Detectores de emociones en imágenes y vídeos para análisis de negocio "Emotion Tracker"
Autor/es: Rodríguez Fuster, Carlos
Director/es: Torres Font, Miguel Ángel
Palabra/s clave: Emotion Tracker; Algoritmo; Detección de Emociones; Deepface; Privacidad de los Datos
Titulación: Grado en Ciencia de Datos
Fecha de defensa: 2024-06
Tipo de contenido:
TFG
Resumen:
El proyecto Emotion Tracker surge como respuesta al fracaso de muchos intentos por parte de los comercios para obtener un gran volumen de participantes en la valoración sobre sus productos o servicios ofrecidos. Este tipo de tecnología reemplaza los métodos tradicionales por un algoritmo desarrollado en Python que tiene como objetivo detectar y analizar emociones con el propósito principal de mejorar las estrategias empresariales.
El informe del proyecto aborda varios aspectos. Comienza con una introducción que explica el origen de estos tipos de algoritmos y por qué son necesarios. A continuación, se exploran los campos de aplicación del algoritmo, destacando áreas clave como el comercio, el servicio al cliente y el marketing, haciendo hincapié en la necesidad actual que da origen al algoritmo.
El proyecto continúa con una comparación de diferentes modelos de detección de emociones, justificando la elección del modelo principal, "Deepface". Posteriormente, se evalúa el rendimiento de este modelo para determinar su efectividad en la detección y análisis de emociones.
Además, se abordan aspectos relacionados con la privacidad de los datos, la legalidad en su almacenamiento y uso, siempre respetando los derechos de los ciudadanos. La sección posterior detalla la implementación del algoritmo y el almacenamiento de datos, seguido de la visualización y análisis de los mismos.
También se discuten los requisitos ambientales y de sostenibilidad del proyecto, resaltando la importancia del bienestar, la igualdad, la innovación y la sostenibilidad en la sociedad. Finalmente, se presentan las conclusiones del estudio y se describen posibles mejoras y desarrollos futuros del algoritmo.
En conclusión, Emotion Tracker aborda de manera eficiente la necesidad empresarial de comprender las emociones de los clientes, utilizando técnicas avanzadas de reconocimiento facial para mejorar las estrategias comerciales y la experiencia del cliente.
Ficheros en el ítem
Nombre: TFG_CARLOS RODRIGUEZ.pdf
Tamaño: 1.609Mb
Formato: PDF
Tipo de contenido:
TFG