous joints of varying thicknesses, the preparation and com-
putation of a comprehensive FEM model can be time-consuming. In industrial practice, various analytical
and semi-empirical formulas are available for estimating bolt stiffness. These formulas typically rely on basic
mechanical principles, supplemented by numerical factors derived from independent experimental valida-
tion.

The use of these formulas can greatly accelerate the calculation process; however, the reliability of the results
may be uncertain. This variability often arises from the omission of geometric and physical features typically
present in fasteners, such as pre-tension, bolt spacing, surface roughness, and the application of primer or
sealant. In some cases, secondary bending—relevant for single-shear fasteners—is considered through em-
pirical factors, while in others it is disregarded. Nevertheless, accounting for such effects can be critical to
achieving accurate results in subsequent analyses.

Figure 5.20: Load transferred to each rivet

For connections to and between plates, as are often found in the aircraft industry, a popular way to approx-
imate the fastener stiffness is by using the Huth-Schwarmann method. This stiffness is calculated using the
following formula for flexibility:

C =
(

t1 + t2

2d

)a

× b

n

(
1

t1E1
+ 1

nt2E2
+ 1

2t1E f
+ 1

2nt1E f

)
, (5.1)

where E1 – upper membrane modulus of elasticity, t – shell thickness, E2 – lower membrane modulus, E f –
fastener modulus of elasticity, d – hole diameter, a,b,n – joint-related coefficients.
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For single shear n = 1, and a and b depend on the type of joint as per the following table:

Type of joint Coefficient value
Metal bolted joint a=2/3, b=3
Metal joint with rivets a=2/5, b=2.2
Composite bolted joint a=2/3, b=4.2

Table 5.11: Coefficient values for different types of joints

5.2.1. Implementation in the model

To correctly implement the Huth formula in the Abaqus model, several changes have been made to the code
to accurately reflect the axial and shear stiffness of the rivets in the joint. In particular, the configuration of
the connectors has been modified, transitioning from a beam-based model (BEAM) to one with translational
constraints (CARTESIAN), which allows for a more precise representation of the load transfer in this type of
joint.

5.2.2. Modifications in the code

The Huth formula has been implemented to determine the shear stiffness of the rivets. This stiffness is dy-
namically calculated based on the model parameters (plate thicknesses, material elastic modulus, and fas-
tener dimensions), extracting these values from an Excel parameter file.

Figure 5.21: Shear stiffness function

The assembledType=BEAM configuration, which modeled the fastener as a beam capable of bending, has
been replaced with translationalType=CARTESIAN, which only allows displacements without moment trans-
mission. The choice of CARTESIAN is based on the need to represent the axial and shear stiffness of the
fastener without adding undesired bending effects.

The connector section has been defined using ConnectorElasticity, where the values of axial and shear stiff-
ness are set in the corresponding directions.
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Figure 5.22: Connector section definition

5.2.3. Implications

The transition from BEAM to CARTESIAN in the connector configuration has several implications for the
simulation. It provides greater accuracy in representing the actual stiffness of the fastener, as this type of
joint primarily works under axial and shear stress without generating significant moments. Additionally, it
eliminates moment transmission in the connectors, preventing overestimation of the global stiffness of the
joint. The change also optimizes computation time, as CARTESIAN connectors have fewer degrees of freedom
compared to BEAM.

Aspect BEAM CARTESIAN

Modeled stiffness Includes bending, torsion, axial force,
and shear

Only considers axial force and shear

DOF 3 translations + 3 rotations. 3 translations

Moment transmission The fastener can generate moments The fastener does not transmit mo-
ments

Accuracy in load transfer May overestimate axial stiffness in
short fasteners

More precise for modeling load trans-
fer in riveted joint

Table 5.12: Comparison between BEAM and CARTESIAN connectors

Both in BEAM and CARTESIAN, the axial stiffness Ka is calculated as

Ka = A f ·E

L f
(5.2)

Figure 5.23: Axial stiffnes function

For one model shown in Figure 5.24, the forces in the joints have been extracted with both methods. The ax-
ial force has a significant lower value when using CARTESIAN as it does not transmit moments. Shear forces
have a lower value using Huth’s formula. This is due to the fact that with BEAM, the rivet was almost infinitely
rigid and now it has become more flexible.
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Figure 5.24: Simple shear model

Connector Fx Huth Fx BEAM Fy Huth Fy BEAM Fz Huth Fz BEAM

1 4999.67 4999.86 -224.36 -634.57 -4.98 ×10−3 9.545715

2 4999.67 4999.86 -224.36 -634.57 -4.98 ×10−3 9.545715

Table 5.13: Comparison of Forces for Connectors: Huth vs BEAM

Figure 5.25: Results comparison
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5.3. Clearance

This study focuses on how clearance affects joint behavior. To simulate the effect of clearance in Abaqus, a
very low stiffness is introduced in the perpendicular direction to the applied shear force. This approach al-
lows for observing how the load path varies through the joint.

By reducing stiffness in the perpendicular direction, the presence of gaps or misalignments in the joint is
simulated, which can lead to load redistribution and potentially undesirable stress concentrations. This ap-
proach provides a more realistic view of how joints may behave under typical manufacturing and assembly
conditions.

Figure 5.26: Model of clearance joint: (a) free movement; (b) contact deformation; and (c) detail of contact area

5.3.1. Clearance results

The stiffnesses obtained by Huth’s method are used for this model. With these stiffnesses the forces shown
in Table 5.14 are obtained. To simulate the clearance, a value of order one hundred is entered in the shear
stiffness perpendicular to the applied load.

Joint Clearance Fx (N) Fy (N) Fz (N)
1 ✓ 499618.3 -8.0 1139.8

✗ 499616.3 -8570.8 1139.7
2 ✓ 499618.3 8.0 1139.8

✗ 499616.3 8570.8 1139.7

Table 5.14: Comparison of forces

The Fx, which is the primary shear direction, remains practically constant across both configurations, regard-
less of the presence of clearance. The stiffness in x is high, deformations are minimal, and the load distribu-
tion in this direction remains constant. This consistency suggests that the applied load is well-aligned with
the x-direction and that the joint interaction is predominantly governed by stiffness in this direction, which
is not altered.

In the y-direction, significant variations in force are observed, indicating that the clearance allows for some
lateral movement of the plates, changing how forces are distributed across the joints. This movement can
lead to a redistribution of transmitted loads. A joint with greater clearance typically exhibits lower stiffness
and strength. This is because the bolt can move within the hole before it fully engages with the material,
which delays the development of full joint stiffness and reduces the overall load-bearing capacity.

The minimal variation in Fz across all cases aligns with the fact that this is the axial direction, where signifi-
cant effects from the clearance are not expected.
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Figure 5.27: Stress without (up) and with (down) clearance

Figure 5.28: CPRESS without (up) and with (down) clearance
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Clearance affects the stress distribution around the hole and the load path through the structure. Ideally,
loads are evenly distributed across the bolt and the material surrounding the hole. However, excessive clear-
ance can lead to non-uniform load distribution, causing some areas to experience higher stresses.

Increased clearance can lead to more significant bolt bending or tipping, altering the stress states within the
connected plates. This can increase the risk of premature failure modes such as wear, fatigue, or even frac-
turing due to uneven load distributions.

The presence of clearance affects the contact area between the bolt and the hole. Reduced contact area can
lead to higher local stresses and strain concentrations. Friction plays a significant role in maintaining the
integrity of the joint. In joints with clearance, the frictional forces can be less predictable and may not be
sufficient to prevent relative motion between the bolt and the structure under loading conditions, leading to
slippage and further stress concentrations.
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5.4. Further work

Building on the findings of this study, several avenues for future research can be explored to enhance the un-
derstanding and application of joint performance.

One potential direction is to conduct analyses using 3D models. This approach would capture the geometric
complexity and interactions within the joints more accurately, providing deeper insights into their behavior
under various conditions.

Another area of interest is examining the model’s performance under double shear conditions. By comparing
the differences in load distribution and stress between single and double shear, a more comprehensive un-
derstanding of joint mechanics can be achieved.

Exploring the implications of using composite materials is also a promising avenue. This could lead to im-
provements in strength and weight reduction, offering significant benefits in structural applications.

Further investigation into the different failure modes of connectors is essential. Understanding the condi-
tions that lead to failure and developing strategies to prevent them will enhance joint reliability and safety.

Finally, validating the simulation results with experimental tests is crucial. By comparing the outcomes with
physical experiments, the model can be refined and parameters adjusted to ensure accuracy and reliability.
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Model creation in Abaqus CAE

This appendix shows a step-by-step process to create the single-lap shear model using the Abaqus CAE inter-
face.

Part

In Abaqus, a Part is a geometric object representing a physical component of the model. It serves as the
foundation for modeling and can be defined with different geometry types. It is created in the Part module
of Abaqus/CAE and is the starting point for defining the model. First, the parts for the two plates are created,
selecting the shell type and deformable body option.

Figure A.1: Part definition

A Sketch is a 2D geometric profile used to create the shape of a Part. It serves as the foundation for defining
the geometry of each plate.

75
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Figure A.2: Material definition

Material

A material defines the physical and mechanical properties assigned to a Part or Section to simulate realistic
behavior under applied loads and boundary conditions.

To define the elastic behavior of steel in Abaqus, an elastic property must be created by assigning the Young’s
Modulus and Poisson’s Ratio. This is done in the Property module within Abaqus/CAE.

Figure A.3: Plate sketch

Section

A Section in Abaqus defines the material properties and thickness of a Part or a region of the model. It is
independent of geometry and is assigned to one or more parts to specify their structural behavior. For the
plates, a Shell Section is selected, which defines the thickness and material for shell elements.



77

Figure A.4: Section definition

Once a Section has been created, it must be assigned to the plate to ensure that the material properties and
other parameters (such as thickness for shell elements) are applied correctly. This process is done in Assign
Section in the Property module toolbar.

Figure A.5: Section assignment

Instance

An Instance is a copy of a Part placed in the Assembly module. The instancing system allows multiple copies of
the same Part to be used in the model without modifying the original Part definition. This approach improves
efficiency and consistency in simulations. Instances are created in the Assembly module from the main menu.

For the plates, dependent instances have been chosen, meaning that the meshing is defined at the Part level
and cannot be modified at the Instance level. Mesh and properties remain consistent across all instances.

With independent instances the mesh is defined at the Instance level, allowing modifications per instance. It
is useful when applying different mesh refinements to the same geometric Part.
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Figure A.6: Instance definition

Attachment points

Attachment Points are reference points used to define connections, constraints, or interactions between dif-
ferent parts of a model. They are used in the assembly to define fastener locations.

They are created from the Interaction module, and a reference edge must be selected from which the offsets
are measured, as well as the face where the attachment points are placed. For the distance to the edge, a value
of 2.5 times the bolt diameter is defined, and for the distance between them, a value of 4 times the diameter
is applied. The number of rivets will correspond to the number of attachment points generated.

Figure A.7: Attachment points definition

Figure A.8: Attachment points
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Connector Section

A Connector Section is used to define the mechanical behavior of connections between parts. When working
with fasteners, the Connector Section specifies how these elements transfer forces and moments between the
connected components.

Beam connector type automatically constrains all degrees of freedom (U1, U2, U3, UR1, UR2, UR3) and be-
haves like a rigid link.

A Connector Section defines the interaction properties of a fastener, including axial and shear stiffness, rota-
tional stiffness (if applicable), failure criteria or connector behavior.

Figure A.9: Connector Section definition

Fastener

Point-based fasteners are a method to define fastening elements (bolts, rivets, spot welds, etc.) at specific
points rather than defining individual connector elements. This is useful when modeling connections be-
tween plates without explicitly meshing the fastener geometry.

Before defining the fastener, the surfaces of the plates to be joined must be created.

Figure A.10: Surface definition
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The fastener element connects two or more surfaces at a discrete location and allows for force transfer in
axial and shear directions. To create them, go to Create fasteners in the Interaction module toolbox, select
Point-based fasteners, the attachment points defined before and the surfaces to be joined.

Figure A.11: Fastener definition

Figure A.12: Fastener parameters
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Figure A.13: Fasteners

Contact property

A Contact Property defines the interaction behavior between surfaces, including friction or normal contact
behavior. When modeling fasteners, defining an appropriate Contact Property ensures realistic force transfer
between connected plates. It is created from the Interaction module.

Figure A.14: Fastener parameters

Tangential behavior defines how surfaces resist relative motion (sliding). Selecting Frictionless, ABAQUS as-
sume that surfaces in contact slide freely without friction.

Normal behavior defines how surfaces interact in normal direction. Default method is used to enforce contact
constraints by using a contact pressure-overclosure relationship. Select a “Hard” Contact to use the classical
Lagrange multiplier method of constraint enforcement. Toggle off Allow separation after contact if you want
to prevent surfaces from separating once they have come into contact.
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Contact

Defining contact in Abaqus/Standard can be done in terms of two surfaces that may interact with each other
as a “contact pair”. Abaqus enforces contact conditions by forming equations involving groups of nearby
nodes from the respective surfaces.

To define a contact pair, you must indicate which pairs of surfaces may interact with one another or which
surfaces may interact with themselves. Contact surfaces should extend far enough to include all regions that
may come into contact during an analysis.

Figure A.15: Fasteners

In Abaqus/CAE, go to the Interaction Module and create a new interaction by selecting Create Interaction.
Choose the master surface and the slave surface. In the Interaction Editor, set the Finite Sliding, to use the
finite-sliding formulation, which is the most general and allows any arbitrary motion of the surfaces. As dis-
cretization method choose the Surface-to-Surface, and assign the Contact Interaction Property.

Mesh

The mesh definition is a crucial step in finite element analysis (FEA). The mesh determines how the model is
discretized into elements, which affects the accuracy, stability, and computational cost of the simulation.

To define the mesh go to the Mesh Module and select the Seed Part to determine element density.

Figure A.16: Fasteners



Boundary conditions

Boundary Conditions (BCs) are essential for defining how a model interacts with its environment. They re-
strict degrees of freedom (DOF) in translation and rotation, ensuring that the simulation behaves correctly.

In this model, boundary conditions are applied in one of the plates, which has one of its sides fixed (Ux =
Uy =Uz = 0,Rx = Ry = Rz = 0).

Figure A.17: Fasteners

To define the boundary conditions go to the Load Module, click Create Boundary Condition, select the type
of BC and assign the BC to a region.

Load

In the model, a concentrated force is applied in the middle of the edge of one of the plates. To apply the force,
a reference point is created in the desired position.

Abaqus does not distribute the force automatically to the surrounding nodes when the force is applied to a
referenced point. To ensure the load is correctly transferred to the edge or the full structure, a coupling con-
straint.

Figure A.18: Load definition
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